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In this paper we investigate the role of inelastic collisions in the kinetic evolution of a highly
overpopulated gluon system starting from a glasma-type initial condition. Using the Gunion-Bertsch
formula we derive the inelastic collision kernel under the collinear and small-angle approximations. With
both numerics and analytic analysis, we show that the inelastic process has two effects: globally changing
(mostly reducing) the total particle number, while locally in the small-momentum regime always filling up
the infrared modes extremely quickly. This latter effect is found to significantly speed up the emergence of
a local thermal distribution in the infrared regime with vanishing local “chemical potential” and thus
catalyze the onset of dynamical Bose-Einstein condensation to occur faster (as compared with the purely
elastic case) in the overpopulated glasma.
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I. INTRODUCTION

The thermalization of the quark-gluon plasma (QGP) is
one of the most challenging problems in current heavy-ion
physics. See e.g. Refs. [1–3] for recent reviews. Starting
with two colliding nuclei in the form of a color glass
condensate with high gluon occupation f ∼ 1=αs below the
saturation scale Qs [4–6] and following the initial impact, a
subsequent strong-field evolution stage (likely with insta-
bilities [7]) until about the time 1=Qs is then succeeded by a
far-from-equilibrium gluon-dominant matter, the glasma
[8]. The evolution of this glasma stage toward a quark-
gluon plasma that is close to local equilibrium and exhibits
viscous-hydrodynamic behavior, is indicated by phenom-
enology to be reached during a time period on the order of a
fm/c (see e.g. Ref. [9]). Precisely how this occurs remains
to be fully understood. Describing the preequilibrium
evolution with kinetic equations is a very useful approach,
based on which the so-called “bottom-up” thermalization
scenario was developed [10–12]. There is however the
complication of instability driven by anisotropy that may
change this picture (see e.g. Refs. [13–16]). There are also
other kinetic-based approaches; see e.g. Ref. [17].
More recently an alternative thermalization scenario,

based on the crucial role of high initial overpopulation
in the glasma and kinetic evolution dominated by elastic
collisions, has been proposed in Refs. [18,19]. In this
scenario, while the initial scale Qs is large compared with
ΛQCD and thus the coupling αs is small, the high occupation
f ∼ 1=αs elevates the elastic scattering rate to be of the
order Ôð1Þ rather than the usual Ôðα2sÞ, and the glasma is

essentially an emergent strongly interacting matter with
weak coupling albeit a large aggregate of constituents. Two
important scales are introduced to characterize the distri-
bution, the hard cutoff scale Λ beyond which f ≪ 1 and the
soft high-occupation scale Λs below which f ∼ 1=αs.
While the initial glasma has the two scales overlapping
Λ ∼ Λs ∼Qs, during the course of thermalization the two
scales are separated eventually toward Λs ∼ αsΛ upon
thermalization. One particularly nontrivial observation in
the elastic-dominant picture is that the high initial over-
population n=ϵ3=4 ∼ 1=a1=4s ≫ 1 and the conservation of
both energy and particle number will necessarily require
the formation of a Bose-Einstein condensate (BEC) that
absorbs the excess gluons. This has been explicitly shown
to occur by numerically solving the elastic kinetic equation
derived under the small-angle approximation [19]. There
have been intensive discussions related to this picture from
a variety of approaches; see e.g. Refs. [20–37]. Strong
evidences for the formation of such a Bose-Einstein
condensate have been reported for a similar thermalization
problem in the classical-statistical lattice simulation of
scalar field theory [22–24]. The case for non-Abelian
gauge theory is more complicated and still under inves-
tigation [25–30].
One important question that has not been addressed in

the above scenario is the role of inelastic processes. This
issue could indeed be critical for at least two reasons (see
discussions in e.g. Refs. [18–21,35,36]). First of all the
inelastic processes will spoil the particle number conser-
vation, and one might naively argue that the excessive
gluons in the overpopulated glasma could simply be
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eliminated by very fast inelastic collisions. Secondly, to
make it even worse, the inelastic processes are parametri-
cally at the same order as the elastic processes (as opposed
to naive power counting), so there is no apparent domi-
nance of the elastic over the inelastic and one may indeed
worry that the inelastic could efficiently reduce the total
particle number. In such a situation, an explicit evaluation
including both elastic and inelastic collisions becomes
mandatory to clarify what will happen after including both
types of collisions. To be precise, once the inelastic
processes are included, one does not expect any conden-
sation in the ultimate thermal equilibrium because with
long enough time the inelastic processes will always
remove any excessive particles. The interesting question,
instead, is what changes the inelastic collisions bring to the
dynamical evolution of the system. In particular, it was
found [19] that with purely elastic scatterings the over-
populated system is driven toward a dynamical onset of
condensation in a finite time via critical scaling behavior in
the infrared regime. It is extremely interesting to know,
upon including the inelastic processes, how such dynamical
evolution may be modified and whether the transient off-
equilibrium condensation would still occur or not.
In this paper, we aim to address this important question

by studying the kinetic evolution of a highly overpopulated
system starting from a glasma-type initial condition with
both 2 ↔ 2 and 2 ↔ 3 scatterings. In Sec. II we will derive
the inelastic collision kernel under the collinear and small-
angle approximations using the Gunion-Bertsch formula
for the 2 ↔ 3 matrix element. In Sec. III we will use
numerical solutions as well as analytic analysis to under-
stand the role of the inelastic process for both the global
particle number change and the local behavior in the small
momentum region. Finally we will conclude in Sec. IV. As
a first step toward understanding the inelastic contributions
and for simplicity and unambiguity, we will focus on the
static box case with isotropic distribution in this work and
leave the study of the expanding case for future work.
It may be noted that the kinetic theory framework is best

suited for studying well-defined quasiparticle excitations at
typical scales in a physical system. Pushing the use of this
approach into the deep infrared regime may bear theoretical
issues that are not easily clarified. One however may notice
that the kinetic description has been widely adopted for
studying the Bose-Einstein condensation phenomena
across a wide range of physical systems, e.g. for cosmo-
logical scalars [38,39], for general Bose gases with
varied interactions [40–43], for trapped atomic gases
[44], as well as for polaritons in condensed matter systems

[45,46]. In particular the kinetic equations were shown in
the above literature to be a very useful tool in understanding
the BEC onset which is a nonequilibrium process.
Additionally, it shall be emphasized that the mathematical
properties of kinetic equations are of their own interests.
The kinetic equations have well-defined fixed-point sol-
utions (which may contain a condensate in the overpopu-
lated case), and the detailed evolution of the distribution
function toward such solutions is highly nontrivial and
interesting to know.We therefore believe the present kinetic
theory study is a plausible approach for gaining useful
insights about the evolution and possible onset of Bose-
Einstein condensation in the overpopulated glasma.

II. KINETIC EVOLUTION WITH ELASTIC
AND INELASTIC COLLISIONS

In this section we will derive the kinetic evolution
equation with both elastic and inelastic collisions. The
kinetic equation deals with the gluon distribution function
defined as

fðt;x;pÞ≡ ð2πÞ3
Ng

dN
d3xd3p

; ð1Þ

where Ng ¼ 2ðN2
c − 1Þ denotes the spin and color degen-

eracy factor. The Boltzmann equation for fðt;x;pÞ reads

Dtfp ¼ C2↔2½fp� þ C2↔3½fp�; ð2Þ

where we denote fðt;x;pÞ by fp and

Dt ≡ pμ

Ep
∂μ ¼ ∂t þ vp ·∇x ð3Þ

with vp ≡ p=Ep and Ep ¼ jpj. For later convenience, we
also introduce the following notations:

gp ≡ 1þ fp; hp ≡ fpgp ¼ fpð1þ fpÞ: ð4Þ

In what follows we will separately discuss the elastic term
C2↔2 and the inelastic term C2↔3.

A. The 2 ↔ 2 process

The collision kernel from the 2 ↔ 2 process with full
nonlinearity has been studied in Refs. [18,19]. Here
we only briefly summarize the main results. We have
the 2 ↔ 2 collision kernel given by

C2↔2½fp� ¼
1

Ng

1

2

Z
123

1

2Ep
jM12↔3pj2ð2πÞ4δ4ðp1 þ p2 − p3 − pÞ

× ½ð1þ fpÞð1þ f3Þf1f2 − fpf3ð1þ f1Þð1þ f2Þ�; ð5Þ
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where
Z
i
≡
Z

d3pi

ð2πÞ32Ei
; ð6Þ

and

jM12↔3pj2 ¼ 8g4N2
cNg

�
3 −

tu
s2

−
su
t2

−
ts
u2

�
ð7Þ

is the (squared) 2 ↔ 2 collision matrix element with s ¼
ðpþ p3Þ2; t ¼ ðp − p1Þ2; u ¼ ðp − p2Þ2 being the usual
Mandelstam variables. The prefactor 1=2 in Eq. (5) is a
symmetry factor counterweighing the permutation of 1 and
2 while the prefactor 1=Ng cancels the summation over the
spin and color of gluon “p” in the matrix element (7).
The dominant contribution of 2 ↔ 2 scattering in Eq. (7)

comes from the very small exchange momentum in t → 0
or u → 0 kinematic regimes, for which the incoming
momenta only gets “deflected” by a very small angle. If
one uses this small-angle approximation, then a rather neat
kernel can be derived [19]:

C2↔2 ¼ ξΛ2
sΛ

1

p2
∂p

�
p2

�∂fp
∂p þ αs

Λs
fpð1þ fpÞ

��
; ð8Þ

with ξ ¼ ð2N2
c=πÞ

R
dq=q coming from the leading-log

contribution. The hard scale Λ and soft scale Λs in the
above are defined via global integrals:

ΛΛ2
s=α2s ¼

Z
∞

0

dpp2fpð1þ fpÞ≡ Ia; ð9Þ

ΛΛs=αs ¼
Z

∞

0

dpp2ð2fp=pÞ≡ Ib: ð10Þ

For later convenience we also introduce the Debye scale
defined as [47,48]

m2
D ¼ −αs

Z
∞

0

dpp2∂fp=∂p ¼ ΛΛs: ð11Þ

It is interesting to notice that in a weakly coupled thermal
QGP one has the well-defined separation of scales, Λ ∼ T,

mD ∼ gT, Λs ∼ g2T. The matter becomes strongly interact-
ing when the scales “collapse” together. One way for that to
happen is to have the system become really strongly
coupled g → 1 which likely will be accompanied by a
change of the underlying degrees of freedom [49]. The
other possibility, as in the case of glasma, is when the
system is highly off equilibrium and overpopulated
f ∼ 1=g2—in this case all the scales also become of the
same order Λ ∼mD ∼ Λs ∼Qs and make the system
emerge as a strongly interacting matter.
Clearly, both the full form C2↔2 in Eq. (5) and the small-

angle approximation form in Eq. (8) conserve the energy as
well as particle number, as they should. In addition the
Bose-Einstein distribution fBE ¼ 1=½eðp−μÞ=T − 1� with any
T and μ (in correspondence to the two conserved quantities)
is the fixed-point solution that makes both Eq. (5) and
Eq. (8) vanish. As a cautionary remark, one may notice
that the small-angle approximation may become question-
able in the low-momentum regime and medium screening
effects may also require improvements of the treatment
here. Our main purpose though, is to understand the
robust features of the dynamical onset process which
may be not that sensitive to the details of such approx-
imations. In the elastic scattering case, two very recent
studies [50,51] have both studied the kinetic evolutions
without the small-angle approximations and have both
confirmed the findings made in Ref. [19] with the small-
angle approximations. It is therefore conceivable that,
keeping such caveats in mind, one can still learn useful
lessons about the onset dynamics in the small-angle
approximations.

B. The 2 ↔ 3 process

We now turn to the collision kernel from the 2 ↔ 3
process as depicted in Fig. 1. We denote the particle we are
watching with momentum p, the softest external momen-
tum with k, the exchange internal four-momentum with qμ,
and then the remaining external momenta with p1;2;3. The
2 ↔ 3 collision kernel can then be split into two pieces in
which the particle p is on the two-particle side or three-
particle side respectively (see Fig. 1):

C2↔3½fp� ¼ Ca2↔3 þ Cb2↔3; ð12Þ

Ca2↔3 ¼
1

Ng

1

6

Z
123k

1

2Ep
jM1p↔23kj2ð2πÞ4δ4ðpþ p1 − p2 − p3 − kÞ

× ½ð1þ fpÞð1þ f1Þf2f3fk − fpf1ð1þ f2Þð1þ f3Þð1þ fkÞ�;

Cb2↔3 ¼
1

Ng

1

4

Z
123k

1

2Ep
jM23↔1kpj2ð2πÞ4δ4ðpþ p1 þ k − p2 − p3Þ

× ½ð1þ fpÞð1þ f1Þð1þ fkÞf3f2 − fpf1fkð1þ f3Þð1þ f2Þ�; ð13Þ
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where the gluon labeled by k will be treated as the soft
emitted or absorbed gluon. The factor 1=6 counteracts the
six equivalent permutations in 23k in the process 1þ p ↔
2þ 3þ k (see the left panel of Fig. 1) and the factor 1=4
counteracts the four equivalent permutations in 1k and 23 in
the process 2þ 3 ↔ 1þ kþ p (see the right panel of
Fig. 1). We note that the graphs in Fig. 1 are used to make
the kinematics clear and it does not mean that only these
two diagrams contribute: there are actually 25 different
diagrams for Ca2↔3 and 25 diagrams for Cb2↔3. So the full

matrix element jM1p↔23kj2 is obtained by calculating 25
Feynman diagrams and it contains six equivalent kinematic
setups in accordance with six permutations in 23k (see
Appendix A). We can then choose the kinematic
setup corresponding to the left panel of Fig. 1, and multiply
by 6 to account for the other five kinematic setups.
Similarly, we can fix the kinematics for jM23↔1kpj2 as in

the right panel of Fig. 1, and multiply by 4 to get Cb2↔3.
Thus we obtain

Ca2↔3 ¼
1

Ng

Z
123k

1

2Ep
jMa

1p↔23kj2ð2πÞ4δ4ðpþ p1 − p2 − p3 − kÞ

× ½ð1þ fpÞð1þ f1Þf2f3fk − fpf1ð1þ f2Þð1þ f3Þð1þ fkÞ�;

Cb2↔3 ¼
1

Ng

Z
123k

1

2Ep
jMb

23↔1kpj2ð2πÞ4δ4ðpþ p1 þ k − p2 − p3Þ

× ½ð1þ fpÞð1þ f1Þð1þ fkÞf2f3 − fpf1fkð1þ f2Þð1þ f3Þ�; ð14Þ

where jMa;bj2 are the matrix elements with the kinematics
fixed according to Fig. 1. While the exact 2 ↔ 3 matrix
element is known [52], it is hard to use it directly in a
kinetic approach. Following many previous studies involv-
ing this process [53–56], we will use the so-called Gunion-
Bertsch formula which is the collinear approximation and
small-angle approximation form of the exact matrix
element and has been shown to give the dominant con-
tribution in many cases. Leaving the technical details to
Appendix A, we here quote the Gunion-Bertsch matrix
element which is at the leading order in the soft q and k
expansion:

jMa
1p↔23kj2 ¼ 64g6N3

cNg
ðp · p1Þ3

q2ðq− kÞ2ðp · kÞðp1 · kÞ
;

jMb
23↔1kpj2 ¼ 64g6N3

cNg
ðp2 · p3Þ3

q2ðqþ kÞ2ðp2 · kÞðp3 · kÞ
: ð15Þ

Like in the 2 ↔ 2 case, the matrix elements are domi-
nated by the regime of very soft q and k. We can thus

further simplify the collision kernel using a similar small-
angle approximation as in the elastic case. There is though
additional subtlety as now there are two soft scales. In fact,
as shown by the detailed analysis in Appendix B, the whole
collision kernel can be separated into two pieces corre-
sponding to contributions from different kinetic domains.
(Note that both graphs in Fig. 1 contribute to each of these
domains.) In the domain with k being the softest scale, i.e.,
the ultrasoft emission and absorption, the 2 ↔ 3 essentially
reduces to an effective 2 ↔ 2 scattering with a collinear
splitting/merging, and the resulting contribution to the
collision kernel becomes

C>2↔3 ≈
1

Ng

Z
12l

1

2Ep
jM1p↔2lj2ð2πÞ4δ4ðpþ p1 − p2 − lÞ

× ðgpg1f2fl − fpf1g2glÞDðjq ¼ p1 − p2jÞ; ð16Þ

where the momentum labels l and q are as shown in Fig. 1,
and we also introduced the term Dðjq ¼ p1 − p2jÞ arising
from the splitting function integration. Its explicit form is
given by Eq. (B15) in Appendix B. For the above form, one

FIG. 1. (Left) A typical Feynman diagram contributing to Ca2↔3: pþ 1 ↔ 2þ 3þ k. (Right) A typical Feynman diagram contributing
to Cb2↔3: 1þ kþ p ↔ 2þ 3.
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can further simplify the effective 2 ↔ 2 part using the small-
angle approximation as done in the elastic case. All the
details are presented in Appendix B. On the other hand in the
domain where q is the softest scale, the 2 ↔ 3 process

effectively becomes a nearly collinear 1 ↔ 2 emission/
combining process preceded by a small-angle 2 ↔ 2 scat-
tering that brings one incoming particle slightly off shell.
This part contributes the following to the collision kernel:

C<2↔3 ¼
3g6N3

c

16π5

Z
∞

0

dp1p2
1h1

Z
1

−1

dx
1 − x

Z
∞

0

dq
q3

Z
zc

0

dz
z

�
½gpfð1−zÞpfzp − fpgð1−zÞpgzp�

þ 1

ð1 − zÞ4 ½gpgzp=ð1−zÞfp=ð1−zÞ − fpfzp=ð1−zÞgp=ð1−zÞÞ�
�
: ð17Þ

Note that in the z integration we introduce an upper cut zc:
physically this is because k is the softest external momen-
tum so the k < p condition would require zc < 1=2. In both
kernels above, a number of infrared divergences appear. We
will use the Debye scale mD as the infrared cut, e.g.R
dq=q3 ≈ 1=m2

D ¼ 1=ðΛΛsÞ. We will also treat all leading
logs as order-one constant. Again more detailed discussions
are included in Appendix B. Lastly, one can show that the
inelastic kernel conserves energy but not particle number,
and the fixed-point solution (i.e., the equilibrium distribu-
tion) is the Bose-Einstein distribution without chemical
potential, fBE ¼ 1=ðep=T − 1Þ.
It should be mentioned that for the inelastic processes,

the inclusion of the so-called Landau-Pomeranchuk-
Migdal (LPM) effect may bear important consequence
(see e.g. Refs. [11,30]). We though emphasize that in both
cases (with or without the LPM effect), the elastic and
inelastic processes are parametrically at the same order and
the final fixed point is the same Bose-Einstein distribution
with zero chemical potential. This latter feature indicates
that the inelastic processes will always tend to “fill up” the
infrared modes even though the rates may differ in the cases
with or without the LPM effect. The inelastic kernel we
have derived above, contains the most essential features of
number-changing processes (as compared with the elastic),
namely the nonconservation of particle number and the
proper fixed-point solution without chemical potential. It is

therefore plausible that our study with the above inelastic
kernel would capture the important qualitative influences of
number-changing processes on the dynamical evolution
before the BEC onset which is the main purpose of the
present paper.

C. The final kinetic equation

Finally we combine the C2↔2 and C2↔3 kernels, and the
final kinetic equation under the small-angle approximation
and collinear approximation reads

Dtfp ¼ Ceff2↔2½fp� þ Ceff1↔2½fp�; ð18Þ

where

Ceff2↔2 ¼ C2↔2 þ C>2↔3; Ceff1↔2 ¼ C<2↔3: ð19Þ

The expression for Ceff2→2 is

Ceff2↔2 ¼ ξα2sð1þDÞIa
1

p2
∂p

�
p2

�∂fp
∂p þ Ib

Ia
fp

��
; ð20Þ

withD ∼ Ôð1Þ parametrizing the contribution from C>2↔3 to
the effective 2 ↔ 2 kernel. It is related to the function
DðjqjÞ defined in Eq. (B15) byD ∼DðmDÞ. The expression
for Ceff1↔2 is

Ceff1↔2 ¼ ξα2sR
Ia
Ib

�Z
zc

0

dz
z
½gpfð1−zÞpfzp − fpgð1−zÞpgzp� þ

Z
zc

0

dz
ð1 − zÞ4z ½gpgzp=ð1−zÞfp=ð1−zÞ − fpfzp=ð1−zÞgp=ð1−zÞÞ�

�
;

ð21Þ

where the constant R ∼ Ôð1Þ parametrizes the relative
ratio of the order-one constants between the elastic and
inelastic kernels and the cut zc in the z integration should be
small to be consistent with the kinematics k < p. The
expression for R is given by Eq. (B23) in Appendix B.
A few comments are in order here.
(1) The kernel (20) conserves energy and particle number

with the fixed-point solution fBE ¼ 1=½eðp−μÞ=T − 1�,

while the kernel (21) only conserves energy with the
fixed-point solution fBE ¼ 1=½ep=T − 1�, so the total
kernel (18) conserves only energy and the equilibrium
solution should be fBE ¼ 1=½ep=T − 1� without any
chemical potential which is different from the pure
elastic case.

(2) In the nearly equilibrium case with f ∼ Ôð1Þ, Ia ∼
T3 and Ib ∼ T2, the elastic collision rate scales as
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∼α2sT and the inelastic rate scales also as ∼α2sT so
they are at parametrically the same order.

(3) In the glasma-like overpopulated case with
f ∼ Ôð1=αsÞ, Ia ∼Q3

s=α2s and Ib ∼Q2
s=αs, the elas-

tic collision rate scales as ∼Qs and the inelastic rate
scales also as∼Qs so again they are parametrically at
the same order.

We therefore see that the effect of the inelastic collision is
parametrically as important as the elastic one both near
and far from equilibrium, and including the inelastic
collision qualitatively changes the ultimate equilibrium
solution. It is clear that even starting from a highly
overpopulated initial condition, eventually there will be
no chemical potential or any condensate in the final thermal
distribution with the presence of the inelastic collision.
However, the very important question that has not been
understood, is how the inelastic collision will affect the
transient dynamical off-equilibrium condensation driven by
the pure elastic evolution starting from an initial high
overpopulation. Will the system still reach the onset of such
condensation? Will the inelastic collision speed up, delay,
or completely eliminate such an onset? We will address
these questions by numerically solving the above kinetic
equations.
Before turning to the numerical study, let us

emphasize that the kinetic equations derived above are
applicable only for describing the system until any moment
before the actual onset of the BEC which is signaled by the
emergence of an infrared singularity in the distribution. As
is well known in the literature [38–42], kinetic theory
breaks down at the onset point. After the formation of
BEC, a modified kinetic theory framework is needed by
explicitly introducing a condensate component. The growth
of the condensate and the further evolution of the distri-
bution should be described by a different set of kinetic
equations that couple the condensate and particles together.
In this paper we focus on understanding the evolution
process from overpopulated initial conditions toward the
onset of BEC for which our derived kinetic equations are
suitable.

III. NUMERICAL STUDY OF THE
KINETIC EVOLUTION

In this section, we numerically solve the kinetic equa-
tion (18), starting with a glasma-type initial condition as
follows:

fðp; t ¼ 0Þ ¼ f0θðQs − pÞ ð22Þ

where Qs is the saturation scale. We use Qs as a unit for all
momenta/energy etc. and use 1=Qs as a unit for time. As
studied in Ref. [19], with a given initial occupation f0, the
overpopulation parameter is nϵ−3=4 ¼ f1=40 25=4=3π1=2 and
when f0 > fc0 ≈ 0.154, the system is overpopulated as
compared with the Stefan-Boltzmann limit and the system
will reach onset of condensation when there is only elastic
collision. For simplicity we fix the initial occupation f0 ¼
1 which is in the overpopulated regime. Note that the
constant ξα2s can be absorbed by a redefinition of the time
variable, t → ðξα2sÞt which we will use from now on. We
therefore are left with three parameters, R, D, and zc. The
inelastic contribution will increase with increasing R and zc
while the elastic will increase with increasing D. We will
study the effect of inelastic collision by comparison with
the purely elastic case (R ¼ 0 versus R ≠ 0) and by varying
the strength of the inelastic kernel.

A. Thermalization in the purely inelastic case

Let us first study the kinetic equation with only the
inelastic kernel (21). Although this is not a realistic
modeling of the glasma system, it is a very interesting
problem on its own and it also serves as a very useful check
of whether the derived inelastic kernel produces the
physically expected dynamics. Furthermore it is a useful
benchmark for a contrast with the evolution driven by both
elastic and inelastic processes. We will choose R ¼ 1
without loss of generality because R can be absorbed by
redefining the time variable, t → Rt. The kinetic equation is
then solved numerically with only the inelastic kernel and
with the overpopulated initial condition f0 ¼ 1.
In Fig. 2 (left panel), we show the distribution function

fðpÞ at various time moments. It can be seen that the fðpÞ,

f0 1, zc 0.5, purely inelastic

Qst 1

Qst 1.119, 1.160

1.221, 4.826

fBE p,T Teq

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

p Qs

f
p

f0 1, zc 0.5, purely inelastic

1 2 3 4 5
0

50

100

150

Qst

f
p

0.
01

Q
s

FIG. 2 (color online). (Left) The distribution function fðpÞ at different time moments during the evolution for purely inelastic
collisions. (Right) The occupation at the smallest grid point fðp ¼ 0.01QsÞ as a function of time for purely inelastic collisions.
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starting from the initial glasma-type shape, smoothly
evolves into a Bose-Einstein distribution after about
Qst ≈ 5, with the temperature being the supposed value
required by energy conservation and a vanishing chemical
potential. Very different from the evolution driven by the
elastic kernel with the same initial condition (see Ref. [19]),
in the present purely inelastic case, the system is simply
thermalized and during the thermalization there appears no
onset of singularity (Bose-Einstein condensate) in the
distribution. This can be explicitly checked by looking
at the occupation at the smallest grid point fðp ¼ 0.01QsÞ
as a function of time (right panel of Fig. 2): its value has a
transient behavior of a rapid rise and fall and then settles to
the supposed thermal value. Clearly, even with the over-
populated initial condition, the inelastic process alone does
not generate a dynamical onset of a Bose-Einstein con-
densate, as one may reasonably expect.
We have also studied the evolution of global quantities,

with the results shown in Fig. 3 for the number density (left
panel) as well as the entropy density (right panel). The
initial high overpopulation in the gluon number is effi-
ciently reduced by the inelastic processes, and the number
density drops toward the supposed thermal value deter-
mined by the equilibrium temperature. The entropy density
on the other hand grows rapidly and approaches the thermal
value as well. Again all these features provide a clear
indication that with the purely inelastic kernel the system is
simply thermalized as it should be.
From this study, we conclude that the 1 ↔ 2 inelastic

processes as described by our derived kernel (21) thermalize
the system efficiently and eliminate excessive gluons from
initial conditions effectively, and by these processes alone no
dynamic onset of BEC can occur. With such a benchmark
case understood, it is thus tempting to see what will happen
when the elastic2 ↔ 2 processes are also included in addition
to the inelastic. As we will show in the next subsections, the
evolution of the system gets dramatically changed.

B. From overpopulation toward onset of condensation

Let us now briefly summarize the kinetic evolution from
overpopulation toward onset of condensation in the purely

elastic case, as reported in Refs. [19,35,36]. The elastic
kernel can be rewritten in terms of the flux as

C2↔2 ¼ −
1

p2
∂pðp2SðpÞÞ;

SðpÞ≡ −½Ia∂pfp þ Ibfpð1þ fpÞ�: ð23Þ

The strong overpopulation leads to a particle flux
cascade toward the infrared regime. Analysis of the
small-p regime shows that it will quickly develop a local
thermal form f�ðpÞ ¼ 1=½eðp−μ�Þ=T� − 1� with T� ¼ Ia=Ib,
and the incoming flux will drive the (negative) μ� to
eventually vanish and reach the onset of a dynamical
condensation. This picture was numerically verified in
great detail in Ref. [19]. Our discussion of the onset of
condensation will stay in this picture (as the elastic term is
still present and its flux drives the small-p behavior) and we
will study how the inelastic process modifies such onset
dynamics. It should be emphasized that a vanishing
chemical potential μ� alone does not necessarily lead to
the onset of BEC as is evident from our study of the purely
inelastic case in the previous subsection. It is both the
vanishing of μ� and an elastic-driven divergent flux toward
p ¼ 0 together that would signal the onset of condensation
as shown in Refs. [19,50,51].
Starting with the overpopulated initial condition (22) we

have numerically evolved the kinetic equations (18), (20),
and (21) with a given set of parameters. Shown in Fig. 4 is
the solution with R ¼ 1. In the left panel of Fig. 4 we show
the distribution function fp at different time moments, and
one can see that even with the presence of the inelastic
term, the small-p part of the distribution is quickly filled up
and becomes a local thermal form f�ðpÞ¼1=½eðp−μ�Þ=T�−1�
despite the fact that the distribution in a wide range of the
(bigger) momentum region is still far from the equilibrium
shape, and the small-p part becomes steeper and steeper
with time (meaning decreasing jμ�j). In the right panel of
Fig. 4 we show the corresponding flux SðpÞ from the elastic
kernel. Again the flux behaves very similarly to the purely
elastic case: one sees a linear behavior at small p, S ∝ −p
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FIG. 3. The number density n (left) and entropy density s (right), both normalized by the corresponding equilibrium values, as a
function of time for purely inelastic collisions.
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and eventually upon onset of condensation the flux
diverges (see the blue curve near p ¼ 0).
To get an intuitive idea of the contribution of the inelastic

kernel, we plot the C1↔2 and p2C1↔2 in Fig. 5. One can see
that the kernel is large and positive at small p, small and
positive at large p, and negative at intermediate p. This
could be qualitatively understood: a significant number of
particles with intermediate momenta will merge toward
high momenta and split toward low momenta that will fill
up the UV and IR regions while decreasing the occupation
at intermediate momenta. We also notice that upon onset
(the blue dashed curve in the right panel) the inelastic
kernel near p ¼ 0 shows a divergent behavior in consis-
tency with the elastic flux behavior.
One can directly examine the locally determined T� and

μ� (see Ref. [19] for details) at each time moment during

the evolution: these results are shown in Fig. 6. Here we
also compare the results for different strengths of the
inelastic collision R ¼ 0, 0.1, 1, 10 (noting that the R ¼
0 case corresponds to purely elastic collision). In all cases
we can see that the local “chemical potential” μ� decreases
rather rapidly toward zero. We also show the distribution
fðpÞ at the smallest grid point in our calculation p ¼
0.005Qs as a function of time in Fig. 7, which shows a very
rapid increase of the occupation in consistency with the
vanishing of μ�. What is most striking is that with
increasing values of R this evolution toward the onset of
condensation μ� → 0 becomes faster and faster. The R ¼ 1
case is already much faster than the purely elastic case.
This is to say, contrary to the expectation that the inelastic
process may “kill” the strong overpopulation quickly,
the existence of inelastic collision actually speeds up
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FIG. 4 (color online). (Left) The distribution function fðpÞ at different time moments during evolution. (Right) The flux SðpÞ defined
in the elastic kernel at different time moments during evolution.
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FIG. 5 (color online). The inelastic kernel C1↔2ðpÞ (left) and p2C1↔2ðpÞ (right) at different time moments during evolution.
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significantly the process of populating the infrared regime
and building up a local thermal form with vanishing μ�,
which when combined with the structure of the elastic
kernel will then lead to the onset of condensation.

C. Small-p analysis of the inelastic kernel

To understand better the influence of inelastic collision
on the small-p region, let us examine the kernel (21) for the
p → 0 limit before the onset of condensation. Provided
that f0 ¼ fðp ¼ 0Þ < ∞ and that its derivatives with
respect to p at p ¼ 0 are also finite, we can have the
expansion fðp → 0Þ ≈ f0 þ f00pþ � � �. If we look at a
small enough p regime, then all the involved momenta
(p; zp; ð1 − zÞp; p=ð1 − zÞ; pz=ð1 − zÞ) in the kernel (21)
can be considered small and we can use the expansion for
them. This leads to

Ceff1↔2ðp → 0Þ

→ R
Ia
Ib

½A0f0ð1þ f0Þ þ A1f00ð1þ 2f0Þpþ Ôðp2Þ�;

ð24Þ

where we have introduced the constants

A0 ¼ ln
1

1− zc
þ 1

6

zcð11z2c − 27zc þ 18Þ
ð1− zcÞ3

;

A1 ¼ ln
1

1− zc
−

1

12

zcð25z3c − 88z2c þ 108zc − 48Þ
ð1− zcÞ4

: ð25Þ

All these A’s are positive for 0 < zc < 1. Clearly for
sufficiently small p the leading term in the inelastic kernel
∼f0ð1þ f0ÞA0 is always positive and becomes bigger and
bigger with increasing f0 (which is a kind of “self-
amplification”). This will tend to increase the particle
number near p ¼ 0 very rapidly and the effect becomes
stronger with increasing values of R, which explains the
behavior seen in Fig. 7.
Physically this behavior may be understood in two ways.

First note that the inelastic kernel has its fixed point at
1=ðep=T − 1Þwhich at small p is ∼1=p so long as fðp ¼ 0Þ
is finite yet the inelastic kernel will try to fill it up toward
1=p. Second, this is also related to the Boson nature: if all
involved particles are from small p, then the merging rate is
like ∼f20ð1þ f0Þ while the splitting rate is like ∼f0ð1þ
f0Þ2 so the splitting “wins” due to Bose enhancement for
the final-state particles and it increases the particle number
at small p. To conclude, the inelastic kernel contribution is
always positive at very small p and it will catalyze and
speed up the onset of Bose condensation (which itself is
driven by the elastic term at μ� → 0).

D. Change of particle number from the inelastic kernel

While the inelastic kernel always increases the occupa-
tion at sufficiently small p, it may still decrease the total
particle number. Indeed as shown in Fig. 8 (left panel), the
total particle number decreases when R > 0, and it
decreases more rapidly for larger R.
To understand the change of particle number

n ¼ R
d3p=ð2πÞ3fðpÞ, one can integrate the two sides of

the kinetic equation (18) and obtain

∂tnðtÞ ¼ R
Ia

2π2Ib

Z
dpp2

Z
zc

0

dz
1 − z

½fpgð1−zÞpgzp − gpfð1−zÞpfzp�

¼ R
Ia

2π2Ib

Z
dpp2

Z
zc

0

dz
1 − z

½fp þ fpfð1−zÞp þ fpfzp − fð1−zÞpfzp�: ð26Þ

From the above one can see that for the region z → 0 the leading order in the z integrand becomes ∼fpð1þ fpÞ and the
contribution is positive, i.e., increasing particle number. For general z, the z integrand can be rewritten as

∂tnðtÞ ¼ R
Ia

2π2Ib

Z
dpp2

Z
zc

0

dz
1 − z

½fpð1þ fpÞ − ðfð1−zÞp − fpÞðfzp − fpÞ�: ð27Þ

We see that for not too small z, the momenta zp, ð1 − zÞp become well separated from p and the second term in the above
integrand becomes important and its contribution is negative which decreases the particle number.
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FIG. 7 (color online). The occupation at the smallest grid point
fðp ¼ 0.005QsÞ as a function of time for different values of the
parameter R.
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In Fig. 8 (right panel) we also show the entropy density
as a function of time and compare the case with R ¼ 1 and
the purely elastic case with R ¼ 0. One can see that with
inelastic collision included, the entropy density increases
much faster. That is, the inelastic process tends to accelerate
the thermalization.

E. Dependence on the parameter zc
Finally we study the dependence on the parameter zc

which is the kinematic cut to ensure the validity of the
approximations used for the matrix element. Generally
speaking, with larger zc we include more effects from the
inelastic process. To see how the results depend on zc, we
fix other parameters and compare the results for different
choices of zc. In Fig. 9, we show the local thermal form
parameters T� (left panel) and μ� (right panel) as functions

of time for zc ¼ 0.2, 0.5, 0.8 respectively. In Fig. 10, we
show the occupation at the smallest grid point (left panel)
and the total particle number (right panel) as functions of
time for zc ¼ 0.2, 0.5, 0.8 respectively. From the plots we
can see that indeed with larger zc the f0 increases faster and
μ� vanishes faster as expected for a stronger inelastic effect.
For the particle number, the case with zc ¼ 0.2 actually has
n increasing with time, which can be understood from the
analysis in the previous subsection. The particle number in
both the zc ¼ 0.5 and zc ¼ 0.8 cases drops with time and
does so faster for larger zc. In passing let us mention that we
have also studied the dependence on the parameter D:
basically increasing D will enhance the effect from elastic
collision and also speed up the thermalization in general, as
well as cause the onset of condensation at earlier times
compared with the D ¼ 0 case.
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FIG. 8 (color online). (Left) The particle number density as a function of time for different values of the parameter R. (Right) The
entropy density as a function of time for R ¼ 1 and R ¼ 0.
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FIG. 9 (color online). The local thermal form parameters T� (left) and μ� (right) as functions of time for zc ¼ 0.2, 0.5, 0.8 respectively.
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IV. CONCLUSION

In summary, we have studied the kinetic evolution of a
highly overpopulated system starting from a glasma-type
initial condition with the presence of both elastic and
inelastic collisions. Using the Gunion-Bertsch formula for
the 2 ↔ 3 matrix element, we have derived the inelastic
collision kernel under the collinear and small-angle approx-
imations. Putting together the inelastic kernel with the
previously obtained elastic kernel, we then numerically
solved the kinetic evolution for various choices of param-
eters. Our main finding is that the inelastic process has two
effects: globally changing (mostly reducing) the total
particle number, while locally at small p always filling
up the infrared regime extremely quickly. The latter effect is
shown both from numerics and by analytic analysis. This
effect significantly speeds up the emergence of the local
thermal form near p ¼ 0 and the vanishing of the local
“chemical potential” μ� as previously found in the purely
elastic collision case which leads to the onset of dynamical
Bose condensation. Therefore in our present approach of
including the inelastic scattering, we conclude that, con-
trary to some previously discussed expectations about the
role of number-nonconserving processes, the inelastic
collision actually helps to build up the local “critical form”
∼1=p much faster and catalyzes the onset of condensation
in the overpopulated glasma.
Our finding may sound counterintuitive at first, as the

usual conception would suggest that increasing the strength
of the inelastic collisions tends to obstruct more effectively
the formation of any condensate. It should however be
emphasized that the evolution toward onset of BEC that has
been studied thus far is not the end of the story. Our
analysis addresses the evolution up to the onset of BEC
while it does not treat the evolution afterwards. As is well
known in the BEC literature (see e.g. Refs. [38,39]), in
order to describe the kinetic evolution of the system with
the presence of a condensate, a new set of kinetic equations
is needed for an explicit description of the coupled
evolution for a condensate plus a regular distribution.
Efforts are underway to derive these equations, and so
far a kinetic study of the stage after BEC onset for the
glasma system has not been achieved to our best knowl-
edge. However, it appears very plausible that the sub-
sequent evolutions may develop as follows: immediately
after onset, the strong IR flux will not cease right away but
will continue for a while and thus drive the condensate to
grow in time; at a certain point, the time would be long
enough to allow the inelastic processes to decrease the total
number density adequately and cause the condensate to
decay thus decreasing in time; eventually the inelastic
processes will be able to remove all excess gluons and lead
to the thermal equilibrium state with neither condensate nor
any chemical potential. While the detailed understanding of
such dynamic processes can only be achieved through
solving the new set of kinetic equations, one can reasonably

expect that with increasing strength of the inelastic proc-
esses the whole evolution would be faster. Thus the
following overall picture may likely be the case: with
increasing strength, the inelastic processes on the one hand
catalyze the onset of condensation initially, while on the
other hand they eliminate the fully formed condensate
faster, thus limiting the time duration for the presence of a
condensate to be shorter. A schematic picture of such a
conjectured full evolution is shown in Fig. 11, which is in
line with the usual conception. It is worth mentioning that
the recent analysis in Ref. [57] has shown that the 2 ↔ 3
inelastic cross section from the exact matrix element
becomes significantly smaller than that from the Gunion-
Bertsch formula, and amounts to ∼20% of the 2 ↔ 2 cross
section. It therefore seems very plausible that a realistic
choice of R value would be rather modest, which may
imply a considerable time window for the condensate to be
sizable and play an important role for the evolution. A
complete investigation of the evolution including the
condensate will be a future project to be reported elsewhere.
Furthermore how medium effects like the screening as well
as the LPM effect may influence the glasma evolution
deserves a careful study in the kinetic framework as well
[58,59] and it will also be a future task.
Last, we would like to mention a recent kinetic theory

study [30,60] that also included both an elastic kernel and
an effective inelastic kernel. The analysis of Refs. [30,60]
appears to bear different conclusions than ours, regarding
the evolution in the very infrared region. Particularly, in
contrast to our findings, Refs. [30,60] did not observe the
formation of a condensate. It is important to understand the
origin of such a difference between our study and theirs. A
major factor may likely contribute to the different results:
while we use the vacuum matrix elements for both elastic
and inelastic processes, the authors of Refs. [30,60] use
medium-modified effective matrix elements for both proc-
esses. A comparative study will be crucial and it is highly
desired to address, in both approaches, the following
questions: Does an overpopulated initial condition with a
pure elastic kernel lead to BEC onset? Does an overpopu-
lated initial condition with a pure inelastic kernel thermal-
ize without condensation? Will an overpopulated initial
condition lead to BEC onset or not, when both kernels are

FIG. 11. A conjectured evolution of the condensate.
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included? These will be investigated and reported in a
future work.
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APPENDIX A: THE gg ↔ ggg MATRIX ELEMENT

The invariant gg ↔ ggg or 2 ↔ 3 (squared) matrix
element summed over all final states and also summed
over all initial states is computed by considering 25
different Feynman diagrams [52]. We quote it here:

jM2↔3j2 ¼ g6N3
cNg

N
D

½ð12345Þ þ ð12354Þ þ ð12435Þ þ ð12453Þ þ ð12534Þ
þ ð12543Þ þ ð13245Þ þ ð13254Þ þ ð13524Þ þ ð14235Þ þ ð14325Þ�; ðA1Þ

where Nc ¼ 3 is the number of colors, Ng ¼ 2ðN2
c − 1Þ is the gluon degeneracy number, and other notations are defined as

N ¼ ð12Þ4 þ ð13Þ4 þ ð14Þ4 þ ð15Þ4 þ ð23Þ4 þ ð24Þ4 þ ð25Þ4 þ ð34Þ4 þ ð35Þ4 þ ð45Þ4;
D ¼ ð12Þð13Þð14Þð15Þð23Þð24Þð25Þð34Þð35Þð45Þ;

ðijklmÞ ¼ ðijÞðjkÞðklÞðlmÞðmiÞ;
ðijÞ≡ ki · kj: ðA2Þ

Because jM2↔3j2 is completely symmetry in ki; i ¼ 1–5, let us take k1 and k2 as the hard momenta in the entrance channel,
k3 and k4 as the hard momenta in the exit channel, and k5 as the emitted soft gluon. We denote the exchanging momentum as
q ¼ k2 − k4. A typical Feynman diagram illuminating this setup is shown in Fig. 12.
We define the Mandelstam variables as [61,62]

s ¼ ðk1 þ k2Þ2 ¼ 2ð12Þ; t ¼ ðk1 − k3Þ2 ¼ −2ð13Þ; u ¼ ðk1 − k4Þ2 ¼ −2ð14Þ;
s0 ¼ ðk3 þ k4Þ2 ¼ 2ð34Þ; t0 ¼ ðk2 − k4Þ2 ¼ −2ð24Þ; u0 ¼ ðk2 − k3Þ2 ¼ −2ð23Þ:

In addition, the following relations involving k5 hold:

ð15Þ ¼ sþ tþ u
2

; ð25Þ ¼ sþ t0 þ u0

2
; ð35Þ ¼ sþ t0 þ u

2
; ð45Þ ¼ sþ tþ u0

2
:

In terms of the Mandelstam variables, jM2↔3j2 can be written as

jM2↔3j2 ¼ 32g6N3
cNgN

�
1

s0ðsþ uþ tÞðsþ u0 þ t0Þ
�
1

tt0
þ 1

uu0

�
þ 1

sðsþ u0 þ tÞðsþ uþ t0Þ
�
1

tt0
þ 1

uu0

�

−
1

t0ðsþ uþ tÞðsþ uþ t0Þ
�

1

ss0
þ 1

uu0

�
−

1

tðsþ u0 þ tÞðsþ u0 þ t0Þ
�

1

ss0
þ 1

uu0

�

−
1

u0ðsþ uþ tÞðsþ u0 þ tÞ
�
1

tt0
þ 1

ss0

�
−

1

uðsþ uþ t0Þðsþ u0 þ t0Þ
�
1

tt0
þ 1

ss0

��
; ðA3Þ

where

N ¼ 1

16
½s4 þ t4 þ u4 þ s04 þ t04 þ u04 þ ðsþ uþ tÞ4 þ ðsþ u0 þ t0Þ4 þ ðsþ t0 þ uÞ4 þ ðsþ tþ u0Þ4�:
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Because jM2↔3j2 is very singular when, for example,
t; t0 → 0, we can expand it around these singularities order
by order in some small momenta. To this end, let us assume
that the exchanging momentum q ¼ k2 − k4 is small (k5 is

also small). In this case t; t0 are small, while s; s0; u; u0 are
large, and −u → −u0 → s0 → s. With other choices of
picking the small exchanging momenta and soft emitted
momenta, we can get other equivalent expansions. We will
come to this point latter. Keeping only leading-order and
subleading-order terms in q and k5, we have

s0 ¼ ðk1 þ k2 − k5Þ2 ¼ s − 2ðk1 þ k2Þ · k5 þOðk25Þ;
u ¼ −sþ 2k1 · k5 þOðq2Þ;
u0 ¼ −sþ 2k2 · k5 þOðq − k5Þ2;
t ¼ ðq − k5Þ2;
t0 ¼ q2:

In addition, we have

k2 · ðk4 þ qÞ ¼ 0 ⇒ k2 · q ¼ −k2 · k4 ¼
1

2
ðk2 − k4Þ2 ¼

1

2
q2;

t − t0 ¼ −2q · k5 ⇒ −2q · k2 − 2k1 · ðq − k5Þ ¼ 2k2 · k4 − 2k1 · k3 ¼ t − t0 ¼ −2q · k5

⇒ k1 · ðk5 − qÞ ¼ q2

2
− q · k5:

Then N and jM2↔3j2 can be simplified as

N ¼ s4

4
− s3ðk2 · k5 þ k1 · k5Þ þOðk25=s; q2=s; k5 · q=sÞ; ðA4Þ

jM2↔3j2 ¼ 32g6N3
cNg

N
tt0

�
1

s0ðsþ uþ tÞðsþ u0 þ t0Þ þ
1

sðsþ u0 þ tÞðsþ uþ t0Þ

−
1

u0ðsþ uþ tÞðsþ u0 þ tÞ −
1

uðsþ uþ t0Þðsþ u0 þ t0Þ
�
þO

�
t
s

�

¼ 32g6N3
cNg

N
tt0

sþ ðk1 þ k2Þ · k5
s2ðk1 · k5Þðk2 · k5Þ

þO

�
k25
s
;
q2

s
;
k5 · q
s

�

¼ 8g6N3
cNg

s2

tt0
s − 3ðk1 þ k2Þ · k5
ðk1 · k5Þðk2 · k5Þ

þO

�
k25
s
;
q2

s
;
k5 · q
s

�

¼ 32g6N3
cNg

ðk1 · k2Þ2
q2ðq − k5Þ2

2k1 · k2 − 3ðk1 þ k2Þ · k5
ðk1 · k5Þðk2 · k5Þ

þO

�
k25
s
;
q2

s
;
k5 · q
s

�
: ðA5Þ

In the center-of-mass frame of k1 and k2, it goes to

jMc:m:
2↔3j2 ≈ jMGBj2

�
1 − 3

jk5jffiffiffi
s

p
��

1þ q20 − q2
∥

q2⊥

��
1þ ðq0 − k50Þ2 − ðq∥ − k5∥Þ2

ðq⊥ − k5⊥Þ2
�
≈ jMGBj2

�
1 − 3

jk5⊥jffiffiffi
s

p
�
; ðA6Þ

where q∥ ¼ ðq · v1Þv1 and

jMGBj2 ¼ 32g6N3
cNg

s2

q2⊥ðq⊥ − k5⊥Þ2k2
5⊥

ðA7Þ

is the Gunion-Bertsch formula [53]. Here we have used the fact that q20 ¼ ðv2 · qÞ2 þOðq2⊥q0=jk2jÞ and ðq0 − k50Þ2 ¼
½v1 · ðq − k5Þ�2 þO½ðq⊥ − k5⊥Þ2ðq0 − k50Þ=jk1j� for soft q and k5. Thus, the Gunion-Bertsch formula is the leading-order

k1

k2 k4

k3

k5

q

FIG. 12. A typical Feynman diagram for M2↔3.
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result in the soft q and k expansion, and Eq. (A5) is the result including both the leading- (Gunion-Bertsch) and the
subleading-order terms. Higher-order terms can also be obtained, but we will not use them. Note that one can naively boost
the Gunion-Bertsch formula from the center-of-mass frame to a general frame by using the replacements
k2
5⊥ → 4ðk1 · k5Þðk2 · k5Þ=s, q2⊥ → 4ðk1 · k4Þðk2 · k4Þ=s, and ðq⊥ − k5⊥Þ2 → 4ðk1 · k3Þðk2 · k3Þ=s:

jMGBj2 ¼ 16g6N3
cNg

ðk1 · k2Þ5
ðk1 · k3Þðk2 · k3Þðk1 · k4Þðk2 · k4Þðk1 · k5Þðk2 · k5Þ

: ðA8Þ

This expression coincides with Eq. (A5) at leading order but not at next-to-leading order in the soft q and k5 expansion.

APPENDIX B: THE COLLISION KERNEL C2↔3 IN THE COLLINEAR APPROXIMATION

The collision kernel C2↔3 has a very complicated structure, and in this section, we simplify it by taking the collinear
approximation, i.e., vk ≃ v1 or vk ≃ vp.
We rewrite the collision kernels Ca2↔3 and Cb2↔3 as (we denote 1þ fi by gi)

Ca2↔3 ¼
1

Ng

Z
123kl

2El

2Ep

Z
d4q
ð2πÞ4

Z
dl0
2π

ð2πÞ4δ4ðpþ q − lÞð2πÞ4δ4ðp1 − q − p2Þ

× ð2πÞ4δ4ðl − k − p3ÞjMa
1p↔23kj2ðgpg1f2f3fk − fpf1g2g3gkÞ;

Cb2↔3 ¼
1

Ng

Z
123kl

2El

2Ep

Z
d4q
ð2πÞ4

Z
dl0
2π

ð2πÞ4δ4ðpþ q − lÞð2πÞ4δ4ðp1 − q − p2Þ

× ð2πÞ4δ4ðlþ k − p3ÞjMb
23↔1pkj2ðgpg1gkf2f3 − fpf1fkg2g3Þ; ðB1Þ

where we introduced two auxiliary integrations over l and q. The kinematics is shown in Fig. 1, and the expressions for
jMa

1p↔23kj2 and jMb
23↔1pkj2 are given by

jMa
1p↔23kj2 ¼ 64g6N3

cNg
ðp · p1Þ3

q2ðq − kÞ2ðp · kÞðp1 · kÞ
;

jMb
23↔1kpj2 ¼ 64g6N3

cNg
ðp2 · p3Þ3

q2ðqþ kÞ2ðp2 · kÞðp3 · kÞ
: ðB2Þ

First, it is easy to show that, under the small-angle approximation,

q0 ≃ q · v1 −
q02⊥
2E1

≃ Ek þ ðq − kÞ · vp þ
ðq⊥ − k⊥Þ2

2Ep
; ðB3Þ

l0 ≃ El þ Ek − k · vl þ
k002⊥
2El

≃ Ep þ q0; ðB4Þ

vl ≃ vp þ
q⊥
Ep

−
q2⊥
2E2

p
vp þ

ðq · vpÞ2
2E2

p
vp −

q · vp
E2
p

q⊥; ðB5Þ

where q⊥ ¼ q − q · vpvp, k⊥ ¼ k − k · vpvp, q0⊥ ¼ q − q · v1v1, and k00⊥ ¼ k − k · vlvl.
Second, if jkj < jqj, then, under the collinear approximation, vk is nearly parallel to either vp or v1. For vk ≃ v1, q · k ¼

jkjðq0 − q · vkÞ≃ jkj½q0 − q · v1 þ q · ðv1 − vkÞ� ∼ −jkjq02⊥=E1 þ jk∥qjθ1k ≪ q2. For vk ≃ vp, q · k ¼ jkjðjkj − k · vlÞ∼
jkj2θ2kp þ jkjq2⊥=ð2EpÞ þ jk∥qjθkp ≪ q2. Thus in the small-angle approximation plus the collinear approximation, if
jkj < jqj, we can approximate jMa

1p↔23kj2 as
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jMa
1p↔23kj2 ¼ 64g6N3

cNg
ðp · p1Þ3

ðq2Þ2ðp · kÞðp1 · kÞ
: ðB6Þ

For jMb
23↔1pkj2, up to q2 order, we can neglect q · k in the

denominator and k as well as q · p and q · p1 in the
numerator,

jMb
23↔1kpj2

¼ 64g6N3
cNg

½ðp1 þ qÞ · ðpþ k − qÞ�3
q2ðqþ kÞ2½ðpþ k − qÞ · k�½ðp1 þ qÞ · k�

≈ 64g6N3
cNg

½ðp1 þ qÞ · ðp − qÞ�3
ðq2Þ2½ðp − qÞ · k�½ðp1 þ qÞ · k�

≈ 64g6N3
cNg

ðp1 · pÞ3
ðq2Þ2ðp · kÞðp1 · kÞ

¼ jMa
1p↔23kj2: ðB7Þ

Third, if jkj > jqj, under the collinear approximation,
for vk ≃ v1, q · k ∼ −jkjq02⊥=E1 þ jk∥qjθ1k ≪ q2

because θ1k ≪ jq0j⊥=E1. For vk ≃ vp, q · k ∼ jkj2θ2kp þ
jkjq2⊥=ð2EpÞ þ jk∥qjθkp ≪ q2 because θkp ≪ jp⊥j=Ep.

Thus the collinear approximation simplifies the matrix
element also when jkj > jqj:

jMa
1p↔23kj2 ¼ 64g6N3

cNg
ðp · p1Þ3

ðq2Þ2ðp · kÞðp1 · kÞ
;

jMb
23↔1kpj2 ¼ 64g6N3

cNg
½ðpþ kÞ · p1�3

ðq2Þ2ðp · kÞðp1 · kÞ
: ðB8Þ

Fourth, the whole kinematic (phase) space can be
separated into two parts, one for jkj < jqj and another
for jqj < jkj. We would expect that in the kinematic region
with jkj < jqj, the 2 ↔ 3 process may be regarded as a
2 ↔ 2 “hard” process with one additional “soft” gluon
emitted or absorbed by one of the “hard” gluons; with
jqj < jkj the 2↔3 process can be regarded as an effective
1 ↔ 2 process with a spectator gluon joined to make the
effective 1 ↔ 2 matrix element nonzero (the matrix
element of the 1 ↔ 2 process is zero for massless gluons).
Thus we separate the collision kernel as

C2↔3 ¼ Ca2↔3 þ Cb2↔3 ¼ C>2↔3 þ C<2↔3; ðB9Þ
with

C>2↔3 ¼
1

Ng

Z
d4q
ð2πÞ4

Z
123l

Z
q>k

k

2El

2Ep

Z
dl0
2π

ð2πÞ8δ4ðpþ q − lÞδ4ðp1 − q− p2Þ

× jMa
1p↔23kj2½ð2πÞ4δ4ðl− k− p3Þðgpg1f2f3fk − fpf1g2g3gkÞ þ ð2πÞ4δ4ðlþ k− p3Þðgpg1gkf2f3 − fpf1fkg2g3Þ�;

C<2↔3 ¼
1

Ng

Z
d4q
ð2πÞ4

Z
123l

Z
q<k

k

2El

2Ep

Z
dl0
2π

ð2πÞ8δ4ðpþ q − lÞδ4ðp1 − q− p2Þ

× ½ð2πÞ4δ4ðl− k− p3ÞjMa
1p↔23kj2ðgpg1f2f3fk − fpf1g2g3gkÞ

þ ð2πÞ4δ4ðlþ k− p3ÞjMb
23↔1kpj2ðgpg1gkf2f3 − fpf1fkg2g3Þ�:

1. Simplifying C>
2↔3

We expand the integrand of C>2↔3 in terms of k and keep the leading-order terms:

C>2↔3 ≈
1

Ng

Z
d4q
ð2πÞ4

Z
12l

Z
q>k

k

1

2Ep

Z
dl0
2π

ð2πÞ8δ4ðpþ q − lÞδ4ðp1 − q − p2Þ

× jMa
1p↔23kj2½ð2πÞδðl0 − jkj − jl − kjÞðgpg1f2flfk − fpf1g2glgkÞ

þ ð2πÞδðl0 þ jkj − jlþ kjÞðgpg1gkf2fl − fpf1fkg2glÞ�

≈
1

Ng

Z
d4q
ð2πÞ4

Z
12l

Z
q>k

k

1

2Ep

Z
dl0
2π

ð2πÞ8δ4ðpþ q − lÞδ4ðp1 − q − p2Þ

× jMa
1p↔23kj2½ð2πÞδðl0 − jljÞðgpg1f2flfk − fpf1g2glgkÞ þ ð2πÞδðl0 − jljÞðgpg1gkf2fl − fpf1fkg2glÞ�

¼ 1

Ng

Z
d4q
ð2πÞ4

Z
12l

Z
q>k

k

1

2Ep
ð2πÞ4δ4ðpþ q − lÞð2πÞ4δ4ðp1 − q − p2Þ

× jM1p↔2lj2
2g2Ncðp · p1Þ
ðp · kÞðp1 · kÞ

ð1þ 2fkÞðgpg1f2fl − fpf1g2glÞ; ðB10Þ
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where in the last equality lμ ¼ ðjlj; lÞ is on shell, and the
2 ↔ 2 matrix element is

jM1p↔2lj2 ¼ 32g4N2
cNg

ðp · p1Þ2
ðq2Þ2 : ðB11Þ

We have written the 2 ↔ 3 matrix element in the form of a
2 ↔ 2 matrix element times a 1 ↔ 2 splitting function.
Indeed, if for example k is nearly collinear to p,

2g2Ncðp · p1Þ
ðp · kÞðp1 · kÞ

≈
2g2Ncjpj
ðp · kÞjkj

¼ 2g2

ðpþ kÞ2 PggðzÞ ðB12Þ

with PggðzÞ ¼ 2CA=z being the standard unregularized g →
gg splitting function at the z → 0 limit where z ¼ Ek=Ep

[63–65].
In the collinear approximation, if vk ≃ v1, then

p · p1=k · p ≈ jp1j=jkj; or if vk ≃ vp, then p · p1=k · p1 ≈
jpj=jkj. Thus we have

C>2↔3 ≈
1

Ng

Z
12l

1

2Ep
jM1p↔2lj2

Z
k<p1−p2

2g2Nc

jkj2

×

�
1þ 2fk
1 − vk · v1

þ 1þ 2fk
1 − vk · vp

�

× ð2πÞ4δ4ðpþ p1 − p2 − lÞ
× ðgpg1f2fl − fpf1g2glÞ: ðB13Þ

This is essentially a pþ p1 ↔ p2 þ l collision kernel with
an inner 1 ↔ 2 splitting function. Let

DðqÞ ¼
Z
k<q

2g2Nc

jkj2
�
1þ 2fk
1 − vk · v1

þ 1þ 2fk
1 − vk · vp

�
: ðB14Þ

For an isotropic distribution,

DðqÞ ¼ 2

Z
k<q

d3k
ð2πÞ32Ek

2g2Ncð1þ 2fkÞ
jkj2ð1 − cos θÞ

¼ 2
g2Nc

ð2πÞ2
Z jqj

0

djkj 1þ 2fk
jkj

Z
π

0

dθ
sin θ

1 − cos θ

¼ 2
g2Nc

ð2πÞ2
Z jqj

0

djkj 1þ 2fk
jkj

Z
1

−1

dx
1 − x

: ðB15Þ

Thus,

C>2↔3 ≈
1

Ng

Z
12l

1

2Ep
jM1p↔2lj2Dðp1 − p2Þð2πÞ4

× δ4ðpþ p1 − p2 − lÞðgpg1f2fl − fpf1g2glÞ:
ðB16Þ

There are two types of infrared divergence in DðqÞ. 1) The
logarithmic divergence

R
1
−1dx=ð1−xÞ∼R

dθ=θ∼ lnð1=θmÞ
where θm is the minimal angle between k and p. θm arises
completely due to interaction, so θm ∼ g. Thus,

R
1
−1 dx=ð1 −

xÞ ∼ lnð1=gÞ in both glasma and the nearly thermal
equilibrium state. 2) Near thermal equilibrium,
fk∼T=ωk, and thus

R q
0 ðdk=kÞð1þ2fkÞ∼2T

R q
0 ðdkk=ðk2þ

m2
∞Þ3=2∼Tð1=m∞−1=mDÞwhere we usem∞ to denote the

mass of the emitted or absorbed ultrasoft gluon k andmD to
denote the mass of the exchanged gluon q. Near equilib-
rium, both m∞ and mD are of order gT but can have
different prefactors; we find DðqÞ ∼ g lnð1=gÞ. In the
initial glasma, mD ∼m∞ ∼Qs and fk ∼ 1=αs, and
thus

R q
0 ðdk=kÞð1þ 2fkÞ ∼ ð2=αsÞ lnðq=m∞Þ ∼ 1=αs. Thus

DðqÞ ∼ lnð1=gÞ. As the glasma evolves, fk ∼ ΛS=ðαskÞ,
if mD ∼m∞ ∼

ffiffiffiffiffiffiffiffiffi
ΛΛS

p
, and thus

R q
0 ðdk=kÞð1þ 2fkÞ∼

ð1=αsÞðΛS=m∞Þ ∼ ð1=αsÞ
ffiffiffiffiffiffiffiffiffiffiffi
ΛS=Λ

p
. Thus, we find DðqÞ∼ffiffiffiffiffiffiffiffiffiffiffi

ΛS=Λ
p

lnð1=gÞ.
In either glasma or the nearly thermal equilibrium cases,

we can conclude that the ratio of ultrasoft gluon emission
and absorbtion 2 ↔ 3 processes over the purely elastic
2 ↔ 2 processes is either lnð1=gÞ order or g lnð1=gÞ order.

2. Simplifying C<
2↔3

We expand the distribution functions in C<2↔3 in terms of q and keep the leading-order terms:

C<2↔3 ≈
1

Ng

Z
d4q
ð2πÞ4

Z
123

Z
q<k

k

1

2Ep
ð2πÞ4δ4ðp1 − q − p2Þh1½ð2πÞ4δ4ðpþ q − k − p3ÞjMa

1p↔23kj2ðgpf3fk − fpg3gkÞ

þ ð2πÞ4δ4ðpþ qþ k − p3ÞjMb
23↔1kpj2ðgpgkf3 − fpfkg3Þ�

≈
1

Ng

Z
d4q
ð2πÞ4

Z
13

Z
q<k

k

1

2Ep2E1

ð2πÞδðq0 − q · v1Þh1½ð2πÞ4δ4ðpþ q − k − p3ÞjMa
1p↔23kj2ðgpf3fk − fpg3gkÞ

þ ð2πÞ4δ4ðpþ qþ k − p3ÞjMb
23↔1kpj2ðgpgkf3 − fpfkg3Þ�;
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where h1 ≡ f1g1. This is basically a 1 ↔ 2 collision kernel
with the 2 ↔ 2 processes playing the role of opening a
finite phase space for the 1 ↔ 2 process. Because q is
small, p; k and p3 are nearly collinear (there is vanishing
phase space in the collinear region k∥p1). In the collinear
approximation, we have

p0 þ q0 − k0 − p30 ≈ q0 − jkj− ðq− kÞ · vp ≈ q0 − q · vp;

p0 þ q0 þ k0 − p30 ≈ q0 þ jkj− ðqþ kÞ · vp ≈ q0 − q · vp:

The matrix elements are then

jMa
1p↔23kj2 ¼ 64g6N3

cNg
ðp · p1Þ2

ðq2Þ2jkj2ð1 − vp · vkÞ
; ðB17Þ

jMb
23↔1kpj2 ¼ 64g6N3

cNg
jpj þ jkj

jkj
ðp · p1Þ2

ðq2Þ2jkj2ð1 − vp · vkÞ
:

ðB18Þ

Thus,

C<2↔3 ≈
1

Ng

Z
d4q
ð2πÞ4

Z
1

Z
q<k

k

1

ð2EpÞ22E1

ð2πÞδðq0 − q · v1Þð2πÞδðq0 − q · vpÞh1

× ½jMa
1p↔23kj2ðgpfp−kfk − fpgp−kgkÞ þ jMb

23↔1kpj2ðgpgkfpþk − fpfkgpþkÞ�: ðB19Þ

In the following we denote q ¼ jqj; p ¼ jpj; p1 ¼ jp1j; k ¼ jkj. Let q0 ¼ xq and let vp ¼ ð1; 0; 0Þ, v1 ¼ ðcos θ1; sin θ1; 0Þ,
and vq ¼ ðsin θq cosϕq; sin θq sinϕq; cos θqÞ. We have

δðx − vq · v1Þδðx − vq · vpÞ ¼ δ½x − sin θq cosðθ1 − ϕqÞ�δðx − sin θq cosϕqÞ

¼ 1

sin θq

δðx − sin θq cosϕqÞ
j sinϕq − sinðϕq − θ1Þj

�
δ

�
ϕq −

θ1
2

�
þ δ

�
ϕq −

θ1
2
− π

��

¼ 1

sin θq

1

2 sinðθ1=2Þ
�
δ

�
ϕq −

θ1
2

�
δ

�
x − sin θq cos

θ1
2

�
þ δ

�
ϕq −

θ1
2
− π

�
δ

�
xþ sin θq cos

θ1
2

��
:

Thus,

Z
dq0
2π

dΩqð2πÞδðq0 − q · v1Þð2πÞδðq0 − q · vpÞjMa
1p→23kj2

¼ 128πg6N3
cNg

ðpp1Þ2
q5k2

Z
dx

Z
π

0

dθq sin θq

Z
2π

0

dϕqδðx − vq · v1Þδðx − vq · vpÞ
ð1 − vp · v1Þ2

ð1 − x2Þ2ð1 − vp · vkÞ

¼ 128πg6N3
cNg

ðpp1Þ2
q5k2

ð1 − vp · v1Þ2
1 − vp · vk

Z
π

0

dθq
1

sin θ1
2
ð1 − sin2θqcos2

θ1
2
Þ2

¼ 128π2g6N3
cNg

ðpp1Þ2
q5k2

3 − vp · v1
1 − vp · vk

: ðB20Þ

Furthermore, for isotropic distributions, we have

C<2↔3 ¼
128π2g6N3

cNg

Ng

Z
∞

0

dqq2

ð2πÞ3
Z
1

Z
q<k

k

1

ð2EpÞ22E1

ðpp1Þ2
q5k2

3 − vp · v1
1 − vp · vk

h1

×

�
ðgpfp−kfk − fpgp−kgkÞ þ

ðpþ kÞ3
p3

ðgpgkfpþk − fpfkgpþkÞ
�

¼ 3g6N3
c

16π5

Z
∞

0

dp1p2
1h1

Z
1

−1

dx
1 − x

Z
∞

0

dq
q3

Z
∞

q

dk
k

�
ðgpfp−kfk − fpgp−kgkÞ þ

ðpþ kÞ3
p3

ðgpgkfpþk − fpfkgpþkÞ
�
;

ðB21Þ

where the upper limit of the integration over k for the first two terms should be cut at p. When k is small the integrand over k
goes like ð1þ 2fpÞf0p. It is finite, so we can set the lower limit of

R
dk as 0. In the first two terms, let k ¼ zp with z being
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the momentum fraction of the emitted gluon; in the last two terms let k ¼ zðpþ kÞ with z being the momentum fraction of
the absorbed gluon. Then we have

C<2↔3 ¼ ξα2sR
Ia
Ib

Z
zc

0

dz
z

�
½gpfð1−zÞpfzp − fpgð1−zÞpgzp� þ

1

ð1 − zÞ4 ½gpgzp=ð1−zÞfp=ð1−zÞ − fpfzp=ð1−zÞgp=ð1−zÞÞ�
�
; ðB22Þ

where we introduce the momentum fraction cut zc < 1 to
characterize the fact that k is a small fraction of the total
momentum in this effective 1 ↔ 2 process and the pre-
factor R is given by

R≡ 12N3
c

π2
1

ξ

Z
1

−1

dx
1 − x

m2
D

Z
∞

0

dq
q3

∼ Ôð1Þ: ðB23Þ

There are two kinds of infrared divergences in C<2↔3: 1) the
logarithmic divergence,

R
1
−1 dx=ð1 − xÞ ∼ lnð1=gÞ, and

2) the quadratic divergence
R
dq=q3 ∼ 1=m2

D. Noticing
that C2↔2 is of order α2s lnð1=gÞ near equilibrium and

ðQs=αsÞ lnð1=gÞ in the initial glasma state, we find that

C<2↔3=C2↔2 is of order Ôð1Þ in both the equilibrium and
initial glasma states. It is worth mentioning that the recent
analysis in Ref. [57] has shown that the 2 ↔ 3 inelastic
cross section from the exact matrix element becomes
significantly smaller than that from the Gunion-Bertsch
formula, and amounts to ∼20% of the 2 ↔ 2 cross section.
It therefore seems very plausible that a realistic choice of R
value shall be rather modest.
Now we show that the collision kernel C<2↔3 conserves

energy, i.e.,
R∞
0 dpp3C<2↔3½fp� ¼ 0:

Z
∞

0

dpp3C<2↔3½fp� ∝
Z

∞

0

dpp3

Z
zc

0

dz
z

�
½gpfð1−zÞpfzp − fpgð1−zÞpgzp�

þ 1

ð1 − zÞ4 ½gpgzp=ð1−zÞfp=ð1−zÞ − fpfzp=ð1−zÞgp=ð1−zÞÞ�
�
:

In the last two terms, by changing the variable
p → ð1 − zÞp, one finds that the first two terms cancel
the last two terms so that

R∞
0 dpp3C<2↔3½fp� ¼ 0.

Some remarks are in order regarding the effective
reduction of C>2↔3 to an essentially elastic contribution.
It shall be noted that the whole kernel C2↔3 certainly is and
should be number changing overall. However leading
contributions from certain specific kinetic domains may
not necessarily be so. What we have shown is that under the
small-angle and collinear approximation the 2 ↔ 3 colli-
sion kernel C2↔3 can be split into two parts in correspon-
dence to two different kinematic domains, C2↔3 ¼
C<2↔3 þ C>2↔3, where C<2↔3 is an effective 1 ↔ 2 kernel
and C>2↔3 becomes effectively elastic. In such a way, we
encode the dominant inelastic effects into C<2↔3 and the role
of C>2↔3 is to renormalize the total rate of the 2 ↔ 2

process. So why does the contribution C>2↔3 that originally
emerges from the inelastic kernel C2↔3 become effectively
elastic? This is because in the kinematic region for ultrasoft
gluon emission and absorption, jkj ≪ jqj, the matrix
element for the left panel of Fig. 1, jMa

1p↔23kj2, is equal
to that of the right panel of Fig. 1, jMb

23↔1kpj2; see Eq. (B7).
Intuitively this may be understood as follows: on top of a 2

to 2 scattering, one may attach an extremely soft particle
either on one incoming particle (thus making a 3 → 2

contribution) or on one outgoing particle (thus making a
2 → 3 contribution), but the two processes have the same
rate and thus cancel out to the leading order of jkj. If one
includes even higher orders of the expansion in terms of jkj
there would be subleading number-changing contributions
from C>2↔3 as well. To the leading order of the small-angle
and collinear approximations that we consider here, there is
clearly an advantage in doing such a careful separation of
contributions from different regions of the phase space.

APPENDIX C: THE KINETIC EQUATION FOR
AN ANISOTROPIC SYSTEM

1. Simplifying C>
2↔3 for an anisotropic system

Although in this paper we mainly focus on the isotropic
system, we will in this appendix present the kinetic
equation for an anisotropic system. In the anisotropic case,
Eqs. (B13) and (B14) are still valid [when there is no
confusion, we will use k to denote jkj and also the four
momentum k; elsewhere, we will use fk to denote fðkÞ],
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C>2↔3 ≈
1

Ng

Z
12l

1

2Ep

Z
d4q
ð2πÞ4 jM1p↔2lj2DðqÞð2πÞ4δ4ðp1 − q − p2Þð2πÞ4δ4ðpþ q − lÞðgpg1f2fl − fpf1g2glÞ; ðC1Þ

DðqÞ ¼
Z
k<q

2g2Nc

jkj2
�
1þ 2fk
1 − vk · v1

þ 1þ 2fk
1 − vk · vp

�

≈
Z
k<q

d3k
ð2πÞ32Ek

2g2Nc

jkj2
�
1þ 2fðkv1Þ
1 − vk · v1

þ 1þ 2fðkvpÞ
1 − vk · vp

�

¼ 2g2Nc

ð2πÞ2
Z

q

0

dk
1þ fðkv1Þ þ fðkvpÞ

k

Z
1

−1

dx
1 − x

: ðC2Þ

First, we show that C>2↔3 conserves particle number. To see this, we write

DðqÞ ¼ D1ðqÞ þD2ðqÞ;

D1ðqÞ ¼
2g2Nc

ð2πÞ2
Z

q

0

dk
2þ fðkv1Þ þ fðkvpÞ þ fðkv2Þ þ fðkvlÞ

2k

Z
1

−1

dx
1 − x

; ðC3Þ

D2ðqÞ ¼
2g2Nc

ð2πÞ2
Z

q

0

dk
fðkv1Þ þ fðkvpÞ − fðkv2Þ − fðkvlÞ

2k

Z
1

−1

dx
1 − x

: ðC4Þ

We expand v2 around v1 and vl around vp:

v2 ≈ v1 −
q − q · v1v1

p1

−
½q2 − 3ðq · v1Þ2�v1 þ v1 · qq

2p2
1

; ðC5Þ

vl ≈ vp þ
q − q · vpvp

p
−
½q2 − 3ðq · vpÞ2�vp þ vp · qq

2p2
: ðC6Þ

Thus

fðkv1Þ − fðkv2Þ ¼ kðv1 − v2Þ · v1
∂
∂k fðkv1Þ þ

k2

2
½ðv1 − v2Þ · v1�2

∂2

∂k2 fðkv1Þ þ � � �

¼ q2 − 2ðq · v1Þ2
2p2

1

k
∂
∂k fðkv1Þ þO

�
q
p1

�
3

; ðC7Þ

fðkvpÞ − fðkvlÞ ¼
q2 − 2ðq · vpÞ2

2p2
k
∂
∂k fðkvpÞ þO

�
q
p

�
3

: ðC8Þ

Because q=p1, q=p are small, we have

DðqÞ ≈D1ðqÞ: ðC9Þ

Then we have

Z
d3p
ð2πÞ3 C

>
2↔3½fp� ≈

1

Ng

Z
12pl

Z
d4q
ð2πÞ4 jM1p↔2lj2D1ðqÞð2πÞ4δ4ðp1 − q − p2Þð2πÞ4δ4ðpþ q − lÞðgpg1f2fl − fpf1g2glÞ

¼ H
Ng

Z
12pl

Z
d4q
ð2πÞ4 jM1p↔2lj2

Z
q

0

dk
2þ fðkv1Þ þ fðkvpÞ þ fðkv2Þ þ fðkvlÞ

2k

× ð2πÞ4ð2πÞ4δ4ðp1 − q − p2Þδ4ðpþ q − lÞðgpg1f2fl − fpf1g2glÞ; ðC10Þ

with
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H ¼ 2g2Nc

ð2πÞ2
Z

1

−1

dx
1 − x

: ðC11Þ

Because the integrand is antisymmetric in ð1; pÞ and ð2; lÞ, the integral vanishes.
Thus, C>2→3 can be written in the form −∇p · S where the flux Si is

Si ¼ N2
c

4π
g4H

Z
dq
q

Z
d3p1

ð2πÞ3
Z

q

0

dk
1þ fðkv1Þ þ fðkvpÞ

k
½hp∇j

1f1 − h1∇j
pfp�Vij; ðC12Þ

with the tensor

Vij ¼ δijð1 − vp · v1Þ þ ðvipvj1 þ vjpvi1Þ: ðC13Þ

There are now two terms in Si. The second term can be simplified as

∼ −
N2

c

4π
g4H∇i

pfp

Z
dq
q

Z
d3p1

ð2πÞ3
Z

q

0

dk
1þ fðkv1Þ þ fðkvpÞ

k
h1; ðC14Þ

where we have used the property fðpÞ ¼ fð−pÞ to cancel all terms linear in v1. For the first term, because fðpÞ ¼ fð−pÞ,
∇j

1f1 ∝ pj
1, the only nonzero contributions in Vij∇j

1 should be

Vij∇j
1 ∼ −vjpvj1∇i

1 þ ðvipvj1 þ vjpvi1Þ∇j
1

∼ −vipvi1∇i
1 þ vipv

j
1∇j

1 þ vipvi1∇i
1

∼ vipv
j
1∇j

1 ¼ vipv1 · ∇1 ¼ vip
∂

∂p1

: ðC15Þ

Then the first term is

∼
N2

c

4π
g4Hhpvip

Z
dq
q

Z
d3p1

ð2πÞ3
Z

q

0

dk
k
∂f1
∂p1

½1þ fðkv1Þ þ fðkvpÞ�

¼ −
N2

c

4π
2g4Hhpvip

Z
dq
q

Z
q

0

dk
k

Z
d3p1

ð2πÞ3 f1
1þ fðkv1Þ þ fðkvpÞ

p1

; ðC16Þ

where to arrive at the second line we have made an integration by parts over p1. The flux is then

Si ¼ N2
c

4π
g4H

�
−2hpvip

Z
dq
q

Z
q

0

dk
k

Z
d3p1

ð2πÞ3 f1
1þ fðkv1Þ þ fðkvpÞ

p1

−∇i
pfp

Z
dq
q

Z
d3p1

ð2πÞ3
Z

q

0

dk
1þ fðkv1Þ þ fðkvpÞ

k
h1

�

≈
N2

c

4π
g4H

�
−2hpvip

Z
dq
q

Z
mD

0

dk
k

Z
d3p1

ð2πÞ3 f1
1þ fðkv1Þ þ fðkvpÞ

p1

−∇i
pfp

Z
dq
q

Z
d3p1

ð2πÞ3
Z

mD

0

dk
1þ fðkv1Þ þ fðkvpÞ

k
h1

�

¼ N2
c

4π
g4LH

�
−2hpvip

Z
d3p1

ð2πÞ3 f1
Kðv1; vpÞ

p1

−∇i
pfp

Z
d3p1

ð2πÞ3 Kðv1; vpÞh1
�
; ðC17Þ

where we define

L≡
Z

dq
q
; ðC18Þ
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Kðv1; vpÞ≡
Z

mD

0

dk
1þ fðkv1Þ þ fðkvpÞ

k
: ðC19Þ

Thus C>2↔3 becomes

C>2↔3 ¼ −∇p · S

¼ N2
c

4π
g4LH∇p ·

�
2hpvp

Z
d3p1

ð2πÞ3 f1
Kðv1; vpÞ

p1

þ ð∇pfpÞ
Z

d3p1

ð2πÞ3 Kðv1; vpÞh1
�
: ðC20Þ

It obviously conserves particle number and it is not difficult to show that it conserves energy as well. Furthermore, the Bose-
Einstein distribution with an arbitrary chemical potential makes C>2↔3 vanish.

2. Simplifying C<
2↔3 for an anisotropic system

In this case, Eqs. (B19) and (B20) are still valid, and we have

C<2↔3 ¼
2g6N3

c

π

Z
∞

0

dq
Z
1

Z
q<k

k

p1

q3k2
3 − vp · v1
1 − vp · vk

h1

�
½gðpÞfðp − kvpÞfðkvpÞ − fðpÞgðp − kvpÞgðkvpÞ�

þ ðpþ kÞ3
p3

½gðpÞgðkvpÞfðpþ kvpÞ − fðpÞfðkvpÞgðpþ kvpÞ�
�

¼ g6N3
c

2π

Z
∞

0

dq
Z

d3p1

ð2πÞ3 h1
Z

∞

q
dk

dΩk

ð2πÞ3
1

q3k

3 − vp · v1
1 − vp · vk

�
½gðpÞfðp − kvpÞfðkvpÞ − fðpÞgðp − kvpÞgðkvpÞ�

þ ðpþ kÞ3
p3

½gðpÞgðkvpÞfðpþ kvpÞ − fðpÞfðkvpÞgðpþ kvpÞ�
�

¼ 3g6N3
c

2π

Z
∞

0

dq
Z

d3p1

ð2πÞ3 h1
Z

∞

q
dk

dΩk

ð2πÞ3
1

q3k
1

1 − vp · vk

�
½gðpÞfðp − kvpÞfðkvpÞ − fðpÞgðp − kvpÞgðkvpÞ�

þ ðpþ kÞ3
p3

½gðpÞgðkvpÞfðpþ kvpÞ − fðpÞfðkvpÞgðpþ kvpÞ�
�

¼ 3g6N3
c

ð2πÞ3
Z

d3p1

ð2πÞ3 h1
Z

1

−1

dx
1 − x

Z
∞

0

dq
q3

Z
∞

q

dk
k

�
½gðpÞfðp − kvpÞfðkvpÞ − fðpÞgðp − kvpÞgðkvpÞ�

þ ðpþ kÞ3
p3

½gðpÞgðkvpÞfðpþ kvpÞ − fðpÞfðkvpÞgðpþ kvpÞ�
�
; ðC21Þ

where the upper limit of the integration over k for the first two terms should be cut at p. The lower limit of the integration
over k can be set to zero because there is no IR singularity. In the first two terms, let k ¼ zp with z being the momentum
fraction of the emitted gluon; in the last two terms let p ¼ ð1 − zÞðpþ kÞ. Then we have

C<2↔3 ¼
3g6N3

c

ð2πÞ3
Z

d3p1

ð2πÞ3 h1
Z

1

−1

dx
1 − x

Z
∞

0

dq
q3

Z
1

0

dz
zð1 − zÞ

�
1

2
½gpfð1−zÞpfzp − fpgð1−zÞpgzp�

þ 1

ð1 − zÞ3 ½gpgzp=ð1−zÞfp=ð1−zÞ − fpfzp=ð1−zÞgp=ð1−zÞÞ�
�
: ðC22Þ

It can be shown that the collision kernel C<2↔3 conserves energy, i.e,
R
d3ppC<2↔3½fp� ¼ 0.
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