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It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution.
Quantized causal structures can be described by studying simple matrix models where matrices are
replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed
quantum gravity models by quantizing the moduli of Laplace, weight, and defining-function operators
on Fefferman–Graham ambient spaces. The algebra of these operators underlies conformal geometries.
We extend those results to include fermions by taking an ospð1j2Þ “Dirac square root” of these algebras.
The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern–Simons theory
whose differential is a first-quantized, quantum mechanical Becchi-Rouet-Stora-Tyutin operator.
The theory is a basic ingredient for building fundamental theories of physical observables.
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I. INTRODUCTION

Our aim is to construct quantum gravity models based on
two key premises:

(i) Physics is the art of pre- and post-dicting the future
and past—the first step to construct quantum gravity
is to average over all possible causal structures.

(ii) Physics is observation-based—the basic data for a
theory of quantum gravity should be an algebra of
observables.

A first concrete step in this direction was taken in seminal
work of Bars and collaborators: They wrote down equa-
tions that predicted the Hamiltonian of quantum mechanics
and constructed an action principle that could be used
to quantize these equations [1]. Remarkably, they found
that the moduli space of their equations was labeled
by Fefferman–Graham (FG) metrics. These are ðdþ 2Þ-
dimensional ambient metrics that are in correspondence

with d-dimensional conformal geometries and hence space-
time conformal structures [2].
Of course, it is hard to imagine that quantum gravity

could be based only on conformal geometries alias Weyl
invariant systems. Here, a second crucial observation was
made by Bailey, Eastwood, and Gover (BEG): The FG
construction realizes conformal geometries as the curved
analog of the conical space of ambient lightlike rays.
Solutions to Einstein’s equations amount to curved analogs
of conical sections [3].
The BEG description of Einstein’s equations amounts to

finding a parallel ambient vector field known as a parallel
scale tractor while Bars’ approach amounts to quantizing
algebras generalizing the Laplace, weight, and defining
function operators on an FG ambient space. [These spð2Þ
“GJMS algebras” first arose in a conformal geometry
context in a study of invariant Laplacians by Graham,
Jennes, Mason, and Sparling [4].] Recently, these two
approaches were melded in a study of quantum gravities
obtained by coupling scale in the BEG sense to the Bars
quantized conformal geometries [5].
The Klein–Gordon operator is fundamental for physics

but is underpinned by the Dirac operator. In this paper, we
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quantize a certain “square root” of the GJMS algebra. This
leads to the simplest of this class of quantumgravities, namely
an infinite-dimensional two-matrix model. Themodel enjoys
a gigantic gauge symmetry, since in some sense it contains
infinite towers of interacting higher spins. However, its
quantum action is a simple Chern–Simons theory obtained
using the geometry of Batalin–Vilkovisky (BV) quantization
[6] discovered by Alexandrov, Kontsevich, Schwarz, and
Zaboronsky (AKSZ) [7].

II. MASSLESS DIRAC EQUATION

The massless Dirac equation

γμ∇μψ ¼ 0

is Weyl invariant in any dimension d and curved spacetime,
under local metric and spinor transformations

gμν ↦ Ω2gμν; ψ ↦ Ω1−d
2 ψ :

In other words, the Dirac operator is conformally
invariant [8]. As observed by Dirac, this equation can
be rewritten in a ðdþ 2Þ-dimensional conformal space [9],
the curved analog ðM; gMNÞ of which was discovered by
Fefferman and Graham by demanding that the ambient,
signature ðd; 2Þ, metric obeyed [10]

gMN ¼ ∇MXN; ð1Þ
where here ∇ is the ambient Levi-Civita connection [2].
The closed homothety XM generates dilations whose
eigenvalues are conformal weights, while the zero locus
of its square X2 defines the curved conformal cone. The
massless Dirac equation then corresponds to ambient
spinors Ψ ∈ SM subject to

SþΨ ¼ 0 ¼ S−Ψ;

where fΓM;ΓNg ¼ 2gMN and

Sþ ≔ X; S− ≔ ∇: ð2Þ

Our goal is not to reformulate the Dirac equation [11] but
rather to explore quantum gravity by probing the space of
all possible Dirac operators. We begin with a maneuver
reminiscent of string theory’s nascent, first-quantized steps.

III. FIRST QUANTIZED DIRAC EQUATION

To describe the Dirac equation ambiently in first quan-
tization, one first notes that the operators S� generate a first
class, ospð1j2Þ ≔ fS�; Q��; Qþ−g constraint algebra
[15] where [16]

Qþþ ≔ ðSþÞ2 ¼ X2; Q−− ≔ ðS−Þ2 ¼ Δ −
1

4
R;

Qþ− ≔ fSþ; S−g ¼ 2∇X þ dþ 2: ð3Þ

We shall call this a conformal Dirac algebra (CDA).
The worldline particle model [17–19]

S ¼
Z

dτðPM
_XM − ½λiSi þ λijQij�Þ

imposes the CDA constraints in Dirac quantization.
By making differing gauge choices, it describes various
models. These include relativistic and constant curvature
spinning particles, the hydrogen atom with spin and other
SOðd; 2Þ invariant conformal models [22]. Its worldline
Becchi-Rouet-Stora-Tyutin (BRST) operator can be treated
using the detour methods of Ref. [23]. This yields an
equivalent, reduced BRST operator

QBRST ¼ dþ qð2∇X þ dþ 2Þ þ zX þ∇∂p;

which acts on ambient spinor, worldline ðz; p; qÞ-ghost-
polynomial wave functions living in the subspace
cokerðz2Þ ∩ kerð∂2

pÞ ¼∶HBRST. The reduced Lie algebra
differential

d ≔ qð1 − z∂z − p∂pÞ − z∂p∂q ð4Þ

is separately nilpotent acting on HBRST. The BRST
cohomology is that of the ghost-number-graded complex

0 → SM⟶
ðSþS−Þ SM⊗2⟶

ðS−Sþ−2
S−S−

−SþSþ
−SþS−−2ÞSM⊗2⟶

ð−S− SþÞ
SM → 0:

Massless spinors form the ghost number zero cohomology.

IV. SECOND QUANTIZATION

In second quantization the operators S� are off shell and
obey equations of motion. These are exactly the integra-
bility conditions required for the above sequence of maps to
be a complex, namely

½S−; SþSþ� − 2Sþ ¼ 0 ¼ ½S−S−; Sþ� − 2S−:

These equations follow from the action principle

Scl ¼ tr

�
SþS− þ 1

2
SþSþS−S−

�
: ð5Þ

This is a simple, Grassmann, two-matrix model except that
the trace is over spinor bundle SM operators.

R. BONEZZI et al. PHYSICAL REVIEW D 91, 121501(R) (2015)

121501-2

RAPID COMMUNICATIONS



The above integrability conditions ensure that the com-
posite operators ðS�; S�S�; fSþ; S−gÞ obey an ospð1j2Þ
algebra. Indeed, one can “integrate in” new “fields” Qij

and finds an equivalent cubic action principle

Scl ¼ tr

�
1

2
SiSi þ

1

2
QijQij −

1

3
SiQijSj

�
:

This is our classical action principle; nontrivial solutions
include theDirac operatormultiplet given inEqs. (2) and (3).
These solutions rely on the FG metric condition (1). This
shows that the moduli space is parameterized, in part, by
conformal geometries and hence causal structures.
Moreover our space of observables is the algebra of
operators acting on ambient spinors.

V. QUANTUM ACTION

The classical action (5) enjoys a huge gauge invariance

δS� ¼ ½S�; ε�:
For example, expanding the operator valued parameter

ε ¼ ϵþ ξM∇M þ ζMN∇M∇N þ � � � ;
the ambient fields ðϵ; ξMÞ parameterize Maxwell and
ambient diffeomorphism invariances while ζMN is the
parameter for the first of an infinite tower of higher spin
gauge symmetries [1].
To quantize the theory, we must construct its quantum

action. We start by second quantizing the worldline BRST
Hilbert space HBRST ∋A, which means that a wave
function A becomes a field and thus, in this context, an
operator on SM. In modern BV language,A is a coordinate
for an infinite dimensional Q-manifold [24] whose differ-
ential is given by d of Eq. (4).
Expanding the polynomial A in powers of ðz; p; qÞ

determines the BV field content:

A≔ Sþ þ zλ� þpC� þ zpS−þqðS�þ þ zCþpλþ zpS�−Þ:

The quantum action is a Chern–Simons theory [25],

Squ ¼ tr
Z �

AdAþ 2

3

∂
∂pA3

�
: ð6Þ

Here, the integral denotes the ghost measure given by
projection onto monomials proportional to zpq. The partial
p-derivative is thus not a total derivative but rather defines a
cyclic triple product. By construction, the above action
enjoys an enhanced gauge invariance,

δA ¼ dAE ≔ dE þ ∂
∂p ½A; E�;

which is fixed by path integrating over any (odd) Lagrangian
submanifold of the underlying Q-manifold [26]. In the
above formula, the operator ∂p is required both on grounds

of ghost number and that the commutator of field and
parameters lives in kerð∂2

pÞ.
The quantum action (6) is a sum of a classical action

Scl ¼ tr

�
SþS− −

1

2
λ2 − λfSþ; S−g

�
;

plus the standard minimal BV terms built from antifields
multiplying the corresponding BRST variations of fields:

sS� ¼ fC; S�g; sλ ¼ ½C; λ�; sC ¼ C2:

Notice that there is an additional “gauge field” λ. This is an
auxiliary field corresponding to the operator Qþ−; when λ
is integrated out classically, we recover the action (5).
At the quantum level, the model’s path integral sums

over all possible Dirac operators whose on-shell moduli
space corresponds to conformal geometries, and so as
promised, the model is a weighted average over causal
structures.

VI. CONCLUSIONS

Our model is closely related to other leading candidates
for quantum gravity theories, in particular string field
theory [27] Vasiliev’s higher spin theory [28]. String theory
is finite, anomaly- and tachyon-free. However, it is far from
clear that this holds for either the present model or the
Vasiliev theory (see, however, Ref. [29]), although at least
the field content of the latter model is already well under-
stood (see, for example, Ref. [30]). Addressing these gaps
is an obvious future research direction.
The presence of a graviton is at least easier to understand

using the parallel scale tractor of Ref. [3]; the key is to
couple conformal geometry to scale. For example, the action
principle S ¼ R

λijQijψ is known to be gauge equivalent to
the Einstein–Hilbert action [31,32]. In Ref. [5], coupling to
scale was achieved by supersymmetrizing the algebra of
observables. The Hilbert space trace became an N ¼ 2
supertrace, and in turn the model there was found to have
a graviton in its spectrum. Coupling our model to scale
should similarly yield a propagating graviton.
Another key question is the computation of physical

correlators. Here, the advantage of the BV and AKSZ
methods comes to the fore; observables can be viewed as
the homology of Lagrangian submanifolds of the Q-
manifold [26,33]. In a similar vein, perturbation theory
is also (in principle) simple because the BV propagator is
just δ

Δ where δ and Δ are the (worldline) anti-BRST
differential and BRST Laplacian, respectively [26]
(see also Ref. [5]).
Despite the unanswered questions listed above, the

model has some compelling features. Albeit infinite dimen-
sional, it is a simple matrix model and thus conceivably
finite—the theory can be regulated using well-studied
(see Ref. [34]) matrix models. Moreover, unlike string and
Vasiliev theories, the cubic product describing the joining
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and splitting of Hilbert spaces is very simple, which may
augur well for model building. In particular, the extension
to form fields based on an ospð2j2Þ algebra is immediate.

ACKNOWLEDGMENTS

We thank Itzhak Bars, Rod Gover, Robin Graham,
Albert Schwarz, and Per Sundell for discussions. R. B. and

A.W. thank the Universidad Andres Bello for hospitality.
E. L. acknowledges partial support from SNF Grant
No. 200020-149150/1 and NCCR SwissMAP, funded by
the Swiss National Science Foundation. A.W. and O. C.
were supported in part by theUCMEXUS-CONACYTGrant
No. CN-12-564. A. W. was supported in part by a Simons
Foundation Collaboration Grant for Mathematicians.

[1] I. Bars, Phys. Rev. D 64, 126001 (2001); I. Bars and S.-J.
Rey, Phys. Rev. D 64, 046005 (2001).

[2] C. Fefferman and C. R. Graham, Élie Cartan et les Math-
ematiques d’Aujourd’hui (Astérisque, Lyon, 1985), p. 95.

[3] T. N. Bailey, M. G. Eastwood, and A. R. Gover, Rocky Mtn.
J. Math. 24, 1 (1994).

[4] C. R. Graham, R. Jenne, L. Mason, and G. Sparling,
J. Lond. Math. Soc. s2-46, 557 (1992).

[5] R. Bonezzi, O. Corradini, and A. Waldron, Phys. Rev. D 90,
084018 (2014).

[6] I. A. Batalin and G. A. Vilkovisky, Phys. Lett. 102B, 27
(1981).

[7] M. Alexandrov, M. Kontsevich, A. Schwartz, and O.
Zaboronsky, Int. J. Mod. Phys. A 12, 1405 (1997).

[8] Here we use the mathematical definition of conformal
invariance, which refers to covariance under Weyl trans-
formations.

[9] P. A. M. Dirac, Ann. Math. 37, 429 (1936).
[10] Observe that the left-hand side of Eq. (1) is symmetric,

which implies that the one-form defined by the covector XM
is closed.

[11] Ambient space tensors are known as tractors [12]. The
tractor description of spinors and supersymmetric systems
was given in Refs. [13] and [14].

[12] A. R. Gover and L. J. Peterson, Commun. Math. Phys. 235,
339 (2003); A. Čap and A. R. Gover, Annals Global Anal.
Geom. 24, 231 (2003).

[13] T. Branson, Lectures on Clifford (Geometric) Algebras and
Applications (Birkhauser, Boston, 2004); Dirac Operators:
Yesterday and Today (International Press, Somerville,
Massachusets, 2005).

[14] A. Shaukat and A. Waldron, Nucl. Phys. B829, 28 (2010).
[15] J. Holland and G. Sparling, arXiv:math/0112033.
[16] In Eq. (3), Δ ≔ gMN∇M∇N and R are, respectively, the

ambient Laplacian and scalar curvature.
[17] R. Marnelius, Phys. Rev. D 20, 2091 (1979).
[18] U. Martensson, Int. J. Mod. Phys. A 08, 5305 (1993).

[19] The bosonic analog of this model was first proven to be
equivalent to the relativistic particle by Marnelius [17] and
then employed as the basis of a “two-times physics”
program in Ref. [20]. Its second quantization was applied
to constructions of conformally invariant, ambient-space
gauge theories in Ref. [21].

[20] I. Bars, C. Deliduman, and O. Andreev, Phys. Rev. D 58,
066004 (1998); I. Bars, Phys. Rev. D 58, 066006 (1998);
Classical Quantum Gravity 18, 3113 (2001).

[21] P. Arvidsson and R. Marnelius, arXiv:hep-th/0612060.
[22] I. Bars and C. Deliduman, Phys. Rev. D 58, 106004 (1998);

I. Bars, Phys. Rev. D 62, 046007 (2000).
[23] D. Cherney, E. Latini, and A. Waldron, J. Math. Phys. (N.Y.)

51, 062302 (2010).
[24] A. Schwarz, Commun. Math. Phys. 158, 373 (1993).
[25] It is natural to conjecture that the model can equivalently be

formulated, at the cost of an infinite tower of auxiliary fields,
in terms of unrestricted polynomials Aðz; pÞ where the
“fields” Qij are off shell.

[26] A. S. Schwarz, arXiv:hep-th/0011260.
[27] W. Siegel, Proceedings of Unified String Theories, Santa

Barbara, 1985 (World Scientific, Singapore, 1985), p. 593;
E. Witten, Nucl. Phys. B268, 253 (1986); B. Zwiebach,
Nucl. Phys. B390, 33 (1993).

[28] M. A. Vasiliev, Phys. Lett. B 243, 378 (1990).
[29] N. Boulanger and P. Sundell, J. Phys. A 44, 495402 (2011);

N. Boulanger, N. Colombo, and P. Sundell, J. High Energy
Phys. 10 (2012) 043.

[30] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev,
arXiv:hep-th/0503128.

[31] I. Bars and Y. C. Kuo, Phys. Rev. D 74, 085020
(2006).

[32] R. Bonezzi, E. Latini, and A. Waldron, Phys. Rev. D 82,
064037 (2010).

[33] E. Sezgin and P. Sundell, J. High Energy Phys. 07 (2012)
121.

[34] M. Marino, arXiv:hep-th/0410165.

R. BONEZZI et al. PHYSICAL REVIEW D 91, 121501(R) (2015)

121501-4

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.64.126001
http://dx.doi.org/10.1103/PhysRevD.64.046005
http://dx.doi.org/10.1112/jlms/s2-46.3.557
http://dx.doi.org/10.1103/PhysRevD.90.084018
http://dx.doi.org/10.1103/PhysRevD.90.084018
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://dx.doi.org/10.1142/S0217751X97001031
http://dx.doi.org/10.2307/1968455
http://dx.doi.org/10.1007/s00220-002-0790-4
http://dx.doi.org/10.1007/s00220-002-0790-4
http://dx.doi.org/10.1023/A:1024726607595
http://dx.doi.org/10.1023/A:1024726607595
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.020
http://arXiv.org/abs/math/0112033
http://dx.doi.org/10.1103/PhysRevD.20.2091
http://dx.doi.org/10.1142/S0217751X93002101
http://dx.doi.org/10.1103/PhysRevD.58.066004
http://dx.doi.org/10.1103/PhysRevD.58.066004
http://dx.doi.org/10.1103/PhysRevD.58.066006
http://dx.doi.org/10.1088/0264-9381/18/16/303
http://arXiv.org/abs/hep-th/0612060
http://dx.doi.org/10.1103/PhysRevD.58.106004
http://dx.doi.org/10.1103/PhysRevD.62.046007
http://dx.doi.org/10.1063/1.3372732
http://dx.doi.org/10.1063/1.3372732
http://dx.doi.org/10.1007/BF02108080
http://arXiv.org/abs/hep-th/0011260
http://dx.doi.org/10.1016/0550-3213(86)90155-0
http://dx.doi.org/10.1016/0550-3213(93)90388-6
http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://dx.doi.org/10.1088/1751-8113/44/49/495402
http://dx.doi.org/10.1007/JHEP10(2012)043
http://dx.doi.org/10.1007/JHEP10(2012)043
http://arXiv.org/abs/hep-th/0503128
http://dx.doi.org/10.1103/PhysRevD.74.085020
http://dx.doi.org/10.1103/PhysRevD.74.085020
http://dx.doi.org/10.1103/PhysRevD.82.064037
http://dx.doi.org/10.1103/PhysRevD.82.064037
http://dx.doi.org/10.1007/JHEP07(2012)121
http://dx.doi.org/10.1007/JHEP07(2012)121
http://arXiv.org/abs/hep-th/0410165

