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It is the goal of the so-called “Yukawaon”model to give a unified description of masses, mixing, and CP
violation parameters of quarks and leptons without using any hierarchical (family number-dependent)
parameters besides the charged lepton masses. However, in the conventional model so far, we have
compelled ourselves to introduce a phase matrix P ¼ daigðeiϕ1 ; eiϕ2 ; eiϕ3Þ with the phase parameters
ðϕ1;ϕ2;ϕ3Þ as family number-dependent parameters other than the observed charged lepton mass values
mei. In this paper, we present a revised model in which we are successful in describing the CP violating
phase parameters ϕi in terms of mei. In the present model, by using the parameter values slightly changed
from the previous version, we predict a value δlCP ≃−76° for the CP violating phase δlCP in the standard
expression of the lepton mixing matrix UPMNS, and δqCP ≃ 72° for that of the quark mixing matrix.
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I. INTRODUCTION

A. What is the Yukawaon model?

One of the big subjects in particle physics is the inves-
tigationof the originof flavors. There is an attractive idea that
the flavor physics is understood from the point of view of a
family symmetry [1]. However, the symmetry has to be
explicitly broken by the Yukawa coupling constants Yf
(f ¼ ν; e; u; d) if we suppose the family symmetry to be a
continuous symmetry. Therefore, the symmetry has been
usually considered as a discrete symmetry. If we adhere to
the basic idea that the flavor symmetry should be a
continuous symmetry which is unbroken at the start, we
are forced to consider that theYukawacoupling constants are
effective coupling constants Yeff

f which are given by vacuum
expectation values (VEVs) of scalars (“Yukawaons”) Yf
with 3 × 3 components [2]:

ðYeff
f Þij ¼

yf
Λ
hYfiij ðf ¼ u; d; ν; eÞ; ð1:1Þ

where Λ is an energy scale of the effective theory. In the
Yukawaon model, all the flavons [3] are expressed by 3 × 3
components of U(3).We consider no substructures of it such
as 2 × 2 and so on. Here, the Yukawaons are defined in the
following would-be Yukawa interactions that are invariant
under U(3) family symmetry:

HY ¼ yν
Λ
ðl̄LÞiðŶνÞijðνRÞjHu

þ ye
Λ
ðl̄LÞiðŶeÞijðeRÞjHd þ yRðν̄RÞiðYRÞijðνcRÞj

þ yu
Λ
ðq̄LÞiðŶuÞijðuRÞjHu þ

yd
Λ
ðq̄LÞiðŶdÞijðdRÞjHd;

ð1:2Þ

where lL ¼ ðνL; eLÞ and qL ¼ ðuL; dLÞ are SUð2ÞL dou-
blets. Hu and Hd are two Higgs doublets. The third term in
Eq. (1.2) leads to the so-called neutrino seesaw mass matrix
[4]Mν ¼ hŶT

ν ihYRi−1hŶνi, where hŶνi and hYRi correspond
to the Dirac and Majorana mass matrices of neutrinos,
respectively. Hereafter, for convenience, we use notation Â,
A, and Ā for fieldswith 8þ 1, 6, and 6� ofU(3), respectively.
VEV relations among Yukawaons have been obtained by

supersymmetric vacuum conditions from the superpoten-
tials that are invariant under R-charge conservation and
family symmetries such as Uð3Þ × Uð3Þ0, which are broken
at μ ¼ Λ and μ ¼ Λ0. (We assume Λ ≪ Λ0.) We have
noticed that the observed hierarchical structures of masses
and mixings in the quarks and leptons can be generated by
one common origin in the Yukawaon model because
relations among Yukawaon VEVs (i.e., effective Yukawa
coupling constants) are directly given by forms of multi-
plication (not by forms of the sum). Therefore, in order to
check this idea, it is important to check whether the
observed hierarchical structures of masses and mixings
in the quarks and leptons can be expressed only in terms of
the observed charged lepton masses without using any
family number-dependent parameters, in other words, only
by using the charged lepton masses and family number-
independent parameters. Here, the family number-indepen-
dent parameters mean, for example, coefficients of the
following matrices:

1 ¼
 
1 0 0

0 1 0

0 0 1

!
; X3 ¼

1

3

 
1 1 1

1 1 1

1 1 1

!
: ð1:3Þ

In this paper, we propose a model in which the hierarchy
of the observed structures of masses and mixings in the
quarks and leptons comes from the common origin, i.e.,
that of the charged lepton masses ðme;mμ; mτÞ, although
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we do not ask for the origin of the hierarchical structure of
the observed charged lepton masses. The details of the
other fundamental assumptions used in the Yukawaon
model will be summarized in the Appendix A.

B. What is new?

In the present model, the VEV relations among flavons
are essentially the same as those in the previous paper [5].
The VEV structures of the Yukawaons are universally given
by a bilinear form [5]

hŶfiij¼kfhΦfiiαhΦ̄fiαjþξf1ij ðf¼u;d;ν;eÞ; ð1:4Þ

where i and α are indices of U(3) and Uð3Þ0, respectively.
The VEV structures of Φf and Φ̄f are also given a bilinear
form of a fundamental VEV hΦ0i (and hΦ̄0i) of the
fundamental Yukawaon Φ0 (and Φ̄0), which is ð3; 3Þ
[and ð3�; 3�Þ] of Uð3Þ × Uð3Þ0,

hP̄fiikhΦfiklhP̄filj ¼ k0fhΦ̄0iiαhSfiαβhΦ̄0iβj;
hPfiikhΦ̄fiklhPfilj ¼ k0fhΦ0iiαhS̄fiαβhΦ0iβj;

ðf ¼ u; d; ν; eÞ;
ð1:5Þ

where

hΦ̄0iiα ¼ hΦ0iiα ¼ v0diagðx1; x2; x3Þiα
ðx21 þ x22 þ x23 ¼ 1Þ:

ð1:6Þ

The VEV structures of Pf and P̄f in Eq. (1.5) will be
discussed in the next section. In the VEV relations (1.5), the
flavons Sf belong to ð1; 6Þ of Uð3Þ × Uð3Þ0. The VEV
structures of them are given by the form1

hSfiαβ ¼ vSfð1αβ þ afðX3ÞαβÞ: ð1:7Þ

We consider that the form (1.7) is due to a symmetry
breaking Uð3Þ0 → S3 at μ ¼ Λ0. Neutrino mass matrix Mν

is given by a seesaw form [4]

ðMνÞij ¼ hYT
ν iikðhYRi−1ÞklhYνilj; ð1:8Þ

where the VEV relation of YR is given by2

hYRiij ¼ kRðhŶeiikhΦuikj þ hΦuiikhŶT
e ikjÞ: ð1:9Þ

Since we discuss mass ratios and mixing only, we are
interested only in the relative ratios among flavon VEVs.
Therefore, hereafter, we will drop family-common coef-
ficients kf, k0f, kR, v0, vSf, and so on for simplicity.

The VEV relations (1.4)–(1.9) are almost the same as
those in the previous paper [5]. Nevertheless, the present
Yukawaon model has the following new characteristic
features:

(i) We put a new selection rule for VEV structures hPfi.
As we will discuss in Sec. II A, we take the
following forms:

hPfi¼ vPP≡vPdiagðeiϕ1 ;eiϕ2 ;eiϕ3Þ for Pu and Pe;

hPfi¼ vEE≡vEdiagð1;1;1Þ for Pd andPν:

ð1:10Þ
(ii) As a result of (i), the fitting of CP violating

parameters is considerably changed from the pre-
vious analysis [5], especially in the neutrino sector.
Note that the phase matrix Pu (¼ P) affects not only
the Cabibbo-Kobayashi-Maskawa (CKM) [8] quark
mixing matrix VCKM but also the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) [9] lepton mixing matrix
UPMNS through the VEV relation (1.8). As a result,
as we will see in Sec. III, the CP violating phase
parameters δqCP and δ

l
CP in the standard expression of

VCKM and UPMNS become not independent, and we
obtain δlCP ≃−δqCP ≃−70° unlike the previous
papers.

(iii) So far [5,10,11], we have inevitably needed to
introduce a VEV matrix P defined by Eq. (1.10)
in order to fit CKMmixing matrix VCKM reasonably.
On the other hand, it is our aim of the present paper
to describe all the masses and mixing of the quarks
and leptons in terms of family number-independent
parameters and the charged lepton masses. There-
fore, the introduction of the phase parameters ϕi is
against our aim and unwelcome as they are. Thus, in
the present paper, we try to denote the family
number-dependent parameters ϕi in terms of the
observed charged lepton massesmei. The details will
be discussed in Sec. IV.

In Sec. II, we construct a mass matrix model base on a
Yukawaon model in which the phase matrix P appears in
the up-quark sector. In Sec. III, parameter fittings are
discussed. In Sec. IV, we will propose a new relation
between P andmei. Finally, Sec. V is devoted to concluding
remarks.

II. MODEL

The formulation of model building is almost the same as
that in the previous paper [5]. Therefore, let us discuss only
items that are different from the previous model.

A. VEV structures of Pf

Prior to discussing VEV forms hPfi and hP̄fi given in
Eqs. (1.5) and (1.10), let us consider the following super-
potential consisting of P and E:

1The form (1.6) was suggested by a “democratic universal
seesaw”mass matrix model [6], in which quark mass matrices are
given by a form hΦeið1þ afX3ÞhΦei.2This relation was first found from the phenomenological
investigation in Ref. [7].
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WP ¼ λ1
Λ
Tr½PP̄EĒ� þ λ2

Λ
Tr½PP̄�Tr½EĒ�: ð2:1Þ

Here, in order to distinguish P from E, we assign R charges
of P and E as

RðPÞ ¼ RðP̄Þ ¼ 1

2
ð1 − ΔÞ;

RðEÞ ¼ RðĒÞ ¼ 1

2
ð1þ ΔÞ;

ð2:2Þ

so that RðPÞ þ RðP̄Þ þ RðEÞ þ RðĒÞ ¼ 2. The supersym-
metric vacuum conditions lead to

hPihP̄i ¼ 1; hEihĒi ¼ 1: ð2:3Þ

We define specific solutions of (2.3) as

hPi ¼ diagðeiϕ1 ; eiϕ2 ; eiϕ3Þ; hEi ¼ diagð1; 1; 1Þ:
ð2:4Þ

We consider that each hPfi given in Eq. (1.5) is given by
either hPi or hEi in Eq. (2.3) under theD-term condition as
discussed in (2.5) below.
In general, VEV matrix hĀi is related to VEV matrix hAi

under the D term condition as

hĀi ¼ hAi�; or hĀi ¼ hAi: ð2:5Þ
For the VEVmatrix hSfi, hS̄fi, hPi, and hP̄i in Eq. (1.5), let
us take

hSfi ¼ hS̄fi ¼ 1þ afeiαfX3; ð2:6Þ

while

hP̄i ¼ hPi� ¼ diagðe−iϕ1 ; e−iϕ2 ; e−iϕ3Þ; ð2:7Þ

in addition to the choice (1.6). Here parameters xi, ϕi, af,
and αf are real. Then, from the relation (1.5), we obtain

hPfi�hΦfihPfi� ¼ hPfihΦ̄fihPfi ¼ hΦ0ihSfihΦ0i:
ð2:8Þ

If we take hΦ̄fi ¼ hΦfi�, Eq. (2.8) leads to

hPfi�hΦfihPfi� ¼ hPfihΦ̄fihPfi ¼ ðhPfi�hΦfihPfi�Þ�;
ð2:9Þ

so that hΦ0ihSfihΦ0i has to be real. In other words, the
parameter αf in Eq. (2.6) has to be zero. On the other hand,
if we take hΦ̄fi ¼ hΦfi, Eq. (2.8) leads to

hPfi�hΦfihPfi� ¼ hPfihΦ̄fihPfi ¼ hPfi�hΦfihPfi�;
ð2:10Þ

so that hP̄fi ¼ hPfi; i.e., the parameters ϕi in Eq. (2.7)
have to be zero.
In conclusion, a case in which αf ≠ 0 and ϕi ≠ 0 are

simultaneously satisfied is ruled out. Only the following
two cases are allowed: either a case that αf ¼ 0 and ϕi ≠ 0
(Pf ¼ P) or a case that αf ≠ 0 and ϕi ¼ 0 (Pf ¼ E),
although this is nothing but a result due to our postulations
(2.6) and (2.7).
It should be noted that whether αf ≠ 0 or αf ¼ 0 (i.e.,

whether Pf is E or P) is determined from the phenom-
enological point of view as we discuss below: The
parameters αf affect not only CP violation but also mass
ratios. In the up-quark sector, as we will discuss in Sec. III
we can fit up-quark mass ratios mu=mc and mc=mt by
taking two parameters au and ξu (keeping αu ¼ 0).
Therefore, we regard the up-quark sector as the case of
αf ¼ 0, so that we regard hPfi as hPfi ¼ hPi. Also, since
we have taken ae ¼ 0 as wewill discuss in the Appendix A,
we have to regard hPei as hPei ¼ hPi. Note that hPi and
hŶei are diagonal, so that they are commutable to each
other. Therefore, hPei does not play any essential physical
role in the parameter fitting of the masses and mixing of
quarks. Hereafter, we denote hPei as hEi from the practical
point of view, except for a case of counting the R charge.
On the other hand, in the down-quark sector, we cannot fit
down-quark mass ratios md=ms and ms=mb without the
help of αd ≠ 0. Therefore, we regard the down-quark sector
as a case of hPfi ¼ hEi. Thus, we have the selection rule,
hPfi ¼ hPi or hPfi ¼ hEi, as a phenomenological one. For
the neutrino sector, we have no phenomenological infor-
mation. For simplicity, we take a fewer parameter scheme
(αν ≠ 0 rather than ϕν

i ≠ 0). Hereafter, we will use the
notation Pf as

Pf ¼ P for f ¼ u; e; Pf ¼ E for f ¼ d; ν: ð2:11Þ

Sometimes, for convenience, we use notations Pu, Pe, and
so on, although we identify Pu and Pe as one flavon P, and
also Pd and Pν as one flavon E.
The phase matrix hPi does not affect mass ratios. The

phase parameters in hPui ¼ hPi affect the CP violating
phase δqCP in the CKM mixing matrix VCKM and the CP
violating phase δlCP in the PMNS mixing matrix UPMNS,
because the phase in Pu can affect YR through Φu as shown
in Eq. (1.9).

B. R-charge assignments

To distinguish each Yukawaon from the others, we
assume that Ŷf have different R charges from each other
by considering R-charge conservation [a global U(1)
symmetry in N ¼ 1 supersymmetry]. Of course, the
R-charge conservation is broken at an energy scale Λ, at
which the U(3) family symmetry is broken. For R parity
assignments, we inherit those in the standard supersym-
metry model; i.e., R parities of Yukawaons Ŷf (and all
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flavons) are the same as those of Higgs particles [i.e.,
PRðfermionÞ ¼ −1 and PRðscalarÞ ¼ þ1], while quarks
and leptons are assigned to PRðfermionÞ ¼ þ1
and PRðscalarÞ ¼ −1.
In the Yukawaon model, the R-charge assignment is

essential from the phenomenological point of view: If we
give unsuitable R charges, we will meet unwelcome
combinations among flavons and numerous terms with
an unwelcome higher dimension in the superpotential.
Therefore, even if it is a minor change of the R-charge
assignment, it will give a considerable change of the
phenomenological results. In the present Yukawaon model,
the number of flavons is larger than that of VEV relations.
Therefore, in general, we cannot uniquely determine R
charges of flavons. Since we demand to assign R charges
as simple as possible, we put the following rules for
simplicity:

(i) We assign the same R charge to flavons A and Ā,

RðAÞ ¼ RðĀÞ; ð2:12Þ
independently whether hĀi ¼ hAi� or hĀi ¼ hAi.
Then, we obtain R-charge relations

RðŶfÞ ¼ 2RðΦfÞ≡ 2rf ðf ¼ u; d; ν; eÞ; ð2:13Þ
and

RðΦfÞ ¼ RðΦ̄fÞ ¼ RðSfÞ þ 2RðΦ0Þ − 2RðPfÞ
ðf ¼ u; d; ν; eÞ; ð2:14Þ

from Eqs. (1.4) and (1.5), and

RðPuÞ ¼ RðPeÞ ¼ RðPÞ≡ 1

2
ð1þ ΔÞ;

RðPdÞ ¼ RðPνÞ ¼ RðEÞ≡ 1

2
ð1 − ΔÞ; ð2:15Þ

from Eqs. (2.2) and (2.11). Therefore, from
Eq. (2.14), we obtain the following relations:

RðΦeÞ−RðSeÞ¼RðΦuÞ−RðSuÞ¼2RðΦ0Þ−ð1þΔÞ;
RðΦνÞ−RðSνÞ¼RðΦdÞ−RðSdÞ¼2RðΦ0Þ−ð1−ΔÞ:

ð2:16Þ
(ii) We can regard that R charges of Ŷf are determined

only by those of the SUð2ÞL singlet fermions fc.
Therefore, we simply assign

RðlHuÞ¼RðlHdÞ¼RðqHuÞ¼RðqHdÞ≡rHþ2.

ð2:17Þ

Since those have different quantum numbers of
Uð1ÞY , we can distinguish those from each other
in spite of the relation (2.17). Then, we obtain a
simple R-charge relation

RðŶfÞ þ RðfcÞ ¼ −rH: ð2:18Þ

For YR, we obtain

RðYRÞ ¼ 2 − 2RðνcÞ ¼ 2rH þ 2þ 2RðŶνÞ; ð2:19Þ

from Eq. (2.18). On the other hand, from Eq. (1.9), RðYRÞ
must be the satisfied relation

RðYRÞ ¼ RðΦuÞ þ 2RðΦeÞ: ð2:20Þ

From Eqs. (2.19) and (2.20), we have the following
constraint:

2RðΦeÞ − 4RðΦνÞ þ RðΦuÞ ¼ 2rH þ 2: ð2:21Þ

Even under these constraints, we cannot still completely
fix the R charges of whole flavons. In the present model,
R-charge assignments are not so essential, so that it is
enough to assign R charges to distinguish flavons with the
same U(3) from each other. That is, we are satisfied
with any R-charge numbers that satisfy the relations
(2.13)–(2.21). Nevertheless, it is desirable to have explicit
R-charge assignments as simple as possible. Therefore, let
us go on our search for explicit R-charge assignments.
First, for simplicity, we put

RðΦ0Þ ¼
1

2
: ð2:22Þ

Then. Eq. (2.16) becomes the simpler relations

RðSfÞ ¼ RðΦfÞ þ Δ ðf ¼ e; uÞ;
RðSfÞ ¼ RðΦfÞ − Δ ðf ¼ ν; dÞ: ð2:23Þ

Now, let us discuss possible R-charge assignments
for Yukawaons Ŷf under the conditions discussed above.
If we have RðŶfÞ ¼ 0, then we can attach the field Ŷf
on any term in superpotential. Therefore, we require
RðŶfÞ ≠ 0 for any f ¼ e; ν; d; u. Also, we have to require
RðŶfŶf0 Þ ≠ 0 for any combination of f and f0. As a
result, we have to consider that whole R values of Ŷf are
positive. Furthermore, we speculate that the values of R
will be described by simple integers. Of course, the R
charges have to satisfy the relation (2.21). Therefore, we
assign simpler R charges to the Yukawaons Ŷf on trial as
follows:

ðRðŶeÞ; RðŶuÞ; RðŶνÞ; RðŶdÞÞ ¼ ð1; 2; 3; 4Þ; ð2:24Þ

that is,
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ðRðΦeÞ; RðΦuÞ; RðΦνÞ; RðΦdÞÞ ¼
�
1

2
; 1;

3

2
; 2

�
: ð2:25Þ

This assignment satisfies the condition (2.20) for RðYRÞ
with rH ¼ −3.
In Table I, as a summary of Sec. II, we present the

assignments of SUð2ÞL × SUð3Þc × Uð3Þ × Uð3Þ0 and the
R charges of the fields in the present model.

III. PARAMETER FITTING

A. How many parameters?

We have already given the form of the effective
Yukawa coupling constants hYfi (f ¼ e; ν; d; u) in
Eqs. (1.4)–(1.10). For the convenience of phenomeno-
logical parameter fitting, let us summarize again such
VEV relations. In this subsection, for convenience, the
notations “h” and “i” are dropped. The notations that
distinguish transformation property, A, Ā, and Â are
also dropped. When hĀi ¼ hAi�, we denote hĀi as A�.
Under such simplified expressions, the VEV relations
(1.4)–(1.10) are given as follows;

Ye ¼ ΦeΦ�
e;

Φe ¼ P�Φ0Φ0P�;

Φ�
e ¼ PΦ0Φ0P;

Φ0 ¼ diagðx1; x2; x3Þ; ð3:1Þ

Yν ¼ ΦνΦν þ ξνeiβν1;

Φν ¼ EΦ0ð1þ aνeiανX3ÞΦ0E;

βν ¼ ArgðTr½ΦνΦν�Þ; ð3:2Þ

Yu ¼ ΦuΦ�
u þ ξueiβu1;

Φu ¼ P�Φ0ð1þ auX3ÞΦ0P�;

Φ�
u ¼ PΦ0ð1þ auX3ÞΦ0P;

βu ¼ ArgðTr½ΦuΦ�
u�Þ; ð3:3Þ

Yd ¼ ΦdΦd þ ξdeiβd1;

Φd ¼ EΦ0ð1þ adeiαdX3ÞΦ0E;

βd ¼ ArgðTr½ΦdΦd�Þ; ð3:4Þ

Mν ¼ YνY−1
R Yν;

YR ¼ YeΦu þ ΦuYe: ð3:5Þ

Since we are interested only in the mass ratios
and mixings, we use dimensionless expressions
Φ0 ¼ diagðx1; x2; x3Þ (with x21 þ x22 þ x23 ¼ 1), P ¼
diagðeiϕ1 ; eiϕ2 ; 1Þ, and E ¼ 1 ¼ diagð1; 1; 1Þ. Therefore,
the parameters ae, aν, au, ad, ξν, ξu, and ξd are redefined
by Eqs. (3.1)–(3.5). Note that the parameters ξf given in
Eq. (1.4) are, in general, not real. Therefore, in the
present subsection, we denote the complex parameter ξf
as ξfeiβf . The phase parameter βf is given by βf ¼
ArgðTr½ΦfΦ̄f�Þ as shown in the previous paper [5], so
that the phase parameters βf are not free parameters.

TABLE I. Assignments of SUð2ÞL × SUð3Þc × Uð3Þ × Uð3Þ0. For R charges, see Sec. II C. We assign the same R charges for flavons
A and Ā, e.g., RðAÞ ¼ RðĀÞ. For a special choice, re, rν, ru, and rd are taken as re ¼ 1=2, rν ¼ 3=2, ru ¼ 2=2, and rd ¼ 4=2.

l ¼ ðν; eÞ fc ¼ νc; ec q ¼ ðu; dÞ fc ¼ uc; dc Hu Hd

SUð2ÞL 2 1 2 1 2 2
SUð3Þc 1 1 3 3� 1 1
U(3) 3 3� 3 3� 1 1
Uð3Þ0 1 1 1 1 1 1
R 2 −ð2rf þ rHÞ 2 −ð2rf þ rHÞ rH rH

Ŷf YR Φ̄f Φf Φ̄0 Φ̄0 Se;u S̄e;u Sν;d S̄ν;d

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
8þ 1 6 6 6� 3 3� 1 1 1 1
1 1 1 1 3 3� 6 6� 6 6�
2rf rR rf 1=2 re;u − Δ rν;d þ Δ

P P̄ E Ē Θ̂f Θ̄R ΘΦf Θ̄Φf

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
6 6� 6 6� 8þ 1 6� 6 6�
1 1 1 1 1 1 1 1
1
2
ð1þ ΔÞ 1

2
ð1 − ΔÞ 2 − 2rf 2 − rR 1 − RðSfÞ
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In the phase matrix P defined by Eq. (2.7), physical
values are only differences among ðϕ1;ϕ2;ϕ3Þ, i.e.,
ϕi − ϕj, so that we can take one of ϕi (i ¼ 1; 2; 3) as zero
in the parameter fitting for VCKM. In this paper, we put
ϕ3 ¼ 0, so that free parameters are ðϕ1;ϕ2Þ. Note that hPi
and hP̄i do not affect hYei practically, because hΦ0i and
hYei are diagonal, so that hPi and hP̄i are commutable with
hΦ0i and hYei. Therefore, in the present model, we have ten
adjustable parameters, ðaν; αν; ξνÞ, ðau; ξuÞ, ðad; αd; ξdÞ,
and ðϕ1;ϕ2Þ for the 16 observable quantities, except for
the parameters ðx1; x2; x3Þ that are determined from the
charged lepton masses as shown in the Appendix A.

B. Quark mass ratios

The ways of the parameter fitting and input values are
essentially the same as those in the previous paper [5].
Therefore, we give only the results of parameter values,

ðau; ξuÞ ¼ ð−1.4715;−0.001521Þ; ð3:6Þ

from the observed values mu=mc and mc=mt at μ ¼ MZ
[12], and

−ðad;αd; ξdÞ ¼ ð−1.4733; 15.694°;þ0.004015Þ; ð3:7Þ

from the observed values md=ms and ms=mb at μ ¼ MZ
[12] (and also [13]). Those values are slightly changed
because of the minor change of the model. The details of
input values and predicted values are summarized in
Table II.

C. CKM mixing

Parameter fitting for the observed CKM matrix param-
eters is also substantially the same as in the previous paper
[5]. In Fig. 1, with taking ξu ¼ −0.001521, au ¼ −1.4715,
ad ¼ −1.47312, αd ¼ 15.7°, and ξd ¼ 0.004091, we draw
allowed regions in the (ϕ1, ϕ2) parameter plane, which are
obtained from the observed values [14] of the CKMmixing
matrix elements and the observed value [15] of the CP
violating phase parameter δqCP in the standard expression of
VCKM. These input values and fitting results are also given
in Table II.

As shown in Fig. 1, all the experimental constraints on
CKM parameters are satisfied by fine-tuning the parameters
ϕ1 and ϕ2 as

ðϕ1;ϕ2Þ ¼ ð−41.815°;−15.128°Þ; ð3:8Þ

which leads to the predicted values for the CKM mixing
matrix elements and the CP violating phase parameter δqCP
as shown in Table II.

D. PMNS mixing

Now let us present the result for the neutrino sector.
Substantial differences between the present and previous
papers appear in the parameter fitting of the PMNS lepton
mixing.
We have already fixed the four parameters au, ξu, ϕ1, and

ϕ2 as Eqs. (3.6)–(3.8). The remaining free parameters in the

TABLE II. Predicted values vs observed values.

jVusj jVcbj jVubj jVtdj δqCP ru12 ru23 rd12 rd23
Pred 0.2261 0.0426 0.00360 0.00920 72.4° 0.0458 0.0600 0.0611 0.0312
Obs 0.22536 0.0414 0.00355 0.00886 69.4° 0.045 0.060 0.053 0.019

�0.00061 �0.0012 �0.00015 þ0.00033
−0.00032 �3.4° −0.010

þ0.013 �0.005 −0.003
þ0.005

−0.006
þ0.006

sin2 2θ12 sin2 2θ23 sin2 2θ13 Rν½10−2� δlCP mν1 [eV] mν2 [eV] mν3 [eV] hmi [eV]
Pred 0.857 0.993 0.0964 3.16 −76.0° 0.00046 0.00879 0.0502 0.00377
Obs 0.846 0.999 0.093 3.09 � � � � � � � � � � � � < Oð10−1Þ

�0.021 −0.018
þ0.001 �0.008 �0.15

FIG. 1 (color online). Allowed region in the (ϕ1, ϕ2) parameter
plane obtained by the observed values of the CKMmixing matrix
elements jVusj, jVcbj, jVubj, and jVtdj. We draw allowed regions
obtained from the observed constraints of the CKM mixing
matrix elements shown in Table II, with taking ðau; ξuÞ ¼
ð−1.4715;−0.001521Þ and ðad;αd;ξdÞ¼ð−1.4733;15.694°;
þ0.004015Þ. We find that the parameter set around
ðϕ1;ϕ2Þ¼ ð−41.815°;−15.128°Þ indicated by a star (⋆) is con-
sistent with all the observed values.
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neutrino sector are only ðaν; αν; ξνÞ. We determine the
parameter values of ðaν; αν; ξνÞ as follows:

ðaν; αν; ξνÞ ¼ ð−2.59;−27.3°;−0.0115Þ; ð3:9Þ

which are obtained so as to reproduce the observed values
[14] of the following PMNS mixing angles and Rν:

sin22θ12 ¼ 0.846� 0.021; sin22θ23 > 0.981;

sin22θ13 ¼ 0.093� 0.008; ð3:10Þ

Rν ≡ Δm2
21

Δm2
32

¼ m2
ν2 −m2

ν1

m2
ν3 −m2

ν2

¼ ð7.53� 0.18Þ × 10−5 eV2

ð2.44� 0.06Þ × 10−3 eV2

¼ ð3.09� 0.15Þ × 10−2: ð3:11Þ

In Fig. 2, we show the contour plots of the observed
PMNS mixing parameters sin2 2θ12, sin2 2θ23, sin2 2θ13,
and Rν in the (aν, αν) parameter space for the case of ξν ¼−0.0115with taking ðϕ1;ϕ2Þ ¼ ð−41.815°;−15.128°Þ and
ðau; ξuÞ ¼ ð−1.4715;−0.001521Þ. It is found from Fig. 2
that all the PMNS mixing parameters are well consistent
with the observed values in Eqs. (3.10) and (3.11) by fine-
tuning the parameters aν, αν, and ξν as

ðaν; αν; ξνÞ ¼ ð−2.59;−27.3°;−0.0115Þ; ð3:12Þ

which leads to the predicted values for the PMNS mixing
angles, Rν, and the Dirac CP violating phase parameter δlCP
in the standard expression of UPMNS as follows:

sin22θ12 ¼ 0.857;

sin22θ23 ¼ 0.993;

sin22θ13 ¼ 0.0964;

Rν ¼ 0.0316;

δlCP ¼ −76.0°: ð3:13Þ

It should be noted that our model predicts δlCP ¼ −76.0° for
the Dirac CP violating phase in the lepton sector. This is
very interesting because the value shows a size similar to
δqCP ¼ þ72.4° in the CKM mixing matrix.
We can predict neutrino masses, for the parameters given

by (3.6), (3.8), and (3.9), as follows:

mν1 ≃ 0.00046 eV; mν2 ≃ 0.00879 eV;

mν3 ≃ 0.0502 eV;
ð3:14Þ

by using the input value [14] Δm2
32 ≃ 0.00244 eV2. We

also predict the effective Majorana neutrino mass [16] hmi
in the neutrinoless double beta decay as

hmi¼jmν1ðUe1Þ2þmν2ðUe2Þ2þmν3ðUe3Þ2j
≃3.8×10−3 eV: ð3:15Þ

In Table II, we summarize our predictions of the CKM
and the PMNS mixing parameters, quark mass ratios, and
neutrino masses together with the observed values.

IV. VEV RELATION BETWEEN P AND Φ0

We have tried to describe all Yukawaon VEV matrices
hŶfi by using only the observed charged lepton massesmei
as input values. We have also tried to understand the CP
violating phase only by using phase parameters αf, which
are phases of family number-independent parameters af.
Nevertheless, all such attempts have failed because we
always needed a phase matrix P in order to fit reasonable
CKM mixings and the quark mass ratios. In this paper, we
accept the existence of P, and we try to understand the
values of the phase parameters ϕi in P from the charged
lepton mass values mei.
In the present model, we have flavon VEVs with

diagonal form, P, P̄, E, Ē, Φ0, Φ̄0, Φe, Φ̄e, and Ŷe.
(Here, we omit h and i.) In considering combinations of
U(3) 8þ 1 scalars out of those flavons, we have to consider
a combination without the parameterΔ for E and P because
the R charges of Φ0 and Φe do not contain the parameter Δ.
Only a combination with P whose R charge does not
include the parameter Δ is

ðPĒþ EP̄Þij ¼ δi
jðeiϕi þ e−iϕiÞ ¼ δji2 cosϕi; ð4:1Þ

with R charge of R ¼ 1
2
ð1þ ΔÞ þ 1

2
ð1 − ΔÞ ¼ þ1. On the

other hand, since we have R charges

FIG. 2 (color online). Contour curves of the center, upper, and
lower values of the observed PMNS mixing parameters sin2 2θ12,
sin2 2θ23, sin2 2θ13, and Rν in the (aν, αν) parameter space. We
draw the curves for the case of ξν ¼ −0.0115 and ðϕ1;ϕ2Þ ¼
ð−41.815°;−15.128°Þ with taking ðau; ξuÞ ¼ ð−1.4715;
−0.001521Þ. We find that the parameter set around ðaν; ανÞ ¼
ð−2.59;−27.3°Þ indicated by a star (⋆) is consistent with all the
observed values.
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RðΦeÞ ¼
1

2
; RðΦ0Þ ¼

1

2
; ð4:2Þ

for Φe and Φ0 as discussed in Sec. II C, we have only two
combinations that have an R charge of R ¼ þ1,
ðΦeÞikðΦ̄eÞkj and ðΦ0ÞiαðΦ̄0Þαj. [Note that ðΦ0Φ̄e þ
ΦeΦ̄0Þ cannot be a candidate because it has R ¼ þ1
but is not a Uð3Þ0 singlet.] Therefore, we can take
superpotential

W ¼ λ1Tr½ðPĒþ EP̄ÞΘ̂P� þ λ2Tr½ðΦeΦ̄e þ bΦ0Φ̄0ÞΘ̂P�;
ð4:3Þ

so that we obtain

kðPĒþ EP̄Þ ¼ ΦeΦ̄e þ bΦ0Φ̄0; ð4:4Þ
i.e.,

2k cosϕi ¼ x4i þ bx2i ; ð4:5Þ
where we have used the dimensionless expressions of P, E,
Φ0, and Φe, Eq. (2.4), Eq. (1.6) with v0 ¼ 1, and so on.
Eliminating the coefficient k in Eq. (4.5), we obtain two

equations

cosϕ1

cosϕ3

¼ x41 þ bx21
x43 þ bx23

; ð4:6Þ

cosϕ2

cosϕ3

¼ x42 þ bx22
x43 þ bx23

: ð4:7Þ

In Sec. III, we have obtained the numerical results ϕ1 ¼−41.815° and ϕ2 ¼ −15.128° by putting ϕ3 as ϕ3 ¼ 0. To
avoid confusion, we use notation ~ϕi for these numerical
results of ϕi. Since we can choose any value of ϕ0 in
ϕi → ϕi þ ϕ0, we define ϕi in Eq. (4.5) as

ϕ1 ¼ ϕ0 þ ~ϕ1; ϕ2 ¼ ϕ0 þ ~ϕ2; ϕ3 ¼ ϕ0: ð4:8Þ
Equations (4.6) and (4.7) have two unknown parameters ϕ0

and b under the input values ~ϕ1 and ~ϕ2. So, we obtain

ϕ0 ¼ −45.903°; b ¼ −1.11586; ð4:9Þ

which means

ϕ1 ¼ −87.718°; ϕ2 ¼ −61.031°;
ϕ3 ¼ −45.903°: ð4:10Þ

Regrettably, since we need two input parameters ϕ0 and
b in order to predict the values ~ϕ1 and ~ϕ2, the present model
has no predictability for the phase parameters ðϕ1;ϕ2;ϕ3Þ.
(If we use the fitting value ~ϕ1 ¼ −41.815° as an input value
in addition to the input value b ¼ −1.11586, we can predict
the value ~ϕ2 together with the value of ϕ0.) However, note
that the parameters ϕi are family number-dependent

parameters, while the parameters ϕ0 and b are family
number-independent parameters. Therefore, the aim of the
Yukawaon model that we understand the mass spectra and
mixings of all the quarks and leptons only in terms of the
charged lepton mass spectrum and without using any other
family number-dependent parameters has been achieved in
this scenario.

V. CONCLUDING REMARKS

In the past Yukawaon models [5,11], we were forced to
introduce the phase matrix P defined by Eq. (2.7) in order
to fit the observed CKM mixing parameters. The most
remarkable point in the present model is that we have
succeeded in describing the family number-dependent
parameters ðϕ1;ϕ2;ϕ3Þ in the phase matrix P by using
the family number-independent parameters ϕ0 and b.
Therefore, we can say that the main aims of the
Yukawaon model have been achieved in the present work.
Now, we may conclude that the observed hierarchical
structures of quark and lepton masses and mixings are
brought by a sole origin, namely the observed hierarchy of
the charged lepton masses. [However, it is not the purpose
of the present paper to reveal the origin of the charged
lepton mass spectrum ðme;mμ; mτÞ. We leave this inves-
tigation to our future task.]
The successful results in the present work suggests the

following items: (i) The flavor basis in which the charged
lepton mass matrixMe is diagonal has a more fundamental
basis in the flavor physics. (ii) The parameters ðx1; x2; x3Þ
defined by Eq. (1.6) are fundamental parameters in quark
and lepton physics. Note that the parameter values
ðme;mμ; mτÞ are extremely hierarchical, while the param-
eter values ðx1; x2; x3Þ are mildly hierarchical.
Understanding of the values of ðx1; x2; x3Þ will be left to
our next task in future. Then, the relation ðme þmμ þ
mτÞ=ð ffiffiffiffiffiffi

me
p þ ffiffiffiffiffiffimμ

p þ ffiffiffiffiffiffi
mτ

p Þ2 ¼ 2=3 [17] may play an
essential role in investigating the origin of the parameter
values ðx1; x2; x3Þ. For reference, we have given a trial
model on the charged lepton mass relation within the
framework of the present Yukawaon model in the
Appendix B, although this is only a trial one.
Related to the scenario given in Sec. IV, we have given a

minor change of the R-charge assignments in the present
paper. Even if it is a minor change, the change gives
considerable effects on the VEV relations among the
flavons. We have given reparameter fitting for the observed
masses and mixings of quarks and neutrinos. In conclusion,
as seen in Secs. III and IV, we have obtained reasonable
results. Our predicted values are listed in Table II.
In the present model, there are four phase parameters αν,

αd, and ð ~ϕ1; ~ϕ2Þ. The parameters αν and αd play a role in
giving mass ratios in the neutrino and down-quark sectors,
respectively. The parameters ð ~ϕ1; ~ϕ2Þ contribute commonly
to the CP violating phase parameters in the CKM and the
PMNS mixing matrices, so that those play an essential role
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in the predicted values of both δqCP and δlCP. It is interesting
that, in spite of different values between αd and αν, the CP
violating parameters δqCP and δlCP are predicted to take a
similar magnitude, δqCP ∼ −δlCP ∼ 70°.
Of course, the present Yukawaon model has to be still

improved with respect to the R-charge assignments, num-
ber of flavons, number of adjustable parameters, CP
violating phase parameters, and so on. The unification of
the CP violating phase parameters in the present paper into
a simpler scenario and the investigation of the origin of the
parameters ðx1; x2; x3Þ are our future tasks.

APPENDIX A: BASIC ASSUMPTIONS IN THE
YUKAWAON MODEL

The framework of the Yukawaon model has been
changed little by little. The framework of the present
model is substantially the same as in the previous paper
[5]. Although the previous model has been considerably
changed from earlier versions of the Yukawaon model, the
present paper did not mention any basic assumption of the
model. Therefore, in this appendix, let us summarize basic
assumptions in the recent Yukawaon model.
We consider that the charged lepton mass matrix is the

most fundamental one compared with other mass matrices
and that the charged lepton mass values play an essential
role in understanding the flavor physics. Our postulations
are as follows:

(i) There is a fundamental flavon Φ0, and the reference
basis in the flavor physics is defined by the diagonal
basis of hΦ0i and hΦ̄0i:

hΦ0i ¼ hΦ̄0i≡ v0diagðx1; x2; x3Þ; ðA1Þ
where xi are real parameters with x21 þ x22 þ x33 ¼ 1.

(ii) In the reference basis, the Uð3Þ0 family symmetry is
broken into S3 at μ ¼ Λ0 (Λ0 ≫ Λ); i.e., VEVs of
flavons Sf and S̄f take the form (1.6).

(iii) In the reference basis, the charged lepton mass
matrix hŶei is diagonal and real as well as hΦ0i
and hΦ̄0i, and it should be described only in terms of
the fundamental parameters xi. Therefore, with
demanding simplicity too, we require

ae ¼ 0; ξe ¼ 0. ðA2Þ
This means xi ∝ m1=4

ei [mei ¼ ðme;mμ; mτÞ]. In
Sec. III, we use the following parameter values of xi:

ðx1; x2; x3Þ ¼ ð0.115144; 0.438873; 0.891141Þ:
ðA3Þ

In (A3), we have used running mass values
meðμÞ¼0.000486847GeV, mμðμÞ¼0.102751GeV,
and mτðμÞ ¼ 1.7467 GeV as the charged lepton
mass values at μ ¼ MZ, because our numerical
predictions in the quark mass ratios are done at

μ ¼ MZ. Note that the mass values ðme;mμ; mτÞ
have a large hierarchical structure, i.e., me=mτ ∼
10−4, while the values (A3) have a mild hierarchical
structure, i.e., x1=x3 ∼ 10−1.

In this paper, we do not ask the origin of the value
ðx1; x2; x3Þ. However, for reference, in the Appendix B, we
will demonstrate an example of the charged lepton mass
relation in the present Yukawaon model.

APPENDIX B: CHARGED LEPTON MASS
RELATION IN THE YUKAWAON MODEL

The charged lepton mass relation [17]

K ≡ me þmμ þmτ

ð ffiffiffiffiffiffi
me

p þ ffiffiffiffiffiffimμ
p þ ffiffiffiffiffiffi

mτ
p Þ2 ¼

2

3
ðB1Þ

is one of the main motives of the Yukawaon model in the
earlier stage [18]. The relation (B1) can be understood
from the VEV of the U(3) 8þ 1 scalar, hΦ̂ei ¼
diagð ffiffiffiffiffiffi

me
p

; ffiffiffiffiffiffimμ
p ;

ffiffiffiffiffiffi
mτ

p Þ, as

K ¼ Tr½Φ̂eΦ̂e�
Tr2½Φ̂e�

; ðB2Þ

where we have omitted VEV notation h and i for simplicity.
However, in the present scenario of the Yukawaon model,
there is no 8þ 1 scalar Φ̂e, but we have only 6 and 6�
scalars Φe and Φ̄e. The purpose of the present paper is to
understand mass ratios and mixings of quarks and leptons
under the given parameters ðme;mμ; mτÞ, and it is not to
investigate the origin of the values ðme;mμ; mτÞ.
However, in this appendix, let us try to understand the

mass relation (B1) according to an idea suggested in
Ref. [18]. First, let us introduce 8þ 1 scalar Φ̂e. By using
the following superpotential:

W ¼ μTr½Φ̂eΘ̂e� þ λeTr½ðΦeĒþ EΦ̄eÞΘ̂e�; ðB3Þ
we obtain a relation

Φ̂e ¼ ΦeĒþ EΦ̄e: ðB4Þ
Since RðEÞ ¼ 1

2
ð1 − ΔÞ as seen in Eq. (2.16), Φ̂e has the R

charge as

RðΦ̂eÞ ¼ 1 − 1

2
Δ: ðB5Þ

Let us take Δ ¼ þ1, so that we have

RðΦ̂eÞ ¼ RðΦeÞ ¼
1

2
: ðB6Þ

This choice (B6) causes no problem because Φ̂e and Φe
have different transformations under Uð3Þ × Uð3Þ0. We will
comment on the choice RðEÞ ¼ 0 later.
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Since RðΦ̂eÞ ¼ 1=2, we assume the following
superpotential:

W ¼ 1

Λ
ðλTr2½Φ̂eΦ̂e� þ λ0Tr2½Φ̂e�Tr½Φ̂8Φ̂8�Þ; ðB7Þ

where Φ̂8 is an octet part of the nonet Φ̂e defined by

Φ̂8 ≡ Φ̂e − 1

3
Tr½Φ̂e�1: ðB8Þ

The first term in Eq. (B7) is the conventional nonet-nonet
term. The second term is an ðoctet-octetÞ × ðsinglet-singletÞ
interaction term [18] although the second term is still SU(3)
invariant. To derive the relation (B1), the assumption of the
second term is essential. By noticing that the second term
can be expressed as

Tr½Φ̂eΦ̂e�Tr2½Φ̂e� − 1

3
Tr4½Φ̂e�; ðB9Þ

we obtain

∂W
∂Φ̂e

¼ 1

Λ

�
2ð2λTr½Φ̂eΦ̂e� þ λ0Tr2½Φ̂e�ÞΦ̂e

þ 2λ0
�
Tr½Φ̂eΦ̂e� − 2

3
Tr2½Φ̂e�

�
Tr½Φ̂e�1

�
: ðB10Þ

The coefficients of Φ̂e and 1must be zero in order to have a
nontrivial solution of Φ̂e (nonzero and nonunit matrix
form). Thus, we demand

2λTr½Φ̂eΦ̂e� þ λ0Tr2½Φ̂e� ¼ 0; ðB11Þ
and

Tr½Φ̂eΦ̂e� − 2

3
Tr2½Φ̂e� ¼ 0. ðB12Þ

Equation (B11) requires a special relation between λ and λ0.
Note that the relation (B12) is independent of the explicit
value of λ0.
Let us comment on the choice of Δ ¼ þ1. This choice

means that RðEÞ ¼ 0, so that a U(3) nonet ðEĒÞ takes
RðEĒÞ ¼ 0. Therefore, the factor EĒ can be inserted into
any terms with R ¼ 2 in the superpotential. However, since
hEĒi ¼ 1, this does not affect the obtained VEV relations
practically. The choice Δ ¼ þ1 also gives R charges of
Sf as

ðRðSνÞ; RðSdÞ; RðSeÞ; RðSuÞÞ ¼
�
1

2
; 1;

3

2
; 2

�
: ðB13Þ

It is interesting that the values ð1=2; 1; 3=2; 2Þ in (B13) are
the same as the values for Φf as seen in Eq. (2.25), but the
arrangements are different, i.e., a ðe; u; ν; dÞ for RðΦfÞ,
while ðν; d; e; uÞ for RðSfÞ.
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