
Accurate decay-constant ratios f B�=f B and f B�
s
=f Bs

from
Borel QCD sum rules

Wolfgang Lucha,1 Dmitri Melikhov,1,2,3 and Silvano Simula4
1Institute for High Energy Physics, Austrian Academy of Sciences,

Nikolsdorfergasse 18, A-1050 Vienna, Austria
2D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University,

119991 Moscow, Russia
3Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

4INFN, Sezione di Roma III, Via della Vasca Navale 84, I-00146 Roma, Italy
(Received 12 April 2015; published 23 June 2015)

We present our analysis of the decay constants of the beauty vector mesons B� and B�
s within

the framework of dispersive sum rules for the two-point correlator of vector currents in QCD. While the
decay constants of the vector mesons fB� and fB�

s
—similar to the decay constants of the pseudoscalar

mesons fB and fBs
—individually have large uncertainties induced by theory parameters not known with a

satisfactory precision, these uncertainties almost entirely cancel out in the ratios of vector over pseudoscalar
decay constants. These ratios, thus, may be predicted with very high accuracy due to the good control
over the systematic uncertainties of the decay constants gained upon application of our hadron-parameter
extraction algorithm. Our final results read fB�=fB ¼ 0.944� 0.011OPE � 0.018syst and fB�

s
=fBs

¼
0.947� 0.023OPE � 0.020syst. Thus, both fB�=fB and fB�

s
=fBs

are less than unity at 2.5σ and 2σ level,
respectively.
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I. INTRODUCTION

The QCD sum-rule approach [1–3], based on the
application of Wilson’s operator product expansion
(OPE) to the properties of individual hadrons, has been
extensively used for predicting heavy-meson decay con-
stants. An important finding of these analyses was the
strong sensitivity of the decay constants to the values of the
input OPE parameters and to the prescription of fixing
the effective continuum threshold [4]. The latter governs
the accuracy of the quark-hadron duality approximation
and, to a large extent, determines the extracted value of the
decay constant. Even if the parameters of the truncated
OPE are known with arbitrarily high precision, the decay
constants may be predicted with only limited accuracy,
which we refer to as their systematic uncertainty. In a series
of papers [5], we have formulated a new algorithm for
fixing the effective threshold within Borel QCD sum rules
and for obtaining reliable estimates for the systematic
uncertainties. This procedure opened the possibility to
provide predictions for the decay constants with a con-
trolled accuracy [6,7].
Here we study the decay constants of the vector beauty

mesons fB� and fB�
s
. As is already known from the analysis

of the decay constants of the pseudoscalar mesons B and Bs
[6], the OPE uncertainties in the obtained predictions
are rather large. The same occurs also for the B� and B�

s
mesons. However, the OPE uncertainties to a great extent
cancel out in the ratios of the decay constants of vector and
pseudoscalar beauty mesons. An important result reported

here is that the systematic uncertainties of the decay
constants are rather small and well under control.
Therefore, these ratios are predicted with a very good
accuracy. It should be taken into account that we address a
rather subtle effect at a few-percent level; a priori, it is not
clear whether QCD sum rules are, in principle, capable to
provide theoretical predictions at this level of accuracy.
Obviously, the control over the systematics is becoming
crucial.
The ratio of the decay constants of vector over pseudo-

scalar heavy mesons is an interesting quantity: it is known
to be unity in the heavy-quark limit and to approach this
limit from below because of the radiative corrections [8].
For beauty mesons, the few existing sum-rule analyses
(which, however, could not gain good control over the
systematic uncertainties, see a detailed discussion in [4,5])
reported fB�=fB slightly above unity [9,10]. Constituent-
quark models typically also yield fB�=fB > 1 [11]. A
similar conclusion has been reached by interpolation of
the lattice data from the charm-quark mass region to the
beauty-quark mass [12].
The first indication that this ratio for beauty mesons is

below unity was given in our papers [13]. Recently,
HPQCD [14] also reported an accurate value of
fB�=fB < 1, in excellent agreement with the results of
[13]. The analysis of [13], although conclusively indicating
fB�=fB < 1, observed an unpleasant dependence of the
extracted decay constants of the vector beauty mesons on
the renormalization scale μ chosen for the evaluation of the
vector correlation function. This analysis solves the
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problem of the sensitivity to the choice of the scale μ by
improving the extraction procedures for the decay constants
and arrives at new predictions stable with respect to the
choice of μ. Our detailed results read

fB�=fB ¼ 0.944� 0.011OPE � 0.018syst;

fB�
s
=fBs

¼ 0.947� 0.023OPE � 0.020syst ð1:1Þ

in more than excellent agreement with the latest results
from lattice QCD [14]. Let us emphasize once more that the
OPE uncertainties cancel to a large extent in the above
ratios. Thus, decisive for obtaining an accurate sum-rule
result is our capability to control the systematic uncertain-
ties of the QCD sum-rule method.

II. QCD VECTOR CORRELATOR AND
SUM RULE FOR VECTOR-MESON

DECAY CONSTANT f V

The decay constants of ground-state vector mesons
may be extracted by analyzing the two-point correlation
function

i
Z

d4xeipxh0jTðjμðxÞj†νð0ÞÞj0i

¼
�
−gμν þ

pμpν

p2

�
Πðp2Þ þ pμpν

p2
ΠLðp2Þ ð2:1Þ

of the heavy-light vector currents for a heavy quark Q of
mass mQ and a light quark q of mass m,

jμðxÞ ¼ q̄ðxÞγμQðxÞ; ð2:2Þ

or, more precisely, the Borel transform of its transverse
structure Πðp2Þ to the Borel variable τ, ΠðτÞ. Equating
ΠðτÞ as calculated within QCD and the expression obtained
by insertion of a complete set of hadron states yields the
sum rule

ΠðτÞ ¼ f2VM
2
Ve

−M2
Vτ þ

Z
∞

sphys

dse−sτρhadrðsÞ

¼
Z

∞

ðmQþmÞ2
dse−sτρpertðs; μÞ þ Πpowerðτ; μÞ: ð2:3Þ

Here,MV labels the mass, fV the decay constant, and εμðpÞ
the polarization vector of the vector meson V under study:

h0jq̄γμQjVðpÞi ¼ fVMVεμðpÞ: ð2:4Þ

For the correlator (2.1), sphys ¼ ðMP þMπÞ2 is the physical
continuum threshold, wherein MP denotes the mass of
the lightest pseudoscalar meson containing Q. For large
values of τ, the ground state dominates the correlator and

thus its properties may be extracted from the correlation
function (2.1).
In perturbation theory, the correlation function is found

as an expansion in powers of the strong coupling “constant”
αsðμÞ. The best known three-loop perturbative spectral
density has been calculated in [15] in terms of the pole mass
of the heavy quark Q (that is, in the present case, Mb) and
for a massless second quark [hereafter, we use the abbre-
viation aðνÞ ¼ αsðνÞ=π, where αsðνÞ is the running
coupling at renormalization scale ν in the MS scheme]:

ρpertðsÞ ¼ ρð0Þðs;MbÞ þ aðνÞρð1Þðs;MbÞ
þ a2ðνÞρð2Þðs;Mb; μÞ þ � � � : ð2:5Þ

For both quarks havingnonzeromasses, the two-loop spectral
density in terms of their pole masses was obtained in [3].
The power corrections are also separately scale inde-

pendent; their explicit expressions can be found in [9,16].
For instance, for pseudoscalar (P) and vector (V) currents
the quark-condensate contributions may be written in the
form

ΠP
powerðτÞ ¼ −m̄bðνÞhq̄qðνÞiM2

b

�
expð−M2

bτÞ
�
1þ 3

2
CFa

�

−
3

2
CFaΓð0;M2

bτÞ
�
; ð2:6Þ

ΠV
powerðτÞ ¼ −m̄bðνÞhq̄qðνÞi

×

�
expð−M2

bτÞ
�
1þ 1

2
CFa

�

þ 1

2
CFaM2

bτΓð−1;M2
bτÞ

�
; ð2:7Þ

where m̄bðνÞ is the b-quark MS mass at renormalization
scale ν, m̄bðνÞhq̄qðνÞi is a scale-independent combination,
and Γðn; zÞ is the incomplete gamma function [17].
However, even if the lowest-order contributions to the

perturbative expansion and the vacuum condensates of
lowest dimensions are known to good accuracy, a truncated
OPE does not allow one to calculate the correlator for
sufficiently large τ, such that the continuum states give a
negligible contribution to ΠðτÞ in the corresponding range
of τ. In order to get rid of the continuum contribution, the
concept of duality is invoked: Perturbative-QCD spectral
density ρpertðsÞ and hadron spectral density ρhadrðsÞ resem-
ble each other at large values of s; thus, for values of the
integration lower limit s̄ chosen sufficiently large, that is to
say, (far) above the resonance region, one arrives at the
duality relation

Z
∞

s̄
dse−sτρhadrðsÞ ¼

Z
∞

s̄
dse−sτρpertðsÞ: ð2:8Þ

WOLFGANG LUCHA, DMITRI MELIKHOV, AND SILVANO SIMULA PHYSICAL REVIEW D 91, 116009 (2015)

116009-2



Now, in order to express the hadron continuum contribution
in terms of the perturbative contribution, the relation (2.8)
should be extended down to the hadronic or physical
threshold sphys. However, since the spectral densities
ρpertðsÞ and ρhadrðsÞ obviously differ in the region near
sphys, one can reasonably only expect to obtain a relation-
ship of the form

Z
∞

sphys

dse−sτρhadrðsÞ ¼
Z

∞

seffðτÞ
dse−sτρpertðsÞ; ð2:9Þ

where the effective threshold seffðτÞ is clearly different
from the physical threshold sphys, seffðτÞ ≠ sphys, and,
moreover, must be a function of the Borel parameter τ
[4,5]. By virtue of (2.9), we may hence rewrite the QCD
sum rule (2.3) as

f2VM
2
Ve

−M2
Vτ ¼

Z
seffðτÞ

ðmQþmÞ2
dse−sτρpertðs; μÞ

þ Πpowerðτ; μÞ≡ Πdualðτ; seffðτÞÞ: ð2:10Þ

We refer to the right-hand side of this relation as the “dual
correlator,” and to the masses and decay constants extracted
from this expression as the corresponding “dual” quantities.
In addition to ρpertðs; μÞ and Πpowerðτ; μÞ, the extraction of
fV requires, as further input, a criterion that fixes the
functional behaviour of the effective continuum thresh-
old seffðτÞ.
We shall demonstrate that QCD sum rules allow a very

satisfactory extraction of the vector-meson decay constants,
with an accuracy that is certainly competitive to that found
within the framework of lattice QCD.

III. OPE AND CHOICE OF RENORMALIZATION
SCHEME AND SCALE FOR

HEAVY-QUARK MASS

The starting point of our discussion is the OPE for the
correlator (2.1). The three-loop perturbative spectral den-
sity ρpertðs;MÞ was calculated in [15] in terms of the pole
mass of the heavy quark. A nice feature of the pole-mass
OPE is that each of the known perturbative contributions to
the dual correlator is positive. Unfortunately, the pole-mass
OPE does not provide a visible hierarchy of the perturbative
contributions to the extracted predictions, which raises
doubts whether the Oðα2s Þ-truncated pole-mass OPE is
indeed a good starting point for a reliable analysis of
decay constants.
A well-known remedy is to reorganize the perturbative

expansion in terms of the b-quark running MS mass m̄bðμÞ,
related (in the notations of [16]) to the corresponding pole
mass Mb by

Mb ¼ m̄bðμÞ=ð1þ aðμÞrð1Þm þ a2ðμÞrð2Þm Þ þOða3Þ: ð3:1Þ

The spectral densities in the MS scheme are found by
expanding the pole-mass spectral densities in powers of
aðμÞ and omitting terms of orderOða3Þ and higher; starting
at order OðaÞ, they contain two parts: the “genuine” part
from [15] and the part induced by the lower perturbative
orders when expanding the pole mass in terms of the
running mass. By this, however, due to the truncation of the
perturbative series, one gets an explicit (unphysical)
dependence of the dual correlator and of the extracted
decay constant on the scale μ. In principle, any scale should
be equivalently good. In practice, however, the distinctness
of the hierarchy of the perturbative contributions to the dual
correlator depends on the precise choice of the scale. This
opens a possibility of choosing the scale μ such that the
hierarchy of the new perturbative expansion is improved.
Figures 1 and 2 depict the dual decay constants of the B�

and B mesons, respectively. For the b-quark MS mass, we
use the value determined in [18] by matching our QCD
sum-rule results for fB to those of lattice QCD1:

m̄bðm̄bÞ ¼ ð4.247� 0.034Þ GeV: ð3:2Þ

The numerical values adopted for other relevant OPE
parameters are [7,16,18,21]

mð2 GeVÞ ¼ ð3.42� 0.09Þ MeV;

msð2 GeVÞ ¼ ð93.8� 2.4Þ MeV;

αsðMZÞ ¼ 0.1184� 0.0020;�
αs
π
GG

�
¼ ð0.024� 0.012Þ GeV4;

hq̄qið2 GeVÞ ¼ −½ð267� 17Þ MeV�3;
hs̄sið2 GeVÞ
hq̄qið2 GeVÞ ¼ 0.8� 0.3: ð3:3Þ

The purpose of Figs. 1 and 2 is the illustration of the
main features of the dual correlators (2.10), therefore the
QCD sum-rule estimates shown here are obtained for a
τ-independent effective threshold: seff ¼ const. The
numerical value of the latter is, in each case, found by
requiring maximal stability of the extracted decay constant
in the Borel window. We emphasize that our results for the
decay constants reported in the next Sections are obtained
using the τ-dependent effective thresholds.
From Figs. 1 and 2, we conclude that the Oðα2s Þ-

truncated pole-mass OPE exhibits no hierarchy of the
perturbative expansion and should not be used.

1As shown in [18], the PDG average m̄bðm̄bÞ ¼ð4.18� 0.030Þ GeV [19] (see also [20] for a recent overview
of the b-quark mass results) leads to a considerably larger value
of fB, incompatible with the latest lattice-QCD results. However,
the precise value of m̄bðm̄bÞ has negligible impact on the ratio of
the decay constants of vector and pseudoscalar mesons.
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FIG. 2 (color online). Same as Fig. 1 but for the B meson.
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FIG. 1 (color online). QCD sum-rule estimates of the B�-meson decay constant using the pole-mass OPE (a) and the running-mass
OPE at the renormalization scales μ ¼ 2.5 (b), μ ¼ 3 (c), and μ ¼ 5 GeV (d). The running-mass OPE for m̄bðm̄bÞ ¼ 4.247 GeV is
shown. The pole-mass OPE employs the corresponding two-loop pole mass Mb ¼ 4.87 GeV. For each case, separately, a constant
effective continuum threshold seff is determined by requiring maximal stability of the predicted decay constant in a Borel window of the
maximal width 0.05 ≤ τ ðGeV−2Þ ≤ 0.15. Bold lines (lilac)—total findings, solid lines (black)—Oð1Þ contributions; dashed lines (red)
—OðαsÞ contributions; dotted lines (blue)—Oðα2s Þ contributions; dot-dashed lines (green)—power contributions.
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Unfortunately, the hierarchy of the running-mass OPE is
also not guaranteed automatically and depends strongly on
the scale μ.
Let us define a scale μ̂ by demanding Mb ¼ m̄bðμ̂Þ.

From the Oða2Þ relation between MS and pole mass, we
find μ̂ ≈ 2.23 GeV. At this scale, the perturbative hier-
archy of the MS expansion is worse than that of the pole-
mass expansion because the Oð1Þ spectral densities
coincide, whereas the OðαsÞ spectral density in the MS
scheme receives a positive contribution compared to the
pole-mass scheme. For lower scales μ < μ̂, the hierarchy
of the MS expansion gets worse with decreasing μ.
For higher scales μ > μ̂, first the hierarchy of the MS
expansion improves with rising μ (Figs. 1 and 2).
However, as the scale μ becomes sufficiently larger than
μ̂, the “induced” contributions, which mainly reflect the
poorly behaved expansion of the pole mass in terms of
the running mass, start to dominate over the “genuine”
contributions. This is evident in Figs. 1 and 2: at
μ ¼ 5 GeV, the Oð1Þ contribution to the dual correlator
rises steeply with τ, whereas the OðaÞ contribution
becomes negative in order to compensate the rising
Oð1Þ contribution. Finally, for large values of μ we
mainly observe a compensation between the “induced”
contributions. We may expect in this case the accuracy of
the expansion to deteriorate.
Figures 1 and 2 also reveal an essential difference

between pseudoscalar and vector correlators: at the same
scale μ, the good reproduction of the observed mass of the
vector meson requires lower values of τ compared to its
pseudoscalar partner. This implies that the Borel window
for the vector correlator should be chosen at lower values of
τ than the corresponding window for the pseudoscalar
correlator. Moreover, for μ≳ 5–6 GeV the vector-meson
mass cannot be reproduced in a reasonably broad τ window
and so the QCD sum rule cannot predict the vector-meson
decay constant.
For the present analysis, we thus choose as range of

scales μ ¼ 3–5 GeV: On the one hand, in this range we
observe a reasonable hierarchy of the perturbative contri-
butions to the correlator. On the other hand, we shall see
that for this range of scales one can find sufficiently broad τ
windows where the decay constants may be reliably
extracted by our algorithm. For the vector mesons, the
upper bound of this window depends on μ.

IV. EXTRACTION OF THE BEAUTY-MESON
DECAY CONSTANTS FROM

OUR QCD SUM RULE

In order to extract the decay constants, we first have to
find a τ window such that the OPE provides a sufficiently
accurate description of the exact correlator (i.e., all higher-
order radiative and power corrections are under control).
Next, we must determine the τ dependence of the effective

threshold seffðτÞ.2 The appropriate algorithm was devel-
oped and verified within quantum-mechanical potential
models [5] and shown to work successfully for the decay
constants of heavy pseudoscalar and vector charmed
mesons [6,7]. We introduce a “dual invariant mass”
Mdual and a “dual decay constant” fdual by defining

M2
dualðτÞ≡ −

d
dτ

logΠdualðτ; seffðτÞÞ;
f2dualðτÞ≡M−2

V eM
2
VτΠdualðτ; seffðτÞÞ: ð4:1Þ

For a properly constructed Πdualðτ; seffðτÞÞ, the dual mass
coincides with the actual ground-state massMV . Therefore,
any deviation of the dual mass from MV is an indication of
the contamination of the dual correlator by excited states.
For any trial function for the effective threshold, we

derive a variational solution by minimizing the difference
between the dual mass (4.1) and the actual (i.e., exper-
imentally measured) mass in the Borel window. This
variational solution provides the decay constant then via
(4.1). We consider a set of polynomial Ansätze for the
effective threshold, viz.,

sðnÞeff ðτÞ ¼
Xn
j¼0

sðnÞj τj; ð4:2Þ

and fix the coefficients sðnÞj (the knowledge of which then
allows us to compute the decay constant fV) by minimizing

χ2 ≡ 1

N

XN
i¼1

½M2
dualðτiÞ −M2

V �2 ð4:3Þ

over the Borel window. Still, different Ansätze for seffðτÞ
yield different sum-rule predictions for the decay constants.
Careful studies of quantum-mechanical potential models

indicate that it suffices to allow for polynomials up to third
order: In this case, the band delimited by the predictions
arising from linear, quadratic, and cubic Ansätze for seffðτÞ
encompasses the true value of the decay constant. Even a
good knowledge of the truncated OPE does not allow us to
determine the decay constant precisely, but it enables us to
provide a range of values containing the true value of this
decay constant. The width of this range may then be
regarded as the “systematic error” related to the principally
limited accuracy of QCD sum rules. Presently, we are not
aware of any other possibility to acquire a more reliable
estimate for the systematic error. It is noteworthy that

2We point out that the τ-dependent effective threshold
enables us to describe the hadron excited states and the conti-
nuum exactly, without any approximation. The corresponding
τ-dependent effective threshold is referred to as the exact effective
continuum threshold in [4,5]. The approximations emerge when
one models the unknown exact effective threshold—which is
expected to be a smooth slowly varying function of τ in the Borel
window—by some trial function of τ.
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considering a τ-independent threshold would not allow us
to probe the accuracy of the obtained estimate for fV.
On top of the systematic error comes the “OPE-related

error” of the decay constant: the OPE parameters are known
only with some errors, which induce a corresponding error
of fV . We determine this OPE-related (statistical) error by
averaging the results for the decay constant assuming for
the OPE parameters Gaussian distributions with the central
values and standard deviations quoted in (3.3) and a flat
distribution over the scale μ in the range 3 < μ ðGeVÞ < 5.

A. Decay constant of the B� meson

1. Choice of renormalization scale

In principle, the decay constant should be independent of
the scale μ at which the correlation function is evaluated. In
practice, however, due to the truncations of the perturbative
expansion and the series of power corrections, and the
necessity to isolate the ground-state contribution from the
hadron continuum states, a reliable extraction of the decay
constant may be performed in only a limited range of the
scale μ. For the vector beauty meson, the suitable range of μ
is found to be μ ¼ 3–5 GeV: For μ ≤ 3 GeV, the pertur-
bative expansion for the vector correlator does not exhibit a
satisfactory perturbative convergence and therefore gives

no reason to believe that the unknown higher-order
radiative corrections both in the perturbative part of the
correlation function and in the radiative corrections to the
condensates are negligible. At higher scales μ ≥ 5 GeV,
the B� mass cannot be reproduced with the required
accuracy, signalling that there the contamination of the
excited states cannot be cleaned out.

2. Choice of Borel-parameter window

We require that the B�–B mass splitting and the masses
of B� and B mesons are reproduced, separately, with an
accuracy not worse than 5 MeV for any τ value within the
selected ranges. As follows from the properties of the dual
correlators, this requirement provides two constraints on
the choice of the τ window for B�:

(i) The τ window for B� should be chosen at lower
values of τ compared to the B-meson case.

(ii) The precise choice of the τ window for B� should
correlate with the scale μ at which the correlator is
evaluated.

To satisfy the above criteria for B�, we set the lower
boundary at τminðGeV−2Þ ¼ 0.01 and choose a μ-dependent
upper boundary of the form τmaxðGeV−2Þ ¼ 0.31−
0.05 μðGeVÞ, which choice enables us to extract fB� with
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FIG. 3 (color online). Dependence on the Borel parameter τ of the dual mass (a) and the dual decay constant (b) of the B� meson,
obtained by adopting different Ansätze (4.2) for the effective threshold seffðτÞ and fixing these thresholds by minimizing (4.3); the
results are presented for the central values of all OPE parameters. (c) The τ-dependent effective thresholds as obtained by our algorithm.
The integer n ¼ 0; 1; 2; 3 is the degree of the polynomial in our Ansatz (4.2) for seffðτÞ: dotted lines (red)—n ¼ 0; solid lines (green)
—n ¼ 1; dashed lines (blue)—n ¼ 2; dot-dashed lines (black)—n ¼ 3.
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a systematic uncertainty not worse than 5MeVand strongly
diminishes the unphysical scale dependence of the decay
constant fB� .
Figure 3 shows the application of our procedure for

fixing the effective threshold and extracting the resulting
fB� . The dependence of our QCD sum-rule result on the
relevant OPE parameters, i.e., the b-quark mass mb≡
m̄bðm̄bÞ, the quark condensate hq̄qi≡ hq̄qð2 GeVÞi and
the gluon condensate haGGi, proves to be well described
by a linear relation:

fdualB� ðmb; hq̄qi; haGGiÞ

¼ ð181.8� 4systÞ
�
1 −

11

181.8
δmb

��
1þ 7

181.8
δhqqi

�

×

�
1 −

1

181.8
δhaGGi

�
MeV; ð4:4Þ

with

δmb
¼ mb − 4.247 GeV

0.034 GeV
;

δhqqi ¼
jhq̄qij1=3 − 0.267 GeV

0.017 GeV
;

δhaGGi ¼
haGGi − 0.024 GeV4

0.012 GeV4
: ð4:5Þ

The above parameters δ take values between −1 and þ1
when the corresponding OPE quantity varies in its 1σ
interval. Varying all other OPE parameters in their 1σ
ranges leads to an effect on fB� of less than 1 MeV and is
not shown here. Trusting in our experience from exactly
solvable examples, we assume that the systematic uncer-
tainty interval contains the true value of the decay constant

and that inside this interval the true decay-constant value
has a flat distribution.
As evident from Fig. 3(a), using a constant threshold

leads to a contamination of the dual correlator by excited
states (beyond the acceptable level), while this contami-
nation is strongly reduced for n > 0: the values of the decay
constant in Fig. 3(b) resulting for n > 0 are nicely grouped
together, whereas the n ¼ 0 prediction emerges some
10 MeV below.
A particularly convincing feature of the presented

extraction procedure is the insensitivity of the extracted
value of fB� (as well as that of fB) to scale variations in the
interval μ ¼ 3–5 GeV (Fig. 4), achieved by demanding an
accurate reproduction of the B� mass in the full τ window,
which requires a specific choice of the τ window correlated
with the scale μ at which the correlator is evaluated. Such
choice of the τ window allows us to keep the systematic
uncertainty, estimated by the half width of the band
encompassing the results for the linear, quadratic, and
cubic thresholds, at a level below 4 MeV in the full μ range.
Therefore, (4.4) describes well the result for any μ from the
range μ ¼ 3–5 GeV.
Assuming Gaussian distributions for all OPE parameters

collected in (3.3), we get the distribution of fB� depicted
in Fig. 5. For the average and the standard deviation of the
B�-meson decay constant, we obtain

fB� ¼ ð181.8� 13.1OPE � 4systÞ MeV: ð4:6Þ

The OPE uncertainty is composed as follows: 11 MeV are
due to the variation of mb and 6 MeV arise from the quark
condensate. The uncertainties of all other OPE parameters
contribute less than 1 MeV to the OPE uncertainty of fB� .
The corresponding QCD sum-rule outcome for the B-meson
decay constant fB from our earlier investigation [18] reads

3.25 3.5 3.75 4 4.25 4.5 4.75 5
GeV

180

185

190

195

200
fB,B MeV

fB fB 192.6 0.2 MeV

fB fB 181.8 0.5 MeV

3.25 3.5 3.75 4 4.25 4.5 4.75 5
GeV

210

215

220

225

230

235
fBs,Bs

MeV

fBs

fBs
225.6 0.3 MeV

fBs

fBs
213.6 3.2 MeV

(a) (b)

FIG. 4 (color online). Renormalization-scale dependence of the predicted decay constants: (a) fdualB ðμÞ and fdualB� ðμÞ, (b) fdualBs
ðμÞ

and fdualB�
s
ðμÞ. For each decay constant, we depict the μ-related uncertainty, i.e., the standard deviation calculated assuming

a flat μ distribution in the range μ ¼ 3–5 GeV. Dotted lines (red)—vector beauty mesons; solid lines (blue)—pseudoscalar beauty
mesons.
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fdualB ðmb; hq̄qi; haGGiÞ

¼ ð192.6� 3systÞ
�
1 −

12.6
192.6

δmb

��
1þ 6.8

192.6
δhqqi

�

×

�
1þ 1

192.6
δhaGGi

�
MeV:

ð4:7Þ

As is obvious from (4.4) and (4.7), the OPE uncertainties
cancel out, to a great extent, in the ratio, which, conse-
quently, can be predicted with a rather high accuracy:

fB�=fB ¼ 0.944� 0.011OPE � 0.018syst: ð4:8Þ

The main contribution to the OPE error in the ratio arises
from the gluon condensate, which enters with different sign
in the pseudoscalar and the vector correlator (in detail:
�0.01haGGi � 0.005mb

� 0.001hqqi). The total uncertainty of
the ratio is dominated by the systematic uncertainties of the
decay constants. Figure 5 shows the distribution of the ratio
as obtained by a bootstrap analysis.

B. Decay constant of the B�
s meson

For B�
s, we choose the same Borel-parameter window as

for B� and again require that the deviation of the dual mass
from the known B�

s mass does not exceed 10 MeV in the
full τ window. Our findings for the B�

s-meson decay
constant may be cast in the form

fdualB�
s
ðμ ¼ μ̄; mb; hs̄si; haGGiÞ

¼ ð213.6� 6Þ
�
1 −

13.2
213.6

δmb

��
1þ 11.8

213.6
δhssi

�

×
�
1 −

1

213.6
δhaGGi

�
MeV; ð4:9Þ

where μ̄ is defined in (4.11) and

δhssi ¼
jhs̄sij1=3 − 0.248 GeV

0.033 GeV
: ð4:10Þ

Unfortunately, the sensitivity of fB�
s
to the choice of the

scale μ at which the vector correlator is evaluated turns out
to be rather pronounced. This dependence on the choice of
μ may be parametrized by a series in powers of logðμ=μ̄Þ:

fdualB�
s
ðμÞ ¼ 213.6 MeV½1 − 0.12 logðμ=μ̄Þ þ 0.11log2ðμ=μ̄Þ

þ 0.43log3ðμ=μ̄Þ�;
μ̄ ¼ 3.86 GeV: ð4:11Þ

Averaging over the OPE parameters (using Gaussian
distributions of all OPE parameters except for μ, for which
a flat distribution in the range μ ¼ 3–5 GeV is assumed)
yields

fB�
s
¼ ð213.6� 18.2OPE � 6systÞ MeV; ð4:12Þ

with the following main contributions to the OPE error:
11.5 MeV from the s-quark condensate and 14.1 MeV from

FIG. 5 (color online). Distributions of the ratios fB�=fB and fB�
s
=fBs

of beauty-meson decay constants, obtained by generating 1000
bootstrap events. For both ratios, their final distributions possess Gaussian-like shapes, with the standard deviations quoted in the plots.
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mb; an uncertainty of 3.2 MeV arises from the μ depend-
ence of fB�

s
.

For the pseudoscalar Bs meson, our corresponding
estimates read

fdualBs
ðmb; hs̄si; haGGiÞ

¼ ð225.6� 3systÞ
�
1 −

14.1
225.6

δmb

�

×
�
1þ 11.5

225.6
δhssi

��
1þ 1

225.6
δhaGGi

�
MeV:

ð4:13Þ

As seen in Fig. 4, the sensitivity of fBs
to the choice of μ is

negligible. The total OPE uncertainty of fBs
is rather

large:

fBs
¼ ð225.6� 18.3OPE � 3systÞ MeV: ð4:14Þ

The decomposition of the OPE error reads 11.5 MeV
due to the error of the s-quark condensate and
14.1 MeV due to the error of m̄bðm̄bÞ; the uncertainties
of the other OPE parameters contribute at the level
of 1 MeV.
Similar to the fB�=fB case, except for the gluon-

condensate contribution the OPE uncertainties cancel, to
a great extent, in the ratio of the decay constants, which
may thus be predicted rather accurately:

fB�
s
=fBs

¼ 0.947� 0.023OPE � 0.020syst: ð4:15Þ

The OPE uncertainty in the ratio is dominated by the
sensitivity of fB�

s
to the choice of the scale μ. The

(obligatory) bootstrap analysis gives for the ratio
fB�

s
=fBs

the nearly Gaussian distribution shown in Fig. 5.

V. SUMMARY AND CONCLUSIONS

Exploiting the tools offered by QCD sum rules, we
analyzed in great detail the decay constants of the beauty
vector mesons, paying special attention to the uncertainties
arising in our predictions for the decay constants: the
OPE error, related to the precision with which the QCD
parameters are known, and the systematic error, intrinsic to
the QCD sum-rule approach as a whole, reflecting the
limited accuracy of the extraction procedure. Our findings
are as follows:

(i) As was already noted in the case of heavy pseudo-
scalar mesons [7], also for the vector correlator the
perturbative expansion in terms of the heavy-quark
pole mass does not exhibit good convergence.
Reorganizing the OPE in terms of the corresponding
running mass allows us to choose a range of scales
for which, upon evaluation of the correlator, the

perturbative hierarchy becomes explicit. For scales
μ ≤ 2.5–3 GeV, also the running-mass OPE does
not exhibit any hierarchy of perturbative contribu-
tions; at too large scales μ ≳ 5–6 GeV, we observe
a strong cancellation between the large positive
zero-order and the large negative first-order contri-
butions, thus signalling that the accuracy of the OPE
may deteriorate. There is, however, a sizeable
interval of scales, 3 ≤ μ ðGeVÞ ≤ 5, where the
Oða2Þ-truncated OPE provides a good description
of the dual correlation function.

(ii) Requiring the known value of the meson mass to
be well reproduced in a relatively broad τ window
leads, in the case of the vector mesons, to some
correlation between the scale μ at which the corre-
lator is evaluated and the upper boundary of the τ
window: for μ ≳ 5 GeV, the Borel window for the
vector correlator shrinks and thus no meaningful
extraction of the decay constants of B� and B�

s from
sum rules is possible. The observed correlation
between the parameters of the Borel window and
the value of μ strongly reduces the (unphysical) μ
dependence of the extracted beauty-meson decay
constants.

(iii) The τ dependence of the effective threshold and the
details of the algorithm for fixing this quantity are
crucial for obtaining realistic estimates of the sys-
tematic uncertainty of the extracted decay constant.
For the analysis of the ratios of the decay constants
of vector to pseudoscalar beauty mesons, where the
mass splitting between the vector and the pseudo-
scalar partners amounts to some 45 MeV only, the
stringent requirement to reproduce this splitting and
the individual masses of vector and pseudoscalar
beauty mesons with an accuracy not worse than
5 MeV in the full τ range is crucial for obtaining the
low systematic uncertainty of the extracted decay
constants.

(iv) The decay constants of pseudoscalar and vector
beauty mesons exhibit a strong dependence on the
precise value of m̄bðm̄bÞ. Therefore, the BðsÞ and B�

ðsÞ
decay constants suffer from large OPE uncertainties.
The systematic uncertainties of the extracted decay
constants are of the level of a few MeV and remain
under good control.

(v) The ratios fB�=fB and fB�
s
=fBs

can be predicted
with very good accuracy because of large can-
cellations between the OPE uncertainties in the
ratios and a good control over the systematic
uncertainties of the decay constants. Our final
results read

fB�=fB ¼ 0.944� 0.021;

fB�
s
=fBs

¼ 0.947� 0.030;
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where the error given is the total uncertainty,
including the systematic and the OPE uncer-
tainty. The resulting distributions are close to
normal distributions (Fig. 5), thus the quoted
errors are Gaussian standard deviations.
These results correspond to the mb value (3.2)

obtained by matching the QCD sum-rule analysis
to the lattice results for fB. Given Eqs. (4.4),
(4.7), (4.9), and (4.13), one easily obtains the
ratio for other input mb values. For instance,
using the PDG value mb ¼ 4.18 GeV [19] instead
of the value (3.2) leads to a reduction by −0.005
for fB�=fB and by −0.002 for fB�

s
=fBs

, which is
well within the quoted uncertainties.

(vi) Our results are in excellent agreement with and have
a precision comparable to the recent lattice QCD
values [14]

fB�=fB ¼ 0.941� 0.026;

fB�
s
=fBs

¼ 0.953� 0.023:
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