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I. INTRODUCTION

The quark model predicts the existence of heavy baryons
composed of single, double and triple quarks. Essential
improvement has been achieved in heavy baryon spectros-
copy in recent years. All baryons with a single charm quark
that are predicted by the quark model have been observed in
experiments. Moreover, heavy baryons with a single
bottom quark, such as Λb, Σb, Ξb and Ωb, have also been
discovered (for a review see [1]).
These progresses in experiments stimulated future inves-

tigation for the properties of these baryons at LHC, as well
as further theoretical studies on this subject.
Remarkable information about the internal structure

of baryons can be gained by studying their magnetic
moments. Magnetic moments of the heavy baryons have
long been under the focus of theoretical physicists, and
they have been studied in framework of various
approaches. So far, magnetic moments of charmed heavy
baryons have been calculated in framework of the naive
quark model [2,3], relativistic quark model [4], chiral
perturbation model [5], hypercentral model [6], soliton
model [7], skyrmion model [8], bag model [9], QCD sum
rules method [10], nonrelativistic quark model [11], phe-
nomenological relativistic model [12], quark model with
confinement law potential [13], and chiral constituent
quark model, respectively [14].
Magnetic moments of heavy hadrons have also been

studied in numerous works within the QCD sum rules
method. Magnetic moments of the Λc and Σc baryons have
been calculated in the framework of the traditional QCD
sum rules method in [10]; of the ΛQ and ΞQ ðQ ¼ c or bÞ
baryons within the light version of the QCD sum rules
method in [15,16], respectively. It should be noted here that
magnetic moments of the spin-3=2 heavy baryons have
already been analyzed within the same approach in [17].

The goal of the present paper is calculation of the
magnetic moments of heavy ΣQ, Ξ0

Q and ΩQ baryons
within the light cone QCD sum rules method.
The paper is organized as follows. In Sec. II, sum rules

for the magnetic moments of the above-mentioned baryons
are constructed. Numerical results of our calculations
are presented in Sec. III. This section further contains
comparison of our results with the predictions of other
approaches, and concluding remarks.

II. LIGHT CONE SUM RULES FOR THE
SEXTET HEAVY BARYONS

We start this section by giving a brief summary of the
classification of heavy baryons in SU(3) symmetry.
According to SU(3) symmetry, heavy baryons with single
heavy quark belong to either symmetric sextet or antisym-
metric antitriplet flavor representations. As has already
been noted, magnetic moments of the ΛQ and ΞQ baryons
belonging to antisymmetric flavor representations of SU(3)
are calculated within the light QCD sum rules method in
[15] and [16], respectively. In the present paper we
calculate magnetic moments of the heavy baryons belong-
ing to sextet representation of the SU(3) group.
In order to calculate magnetic moments of the heavy

sextet baryons, we start by considering the following
correlation function:

Πðp; qÞ ¼ i
Z

d4xeipxh0jTfηQðxÞη̄Qð0Þgj0iγ; ð1Þ

where ηQ is the interpolating current of the heavy spin-1=2
baryon, and γ is the external magnetic field. Themain task in
constructing the sum rules for magnetic moments of the
heavy sextet baryons is the calculation of the correlation
function in terms of the photon distribution amplitude (DA)
by using the operator product expansion (OPE) over twist
from one side, and in terms of the hadrons from the other
side, and then equating both representations. Calculation
of the correlation function from the hadronic side is
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accomplished by inserting a complete set of hadrons
carrying the same quantum numbers of the interpolating
current ηQ. Isolating the ground state’s contribution, we
obtain

Π ¼ h0jηQjBQðp2Þi
p2
2 −m2

BQ

hBQðp2ÞjBQðp1Þiγ
hBQðp1Þjη̄Qj0i

p2
1 −m2

BQ

þ � � � ; ð2Þ
where dots correspond to the contributions of higher states
and continuum, p! ¼ p2 þ q. In further analysis we shall
make the replacement p2 ¼ p. The matrix elements in
Eq. (2) are determined as

h0jηQjBQðpÞi ¼ λQuBQ
ðpÞ; ð3Þ

hBQðpÞjBQðp1Þiγ ¼ εμūBQ
ðpÞ

�
f1γμ−f2

iσμν
2mBQ

qν
�
uBQ

ðp1Þ;

ð4Þ
where εμ is the photon polarization vector, f1 and f2 are the
form factors. Using the equation of motion, Eq. (4) can be
written as

hBQðpÞjBQðp1Þiγ
¼ ūBQ

ðpÞ
�
ðf1 þ f2Þγμ þ

ðpþ p1Þμ
2mBQ

�
uBQ

ðp1Þεμ: ð5Þ

Since the photon involved in these transitions is a real
photon, we set q2 ¼ 0, and hence in calculation of the
magnetic moments of the heavy sextet baryons the values of
the form factors are needed only at q2 ¼ 0.
Substituting Eqs. (3) and (5) in Eq. (2), and performing

summations over spins of the heavy baryons, for the
hadronic of the correlation function we get

Π ¼ λ2BQ
εμ

ðpþmBQ
Þ

p2 −m2
BQ

�
ðf1 þ f2Þγμ þ

ðpþ p1Þμ
2mBQ

�

×
ðp1 þmBQ

Þ
p2
1 −m2

BQ

: ð6Þ

We observe from Eq. (6) that the correlation function
contains many structures; any of them can be chosen in
calculating magnetic moments of the sextet baryons, and in
this respect we choose the structure pεq. This structure
envelopes the magnetic form factor f1 þ f2, and at q2 ¼ 0
it gives the magnetic moment μBQ

of the heavy baryons in
units of eℏ=2mBQ

. As a result, the correlation function can
be written in terms of the magnetic moment of heavy
baryons as

Π ¼ λ2BQ

1

m2
BQ

− p2
μBQ

1

m2
BQ

− ðpþ qÞ2 : ð7Þ

In order to calculate the correlation function in terms of
quark and gluon degrees of freedom and photon distribu-
tion amplitudes, the expressions of the interpolating cur-
rents of the heavy baryons are needed. The general form of
the interpolating currents of the heavy spin-1=2 positive
parity baryons is given as (see for example [18])

ηBQ
¼ −

1ffiffiffi
2

p ϵabcfðqaT1 CQbÞγ5qc2 þ tðqaT1 Cγ5QbÞqc2
− ðQaTCqb2Þγ5qc1 − tðQaTCγ5qb2Þqc1g; ð8Þ

where a; b; c are the color indices, C is the charge
conjugation operator, and t is an arbitrary parameter whose
value at t ¼ −1 gives the so-called Ioffe current. The quark
contents of the sextet heavy sextet baryons are given in
Table I.
Using the expression for the interpolating current and

Wick’s theorem, the theoretical part of the correlation
function for the Σ0

b can be written as

ΠΣ0
b ¼ −3fγ5SdðxÞS0bðxÞSuðxÞγ5 þ γ5SuðxÞS0bðxÞSdðxÞγ5 þ γ5SuðxÞγ5Tr½SbðxÞS0dðxÞ� þ γ5SdðxÞγ5Tr½SuðxÞS0bðxÞ�

þ tðγ5SdðxÞγ5S0bðxÞSuðxÞ þ γ5SuðxÞγ5S0bðxÞSdðxÞ þ SdðxÞS0bðxÞγ5SuðxÞγ5 þ SuðxÞS0bðxÞγ5SdðxÞγ5
þ γ5SuðxÞTr½SbðxÞγ5S0dðxÞ� þ SuðxÞγ5Tr½SbðxÞS0dðxÞγ5� þ γ5SdðxÞTr½SuðxÞγ5S0bðxÞ� þ SdðxÞγ5Tr½SuðxÞS0bðxÞγ5�Þ
þ t2ðSdðxÞγ5S0bðxÞγ5SuðxÞ þ SuðxÞγ5S0bðxÞγ5SdðxÞ þ SdðxÞTr½SbðxÞγ5S0uðxÞγ5� þ SuðxÞTr½SdðxÞγ5S0bðxÞγ5�Þg; ð9Þ

where S0 ¼ CSTC, T symbolizes transposition operator, and S is the quark (light or heavy) propagator. The corresponding
expressions of the correlation functions for the other members of the sextet baryons can be found from the ΣBQ

by making
the following replacements:

TABLE I. Quark contents of the heavy sextet baryons.

ΣþðþþÞ
bðcÞ Σ0ðþÞ

bðcÞ Σ−ð0Þ
bðcÞ Ξ0−ð0Þ

bðcÞ Ξ00ðþÞ
bðcÞ Ω−ð0Þ

bðcÞ

q1 u u d d u s
q2 u d d s s s
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ΠΣ0
c ¼ ΠΣþ

c ðu → dÞ;
ΠΣþþ

c ¼ ΠΣþ
c ðd → uÞ;

ΠΣ−
b ¼ ΠΣ0

bðu → dÞ;
ΠΣþ

b ¼ ΠΣ0
bðd → uÞ;

ΠΞ0þ
c ¼ ΠΣþ

c ðd → sÞ;
ΠΞ00

c ¼ ΠΣþ
c ðu → d; d → sÞ;

ΠΞ00
b ¼ ΠΣ0

bðd → sÞ;
ΠΞ0−

b ¼ ΠΣ0
bðu → d; d → sÞ;

ΠΩ0
c ¼ ΠΣþ

c ðu → s; d → sÞ;
ΠΩ−

b ¼ ΠΣ0
bðu → s; d → sÞ: ð10Þ

The correlation function described by Eq. (9) contains
three different parts: (a) perturbative part, when a photon is
radiated from a short distance (perturbative contribution);
(b) a photon is radiated from a short distance from the quark
propagators, and light quarks form a condensate (mixed
contribution); (c) a photon is radiated from a long distance
(nonperturbative contribution). The diagrams correspond-
ing to these three different contributions are presented
in Fig. 1.
In order to calculate the perturbative contribution of the

correlation function, it is enough to make the replacement

S →
Z

d4ySfreeðx − yÞAðyÞSfreeðyÞ; ð11Þ

for one of the quark propagators, where Sfree is the free
quark operator; and the other two are being the free
propagators. The expressions of the free light and heavy
quarks in coordinate representation are given as

Sfreeq ¼ ix
2π2x4

−
mq

4π2x2
;

SfreeQ ¼
m2

BQ

4π2
K1ðmBQ

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p þ i

m2
BQ

4π2
xK2ðmBQ

ffiffiffiffiffiffiffiffi
−x2

p
Þ

ð
ffiffiffiffiffiffiffiffi
−x2

p
Þ2

; ð12Þ

where Ki are the Bessel functions.
The contribution of part (c) can easily be calculated by

replacing one of the light quark operator with

ðSabq Þαβ → −
1

4
δabq̄aΓiqbðΓiÞαβ; ð13Þ

where Γj are the full set of Dirac matrices, and other quark
operators that involve perturbative, as well as nonpertur-
bative terms. The explicit forms of the “full” quark
propagators can be found in [19] and [20].
Nonperturbative contribution is realized as the matrix

element of the nonlocal operator q̄Γiq between the vacuum
and one-photon states.These matrix elements are described
in terms of photon distribution amplitudes, as are given
below (see [21]):

q1 q1
q1

q2
q2 q2

q1 q1 q1 q1

q2 q2

Q QQ

Q Q QQ Q

QQQQ

q2 q2 q2 q2 q2 q2

q2q2
q2

q2 q2

q2
q2

(a)

(b)

(c)

q1

q1 q1

FIG. 1. Diagrams (a), (b), and (c) correspond to the perturbative, “mixed,” and nonperturbative contributions, respectively.

MAGNETIC MOMENTS OF HEAVY JP ¼ 1
2
þ … PHYSICAL REVIEW D 91, 116008 (2015)

116008-3



hγðqÞjq̄ðxÞσμνqð0Þj0i ¼ −ieqq̄qðεμqν − ενqμÞ
Z

1

0

dueiūqx
�
χφγðuÞ þ

x2

16
AðuÞ

�

−
i

2ðqxÞ eqhq̄qi
�
xν

�
εμ − qμ

εx
qx

�
− xμ

�
εν − qν

εx
qx

��Z
1

0

dueiūqxhγðuÞ;

hγðqÞjq̄ðxÞγμqð0Þj0i ¼ eqf3γ

�
εμ − qμ

εx
qx

�Z
1

0

dueiūqxψvðuÞ;

hγðqÞjq̄ðxÞγμγ5qð0Þj0i ¼ −
1

4
eqf3γϵμναβενqαxβ

Z
1

0

dueiūqxψaðuÞ;

hγðqÞjq̄ðxÞgsGμνðvxÞqð0Þj0i ¼ −ieqhq̄qiðεμqν − ενqμÞ
Z

Dαieiðαq̄þvαgÞqxSðαiÞ;

hγðqÞjq̄ðxÞgs ~Gμνiγ5ðvxÞqð0Þj0i ¼ −ieqhq̄qiðεμqν − ενqμÞ
Z

Dαieiðαq̄þvαgÞqx ~SðαiÞ;

hγðqÞjq̄ðxÞgs ~GμνðvxÞγαγ5qð0Þj0i ¼ eqf3γqαðεμqν − ενqμÞ
Z

Dαieiðαq̄þvαgÞqxAðαiÞ;

hγðqÞjq̄ðxÞgsGμνðvxÞiγαqð0Þj0i ¼ eqf3γqαðεμqν − ενqμÞ
Z

Dαieiðαq̄þvαgÞqxVðαiÞ;

hγðqÞjq̄ðxÞσαβgsGμνðvxÞqð0Þj0i ¼ eqhq̄qi
���

εμ − qμ
εx
qx

��
gαν −

1

qx
ðqαxν þ qνxαÞ

�
qβ

−
�
εμ − qμ

εx
qx

��
gβν −

1

qx
ðqβxν þ qνxβÞ

�
qα

−
�
εν − qν

εx
qx

��
gαμ −

1

qx
ðqαxμ þ qμxαÞ

�
qβ

þ
�
εν − qν

εx
q:x

��
gβμ −

1

qx
ðqβxμ þ qμxβÞ

�
qα

� Z
Dαieiðαq̄þvαgÞqxT 1ðαiÞ

þ
��

εα − qα
εx
qx

��
gμβ −

1

qx
ðqμxβ þ qβxμÞ

�
qν

−
�
εα − qα

εx
qx

��
gνβ −

1

qx
ðqνxβ þ qβxνÞ

�
qμ

−
�
εβ − qβ

εx
qx

��
gμα −

1

qx
ðqμxα þ qαxμÞ

�
qν

þ
�
εβ − qβ

εx
qx

��
gνα −

1

qx
ðqνxα þ qαxνÞ

�
qμ

� Z
Dαieiðαq̄þvαgÞqxT 2ðαiÞ

þ 1

qx
ðqμxν − qνxμÞðεαqβ − εβqαÞ

Z
Dαieiðαq̄þvαgÞqxT 3ðαiÞ

þ 1

qx
ðqαxβ − qβxαÞðεμqν − ενqμÞ

Z
Dαieiðαq̄þvαgÞqxT 4ðαiÞ

�
: ð14Þ

In the definitions given above, χ is the magnetic suscep-
tibility of the quarks, φγðuÞ is the leading twist-2, ψvðuÞ,
ψaðuÞ, A and V are the twist-3, and hγðuÞ, A, T i

(i ¼ 1; 2; 3; 4) are the twist-4 photon DAs, respectively,
whose explicit expressions are given in the Appendix. The
measure Dαi is defined as

Z
Dαi ¼

Z
1

0

dαq̄

Z
1

0

dαq

Z
1

0

dαgδð1−αq̄−αq−αgÞ: ð15Þ

In constructing the sum rules for the magnetic moments
of heavy sextet baryons it is necessary to equate the
coefficients of the structure pεq from the phenomenologi-
cal and theoretical representations of the correlation func-
tion. The following steps in obtaining the final form of
the sum rules for the magnetic moment are: Fourier
transformation, Borel transformation over the variables p2

and ðpþ qÞ2 variables, and continuum subtraction in
order to suppress the contribution of the higher states
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and continuum. After these procedures we get the sum rules
for the magnetic moment of the sextet heavy baryons,
which can schematically be written in the following form:

λ2BQi
μBQi

e
m2

BQi
=M2

¼ ΠB;theor; ð16Þ

where the function ΠB;theor contain perturbative and non-
perturbative contributions.
The expression for ΠB;theor is quite lengthy, and for this

reason we do not present it here.
In order to determine the magnetic moments of heavy

sextet baryons, the value of the overlap amplitude is
needed, which can be found from the analysis of the
two-point correlation function. The residues of the heavy
sextet baryons are calculated in [22], and their expressions
can be found in this paper.

III. RESULTS AND DISCUSSION

Having obtained the sum rules for the magnetic moments
of the heavy sextet spin-1=2 baryons, we are now ready to
perform the numerical analysis. The main input parameters
of the light cone QCD sum rules for the magnetic moments
are the photon distribution functions DAs [21]. Their
explicit expressions are presented in the Appendix.
The values of the other input parameters are: hūuiμ¼1GeV¼
hd̄diμ¼1GeV¼−ð0.243Þ3GeV3, hs̄siμ¼1GeV¼0.8hūuiμ¼1GeV

[23], m2
0 ¼ ð0.8� 0.2Þ GeV2 [22], Λ ¼ ð0.5� 0.1Þ GeV

[24] f3γ ¼ −0.0039 GeV2 [21], msðμ¼2 GeVÞ ¼
ð111� 6Þ MeV [25].
A few words about the magnetic susceptibility involved

in the numerical analysis are in order. Its value is estimated
to have the value χð1 GeVÞ ¼ −4.4 GeV−2 in [26]. In [21],
using the vector dominance model ansatz and QCD
sum rules its value is predicted to be χð1 GeVÞ ¼
−ð3.15� 0.15Þ GeV−2. Furthermore, from an analysis of
the radiative decays of heavy mesons its value is found to
be χð1 GeVÞ ¼ −ð2.85� 0.50Þ GeV−2 [27]. In numerical
analysis we have used all these predicted values of the
magnetic susceptibility.
It should also be remembered that the sum rules for the

magnetic moments involve the following auxiliary param-
eters: the arbitrary parameter t appearing in the expressions
of the interpolating currents, Borel mass parameterM2, and
the continuum threshold s0. The magnetic moment must be
independent of these parameters. In order to find “regions”
of these parameters where magnetic moment exhibits good
stability with respect to their variations we proceed as
follows. First, we try to find the upper and lower bounds of
Borel mass parameter at fixed values of s0 and t. The upper
bound of M2 can be determined by requiring that the
contribution due to the continuum threshold should be less
than half of the contribution coming from the perturbative
part. The lower bound of M2 can be found by demanding

that the higher powers of 1=M2 contribute less than the
leading twist contributions. Our numerical analysis shows
that these two conditions are satisfied simultaneously ifM2

ranges in the following regions:

2.0 GeV2 ≤ M2 ≤ 3.0 GeV2 Σc

2.2 GeV2 ≤ M2 ≤ 3.4 GeV2 Ξ0
c

2.5 GeV2 ≤ M2 ≤ 4.0 GeV2 Ωc

5.0 GeV2 ≤ M2 ≤ 6.0 GeV2 Σb

5.0 GeV2 ≤ M2 ≤ 6.4 GeV2 Ξ0
b

5.2 GeV2 ≤ M2 ≤ 7.0 GeV2 Ωb: ð17Þ

In regard to the continuum threshold s0 appearing in the
sum rules, it is known that the values of this arbitrary
parameter are related to the energy of first excited state. The
difference

ffiffiffiffiffi
s0

p −mground, where mground is the ground state
mass of the baryon, is the energy needed to excite the
particle to its first energy state. This quantity usually varies
between 0.3 and 0.8 GeV. Analysis of the mass sum rules
shows that, in order to reproduce the experimental mass of
the sextet baryons the continuum threshold should vary in
the following domain:

ffiffiffiffiffi
s0

p ¼

8>>>>>>>><
>>>>>>>>:

ð3.1� 0.1Þ GeV Σc

ð3.2� 0.1Þ GeV Ξ0
c

ð3.3� 0.1Þ GeV Ωc

ð6.6� 0.2Þ GeV Σb

ð6.7� 0.2Þ GeV Ξ0
b

ð6.8� 0.2Þ GeV Ωb:

ð18Þ

Having determined the sum rules, input parameters, and
working regions of all auxiliary parameters, we perform
numerical analysis to calculate the magnetic moment μBQ

of
the heavy sextet spin-1=2 baryons, whose results we can
summarize as follows. As examples, in Figs. 2 and 3 we
present the dependence of μΣQ

onM2 at several fixed values
of t and at the fixed value of s0 listed above for the baryons
Σþþ
c and Σ0

b, respectively. We observe from these figures
that the magnetic moments of ΣQ show good stability with
respect to the variation of the Borel mass parameter in the
aforementioned domains. The next step in finding the
values of the magnetic moments of the baryons under
consideration is to determine the working region of the
arbitrary parameter t, where μBQ

is practically independent
of its variation. For this purpose, in Figs. 4 and 5 the
dependence of μΣQ

on cos θ, where tan θ ¼ t for the Σþþ
c

and Σ0
b baryons, at several fixed values of the Borel mass

parameter M2 and at the predetermined value of the
continuum threshold s0, are presented, respectively. It
follows from these figures that the magnetic moments of
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the heavy sextet spin-1=2 baryons seem to be practically
independent of the arbitrary parameter t in the domain
−0.9 ≤ cos θ ≤ −0.6. We also perform a similar analysis
for the Σþþ

c and Σ0
b baryons at s0 ¼ 11.0 GeV2 and

s0 ¼ 43.0 GeV2, respectively. It is observed that the results
change about 5% in both cases, which can be concluded
that the results are practically insensitive to the variation in
the values of the continuum threshold s0. Our final results
on the magnetic moments of the heavy sextet spin-1=2
baryons are presented in Table II. For comparison, in the
same Table we present the predictions of other approaches

on the magnetic moments of the relevant baryons, such as
nonrelativistic quark model [11], bag model [9], phenom-
enological relativistic quark model [12], quark model with
confinement law potential [13], relativistic quark model [4],
hypercentral model [6], chiral constituent model [14], and
QCD sum rules method [10]. The total uncertainty coming
from the quark condensates, m2

0, continuum threshold s0,
parameters entering into the photon DAs, variation of the
Borel parameter M2 is maximally around 35%. Moreover,
in order to test the convergence of the operator product
expansion terms, we perform a numerical analysis and find

FIG. 3. The same as Fig. 1, but for the Σ0
b baryon, at s0 ¼ 41.0 GeV2.

FIG. 2. The dependence of the magnetic moment of the Σþþ
c baryon on M2, at several fixed values of t, and at s0 ¼ 9.0 GeV2.
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out that the perturbative term (after subtraction of the
continuum contribution) constitutes approximately 75%
and 73% of the total result for the Σþþ

c (at s0¼11GeV2,
M2 ¼ 3 GeV2) and Σ0

b (at s0 ¼ 43 GeV2, M2 ¼ 6 GeV2),
respectively. In other words we observe very good con-
vergence of the operator product expansion terms.
We observe from this Table that almost all approaches

give, more or less, similar predictions, except the results of
[9] and [4] (especially for the charmed baryons), which are
smaller.
Using our results one can easily deduce the following

relations among the magnetic moments of heavy
baryons:

μΣþþ
c

þ μΣ0
c
≃ 2μΣþ

c
;

μΣþþ
c

þ μΩ0
c
≃ 2μΞ0þ

c
;

μΣþþ
c

þ 2μΞ00
c
≃ μΣ0

c
þ 2μΞ0þ

c
;

μΣþ
b
þ μΣ−

b
≃ 2μΣ0

b
;

μΣþ
b
þ μΩ−

b
≃ 2μΞ00

b
;

μΣþ
b
þ 2μΞ0−

b
≃ μΣ−

b
þ 2μΞ00

b
:

The direct measurement of the magnetic moments of
heavy baryons is unlikely in the near future. Therefore, any
indirect estimations of the magnetic moments of the heavy

M2 = 3.0 GeV 2
M2 = 2.6 GeV 2
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g M
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FIG. 4. The dependence of the magnetic moment of the Σþþ
c baryon on cos θ, at several fixed values of M2, and at s0 ¼ 9.0 GeV2.

FIG. 5. The same as Fig. 3, but for the Σ0
b baryon, at s0 ¼ 41.0 GeV2.
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baryons could be very useful. For example, it could help
extracting information about the mass spectrum of the
heavy baryons. As is well known, experimentally measured
mass difference is attributed to the hyperfine splitting.
Moreover, the magnetic moments of quarks are propor-
tional to the chromomagnetic moments, which determine
the hyperfine splitting in the baryon spectrum. Following
this reasoning, the magnetic moments of the Λc and Λb
baryons are estimated in [28]. Hence, this approach could
be an essential tool in estimating the magnetic moments of
the heavy baryons.

In conclusion, the magnetic moments of the heavy sextet
JP ¼ 1

2
þ baryons are calculated in the framework of the

light cone QCD sum rules method. Empirically, linearly
independent relations among the magnetic moments of the
sextet baryons are obtained. Comparison of our results with
the predictions of other approaches is presented.

APPENDIX: PHOTON DISTRIBUTION
AMPLITUDES

Explicit forms of the photon DAs [21]:

φγðuÞ ¼ 6uū½1þ φ2ðμÞC
3
2

2ðu− ūÞ�;

ψvðuÞ ¼ 3½3ð2u− 1Þ2 − 1� þ 3

64
ð15wV

γ − 5wA
γ Þ½3− 30ð2u− 1Þ2 þ 35ð2u− 1Þ4�;

ψaðuÞ ¼ ½1− ð2u− 1Þ2�½5ð2u− 1Þ2 − 1�5
2

�
1þ 9

16
wV
γ −

3

16
wA
γ

�
;

AðαiÞ ¼ 360αqαq̄α
2
g

�
1þ wA

γ
1

2
ð7αg − 3Þ

�
;

VðαiÞ ¼ 540wV
γ ðαq − αq̄Þαqαq̄α2g;

hγðuÞ ¼ −10ð1þ 2κþÞC1
2

2ðu− ūÞ;
AðuÞ ¼ 40u2ū2ð3κ − κþ þ 1Þ þ 8ðζþ2 − 3ζ2Þ½uūð2þ 13uūÞ þ 2u3ð10− 15uþ 6u2Þ lnðuÞ þ 2ū3ð10− 15ūþ 6ū2Þ lnðūÞ�;

T 1ðαiÞ ¼ −120ð3ζ2 þ ζþ2 Þðαq̄ − αqÞαq̄αqαg;
T 2ðαiÞ ¼ 30α2gðαq̄ − αqÞ½ðκ − κþÞ þ ðζ1 − ζþ1 Þð1− 2αgÞ þ ζ2ð3− 4αgÞ�;
T 3ðαiÞ ¼ −120ð3ζ2 − ζþ2 Þðαq̄ − αqÞαq̄αqαg;
T 4ðαiÞ ¼ 30α2gðαq̄ − αqÞ½ðκ þ κþÞ þ ðζ1 þ ζþ1 Þð1− 2αgÞ þ ζ2ð3− 4αgÞ�;
SðαiÞ ¼ 30α2gfðκþ κþÞð1− αgÞ þ ðζ1 þ ζþ1 Þð1− αgÞð1− 2αgÞ þ ζ2½3ðαq̄ − αqÞ2 − αgð1− αgÞ�g;
~SðαiÞ ¼ −30α2gfðκ − κþÞð1− αgÞ þ ðζ1 − ζþ1 Þð1− αgÞð1− 2αgÞ þ ζ2½3ðαq̄ − αqÞ2 − αgð1− αgÞ�g:

The parameters entering the above DA’s are borrowed from [21] whose values are φ2ð1 GeVÞ ¼ 0, wV
γ ¼ 3.8� 1.8,

wA
γ ¼ −2.1� 1.0, κ ¼ 0.2, κþ ¼ 0, ζ1 ¼ 0.4, ζ2 ¼ 0.3, ζþ1 ¼ 0, and ζþ2 ¼ 0.

TABLE II. Magnetic moments of the heavy sextet, JP ¼ 1
2
þ baryons in units of the nuclear magneton μN .

[4] [6] [9] [10] [11] [12] [13] [14] Our paper

Σ0
c −1.04 −1.015 −1.043 −1.6� 0.2 −1.37 −1.38 −1.39 −1.6 −1.5� 0.35

Σþ
c 0.36 0.5 0.318 0.6� 0.1 0.49 0.49 0.525 0.3 0.5� 0.15

Σþþ
c 1.76 2.279 1.679 2.1� 0.3 2.35 2.36 2.44 2.22 2.4� 0.5

Ξ00
c −0.95 −0.966 −0.914 � � � −1.18 −1.12 −1.12 −1.32 −1.2� 0.3

Ξ0þ
c 0.47 0.711 0.591 � � � 0.89 0.75 0.796 0.76 0.8� 0.2

Ω0
c −0.85 −0.96 −0.774 � � � −0.94 −0.86 −0.85 −0.9 −0.9� 0.2

Σ−
b −1.01 −1.047 −0.778 � � � −1.22 � � � −1.256 � � � −1.3� 0.3

Σ0
b 0.53 0.592 0.422 � � � 0.64 � � � 0.659 � � � 0.6� 0.2

Σþ
b 2.07 2.229 1.622 � � � 2.5 � � � 2.575 � � � 2.4� 0.5

Ξ0−
b −0.91 −0.902 −0.66 � � � −1.02 � � � −0.985 � � � −1.2� 0.3

Ξ00
b 0.66 0.766 0.556 � � � 0.9 � � � 0.930 � � � 0.7� 0.2

Ω−
b −0.82 −0.96 −0.545 � � � −0.79 � � � −0.714 � � � −0.8� 0.2
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