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We investigate the effects of strong magnetic fields on the QCD phase structure at vanishing density by
solving the gluon and quark gap equations, and by studying the dynamics of the quark scattering with the
four-Fermi coupling. The chiral crossover temperature as well as the chiral condensate are computed. For
asymptotically large magnetic fields we find magnetic catalysis, while we find inverse magnetic catalysis
for intermediate magnetic fields. Moreover, for large magnetic fields the chiral phase transition for massless
quarks turns into a crossover. The underlying mechanisms are then investigated analytically within a few
simplifications of the full numerical analysis. We find that a combination of gluon screening effects and
the weakening of the strong coupling is responsible for the phenomenon of inverse catalysis. In turn, the
magnetic catalysis for large magnetic fields is already indicated by simple arguments based on
dimensionality.
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I. INTRODUCTION

In recent years there has been a growing interest in
the QCD phase structure in the presence of strong
magnetic fields; see e.g. Refs. [1–8]. Such fields may
play an important role for the physics of the early Universe,
in compact stars, and in noncentral heavy ion
collisions [4,7,9,10].
Despite the rich phenomenology, theoretical predictions

are challenging. Starting from QED, e.g. Refs. [11–14],
the influence of magnetic fields on QCD was investigated
in model calculations, e.g. Refs. [15–29], such as quark-
meson, Nambu–Jona-Lasinio models and AdS/QCD, e.g.
Refs. [30–36]; with functional renormalization group (FRG)
methods, e.g. Refs. [37–43]; Dyson-Schwinger (DSE)
equations, e.g. Refs. [6,44–46]; and in lattice calculations,
e.g. Refs. [47–53].
The importance of magnetic fields for chiral symmetry

breaking has been pointed out in Ref. [11]. It has been
argued that chiral symmetry breaking is enhanced due to an
effective dimensional reduction, the magnetic catalysis.
This effect has been linked to an increase of the chiral
condensate as well as that of the critical temperature Tc in
model studies. Recent lattice results, Refs. [47–49,53],
have shown that while the chiral condensate indeed is
increased, the critical temperature decreases with an
increasing magnetic field, at least for small enough mag-
netic field strength. This effect has been called inverse
magnetic catalysis or magnetic inhibition [54].
Continuum studies have mainly been performed in low-

energy fermionic models, such as the (Polyakov-loop-
enhanced) quark-meson or NJL model. Hence, the reason
for the discrepancy has to relate to the full dynamics of

QCD, and in particular the backreaction of the matter sector
to the gluonic fluctuations. There have been a number of
improvements to these model studies to include QCD
dynamics [24,26–28,55,56]. Input parameters of low-
energy effective models, such as the four-Fermi coupling,
should be determined from the QCD dynamics at larger
scales. At these scales they are sensitive to sufficiently large
external parameters such as temperature, density, or mag-
netic fields. This has been emphasized and used in func-
tional FRG studies; see Refs. [57–60]. The dependence of
the four-Fermi coupling on temperature and magnetic field
effects including gluon screening has been investigated in
the recent FRG work [43] of QCD in strong magnetic
fields, where inverse magnetic catalysis with small mag-
netic fields and a delayed magnetic catalysis with large
fields was found; see also Ref. [36] for an AdS/QCD
computation.
In the present work we investigate (inverse) magnetic

catalysis by solving the coupled quark and gluon gap
equations within the DSE approach to QCD, and within a
FRG study of the four-Fermi coupling based on QCD flows
and low-energy effective models. We find magnetic cataly-
sis with large magnetic fields, while inverse magnetic
catalysis takes place with small magnetic fields.
The present work is organized as follows: The gap

equations for quark and gluon propagators at finite temper-
ature and magnetic field in two-flavor QCD are discussed in
Sec. II. We discuss the dependence of the chiral transition
temperature Tc on themagnetic field as well as the magnetic
field dependence of the chiral condensate. In Sec. III, the
mechanisms behind the phenomena of magnetic and inverse
magnetic catalysis are evaluated within analytically acces-
sible approximations to the gap equations as well as to the
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dynamics of the four-Fermi coupling. In this setup we are
also able to reproduce the lattice results at eB < 1 GeV2. In
summary, this provides a complete picture of chiral sym-
metry breaking in the presence of magnetic fields in QCD.

II. CHIRAL SYMMETRY BREAKING
IN LARGE MAGNETIC FIELDS

We investigate chiral symmetry breaking in the presence
of large magnetic fields within a functional continuum
approach. To this end we calculate the chiral condensate for
the two lightest quark flavors and obtain the critical
temperature Tc at finite magnetic field. This is done by
solving the gap equations for the quark and gluon propa-
gator in the presence of a magnetic field using the Ritus
method [61–67]. The computations are performed in the
Landau gauge.

A. Quark and gluon gap equations

The gap equation for the quark propagator, see Fig. 1,
depends on the gluon propagator and the quark-gluon
vertex. The former is expanded about the quenched
propagator. This expansion has been successfully used
at vanishing temperature, e.g. Refs. [68,69], and at finite
temperature, e.g. Refs. [70–73]; the reliability of this
expansion has been discussed in Ref. [74]. The quark-gluon
vertex is estimatedwith the help of Slavnov-Taylor identities
from the quark and gluon propagators. The systematic
error of the latter estimate gives rise to the dominating
systematic error; at vanishing temperature this has been
investigated in Ref. [75], and a related upgrade of the vertex
will be used in a subsequent work.
The inverse quark and gluon propagators, GqðqÞ and

GAðqÞ, respectively, read in a tensor decomposition at finite
eB and T

G−1
q ðqÞ ¼ ZqðqÞðiγ3q3 þ iγ0q0Z0 þ iγ⊥q⊥Z⊥ þMÞ;

G−1μν
A ðqÞ ¼ ðZ∥P

μν
∥ þ Z⊥Pμν

⊥ Þq2 þ 1

ξ

qμqν

q2
; ð1Þ

where the quark propagator is given in the Ritus spectral
representation [66,67], which is discussed e.g. in
Refs. [6,61,76]. The fermion propagator in position space
is then given as

Gqðx; yÞ ¼
XZ
p

EpðxÞGqðpÞĒpðyÞ; ð2Þ

with the sum/integral over the Ritus/Matsubara eigenval-
ues. The eigenfunctions EpðxÞ, which form a complete
orthonormal basis, are given explicitly in Ref. [6]. We
note that the propagator is not translation invariant,
Gqðx; yÞ ≠ Gqðx − yÞ, as the eigenfunctions induce a
nontrivial position dependence. In Eq. (1), Pμν

∥ ¼
ðgμν∥ − pμ

∥p
ν
∥=p

2
∥Þ and P⊥ ¼ P − P∥, where Pμν is the

transverse projector. The projection operator gμν∥ has the
property gμν∥ pμ

∥ ¼ pν
∥. The Ritus representation in Eq. (1)

for the quark propagator is equivalent to the Schwinger
proper time method; see e.g. Ref. [77]. The important
difference, however, is that the Schwinger proper time
method utilizes a Fourier decomposition of the propagator
times a phase accounting for nontranslational invariance,
which in the case of the Ritus propagator is encoded in the
eigenfunctions in position representation.
In the following, we will denote ZA ≡ Z∥ and concen-

trate on the Landau gauge, ξ ¼ 0. The STI-induced para-
metrization of the quark-gluon vertex is introduced as

Γμðq; pÞ ¼ γμzDSEq̄Aq ðq; pÞ; ð3Þ

with zDSEq̄Aq ðq; pÞ discussed in Appendix A. The quark gap
equation can be written in a compact notation as

G−1
q ðpÞ ¼ G−1

q;0ðpÞ þ Cf

XZ
q

ðgγμÞGqðqÞΓνðq; pÞGμν
A ðq0Þ;

ð4Þ

with q0 ¼ q − p and Gq;0 as the bare propagator. The

integration
PR

q
stands for an integration over momenta, as

well as sums over Matsubara frequencies and Landau
levels. The gluon propagator can be expanded about its
pure glue part,

G−1μν
A ðpÞ ¼ G−1μν

glue ðpÞ þ Πμν
f ðpÞ; ð5Þ

where we have written the fermionic part of the gluon self-
energy explicitly, while the gluon and ghost loop contri-
butions are contained in Gglue. The corresponding DSE for
the gluon propagator within this expansion is depicted in
Fig. 2. In the following, we consider the backreaction of the

FIG. 1. Quark DSE equation. Lines with blobs stand for fully
dressed propagators, and vertices with large blobs stand for fully
dressed vertices. Lines without blobs stand for classical propa-
gators, and vertices with small blobs stand for classical vertices.

FIG. 2 (color online). Gluon DSE equation. The gluon line with
the yellow dot represents the pure glue loops.
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vacuum polarization on the pure glue part as small, and
approximate

G−1μν
glue ðpÞ ≈G−1μν

YM ðpÞ: ð6Þ

At vanishing temperature, this has been shown to hold
quantitatively for momenta q≳ 4 GeV, while for smaller
momenta this approximation still holds qualitatively
with an error of less than 20%; see Fig. 6 in Ref. [74].
Note that for momenta q ≳ 4 GeV the dominant effect
of the unquenching is the modification of the scales
(ΛYM → ΛQCD) and the momentum dependence induced
by the different β functions. This is well captured with the
above procedure. In turn, at lower momentum scales the
nonperturbative mass gap related to confinement comes
into play. The magnetic field leads to a shift in the
momentum dependence such as that of the running cou-
pling, as well as (additional) mass gaps in propagators. For
both asymptotic regimes (eB → 0 and eB → ∞), these
effects are well captured semiperturbatively, and we expect
that the approximation (6) holds well. For the intermediate
regime, we rely on the error estimate at zero temperature of
about 20% deduced from Ref. [74].
The fermionic vacuum polarization part Πμν

f ðPÞ reads

Πμν
f ðpÞ ¼ 1

2
tr
XZ
q

ðgγμÞGqðqÞΓνðq; pÞGqðq0Þ; ð7Þ

where the trace includes a sum over the quark flavors.
Details of this expansion can be found in Ref. [6]. Here we
proceed in the lowest Landau-level approximation, where
we write down the most general tensor decomposition for
gluon and quark propagators. Projecting onto different
tensor compositions, we obtain a coupled set of equations
for the dressing functions of the different tensor compo-
nents. In the next section, we will comment on the relation
of the DSE equations to other functional expansions and
discuss the numerical solutions to these equations.

B. Skeleton expansion

Before proceeding to the numerical analysis, we discuss
the standard approximation schemes for the quark-gluon
vertex used in the DSE framework from a more general
point of view. This allows us to connect the present ansatz
to the approximations used in gap equations derived within
other functional approaches, such as the FRG or nPI
approaches.
DSE studies have made extensive use of the specific

input for the quark-gluon vertex and the YM-gluon
propagator in (A2) and (A4) and similar truncations with
great success. Since the quark and gluon self-energy
diagrams, depicted in Figs. 1 and 2, contain one bare
vertex, the correct renormalization group behavior and
momentum dependence of the equations must be discussed

carefully. The truncations to the gap equations (4) and (5)
can actually be very well motivated from a skeleton
expansion of the 1PI effective action, which would yield
similar diagrams as in Figs. 1 and 2, but with both vertices
dressed. Figure 3 serves to strengthen this motivation as it
becomes clear that all approximations should encode the
correct behavior of the four-Fermi interaction, which is at
the heart of chiral symmetry breaking. This allows us to
consistently reshuffle functional dependencies in the inter-
action kernels of the above equations.
In turn, the FRG approach (or nPI effective action) can

be used to systematically derive gap equations in terms
of full propagators and vertices, respectively; see e.g.
Ref. [78]. Here, we simply note that the 1PI effective
action can be written as

Γ½ϕ� ¼ 1

2
Tr lnΓ½ϕ� þ

Z
t
∂tΓk½ϕ� − terms; ð8Þ

where ϕ encodes all species of fields, the trace in (8) sums
over momenta, internal indices and all species of fields
include relative minus signs for fermions (ψ and ψ† are
counted separately), and a logarithmic RG scale t ¼ ln k.
The RG scale in (8) is an infrared scale. Momenta p2 ≲ k2

are suppressed in Γk½ϕ�, and Γ½ϕ� ¼ Γk¼0½ϕ�. The second
term on the right-hand side of (8) is a RG improvement
term which only contains diagrams with two loops and
more in full propagators and vertices. To see this, we
discuss the gap equation derived from (8). It follows by
taking the second derivative of (8) with respect to the fields.
The first term of the right-hand side gives the diagrams as in
Fig. 1 and Fig. 2 with only full vertices (and additional
tadpole diagrams). These diagrams can be iteratively
reinserted into the RG improvement term, systematically
leading to higher loop diagrams in full propagators and
vertices. Due to its sole dependence on dressed correlation
functions, such a diagrammatics naturally encodes the
momentum—as well as the RG—running on an equal
footing. This also facilitates the consistent renormalization.
Note, however, that it comes at the price of an infinite series
of loop diagrams which can be computed systematically.
Here we take the simplest nontrivial approximation, which
boils down to Figs. 1 and 2 with only full vertices. In terms
of the original gap equation, this leads to the relation

zDSEq̄Aq ≈ ðz1PIq̄AqÞ2; ð9Þ

FIG. 3. Relation of the quark DSE interaction kernel to a 1PI
skeleton expansion, which in effect induces an effective mo-
mentum-dependent four-Fermi vertex.
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where z1PIq̄Aq is the dressing function of the 1PI quark-gluon
vertex. This immediately leads to the standard DSE
dressing in (A2). Moreover, in our numerical study, the
vertices are evaluated at their symmetric momentum point.
Note that, while the ansatz for zDSEq̄gq is indeed consistent

when used in the quark and gluon gap equations, it cannot
be used in functional equations for higher vertices such as
the four-Fermi vertex. It is already clear from the discussion
above that a consistent evaluation of renormalization group
running and momentum dependence must be considered
separately for each vertex equation.

C. Results

We numerically solve the coupled system of quark and
gluon functional equations in the lowest Landau-level
approximation at finite temperature. This approximation
is valid in the presence of a clear scale hierarchy with
eB ≫ ΛQCD. We use an ansatz for Γμ similar to that used in
DSE studies, e.g. Refs. [6,79], discussed in Appendix A,
but adapted for temperature and magnetic field effects.
While at large momentum the influence of temperature

and magnetic fields is very small, at large temperature
and magnetic field the system is effectively dimensionally
reduced, and hence the momentum dependencies
corresponding to the absent dimensions vanish. This can
be accounted for if we replace Q2⊥ with 2jeBj once
Q2⊥ < 2jeBj, and Q0 with 2πT for Q0 < 2πT as the
relevant scale in the quark gluon vertex, which is consistent
with renormalization group arguments. Within this para-
metrization we are still left to decide what exact momentum
scale to choose, at which the influence of the external scales
T and eB is small already. We investigate this question in
detail in Sec. III A.
The gluon propagator deserves some additional attention.

It is decomposed into different polarization components in
the presence of an external magnetic field; see e.g. Ref. [6].
Apart from the splitting into longitudinal and transverse
components with respect to the heat bath, there is an
additional splitting transverse and longitudinal to the mag-
netic field. In the lowest Landau-level approximation
only the polarization subspace projected onto by Pμν

∥ ¼
ðgμν∥ − pμ

∥p
ν
∥=p

2
∥Þ receives contributions from the quark loop

in the self-energy; see Ref. [6]. Note that in analogy to
temperature effects, the other gluon components must also
receive contributions from the interaction with the magnetic
field, as gluon and ghost loops mix different polarization
components. This is an important difference between QCD
and QED. From dimensionality these contributions are linear
in eB at least for asymptotically large magnetic fields,
leaving aside implicit B dependencies via the vertices.
Their full computation is beyond the scope of the present
work. Here we investigate the following two limiting cases:
(1) Scenario 1: We simply neglect the screening

effect of the magnetic field on those polarization

components that feel magnetic effects only through
the Yang-Mills sector in a QED-type approximation.
This leads to underestimating the effects leading to
inverse magnetic catalysis, and hence an upper limit
for Tc.

(2) Scenario 2: For the large magnetic fields discussed
here, the gluon and ghost loop contributions to the
self-energy must have a similar dependence on eB to
the fermionic part. Since this sector does not directly
contain charged particles, the effect of the magnetic
field on the YM sector is suppressed by powers of
the involved couplings. Hence, most likely the B
dependence is much smaller than that from the
fermionic sector. As a limiting case we will assume
the same magnitude of the self-energy for all gluon
components, which is given by the fermionic con-
tributions. With that, we overestimate the gluon
screening effect and obtain a lower limit for Tc.

Both scenarios give consistent limiting cases for the trunca-
tion used here.
As an order parameter for chiral symmetry breaking, we

calculate the chiral condensate as a function of temperature
and magnetic field in two-flavor QCD in the limit of
vanishing bare quark masses mu ≈md ≈ 0. The Ritus
method is not reliable for rather small values of qfeB,
with qf þ 2=3 and −1=3 for up and down quarks, respec-
tively. We expect the lowest Landau-level approximation to
be a good estimate once eB≳ 4 GeV2 (see Ref. [6]), which
is also the regime where the approximation (6) works well
for vanishing temperature.
The numerical computation is very demanding in the

vicinity of the phase transition due to the diverging
correlation length. This translates into a numerical error
in the critical temperature indicated by the error bars in the
plots. Figures 4 and 5 show the up- and down-quark
condensates for different values of eB. The inverse mag-
netic catalysis effect described in Refs. [48,49] is evident.
While the chiral condensate still rises with the external field

FIG. 4 (color online). Comparison of the chiral condensate
(scenario 1) for up (continuous lines) and down quarks (dashed
lines) at eB ¼ 12 GeV2 and eB ¼ 24 GeV2.
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in the low-temperature limit, the transition between chiral
broken and symmetric phase drops. This signals inverse
magnetic catalysis, as observed on the lattice [47,48].
Furthermore, the phase transition, which is second order
at zero magnetic field, turns into a crossover with growing
eB, even for vanishing bare quark masses. This can be
understood as magnetic screening: the magnetic field
effectively serves as an infrared cutoff, which inhibits an
infinite correlation length.
In the present computation in two-flavor QCD, an even

more intricate effect is observed. Up and down quarks
come with different electric charges; therefore the presence
of a strong electromagnetic field breaks isospin explicitly.
This results in a nondegenerate chiral phase transition for
the two flavors. Because gluons travel through a medium
filled with both virtual up and down quarks, isospin
breaking affects the self-interactions of the quarks, which
leads to interference between the chiral transitions of the
two flavors as seen in Figs. 4 and 5.
This interference can be interpreted as follows: Virtual

quark fluctuations contributing to the gluon screening are
suppressed in the chiral broken phase by the quark mass.
Since the down quark undergoes the chiral phase transition
already at lower scales, its fluctuations are suddenly
enhanced due to the vanishing mass in the symmetric
phase. The up quark, while still in its chirally broken phase,
is drastically affected by these enhanced fluctuations,
which lead to reduction of the up-quark condensate even
below the real phase transition.
It can be seen from Figs. 4 and 5 that this effect is more

prominent in scenario 2, which should come as no surprise,
as the coupling of the magnetic field to the gauge sector
is probably overestimated here. Nevertheless, the isospin
induced chiral transition substructure is observable in the
limiting scenario 1 as well, which is a strong indication of its
validity. Therefore, this important physical effect might be
observable in lattice calculations, as well. In Refs. [48,49]
the averaged chiral condensate was investigated at finite
quark mass. However, when we investigate the chiral

transition at a bare quark mass of 10 MeV, we find that
the interference effect is completelymasked by the crossover
behavior, as can be seen in Fig. 6. Note that here the
unregularized condensate at finite bare mass is plotted,
hence the offset between the curves.
In analogy with lattice calculation, we define Tc at the

inflection points of the curves shown. In Figs. 7 and 8, the
obtained values for Tc for the limiting cases described by
scenarios 1 and 2 are shown. The two curves give lower and
upper limits for Tc, as discussed before. The chiral
transition temperature is decreasing for a large range in
eB before it seems to saturate for intermediate values in
both scenarios. With very large fields it rises again.
In accordance with our previous discussions, we see that

the up- and down-quark chiral transitions do not coincide.
The transition temperature from the flavor-averaged quark
condensate is given in Figs. 7 and 8 as well. As can be seen
from Figs. 4 and 5, the transition temperature of the flavor-
averaged condensate is essentially determined by the
up quark.

FIG. 5 (color online). Comparison of the chiral condensate for
scenario 2 at eB ¼ 12 GeV2 and eB ¼ 24 GeV2.

FIG. 7 (color online). Critical temperature obtained from
scenario 1 for the up quark, for the down quark, and from the
flavor-averaged condensate.

FIG. 6 (color online). Comparison of the chiral condensate at
zero bare mass and at a finite bare quark mass of mu ¼ md ¼
10 MeV at eB ¼ 4 GeV2 in scenario 1.
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Both scenarios give estimates for the chiral transition
temperature, which differ only quantitatively. Scenario 1,
which underestimates the magnetic field effects in the
gluon sector, extrapolates to a critical temperature at eB¼0
between 170 and 210 MeV with a turning point between
catalysis and inverse catalysis of about eB ≈ 30 GeV2. On
the other hand, scenario 2 gives a Tc at zero magnetic field
of about 140 to 165 MeV with a turning point slightly
higher than in scenario 1. This is in accordance with the fact
that scenario 2 overestimates the gluonic sector, which is
the source of the inverse catalysis effects. At B ¼ 0, the
chiral phase transitions for up and down quarks coincide.
While the continuous lines in Figs. 7 and 8 are obtained
from a fit with a simple quadratic polynomial, reflecting the
turnover behavior at large fields, these should not be
mistaken as extrapolations towards zero. Furthermore,
the computations have been performed in the lowest
Landau-level approximation. This leads to an uncertainty
of about 10% for B smaller than 10 GeV2, while the
qualitative behavior is not affected, as discussed in
Refs. [6,8]. In the following section, we will see that the
behavior of Tc at small B is steeper than just quadratic.
It is well known that within approximation schemes such

as the one discussed here, relative fluctuation scales are
usually well accounted for, whereas absolute scales have to
be fixed. The position of Tc at eB ¼ 0 gives us the
possibility of identifying absolute scales and allows us
to adjust our truncation. We will not be concerned about
matching the exact scale of Tc at zero magnetic field with
the lattice; moreover, we will investigate the mechanisms
behind the B − T phase structure in greater detail. We will
discuss the issue of scales in the following sections.

III. ANALYTIC APPROACHES

In the present section, we are specifically interested in
the mechanisms at work in magnetic and inverse magnetic
catalysis. To that end we discuss approximations to the
quark gap equation in Sec. III A, as well as to the dynamics
of the four-Fermi coupling or quark scattering kernel in

Sec. III B, that allow for an analytic approach to chiral
symmetry breaking. While the quark gap equation can be
straightforwardly reduced to an analytic form from that
used for the numerical study, the four-Fermi coupling is
studied in a renormalization group approach to QCD that
reduces to an NJL-type model for low momentum scales.

A. Quark gap equation

The mechanisms behind the phenomena observed in our
numerical study can be analyzed within approximations
detailed below that allow for an analytic access. These
approximations to the gap equation have been introduced in
Ref. [13] for QED, and can be extended to QCD at finite
temperature. The self-consistent DSE equation for the mass
functions reads in the lowest Landau-level approximation
with zero bare mass

Mðp∥Þ ¼ 4πCF

XZ
q∥

Mðq∥ÞTrðΔðsgnðeBÞÞγμ∥γν∥Þ
M2ðq∥Þ þ q2∥

×
Z
k⊥

αs exp

�
−

k2⊥
2jeBj

�
PμνðkÞ

k2 þ Πðk2Þ : ð10Þ

Here
PR ¼ T

P
n

R
dq∥=ð2πÞ3 and ΔðsÞ ¼ ð1þ sσ3Þ=2.

The quark gap equation (10) is obtained from a skeleton
expansion of the effective action, e.g. Ref. [80], and is
nothing but a manifestly renormalization-group-invariant
approximation of the above DSE equations; see the dis-
cussion in Sec. II B. It includes only dressed vertices. In
Appendix A, we discuss how the interaction kernels can be
related in both pictures. The 1PI quark-gluon vertex is
parametrized as

Γμ
q̄Aqðq2Þ ¼ Z1=2

A ðq2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παsðq2Þ

q
γμ∥: ð11Þ

The gluon propagator is transversal due to the Landau
gauge, and we allow for a gluonic mass via thermal and
magnetic effects.Mðp∥Þ is a function that is approximately
constant in the IR but falls off rapidly for p2

∥ ≥ 2jeBj.
Hence, if we are interested in Mð0Þ ¼ MIR, we can write,
dividing the equation by its trivial solution,

1 − 4π2CFT
XZ2eB

q∥

1

M2
IR þ q2∥;f

×
Z

dx
αs exp ð−x=2jeBjÞ

q2∥;b þ xþ Πðx; q∥;bÞ
�
2 −

q2∥;b
q2∥;b þ x

�
¼ 0:

ð12Þ

In (12) we have introduced q∥;b ≡ ðq3; 2nπTÞ and
q∥;f ≡ ðq3; 2πTðnþ 1=2ÞÞ. Chiral symmetry breaking is

FIG. 8 (color online). Critical temperature obtained from
scenario 2.
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realized once a solutionM2
IR > 0 exists. Due to the shape of

MðqÞ and the exponential factor in (12), the integrand only
has support for x≲ 2jeBj. In the following, we carefully
investigate the ingredients to this self-consistent equation
and the physical mechanisms which are responsible for the
intriguing behavior seen in the previous section.
Due to the finite support of the integrand, the momenta

running through the vertices are comparable to or smaller
than the relevant dimensionful quantities eB and T2. Note
that in our numerical study we have used an ansatz for the
quark-gluon vertex that includes generic eB and T depend-
encies. Here we utilize the fact that the running of αs is
dominated by the temperature and magnetic field scales.
We resort to a simple ansatz for αsðQ2=Λ2

QCDÞ based on the
analytic coupling αs;HQ suggested in Refs. [81,82]; see
Ref. [83] for an investigation within the present context.
This coupling yields a linear potential such as seen in the
heavy quark limit:

αsðzÞ ¼ αs;HQðzÞrIRðzÞ; ð13Þ

where

αs;HQðzÞ ¼
1

β0

z2 − 1

z2 logðz2Þ ; ð14Þ

with β0 ¼ ð33 − 2NfÞ=12π and

z2 ¼ λB2eBþ λTð2πTÞ2
Λ2
QCD

; ð15Þ

with coefficients λT , λB, which are of order 1. These
coefficients determine the point at which eB or T dominate
momentum scales. For the relevant magnetic fields and
temperatures, the running of the coupling with temperature
is very small compared to the running with eB. We use an
ansatz for the infrared behavior of the vertex, which is
parametrized in rIR. Here we use

rIRðz2Þ ¼
z4

ðz2 þ b2Þ2
�
1þ c2

z2 þ b2

�
; ð16Þ

which scales with ∝ z4 for z → 0, and approaches unity in
the perturbative regime. Equation (13) reproduces the
correct behavior of the full quark gluon vertex in (11).
We leave b and c as parameters which allow us to model the
infrared behavior of the quark-gluon vertex. Our ansatz for
(16) is motivated from the quantitative renormalization
group study of quenched QCD in Ref. [75], which we use
to determine b and c. We get

b ¼ 1.50; c ¼ 7.68 ð17Þ

from the fit to Fig. 4 in Ref. [75].

Furthermore, we discuss the gluon self-energy in the
presence of magnetic fields at finite temperature in this
simplified setup. It is important to notice that we can
facilitate our calculations by the following argument: The
function on the right-hand side of (12) is a continuous real
function ofMIR and approachesþ1 asMIR → ∞. Hence, it
is sufficient to check whether the expression is negative for
MIR ¼ 0, because then it had to pass through zero at some
point, which means that a solution exists.
The gluon self-energy receives two important contribu-

tions. The first is through the appearance of fermion loops,
which are also present in an Abelian calculation. The
fermionic self-energy part in lowest Landau-level approxi-
mation with MIR ¼ 0 factorizes

Πμν
f ðpÞ ¼ αeB exp ð−p2⊥=2eBÞΠμνðp∥; TÞ: ð18Þ

Contracting with Pμν in the Landau gauge, we can write the
second term as

Πfðp∥; TÞ

¼ −8π2½3 − 2ð1 − p2
∥=p

2Þ� 1
τ2

×
Z

1

0

dx
XZ
~q∥

xðx − 1Þ
ð ~q23 þ ð2πÞ2ðnþ 1=2Þ2 þ xð1 − xÞ=τ2Þ2 ;

ð19Þ

where we define τ2 ≡ T2=p2
∥. The function can be evalu-

ated numerically and is very well described by the simple
function

Πfðp∥; TÞ ¼ ð1=2πÞ½3 − 2ð1 − p2
∥=p

2Þ� 1

1þ ð4π2=3Þτ2 :

ð20Þ

Equations (18) and (20) state that the relevant contributions
to the self-energy stem from p2⊥ ≈ 2eB and p2

∥ ≈ T2.
Similarly to before, the influence of the magnetic field
on the Yang-Mills sector is not easily accounted for. Here
we focus on the Abelian-like part of the gluon self-energy.
As we have investigated before numerically, this is quali-
tatively correct, and we will use Eq. (15) to account for the
correct scales. It is well known from DSE studies [84] that
approximations similar to this semi-bare-vertex ansatz
underestimate the strength of chiral symmetry breaking,
due to the negligence of important tensor structures in the
vertex, especially those structures that break chiral sym-
metry explicitly [75]. In order to compensate for the overall
weakness of the interaction, we allow for a phenomeno-
logical parameter κ in front of the integral in Eq. (12).
Using our simple ansatz we can investigate chiral

symmetry. In Fig. 9 a family of solutions to Eq. (12) is
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shown for various values of λB and λT , using the ansatz
described above with κ ¼ 1.2 for the two upper curves and
κ ¼ 1.4 for the lower curves. The choice of κ is for better
visualization only, as the curves can be shifted up and down
using this parameter.
The observed behavior agrees with that in our numerical

study. It can be seen from Fig. 9 that for small eB inverse
magnetic catalysis is present, while at large eB the critical
temperature rises again with the magnetic field, with

TcðB=Λ2
QCD → ∞Þ ∝

ffiffiffiffiffiffi
eB

p
; ð21Þ

as one would anticipate from dimensional considerations.
This behavior is universal for all λB and λT . We see that the
choice of λB affects the position of the turning point of the
chiral phase boundary.
With the present analytical considerations, the numerical

results in Figs. 7 and 8 are readily explained: they roughly
correspond to λB ≈ 1, which explains the relatively large
value of eB at the turning point. We see that already small
changes in λB have a huge effect on this quantity; see Fig. 9.
In Fig. 10, we have plotted the analytic result with

λB ¼ 1.1, λT ¼ 1 and κ ¼ 1.19, which agrees well with the
numerical results from scenario 2. Based on the present
work we estimate that λB ≈ 2 − 3 is a realistic choice for the
B dependence of the running coupling, as in our numerical
study the quark and gluon propagators turn into their
corresponding B ¼ 0 propagators at this momentum scale.
The present analysis reveals the following mechanism:

The gauge sector acquires a B dependence through the
feedback of the fermionic sector. This dependence is
responsible for the phenomenon called inverse magnetic
catalysis, as has also been observed recently in a FRG study
within QCD [43]. This also explains why it cannot be seen
in model calculation without explicit QCD input. From
Eqs. (12), (13) and (20), we see that the gluon screening
and the running of the strong coupling (by both thermal and

magnetic effects) are competing with the generic fermionic
enhancement of chiral symmetry breaking in a dimension-
ally reduced system. We see from Fig. 9 that for small
magnetic fields, screening effects dominate the behavior of
the fermionic self-energy, while for asymptotically large
fields, thermal fluctuations are negligible, and hence eB, as
the dominating scale, drives the phase transition towards
higher Tc (magnetic catalysis).

B. Four-Fermi coupling

For a further analytical grip, we also resort to a low-
energy effective theory point of view: integrating out the
gapped gluons leads to an effective four-Fermi theory that
is initialized at about the decoupling scale of the glue sector
of Λ ≈ 1 GeV. Previously there have been phenomeno-
logical approaches in low-energy effective models to
include QCD dynamics as the source of the inverse
magnetic catalysis effect [24,25,55]. From the point of
view of the FRG for QCD, this can be seen as follows
[60,70,74,75,85–87]: At a large momentum scale k QCD is
perturbative, and the 1PI effective action Γk in (8) is well
described perturbatively. A four-Fermi coupling is gener-
ated from the one-loop diagrams (in full propagators and
vertices) encoded in (8); the related diagrams are depicted
in Fig. 11. In the present discussion we have dropped
diagrams that depend on the qq̄ − AA vertex, the
qqq̄ q̄−AA vertex and the qqqq̄ q̄ q̄ vertex. Furthermore,
we assume a classical tensor structure for the q̄Aq vertex
with a coupling

ffiffiffiffiffiffiffiffiffiffiffiffi
4παs;k

p
and only consider the scalar-

pseudoscalar four-Fermi vertex

FIG. 9 (color online). Analytic calculation of the critical
temperature for the chiral phase transition. The bands indicated
correspond to λT ¼ 1 and λT ¼ 0. Arrows indicate the direction
from λT ¼ 1 to λT ¼ 0.

FIG. 10 (color online). Comparison of the critical temperature
obtained with our full numerical procedure to the simple analytic
estimate for λB ¼ 1.1, λT ¼ 1 and κ ¼ 1.19.

FIG. 11. Diagrams contributing to the renormalization group
flow of the four-Fermi coupling.
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Γfour-Fermi½q; q̄; B� ¼
1

2
q̄aαi qbαj Γabcd

k;ijlmq̄
cβ
l qdβm ; ð22Þ

with the scalar-pseudoscalar tensor structure

Γabcd
k;ijlm ¼ λk½δijδlmδabδcd þ ðiγ5Þijðiγ5ÞlmðτnÞabðτnÞcd�:

ð23Þ

The four-Fermi term in (22) can be viewed as the
interaction term of a NJL-type model. Within the approxi-
mation to QCD outlined above, the flow of the four-Fermi
coupling, ∂tλk, has the form

∂tλk ¼ − k2λ2kFλðGqÞ − λkαs;kFλαsðGq;GAÞ

−
α2s;k
k2

Fα2s
ðGq;GAÞ; ð24Þ

with positive coefficients Fλ, Fλαs , Fαs . The respective
diagrams are depicted in Fig. 11. The different classes of
diagrams in Fig. 11 depend on combinations of gluon and
quark propagators GA and Gq, respectively.
The four-Fermi coupling λk in two-flavor QCD at T ¼ 0

has been quantitatively computed (including its momentum
dependence) in quenched QCD with the FRG in Ref. [75],
and in a more qualitative approximation (without its
momentum dependence) in fully dynamical QCD in
Ref. [74]. The respective results are depicted in Fig. 12.
As expected, the couplings have a similar dependence and
maximal strength. However, the slope of the coupling in the
qualitative computation in the peak regime relevant for
chiral symmetry breaking is bigger for the qualitative
computation. This can be traced back to the missing
momentum dependencies, whose lack artificially increases
the locality in momentum space and in the cutoff scale.
Hence, guided by the experience gained in the DSE
computations, we expect the slope to play a large role,
and we shall use the quantitative quenched results for λk

and αs in our present computations. We shall further
comment on the differences in the next section.
For large cutoff scales k, the propagators approach the

classical propagators. The current quark mass at these
scales is negligible, and only the cutoff scale is present if
temperature and magnetic field are considered small
relative to the cutoff scale. Then the dimensionless F’s
are simple combinatorial factors. For optimized regulators
[88], they are given as

Fλ ¼ 4Nc; Fλαs ¼ 12
N2

c − 1

2Nc
; Fα2s

¼ 3

16

9N2
c − 24

Nc

ð25Þ

in the vacuum; see e.g. Refs. [74,75,87] for more details.
For small enough cutoff scales k, the gluonic diagrams
decouple due to the QCD mass gap. In the Landau gauge
this can be directly seen with the gapping of the gluon
propagator. For T ¼ 0, B ¼ 0, this entails

p2GAðp2 ≲ Λ2Þ ∝ p2=m2
gap; ð26Þ

with Λ ≈ 1 GeV. We emphasize that (26) only reflects the
mass gap present in the Landau gauge gluon propagator;
the gluon propagator is not that of a massive particle; see
e.g. Ref. [89]. For momentum scales p2 ≲ Λ2, this approx-
imately leaves us with an NJL-type model with the action

ΓNJL½q; q̄; B� ¼
Z
x
q̄i∂qþ Γfour-Fermi½q; q̄; B�; ð27Þ

with the scalar-pseudoscalar four-Fermi interaction defined
in (22). In the presence of a magnetic field, this model
including fermionic fluctuations has been investigated in
Ref. [38] within the FRG. Here we shall use the respective
results within the lowest Landau-level approximation. Then
Tc shows an exponential dependence on the dimensionful
parameter eB:

Tc ¼ 0.42Λ exp
�
−

2π2

NcλΛ
P

fjqfeBj
�
: ð28Þ

The well-known exponential dependence of Tc on the four-
Fermi coupling λΛ already explains the large sensitivity of
the scales of magnetic calatysis and inverse magnetic
catalysis to details of the computation. Equation (28) is
valid for large magnetic fields and for Λ ≪ m2

gap—that is,
deep in the decoupling regime of the gluons. An estimate
that also interpolates to small magnetic fields is given by

Tc ¼ 0.42Λ exp
�
−

1

cΛλΛ

�
; ð29Þ

with

FIG. 12 (color online). Scalar-pseudoscalar four-Fermi cou-
pling in the vacuum, T ¼ 0, B ¼ 0, computed with quantitatively
reliable QCD flows in quenched QCD [75], and with qualitative
full QCD flows [74].
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ckðBÞ ¼
Nc

2π2

�X
f

jqfeBj þ c1k2
�
; with c1 ¼ 3;

ð30Þ
where c1 has been adjusted to reproduce TcðB ¼ 0Þ≈
158 MeV. While Eq. (30) resembles a lowest-Landau-level
approximation, it is actually an expansion in B. Using this
ansatz, we can describe the behavior of the phase transition
on scales below 1 GeV2 qualitatively, while the B ¼ 0 limit
is fixed.
It is also well known that for k ≫ mgap the flow of the

four-Fermi coupling is driven by the gluonic diagrams
summed up in Fαs : for large scales we can set λk≫mgap

≈ 0.
The gauge coupling is small, αs;k≫mgap

≪ 1, and the flow

gives λk ∝ α2s . This entails that the diagrams with four-
Fermi couplings are suppressed by additional powers of αs,
and the four-Fermi coupling obeys

∂tλglue;k ¼ −
α2s;k
k2

FαsðGq;GAÞ; ð31Þ

where the subscript “glue” indicates that the flow is driven
by glue fluctuations. As discussed before, for k ≫ mgap we
have classical dispersions for quarks and gluons, and the
diagrammatic factor Fαs is a constant; see (25). The strong
coupling αs;k has the form (13) with z ∝ k. Integrating (31)
with (13) gives

λglue;k ∝
α2s;k
2k2

FαsðGq;GAÞ; ð32Þ

where an estimate for the B dependence of the gluonic
diagram in Fαs is given in Appendix B.
At vanishing magnetic field, λglue;k agrees well with

the full result for the four-Fermi coupling in Ref. [75]
for k≳ 2 GeV; see Fig. 13. Below k ≈ 2 GeV, λglue;k is
increasingly smaller than the full scalar-pseudoscalar

four-Fermi coupling in quenched QCD. In this intermediate
range, where all diagrams contribute, we write the resulting
coupling within a resummed form that captures already the
fermionic diagram proportional to Fλ,

λk ¼
λ̄k

1 − c̄kλ̄k
; with c̄k ¼

Z
Λ

k
dk0k0FλðGqÞ: ð33Þ

The resummed form in (33) already reflects the matter part
of the flow in (24), which is the term proportional to ∂tλk.
The other terms add up to

∂tλ̄k ¼ −ð1 − c̄kλ̄kÞ2
�
λkαs;kFλαs þ

α2s;k
k2

�
: ð34Þ

For c̄kλ̄k ≪ 1, the flow of λ̄k boils down to (31). For
c̄kλ̄ → 1, the flow in (34) tends towards zero. In this regime
the four-Fermi coupling grows large and the matter flow
dominates. Hence, for the present qualitative analysis we
simply identify λ̄ with the glue λglue, (32), up to a prefactor,

λ̄k ¼ Zλλglue;k: ð35Þ

The prefactor Zλ accounts for the fact that we have used
results of quantitative QCD flows [75] for the strong
coupling which also include wave function renormaliza-
tions for the quarks. In the current model considerations
without wave function renormalization and further sim-
plifications, this has to be accounted for. For the same
reason, the normalization 0.42Λ related to a four-Fermi
flow with an optimized regulator has to be generalized.
Moreover, the prefactor c̄λ;k is the integrated four-Fermi
flow already present in (29) up to an overall normalization
accounting for the model simplifications. We choose

c̄kðBÞ ¼ c3ckðBÞ and 0.42Λ → 0.42Λ exp ðc2 − c3Þ
ð36Þ

and arrive at

Tc ¼ 0.42Λ exp

�
−

1

cΛλ̄Λ
þ c2

�
; ð37Þ

with cΛ as given in (30) and λ̄ in (35) and (32). Note that the
parameter c3 has dropped out. Its value can be adjusted to
achieve a quantitative agreement of (32) with the QCD
result in Ref. [75] with

c3 ¼
1

2Zλ
; ð38Þ

where the factor 1=Zλ simply removes the mapping factor
adjusting for the missing wave function renormalizations in
the model computation. This quantitative agreement

FIG. 13 (color online). Scalar-pseudoscalar four-Fermi cou-
pling at T ¼ 0, B ¼ 0, computed with quantitatively reliable
QCD flows in quenched QCD [75], in comparison to λglue
computed from (32).

NIKLAS MUELLER AND JAN M. PAWLOWSKI PHYSICAL REVIEW D 91, 116010 (2015)

116010-10



strongly supports the reliability of the approximate solution
to the flow equation given by (33) in the intermediate
momentum regime that is of importance for the current
considerations. The remaining parameters are fixed as
follows:

Zλ ¼ 2.2; c1 ¼ 3; c2 ¼ 1.4: ð39Þ

The parameter c1 has already been adjusted to meet
TcðB ¼ 0Þ ≈ 158 MeV; see (29) and (30). The parameter
c2 readjusts the overall scale 0.42Λ→ 0.42Λexpc2 ¼ 1.7Λ.
As already discussed above, it depends on the regulator and
the approximation at hand. It reflects the dependence on the
renormalization group scheme. Similarly to c1, it is fixed
with TcðB ¼ 0Þ ≈ 158 MeV and is a function of the overall
normalization of the four-Fermi coupling Zλ. The latter is
the only free parameter left. In (39) we use the value that
reproduces the lattice results; see Fig. 14. We emphasize
that no other parameter is present that allows us to shift the
minimum in Tc, the latter being a prediction.
Obviously, the effect seen in our numerical and analytic

DSE study is also present in the analytic approach to the
dynamics of the four-Fermi coupling, including a direct
grip on the underlying mechanisms. We see that the
nonmonotonous behavior, i.e. the delayed magnetic cataly-
sis [43,52], is already present at smaller scales compared to
Figs. 7 and 8, while the lattice results are reproduced.
In turn, for asymptotically large magnetic fields, the

critical temperature runs logarithmically with B:

TcðB=Λ2
QCD → ∞Þ ∝ lnB=ΛQCD; ð40Þ

related to a double-log dependence on B of the exponent.
Due to the qualitative nature of the approximation of the B
dependence of the gluon propagator, it cannot be trusted for
asymptotically large B. Indeed, (40) has to be compared to
(21) within the analytic DSE approach predicting a square-
root dependence. Note that in the latter computation, the

quark vacuum polarization is included self-consistently at
large B even though the backreaction on the pure glue loops
in Fig. 2 is neglected. Still, this indicates the validity of the
square-root dependence, even though a definite answer to
this question requires more work.

C. Discussion of scales and mechanisms

With the findings of the last two sections, we have
achieved an analytic understanding of the mechanisms at
work. The decrease of Tc for small magnetic fields, the
increase of Tc for larger fields, as well as the related
magnetic field regimes can now be understood. In particu-
lar, this concerns the magnetic field Bmin, where TcðBminÞ is
at its minimum. This is the turning point between increas-
ing and decreasing TcðBÞ.
Magnetic catalysis relates to the dimensional reduction

due to the magnetic field in diagrams with quark correlation
functions leading to an increase of the condensate. At finite
temperature, the catalysis due to the dimensional reduction
is accompanied by a thermal gapping of the quarks that
counteracts against the magnetic catalysis effects. In total,
this leads to a rise of both the chiral condensate and the
critical temperature, if the magnetic field dependence of the
involved couplings is sufficiently small. As the magnetic
field also sets a momentum scale of the physics involved,
this scenario holds true for sufficiently large magnetic
field strength eB=Λ2

QCD ≫ 1, where the B dependence of
the couplings can be computed (semi)perturbatively. This
explains the regime of delayed magnetic catalysis.
The above discussion of the standard scenario already

entails that rapidly changing couplings are required for a
decreasing Tc. The couplings involved are the scalar-
pseudoscalar four-Fermi coupling λk and the strong cou-
pling αs;k, where k sets the momentum scale. Both are
rising rapidly towards the infrared for momentum scales
k≲ 4−10 GeV; for λk, see Fig. 13. In this regime, chiral
symmetry breaking and confinement is triggered and takes
place in QCD at vanishing magnetic field. Switching on the
magnetic field increases the relevant momentum scale
k2 ∝ eB, and hence decreases λ and αs. The condensate
still grows with B, as the B enhancement in the broken
phase is still present; only Tc decreases.
Our results from the analytic approach to the quark gap

equation, presented in Fig. 9, support these findings. The
position of the turning point Bmin in both the full numerical
as well as the analytic analysis of the gap equation depends
crucially on the magnetic field and temperature dependence
of the quark-gluon vertex; see Fig. 9. When contrasted with
the quantitative FRG results of αs in Ref. [75], the strong
coupling in (A2) decays considerably more slowly towards
the UV. In turn, the couplings in the qualitative FRG study
for full QCD [74] have a steeper decay; for the four-Fermi
coupling see Fig. 13. Seemingly, this already explains the
large value of Bmin in the current DSE study as well as the
small value of Bmin in Ref. [43], which uses approximations

FIG. 14 (color online). Comparison of the chiral transition
temperature obtained within the simple mean field NJL estimate
in Eq. (14) to the lattice results of Ref. [47] (see their Fig. 10).
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similar to Ref. [74]. Note, however, that we have used the
quenched quantitative αs in the analytic DSE study which
agrees well with the numerical DSE result for λB ≈ 1.
In summary, we have identified the physics mechanisms

behind the T − B phase diagram from our full QCD
calculations. Moreover, Fig. 14 suggests a turning point
for eBmin ≈ 1.5−10 GeV2, the large regime for eBmin being
related to the exponential dependence on the couplings.
Evidently, the effects observed depend on a sensitive
balance of different scales and parameters. Hence, further
studies are required to fully uncover the intricate under-
lying dynamics. Very recent findings in AdS/QCD models
[36] indicate an inverse magnetic catalysis behavior up to
eB ≈ 4 GeV2, which supports our findings.

IV. CONCLUSIONS

We have investigated the chiral phase structure of QCD
at finite temperature in the presence of an external magnetic
field. Our study resolves the discrepancy between recent
lattice and continuum calculations at magnetic fields below
1 GeV2; see also Ref. [43]. We confirm the inverse
magnetic catalysis effect seen in lattice studies at small
B. At larger B we see that magnetic catalysis is restored,
with Tc ∝

ffiffiffiffiffiffi
eB

p
. Indications for the turnover behavior have

already been found in Ref. [43], and in Ref. [52] within
two-color lattice QCD. We hope that further lattice calcu-
lations in full QCD at the scales discussed here will become
feasible soon.
The reason for this nonmonotonous behavior is screen-

ing effects of the gauge sector, i.e. modifications of the
gluon self-energy, as well as the strong coupling αs in the
presence of magnetic fields. Moreover, we have inves-
tigated the nature of the chiral transition for a finite
magnetic field.
Apart from the B dependence of the critical temperature,

we observe that the phase transition in the chiral limit turns
smoothly into a crossover with rising B. Notably, we find a
nondegeneracy in the phase transition which is due to the
explicit isospin breaking caused by the different electric
charges of up and down quarks. This nondegeneracy might
lead to phenomenological consequences in experimental
studies of the QCD phase diagram with noncentral heavy-
ion collisions, as there might be a mixed phase between the
up and down quark transitions. Recent lattice calculations
[90] support the possibility of a nondegenerate chiral phase
transition.
In addition, our calculations show that, due to this

isospin breaking, there is a steplike behavior in the up
quark condensate triggered by the chiral transition of the
down quark. While this is an significant effect in the chiral
limit, it smoothens out rapidly with increasing current
quark mass. Physical current quark masses are in the
transition regime, and this effect might have phenomeno-
logical consequences. To our knowledge, this is a novel

effect in the QCD phase diagram, and it certainly deserves
further investigation.
We have used analytic studies of the quark gap equation

and the dynamics of the four-Fermi coupling for an
investigation of the physics mechanisms behind (inverse)
magnetic catalysis. The results are discussed at length in the
previous Sec. III C, leading to a rough prediction of the
turning point at eBmin ≈ 1.5−10 GeV. Our investigations
highlight the rich phenomenology of QCD matter in
external magnetic fields, which motivates further studies,
e.g. at finite chemical potential, towards more realistic
descriptions of matter under extreme conditions. Recent
studies [91] have suggested even richer QCD phase
structures in the presence of magnetic fields.
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APPENDIX A: GLUON PROPAGATOR
AND QUARK-GLUON VERTEX FROM

DYSON-SCHWINGER STUDIES

Here we discuss the truncation scheme for the quark gap
equation and the gluon propagator, based on Refs. [71,79].
The quark-gluon vertex is taken as Γμ ¼ zqgqγμ, with

zqgqðQ2Þ ¼ d1
d2 þQ2

ðA1Þ

þ Q2

Λ2 þQ2

�
β0αðμÞ logQ2=Λ2 þ 1

4π

�
2δ

; ðA2Þ

containing the parameters

d1 ¼ 7.9 GeV2; d2 ¼ 0.5 GeV2;

δ ¼ −18=88; Λ ¼ 1.4 GeV: ðA3Þ

Here the scales must be identified correctly in order
to capture the correct dependence with T and eB. We take
Q to be the symmetric momentum Q2 ¼ ðq2 þ p2þ
ðq − pÞ2Þ=3 at the vertex with Q2 ¼ Q2

3 þQ2
0 þQ2⊥,

where Q2
0 ¼ ð2πTÞ2 if Q2

0 < ð2πTÞ2 and Q2⊥ ¼ 2jeBj if
Q2⊥ < 2jeBj. We note that this roughly corresponds to an
identification of scales as in Sec. III Awith λB ≈ 1, although
the present vertex is clearly more sophisticated, as it
includes momentum dependencies and thereby generic
eB effects. For a current overview of the quark-gluon
vertex in DSE truncations, see Refs. [92,93]. Furthermore,
in order to be able to solve the gluon DSE equation, we rely
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on lattice input for the Yang-Mills part, which we then
“dress”with magnetic field effects, as described above. The
reliability of this truncation was already discussed in detail
at finite temperature [71] and utilized in the presence of
magnetic fields before [6]. The lattice fit is given by

Z−1
YMðQ2Þ ¼ Q2Λ2

ðQ2 þ Λ2Þ2
��

c
Q2 þ aΛ2

�
b

þQ2

Λ2

�
β0αðμÞ logQ2=Λ2 þ 1

4π

�
γ
�
; ðA4Þ

with

Λ ¼ 1.4 GeV; c ¼ 11.5 GeV2;

β0 ¼ 11Nc=3; γ ¼ −13=22; ðA5Þ
where αðμÞ ¼ 0.3 and a and b are temperature-dependent
parameters, which can be found in Ref. [79]. As
discussed before, the DSE truncation scheme can be
related to the skeleton expansion done in our analytic
estimate, which was motivated by renormalization group
invariance:

4παsðQ2ÞrIRðQ2Þ Pμν

Q02 þ Π
≡ Pμν

ZYMQ02 þ Πf
zqgq; ðA6Þ

where the sum over different polarization tensor compo-
nents is implied. The right-hand side actually serves as
the input to our numerical study, while the different
components of Π are determined dynamically from
solving the gluon DSE equation.

APPENDIX B: MAGNETIC FIELD
DEPENDENCE OF THE FOUR-FERMI

COUPLING FROM QCD

As we have discussed in Sec. III B, the value of the NJL
coupling λ at the intrinsic cutoff scale of the model is
determined by QCD dynamics. At large scales, the dynam-
ics of λ is driven by the rightmost diagram shown in Fig. 11.
Within simplifications, we will motivate the functional
dependence of this diagram on temperature and the
magnetic field. In the lowest Landau-level approximation,

the quarks are constrained to the t-z plane denoted by ð∥Þ,
whereas the gluons propagate in all four dimensions ð∥;⊥Þ.
We write the gluon box diagram in Fig. 11 at zero external
momentum as

FαsðeB ≥ 0.3 GeVÞ≃ 4.5eB
Z

∞

0

dq∥;

q∥
q2∥ þm2

q þ αseBcq

Z
∞

0

dq⊥;

q⊥
½q2⊥ þ q2∥ þm2

A þ eBαscA�2
; ðB1Þ

where αs is given as Eq. (13).
For eB < 0.3, (B1) is smoothly (quadratic fit) extrapo-

lated to eB ¼ 0, minimizing the eB dependence. The
flavor, color and Dirac tensor indices have been contracted,
and the comparison with the results for λ in quenched QCD
shown in Fig. 13 shows that the prefactor resulting from the
tensor contract is approximately 4.5. We have written the
propagators in a semiperturbative form with medium-
dependent mass terms. Further, we have taken mA ≈
1 GeV as the decoupling scale; mq ≈ 300 MeV in the
chiral broken phase and cA ¼ cq ¼ 1. Strictly speaking,
both masses are larger than 1 GeV, as we have to add the
cutoff masses ∝ Λ2. We have chosen smaller masses in
order to also potentially have access to the infrared domain
k → 0, where the constituent quark mass is of the order
0.3 GeV and the gluonic mass gap is of the order 1 GeV.
Furthermore, we have approximated the Matsubara sum by
an integration, due to the small level spacing compared to
the magnetic field. This approximation does not hold for
small eB, but (B1) is only used for eB ≥ 0.3 GeV.
Equation (B1) includes the correct dependence on αs as
well and thus captures eB and T effects qualitatively. The
model parameters in Sec. III B allow us to reproduce the
quantitative behavior of the chiral transition temperature,
and a more elaborate version of Eq. (B1) does not give
much greater insight. Apart from the agreement with the Tc
results from lattice calculation, Fig. 13 shows that quanti-
tatively reliable results from QCD-flows in quenched QCD
[75] are reproduced.
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