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We analyze fermion masses and mixing in a general warped extra dimensional model, where all the
Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context,
a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can
generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks
and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects
yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the
neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small
flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric
structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and
the model is more successful in generalized warped scenarios where the metric background solution is
different than five-dimensional anti–de Sitter (AdS5). We study these features in two simple frameworks,
flavor complimentarity and flavor democracy, which provide specific predictions and correlations between
quarks and leptons, testable as more precise data in the neutrino sector becomes available.
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I. INTRODUCTION

The discovery of a SM-like Higgs boson at the LHC
with a mass of 125 GeV was a huge step forward in
confirming the validity of the Standard Model (SM) and
probing the electroweak symmetry breaking mechanism.
But despite its experimental success, the SM still fails to
provide an explanation, among other things, for the origin
and observed pattern of fermion masses and mixings.
In the quark sector, the masses are extremely hierarchi-

cal, with the top much heavier than the rest of the quarks
and with a strong ordering. In the up sector, the masses are
separated by 3 orders of magnitude, while in the down
sector the mass ratios are separated by 2 orders of
magnitude. The quarks also exhibit mixing patterns given
by three small mixing angles and a large (CP) phase. In the
lepton sector, the charged lepton masses obey a similar
hierarchical pattern as the down-type quarks. On the other
hand, though not known exactly, neutrino masses are
known to be very small and their square mass differences
imply a closer mass pattern, Δm2

31ð32Þ∶Δm
2
21 ∼ 102∶1.

Neutrinos appear to mix maximally and this has been long
seen as pointing towards a different flavor origin between
quarks and leptons, and also to the necessity of introducing

new physics. After the successful measurement of the
neutrino mixing angle θ13 by the Daya Bay [1,2], T2K
[3,4], MINOS [5,6], RENO [7] and Double Chooz [8,9]
collaborations, the determination of the neutrino mass
hierarchy has become a priority for theoretical studies
and for future neutrino experiments. A great deal of
theoretical work in this area has been trying to provide
answers, based on such diverse frameworks as seesaw
mechanisms [10–16], Abelian [17–19] and non-Abelian
[20–37] symmetries imposed on the leptonic sector
(both charged and neutral), and many texture structures
for leptonic mass matrices, including modifications of
accepted paradigms, such as tribimaximal [38–43], bimax-
imal [44–49] and democratic [50–52] neutrino mixing
matrices. While various attempts to unify the description
of quarks and leptons already exist (mostly based on quark-
lepton complementarity [53–66]), an attractive possibility
would be that quarks and leptons obey the same symmetry
at a higher scale, which is then slightly broken at lower
scales, yielding different patterns for masses and mixing
for the quarks/leptons than for the neutrinos. This is the
scenario we plan to investigate here, in the context of
warped extra dimensions, where small symmetry breaking
terms have very different effects on quarks and leptons due
to the geometry of the model.
Introducing a warped extra dimension provides an

elegant way to address both the hierarchy problem (to
stabilize the Higgs mass against large radiative corrections)
and the fermion flavor hierarchy problem. These models
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were first proposed to deal with the hierarchy problem of
the SM [67,68], where introducing an extra dimension
produced a five-dimensional anti–de Sitter (AdS5) geom-
etry bounded by two hard walls (branes) along the extra
dimension, referred to as the Planck (or UV) brane and the
TeV (or IR) brane. Allowing for exponential modulation
from the gravity scale down to the weak scale along this
compact extra dimension [67,68] yields the weak-Planck
mass hierarchy.
The original Randall-Sundrum (RS) model localized all

SM fields on the IR brane, leading to severe flavor violation
bounds on the new physics scale. It was later shown that if
the fermions were allowed to propagate in the bulk of the
extra dimension [69–74], the same model could address the
flavor hierarchy problem of the SM as well. The model thus
emerged as a geometric theory of flavor. By localizing the
Higgs on the IR brane with anarchic order-one couplings to
the bulk fermions, the profiles of the fermion zero-modes
can be adjusted to reproduce the observed Yukawa cou-
plings in the low energy theory. Since the first and second
generation fermions are localized towards the UV brane,
they inherit substantial flavor protection from the RS–
Glashow-Iliopoulos-Maiani mechanism [75]. However, by
allowing the SM fields to propagate in the bulk, from an
effective four-dimensional point of view, a tower of Kaluza-
Klein (KK) fermions exists for all the SM fields, yielding
enhanced contributions to electroweak and flavor observ-
ables in the SM [73,75–82]. This effect imposes a stringent
bound on the scale of new physics of some ∼10 TeV
[83,84] and hence renders these models completely out of
the reach of current experiments. Some solutions were
proposed to relieve these restrictions. One way was to
extend the gauge symmetry of the model by introducing an
SUð2ÞR gauge sector with custodial protection [73,76,85].
Here the basic idea is to align the down-type Yukawa
couplings using the additional symmetry, so that the
primary sources of intergenerational mixing are the up-
type Yukawa couplings. Since the dominant constraints on
flavor-changing neutral currents come from the down-type
sector, the constraint on KKmasses is substantially relaxed.
A different approach to address the issue is through a slight
modification of the warping factor along the extra dimen-
sion, allowing it to deviate slightly from the AdS5 metric
[86–91]. This deviation is such that the warping is more
drastic near the TeV brane, while the background becomes
more AdS5-like near the Planck brane. These types of
metric solutions can help suppress dangerous contributions
to the electroweak and flavor observables by reducing the
constraints on new physics down to about ∼1 TeV.
Warped extra dimensional models were shown to pro-

vide new contributions to the Higgs production rate
through gluon fusion which could conflict with the collider
data [74,92–100].
Interestingly, in the modified five-dimensional (5D)

metric scenarios the region of parameter space in which

the dangerous contributions to flavor and electroweak
precision observables are small is the same as the region
where the new contributions to the Higgs production cross
section are also small (and thus safe) [94]. Moreover, this is
achievable only when the Higgs field in these models is
allowed to leak considerably into the bulk.
In the context of warped extra dimensional models with

Oð1Þ 5D Yukawa couplings and with no a priori structure
(i.e., flavor anarchy), one can easily generate the hierar-
chical structure of the quark and charged lepton sectors
[101] while, due to large mixing angles, the neutrino sector
must be treated differently. In particular, in [102], it was
shown that if the Higgs field leaks sufficiently into the bulk
it is possible that the (exponentially small) neutrino wave
functions become independent on the flavor structure of the
5D neutrino mass parameters (ciν), and thus the 4D neutrino
flavor structure depends directly on the flavor structure of
the 5D neutrino Yukawa couplings.
In a previous work [103], we proposed a unified

picture of fermion masses and mixings in the context of
a warped extra dimensional model with AdS5 background
metric, and with all the SM fields in the bulk, including
the Higgs. In that picture, the same flavor symmetric
structure is imposed on all the fermions of the SM,
including neutrinos. Small flavor breaking effects are
exponentially enhanced in the quark and charged lepton
sectors, thus producing hierarchical masses and mixings.
With a sufficiently delocalized Higgs field, the neutrino
wave functions are flavor blind and the flavor structure is
governed by the 5D neutrino Yukawa flavor structure.
Previous analyses on masses in warped space are available
in the literature [104–121].
In this work, we revisit this idea in the context of the

modified AdS5 metric solutions. We show that the SM
masses and mixing can be generated successfully, and the
mass generation in the neutrino sector appears to be less
fine tuned than in the case where a pure AdS5 background
metric is assumed.
Our work is organized as follows. We summarize the

features of the modified AdS5 model in Sec. II, with
particular emphasis on fermion mass generation, Sec. III.
We explore an explicit implementation of the scenario,
flavor complementarity, in Sec. IV and another, of a
democratic flavor symmetry, in Sec. V. We summarize
our results and conclude in Sec. VI. We leave the details of
some calculations for the Appendix.

II. WARPED SPACE MODELS WITH FIELDS
IN THE BULK

We consider a 5D warped space with the extra dimension
compactified and allow all SM fields to propagate in the
following generalized warped space-time metric:

ds2 ¼ e−2AðyÞημνdxμdxν − dy2; ð2:1Þ
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ημν ¼ diagð−1; 1; 1; 1Þ being the flat metric. The fifth
dimension, y, is bounded by two branes localized at y ¼ 0
and y ¼ y1 and AðyÞ is a model-dependent function. As
mentioned in the Introduction, some generalized warped
models can be safe from precision electroweak tests and
flavor bounds for very low KK masses. Motivated by this,
we consider such a model within a modified AdS5 scenario
with the following warp exponent [90,122,123]:

AðyÞ ¼ kyþ 1

ν2
ln

�
1 −

y
ys

�
; ð2:2Þ

where k ∼MPl is the AdS5 curvature, expected to be of
the order of the Planck mass scale, ys is the position of the
metric singularity, always chosen to be outside of the
physical region, ys > y1, and ν > 0 is a model parameter
taken to be real. The ν parameter, alongside Δ ¼ ys − y1,
the distance between the location of the metric singularity
and the IR brane, measures the departure of the metric from
the pure AdS5 background. The smaller the values ofΔ and
ν, the more modified the metric; intuitively, the singularity
has a larger effect on the physics at the IR brane the closer
it gets to it. One can calculate the curvature along the
fifth dimension and obtain

RðyÞ ¼ 8A00ðyÞ − 20ðA0ðyÞÞ2: ð2:3Þ

The curvature radius, LðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20=R

p
, in units of k along

the fifth dimension is then given by

kLðyÞ ¼ kΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ν2=5þ 2ν2kΔþ ðν2kΔÞ2

p : ð2:4Þ

One can see that for values of ν >
ffiffiffiffiffiffiffiffi
5=2

p
, this function has

a minimum before the singularity and therefore the curva-
ture can change sign within the physical region. Following
[91], we impose that this minimum is located outside of
the physical region and hence the curvature radius is a
monotonically decreasing function between the UVand the
IR branes.
The more familiar RS metric is recovered by taking the

limits ν → ∞ and ys → ∞, yielding AðyÞ ¼ ky, with the
curvature radius being constant, kL ¼ 1. In Fig. 1, we
compare the two metrics and plot the warp exponent
function AðyÞ for the AdS5 and the modified AdS5 cases.
We can see that the amount of warping near the IR brane at
around ky ¼ 35 is larger for the modified AdS5. Thus, as
the figure indicates, the same amount of warping from the
UV brane to the IR brane in the modified scenario requires
a slightly smaller length of the fifth dimension and hence an
IR brane slightly closer to the UV brane. The curvature
radius [Eq. (2.4)] at the UV brane is approximately equal
for the pure and modified AdS5 spaces with, kyðyÞ≃ 1. On
the contrary, at the IR brane, as kLðyÞ is a monotonically
decreasing function, kyðyÞ assumes its minimal value for
the modified AdS5 space and hence kL1 ≡ kLðy1Þ is a

good measure of the amount of deviation from the pure
AdS5 space with constant curvature radius.
The 5D fermion Lagrangian density with Dirac

neutrinos is

Lq ¼ Lkinetic þMqiQ̄iQi þMuiŪiUi þMdiD̄iDi

þ ðYu5D
ij HQ̄iUj þ H:c:Þ þ ðYd5D

ij HQ̄iDj þ H:c:Þ
þ ðQi → Li; Ui → Ni;Di → EiÞ; ð2:5Þ

where, i; j are flavor indices and the 5D Yukawa param-
eters, Y5D

ij , are dimensionful quantities of Oð1Þ × ffiffiffi
k

p
. Qi

(Li) are 5D quark (lepton) fields for SUð2Þ doublets while
Ui (Ni) and Di (Ei) are SUð2Þ singlet quark (lepton) fields.
The bulk mass,Mψ i

, originating from the momentum along
the fifth dimension, can be taken in general to be y
dependent. To be able to compare, we choose it such that
it coincides with its usual definition in RS models, and
express it in units of the fifth dimension curvature, k, as
Mψ i

¼ ciψk, where ciψ
1 are localization parameters, dimen-

sionless quantities ofOð1Þ, and ψ i runs over all SM quarks
and leptons.2 Dimensional reduction then yields the nor-
malized profile for the fermion and the Higgs fields along
the bulk of the extra dimension, q0;iL ðyÞ, u0;iR ðyÞ and hðyÞ,
which are given by

q0;iL ðyÞ ¼ qi0 e
ð2−ciqÞAðyÞ; ð2:6Þ

0 5. 10 18 1.5 10 17 2.5 10 17 3.5 10 17

0
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FIG. 1 (color online). The modified AdS5 warp factor AðyÞ
versus the standard RS warp exponent, y. The horizontal line
corresponds to ky ¼ 35. For the same amount of warping, the
modified scenario requires a shorter length scale along the fifth
dimension.

1We use throughout cq for the doublets (cq and cl) and cu for
the singlets (cu, cd, cν and ce).2Alternative fermion and Higgs profiles can be found in
[94,122], where different bulk mass conventions are adopted.
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u0;iR ðyÞ ¼ ui0 e
ðciuþ2ÞAðyÞ; ð2:7Þ

hðyÞ ¼ h0 eaky; ð2:8Þ

with qi0 ¼ fðciqÞ, ui0 ¼ fð−ciuÞ and h0 ¼ e−ða−1Þkysh0, and
where fðcÞ and h0 are normalization factors which depend
on c, ν and ys, given explicitly in the Appendix, along with
their limiting expressions for the usual RS (AdS5) metric
background. From these profiles, one can check that
localization of the fields in the bulk of the extra dimension
is determined by the values of the ciψ for the fermion fields,
such that a value of ciψ > 1=2 indicates an UV localized
field, while a value of ciψ < 1=2 localizes the field near the
IR brane.3 The Higgs field localization along the fifth
dimension is given by the parameter a, the dimension of the
Higgs condensate operator. A completely IR brane local-
ized field corresponds to the limit a → ∞, while for a
delocalized Higgs field a is small. However, in order to
maintain the original Randall-Sundrum solution to the
hierarchy problem without fine-tuning, the Higgs field
localization should be such that a≳ 2 (for an AdS5 metric
background). If the 5D Higgs potential is of the form
VbulkðHÞ ¼ M2

5dH
2, with associated brane potentials at

each boundary, the Higgs profile has two solutions, one
growing towards the IR and another one decaying at the IR
brane. This last one is proportional to eð4−aÞky in the AdS5
background. In order to maintain the RS solution to the
hierarchy problem, the decaying solution has to be sub-
dominant, and this happens for a > 2. In that situation, the
Higgs field profile [see Eq. (2.10)] is localized near the
IR brane and mass terms depending on the Higgs profile
vacuum expectation value are warped down to the energy
scale of the IR brane as

mHiggs ≃M5de−Aðy1Þ: ð2:9Þ

This resolution of the hierarchy problem depends on the
actual length of the extra dimension, as well as the choice
of the 5D metric parameters, ν and ys, which are usually set
such that Aðy1Þ≃ 35.
When a < 2, and in order to maintain a Higgs profile

localization towards the IR brane, some fine-tuning
between the parameters of the bulk scalar potential and
the brane potentials is necessary in order to suppress the
unwanted solution. In the modified AdS5 scenario the
lowest value of a that does not require fine-tuning depends
on the various new metric parameters [82]. In this case, the
Higgs profile is given by

hðyÞ ¼ h0eaky½1þ ðM0=k − aÞ½FðyÞ − Fð0Þ��; ð2:10Þ

where M0 is the brane Higgs mass term [coefficient of the
jHj2δðy − y1Þ term at the IR brane] and the function FðyÞ is
given by

FðyÞ ¼ e−2ða−2Þkyskys½−2ða − 2Þkys�−1þ4=ν2

× Γ
�
1 −

4

ν2
;−2ða − 2Þkðys − yÞ

�
: ð2:11Þ

The decaying term at the IR brane is the second term in
Eq. (2.10) and, forcingM0=k≃ a (fine-tuning parameters),
the solution can become subdominant. In order to avoid
this fine-tuning of parameters, we note that FðyÞ is a
monotonically increasing function. We can thus introduce
δ≡ jFðy1Þj as a measurement of the amount of fine-tuning
needed for the RS solution to survive the hierarchy problem.
When δ ∼Oð1Þ, no fine-tuning is needed to guarantee that
the increasing solution for the Higgs profile dominates.
When the parameter δ ¼ Fðy1Þ becomes larger, this solution
needs fine-tuning of parameters to suppress its value.
As expressed in the Introduction, scenarios of general-

ized warped metric backgrounds can yield lower bounds on
KK masses coming from precision and flavor constraints.
The precision electroweak oblique parameters, S and T are
proportional to the dimension-6 operators

jH†Dμhj2; H†WμνHBμν:

Due to the deviations of the metric from AdS5 near the IR
brane all the KK modes, including the gauge KK modes,
become more localized near the IR brane. Intuitively, for a
Higgs field that is sufficiently delocalized from the IR brane,
couplings to these KKmodes will be suppressed, which will
result in lower bounds for the KK mode masses in these
models (which can be as low asmKK ≳ 1 TeV).As theHiggs
field becomes more localized towards the IR brane, these
couplings become large (even larger than in the pure AdS5
case) and the bounds can becomemuchworse. Therefore the
success of this model is crucially dependent on the locali-
zation of the Higgs field along the fifth dimension [86,124].
Figure 2 shows the no-fine-tuning region (above the red

solid δ ¼ 1 curve) in the ða; νÞ plane, where a is the Higgs
localization parameter and ν is the metric parameter of the
modified metric solution. The region below is the one fine
tuned, requiring an adjustment of Lagrangian parameters
with a tuning precision growing exponentially. (The close
dashed curve locates the points where δ ¼ 10, i.e., where
the tuning is already 10%.)
In producing these graphs, for each case we first set

the value of the IR brane position, ky1, which in turn
fixes the value of ys, the position of the singularity. Then
for each value of the parameter ν we solved for a in
δða; ν; y1; ysÞ ¼ 1.
To first order, the effective SM Yukawa couplings are

obtained from the overlap integral

3This convention is for left-handed doublets. For right-handed
singlet fields, our convention is such that ciu > −1=2 for an UV
localized field and ciu < −1=2 for an IR localized field.
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yuij ¼
Yu
ijffiffiffi
k

p
Z

y1

0

dye−4AðyÞhðyÞq0;iL ðyÞu0;jR ðyÞ; ð2:12Þ

where the index u denotes the four types of Yukawa
couplings of the SM, i.e., u ¼ u; d; e; N and we have
defined the dimensionless 5D Yukawa couplings as
Yu
ij ¼ Y5D

ij =
ffiffiffi
k

p
∼Oð1Þ. Given the profiles (2.6), (2.7)

and (2.8) and the metric (2.2), the integral above can be
performed analytically and written as

yuij ¼ ~Yu
ijh0fðciqÞfð−cjuÞ; ð2:13Þ

where the factor ~Yu
ij, defined in the Appendix, has very mild

ci dependence. The function fðcÞ is such that depending on
the value of c, the Yukawa couplings can be exponentially
sensitive to c, or onlymildly dependent. Finallyh0 is the bulk
Higgs normalization factor and does not depend on the
fermion mass parameters ci. Note that, although throughout
the paper we have suppressed the explicit dependence of the
fields on the metric parameters, ν, ys, y1 and k, and in parti-
cular all of the factors of Eq. (2.13), are metric dependent.
As shown in the Appendix, one can always retrieve the RS
limit for these terms by taking the limit ν; ys → ∞.

III. FERMION MASSES IN WARPED SPACE

We now return to a more detailed discussion of fermion
masses in this model. These masses are given, to first order,
by the eigenvalues of the 3 × 3Yukawamatrices of the form

v yu ¼ v

0
B@

yu11 yu12 yu13
yu21 yu22 yu23
yu31 yu32 yu33

1
CA: ð3:1Þ

In general, in order to get the correct SM masses, no
exponential c-dependence is needed for the top quark,
which corresponds to ctq ≲ 1=2 and ctu > −1=2 (this region
of parameter space corresponds to the top plateau shown in
Fig. 3). For the rest of the SM particles ciq ≳ 1=2 and
ciu < −1=2, which implies that the Yukawa couplings will
depend exponentially on the values of the ci. In the case of
neutrinos however, in order to accommodate their tiny
masses, one needs localization parameters cν < −1. It
was shown [102] that, for a delocalized Higgs with a
parameter small compared to the localization parameter
ci, the 4D effective neutrino masses depend exponentially
on a but lose their dependence on the ci’s. This region of
parameter space corresponds to the neutrino plateau shown
in Fig. 3. In other words, the limit of the function in
Eq. (2.13) for large cν’s is given by

yuij ∼ ~Yu
ijh0: ð3:2Þ

To make this more transparent, in the formula for fermion
masses given by [cf. Eq. (2.13)]

ðMfÞij ¼ v ~Yu
ijh0fðciqÞfð−cjuÞ; ð3:3Þ

we factor the exponential behaviors and write them in the
following two distinct limits:
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a

kL1 0.99

1

FIG. 2 (color online). The δ ¼ 1 plots and the connection with neutrino masses in the ν − a plane for (left panel) kL1 ¼ 0.2 (large
deviation) and (right panel) kL1 ¼ 0.99 (more RS-like). The red (solid) curve locates the no-fine-tuning threshold in which δ ¼ 1.
Above this curve, δ < 1, and below the curve, δ > 1 (corresponding to the unwanted fine-tuned region). The shaded area corresponds to
a heavy neutrino mass (m3 in normal ordering), mν ∼ 5 × 10−11 GeV for different values of the c parameters, but such that the mass
expression has no exponential sensitivity to the c parameters. Note that in the RS-like case (right panel) it is not possible to obtain
neutrino masses without fine-tuning, or quitting the neutrino plateau parameter region (as would be the case in usual RS scenarios). With
modified-AdS5 metric (left panel) it is possible to find nontuned points with neutrino masses in the plateau (corresponding to no
exponential c-dependence).
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ðMfÞij ∼ vYf
ijϵ

ðciq−1
2
Þϵ−ðc

j
uþ1

2
Þ for cq > 1=2; cu < −1=2;

ðMνÞij ∼ vYN
ije

−ky1ða−1Þ for cq − cu > a; ð3:4Þ

where ϵ ¼ e−AðyÞ (see the Appendix for details).4

The limits described in Eq. (3.4) imply that, as the
quark and charged lepton mass matrix elements are
exponentially dependent on the ci parameters, any
structure in the 5D Yukawa matrix elements Yf

ij will

be largely washed out and will always produce generi-
cally hierarchical fermion masses as well as small mixing
angles. For the neutrinos, on the other hand, since there
is no exponential sensitivity on the flavorful ci param-
eters, any structure inherent in the 5D Yukawa matrix
elements will survive in the 4D effective theory. This is
the region of neutrino parameter space we are interested
in, shown in Fig. 3 as the neutrino plateau. In RS models,
the actual height of the neutrino plateau is determined
exclusively by the value of the a parameter. For the value
of the warp factor required to solve the hierarchy
problem, the highest possible neutrino masses in the
plateau are too small by 1 to 2 orders of magnitude
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FIG. 3 (color online). Effective 4D Yukawa couplings for fermions as functions of the fermion bulk mass parameter c for (a) the RS
and (b) general warped space-time metric. The plots on the right-hand side are produced by taking the c parameters for the doublet and
the singlet to be equal. In the left-handed plots, each contour depicts 1 order of magnitude difference with respect to its adjacent contour.
A typical location for neutrino masses of order mν ∼ 10−11 GeV is also shown. The shaded vertical band shows the region where all
fermions of the SM should be located. (a) RS with all SM elds including the Higgs in the bulk, a ¼ 2.04 and δ ¼ 1 and (b) Modied AdS5
with ν ¼ 0.32, kLðy1Þ ¼ 0.2, Aðy1Þ ¼ 35, a ¼ 4.46 and δ ¼ 1.

4For modified AdS5, ϵmod ¼ e−ky1ð1 − y1
ys
Þ 1

ν2 ∼ 10−15 while for
RS ϵRS ¼ e−ky1 ∼ 10−15.
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(without fine-tuning) to be phenomenologically viable
(see the upper panels in Fig. 3). Some tuning, or some
enhancement of the 5D Yukawa couplings, and/or tres-
passing the edge of the plateau would then be required,
making the scenario less attractive for our purposes. On
the other hand, in modified AdS5 scenarios, although the
level of the plateau is still highly sensitive to the value of
a, the masses could actually be increased by some 2
orders of magnitude and thus allow for phenomenologi-
cally acceptable neutrino masses in the desired region
of the model (see Fig. 2 and the lower panels in Fig. 3).
This feature occurs because the modified AdS5 metric
[see Eq. (2.2)] exhibits a richer parameter space. In the
RS metric, in order to produce the correct neutrino
masses in the plateau, we need a ∼ 1.85, a value which
amounts to about 1=10000 fine-tuning of parameters in
the 5D Higgs potential. While for modified AdS5
scenarios, one can produce a neutrino plateau within
the experimental bounds for some range of a parameter
values without fine-tuning. It is interesting that the
parameter space for which the neutrino plateau is most
favorable coincides with the region where small KK
masses satisfy bounds coming from flavor and electro-
weak precision measurements [125,126] and constraints
from Higgs phenomenology [93].
In order to further illustrate this issue, in Fig. 4 we

show the resulting neutrino masses in the plateau region
as a function of the parameter ν, for different values of a
(left panel) and kL1 (right panel). The area below the
curves is the no-fine-tuning region, and one can see

that the largest neutrino masses (in the plateau) occur
for ν ∼ 0.3 and kL1 ¼ 0.2, whereas in the RS limit, i.e.,
kL1 ∼ 1 and ν large, the masses are some 2 orders of
magnitude lower (slightly too low). This makes the
extended metric scenarios a framework for the flavor
mechanism investigated here, and adds to the advantages
of these scenarios (i.e., a much lower KK scale consistent
with electroweak and flavor bounds, and with Higgs
production).
Qualitatively the general features of the flavor structure

of these modified AdS5 models are very similar to these
features in the pure AdS5 models for the bulk mass ciψ
parameters. Therefore, in order to illustrate our flavor setup,
it is useful to consider the simpler case of the RS metric. In
this case the fermion mass formulas in Eq. (3.4) can be
simplified dramatically. As usual, we consider the mass
matrix for the neutrino sector separately from the case of
quarks and charged lepton mass matrices. Consider the case
with ciq;u > 1

2
. In this case we have,

ðMfÞij ≃ vϵðciq−1
2
Þϵ−ðc

j
uþ1

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða − 1Þj1 − 2ciq∥1þ 2cjuj

q
~Yf
ij

ðMνÞij ≃ vϵa−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða − 1Þj1 − 2cil∥1þ 2cjνj

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1−2clÞ − 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1þ2cνÞ − 1

p ~Yν
ij; ð3:5Þ

where the 5D Yukawa couplings are given by5
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1
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FIG. 4 (color online). (Left panel) Neutrino masses as functions of the metric parameter ν for different values of the Higgs localization
parameter a and fixed kL1 ¼ 0.2. The fermion mass parameters (c’s) are fixed to a region where there is no exponential dependence on
them (the neutrino plateau). The curves end whenever the fine-tuning threshold (δ ¼ 1) is reached (thick overlapping curve). Note that
for small values of ν the neutrino masses become larger while still remaining in the nontuned regime and in the neutrino plateau. (Right
panel) Same plot for different values of kL1 and fixed δ ¼ 1. The graph corresponding to kL1 ¼ 0.9 remains constant at larger values of
ν and (approximately) coincides with the RS limit.

5For exact formulas see the Appendix.
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~Yu
ij ≃ 1

a − ciq þ cju
Yu
ij: ð3:6Þ

From Eqs. (2.6), (2.7) and (2.12) one can see that there are
two sources of flavor structure: the 5D dimensionless
Yukawa couplings Yu

ij and the bulk mass coefficients ciψ .
We are interested in scenarios in which all Yukawa matrices
(YF ¼ Yu

ij, Y
d
ij, Y

ν
ij and Y

e
ij) and fermion bulk mass matrices

from the 5D Lagrangian (cf ¼ cq, cu, cd, cl, cν and ce)
share the same symmetry structure, which is then
slightly broken through some high energy mechanism
according to

YF ¼ Y0
F þ δYF; ð3:7Þ

cf ¼ c0f þ δcf; ð3:8Þ

where the matrices Y0
F and c0f are flavor symmetric while

the perturbation matrices δYF and δcf are random.
Inserting these perturbations in Eq. (3.5), the fermion
masses receive corrections to leading order as follows:

mt ¼ m0
t þ δmtc3q; c3u < 1=2;

ðmfÞij ¼ ðmfÞ0ijfðδciqÞfðδcjuÞÞ ∼ ðmfÞ0ijϵðδciqþδcjuÞ

a > cil þ cju;

ðmνÞij ¼ ðmνÞ0ij þ δðmνÞij a < cil þ cjν: ð3:9Þ

Therefore the same exponential sensitivity on the bulk mass
ciψ parameters, ϵ ∼ 10−15, responsible for producing the
SM hierarchy in the standard RS, is now translated into
exponential sensitivity of the symmetry breaking terms.
As a consequence, small symmetry breaking terms
(jδcij ∼ 0.1) can produce mass corrections of order
10−15ðδciþδcjÞ (i.e., a hierarchy of order ∼106) to the quark
and charged lepton mass matrices. This is in complete
agreement with the observed hierarchy in these sectors. As
mentioned before, the neutrinos and the top quark fields
live in the two plateaus (see Fig. 3) with mild ciψ sensitivity.
For the mixing angles, the eigenvector matrix that

diagonalizes the neutrino sector should be very close to
the eigenvector matrix of the 5D Yukawa matrix. However,
in the quark and charged lepton sectors the mixing matrices
are generically close to the unit matrix with off-diagonal
entries hierarchically small as6

Vu
L ≃

0
BBBBB@

1
f1qð ~MuÞ21
f2qð ~MuÞ11

f1qð ~YuÞ13
f3qð ~YuÞ33

− f1qð ~M�
uÞ21

f2qð ~M�
uÞ11

1
f2qð ~YuÞ23
f3qð ~YuÞ33

f1qð ~M�
uÞ31

f3qð ~M�
uÞ11

− f2qð ~Y�
uÞ23

f3qð ~Y�
uÞ33

1

1
CCCCCA; ð3:10Þ

where fiq is shorthand for the profile functions fðciqÞ,
ð ~MuÞij is the ðijÞ minor of the matrix in parenthesis, and

ð ~YuÞij is the ij element of the Yukawa matrix. We define the
Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrices as the following:

VCKM ≡ Vu
LV

d†
L and VPMNS ≡ Vν

LV
e†
L : ð3:11Þ

As mentioned after Eq. (3.4), for the quarks and charged
leptons, the off-diagonal mixing angles are also exponen-
tially sensitive to the ciψ parameters and hence to the small

symmetry breaking terms. The Vf
L matrix elements in

Eq. (3.10) can then be written as

ðVu;d;e
L Þij ∼ ðVu;d;e

L Þ0ijϵðδciq−δc
j
qÞ ðfor u; d and eÞ; ð3:12Þ

where ðVu;d;e
L Þ0ij are the matrix elements before the flavor

symmetry breaking and fi; jg can be f1; 2g, f1; 3g and
f2; 3g. We see again that, due to exponential warping,
all original symmetries present in the high energy theory
are washed out in the quark and charged lepton sectors.
Contrary to this, in the Dirac neutrino sector, the terms in
the Vν

L are much less sensitive to the symmetry breaking
terms, since their own dependence on the ciψ is mild in the
region of parameters of interest. If we define the eigen-
values of the 5D neutrino Yukawa matrix as

Ydiag
ν ¼ VYL

YνVYR
; ð3:13Þ

then the matrix diagonalizing the 4D effective neutrino
mass matrix is

ðVν
LÞij ∼ ðVYL

Þij: ð3:14Þ

So far the framework is general, and we did not specify the
type of symmetry imposed. In the next two sections we will
consider two concrete implementations, one within flavor
complementarity and then a second within flavor democ-
racy. The background metric considered will always be the
modified AdS5 solution, in the most favorable region of
parameter space.

IV. FLAVOR COMPLEMENTARITY

In the first symmetry implementation, in this section we
study the effects of enforcing a strong correlation between
5D quark and 5D lepton parameters. This scenario is

6Similar expressions are obtained for Vd
L and Vq

L (see for
example [112]).
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motivated by the observation that charged lepton masses
and down-quark masses obey similar patterns. In warped
space models, masses are obtained from exponentially
small overlap integrals, and having similar mass patterns
can indicate that both the 5D Yukawa structure and the 5D
bulk fermion masses (c parameters) are very similar for the
down quarks and for the charged leptons. We therefore
assume that Yd ¼ Ye and cq ¼ cl to a high order of
precision, so that the differences in observed masses
between down quarks and charged leptons come from
deviations in the right-handed bulk parameters cd and ce.
At the same time, inspired by neutrino phenomenology,

we implement a popular 2-3 (μ − τ) symmetry
[22,24,127–148] within the general flavor structure of
the model. We require that all the 5D Yukawa matrices
must be symmetric under two to three permutations and
consider, for simplicity, the case where the 5D fermion bulk
mass matrices c0f are diagonal and degenerate in that basis
[maybe a remnant of some global Uð3Þ flavor symmetry
broken in the Yukawa sector], i.e.,

c0f ¼

0
BB@

c0f 0 0

0 c0f 0

0 0 c0f

1
CCA; ð4:1Þ

where c0f are real parameters, and f denotes both doublets
and singlets f ¼ q; l; u; d; e; ν. In 4D scenarios, discrete
permutation symmetries of the neutrino mass matrix are
known to lead to interesting (and phenomenology viable)
neutrino masses and mixing patterns (such as the tribimax-
imal mixing matrix [38–43], or the bimaximal mixing
matrix [44–49]).
We will impose the zeroth order Yukawa matrices to be

Y0
u;ν ¼ yu

0
B@

ffiffiffi
6

p
d 0 0

d dþ 1 d − 1

d d − 1 dþ 1

1
CA and

Y0
d;e ¼ yd

0
B@

a 1 1

c g e

c e g

1
CA; ð4:2Þ

where the parameters yu, yd, a, c, d, g and e are complex.7

As explained above, we impose the down-type Yukawa
couplings to match the charged lepton ones, i.e.,
Yd ¼ Ye ≡ Yd;e. We further require that the up-type
Yukawa couplings be the same as the neutrino Yukawa

couplings, i.e., Yu ¼ Yν ≡ Yu;ν, in order to reduce free
parameters and enhance the degree of correlation between
quarks and leptons.
The structure of the down-type Yukawa Y0

d;e is set only
by the 2-3 symmetry, but the structure of neutrino-type
Yukawa couplings Y0

u;ν in Eq. (4.2) requires more explan-
ation. The number of parameters has been reduced to two
complex parameters, yu and d, such that the rotation matrix
that diagonalizes Y0

ν is the bimaximal mixing matrix8 and
the eigenvalues of Y0

u;ν are simply given by 3.08d, 1.59d
and 2 (in units of yu). When jdj ∼ 1=6, we should naively
generate a hierarchy between the eigenvalues of the matrix
matching the solar and atmospheric neutrino mass hier-
archies, for the case of a normal ordering in the neutrino
masses. Of course, in warped scenarios, the 5D Yukawa
matrices are in general not directly proportional to the
effective 4D fermion mass matrices. In the neutrino sector
however, since we are near the neutrino mass “plateau” of
the c parameters, the structure of the effective 4D mass
matrix should be very similar to the 5DYukawa matrix. We
therefore expect that the effective 4D neutrino structure
should be diagonalized by a matrix close to the bimaximal
mixing matrix, with a normal ordering in the masses
matching the observed mass differences. 5D wave function
effects, as well as random, but small, symmetry breaking
terms, would perturb this structure, but the main features
survive.
Finally, the two texture zeros of Y0

u in Eq. (4.2) cause the
vanishing of the (21) minor of that matrix, which in turn
contributes to the quark-lepton correlations which we want
to address here; the vanishing, or the smallness of those
entries, is therefore a critical requirement in the setup, as it
links the value of the Cabibbo angle to the PMNS element
V13 (i.e., to θ13). To see how this occurs, let us write the
approximate expression for the Cabibbo angle Vus in
warped extra dimensions,

Vus≃
���� fðc1qÞfðc2qÞ

����
���� ð ~MdÞ21
ð ~MdÞ11

−
ð ~MuÞ21
ð ~MuÞ11

����; ð4:3Þ

where ð ~MuÞij and ð ~MdÞij are the ðijÞ minors of the Yu and
Yd matrices. We can see that the texture zeros in the 5D
Yukawa matrix Yu ensure that ð ~MuÞ12 ¼ 0, so that the
Cabibbo angle is controlled, to first order, by the down
sector Yukawa couplings and by the quark doublet bulk c
parameters, i.e.,

Vus ≃ fðc1qÞ
fðc2qÞ

ð ~MdÞ21
ð ~MdÞ11

: ð4:4Þ
7We also assume that the symmetry is broken by some small

perturbations, i.e., Yi ¼ Y0
i þ δYi and cf ¼ c0f þ δcf , although

we require that the constraints Yd ¼ Ye and cq ¼ cl survive the
flavor symmetry breaking in order to maintain the quark lepton
complementarity.

8The tribimaximal scheme predicts the CP phase in the PMNS
matrix, δ, to be zero, contrary to phenomenological conjectures
which favor δ ¼ − π

2
.
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Since we imposed Y0
d ¼ Y0

e and cq ¼ cl, the left mixing
matrices Wd

L and We
L for the down sector and charged

lepton sector are very similar, and in particular the
12 entries have the exact same first order expansion
ðWd

LÞ12 ≃ ðWe
LÞ12 ≃ Vus. This is the origin of the quark-

lepton complementarity relations we wish to study
here.
In the lepton sector, the effective 4D neutrino mass

matrix should be diagonalized by a unitary matrix, almost
bimaximal, with its third eigenvector (associated to mν

3)
close to ð0;− 1ffiffi

2
p ; 1ffiffi

2
p Þ. The charged lepton Yukawa cou-

pling, on the other hand, will be diagonalized by Wd
L,

since both the Yukawa couplings and the doublet c
parameters are the same in the down quark and charged
lepton sectors. The unitary matrices generating the charged
flavor part of the PMNS matrix VPMNS ¼ ðWe

LÞ†Wν
L should

be close to

We
L ≃

0
BBBBB@

1 Vus Vub

−V�
us 1 Vub

Vus
− fðc2qÞ

fðc3qÞ

− fðc2qÞ
fðc3qÞV

�
us − V�

ub
V�
us
þ fðc2qÞ

fðc3qÞ 1

1
CCCCCA and

Wν
L ≃

0
BBB@

1ffiffi
2

p 1ffiffi
2

p 0

− 1
2

1
2

− 1ffiffi
2

p

− 1
2

1
2

1ffiffi
2

p

1
CCCAþOðϵÞ; ð4:5Þ

where we have Wd
L ≃We

L, and where the OðϵÞ entries
represent small corrections coming from wave-function
effects and flavor symmetry breaking terms. The PMNS
matrix elements Ve3, Vμ3 and Ve2 are then expected
to be

Ve3 ≃
�
1 −

fðc2qÞ
fðc3qÞ

�
Vusffiffiffi
2

p þOðϵÞ; ð4:6Þ

Vμ3 ≃ −
1ffiffiffi
2

p
�
1þ Vub

Vus
−
fðc2qÞ
fðc3qÞ

�
þOðϵÞ; ð4:7Þ

Ve2 ≃ 1ffiffiffi
2

p −
1

2

�
1þ fðc2qÞ

fðc3qÞ
�
Vus þOðϵÞ: ð4:8Þ

Combining these equations we obtain the relations linking
the PMNS and CKM mixing matrix elements:

Ve3 ≃ −Vμ3Vus −
Vubffiffiffi
2

p þOðϵÞ; ð4:9Þ

Ve2 ≃ 1ffiffiffi
2

p
�
1 −

Vubffiffiffi
2

p
�
− Vus

�
1þ Vμ3ffiffiffi

2
p

�
þOðϵÞ: ð4:10Þ

In order to check these relations we perform a random scan
of the free parameters in the Yukawa couplings, fixing only
the absolute value of jdj ¼ 1=7 and allowing its phase and
the rest of the complex parameters of Eq. (4.2), a; c; e; g, to
be random, with absolute values of Oð1Þ. Still at the level
of the Yukawa couplings, we also implement full random
perturbations of order 5% as a small flavor symmetry
breaking effect. The quark and charged lepton c param-
eters are fixed (without a scan) in order to obtain good first
order values of CKM angles and masses, and the precise
numerical values used are such that the flavor symmetry is
also slightly broken. In the neutrino sector we take random
values of c1ν, c2ν and c3ν, with the only constraint that the
values are in the “neutrino plateau” (see Fig. 3) and that
their values remain relatively degenerate. In particular we
consider three windows, where we randomly scan, i.e.,
ciν ∈ ½−2.5;−2.3�, ciν ∈ ½−2.2;−2.0� and ciν ∈ ½−2.0;−1.8�.
During the scan over random parameters, we keep only
points that produce numerically correct CKM angles
jVusj≃ 0.22, jVcbj≃ 0.041 and jVubj≃ 0.0035 [149], as
well as correct neutrino mass differences. In Fig. 5, we test
the correlation between jVe3j and jVμ3j and find it in very
good agreement with Eq. (4.9). The bands in the graph
represent the 3σ uncertainty around the central values
obtained from experimental global fits [150,151]. It is
quite remarkable that the theoretical correlation curve as
well as most of the points generated for the intermediate
window lie within these bounds. Higher values of ciν and
lower values of ciν produce points with too high or too
small jVμ3j.9 Note that the lower values of ciν lie at the end
of the plateau and the beginning of the exponential
sensitivity, and so these points start to show greater
deviations from the expected correlation. For higher ciν
values however, the correlation is expected to be quite
robust, although the experimental values might not agree
with the obtained results. In order to further check this
scenario, we perform the same scan as before but including
all the points generated, without checking for correct CKM
values (although in general they are quite CKM-like). This
means that sometimes, the value of the Cabibbo angle is
larger or smaller than expected due to accidental align-
ments or suppressions coming from the Yukawa couplings
(taken randomly). Nevertheless the expectation is that the
correlation between Ve3 and Vus from Eq. (4.6) should
survive, and indeed we see in Fig. 6 that this is the case.
The exact values of the parameters used in the scan are
obtained by adding small deviations to the zero-order
values. In the case of the c parameters we have thus cif ¼
0.6�Oð0.1Þ for quarks and leptons, and ciν ¼ 2�Oð0.1Þ

9Breaking further the degeneracy in ciν will increase the range
of possible results.
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for right-handed neutrinos. The Yukawa couplings are
those given in Eq. (4.2), with the addition of small random
perturbations.

V. FLAVOR DEMOCRACY

In the second symmetry implementation, in this section
we assume a democratic structure [152–156] for all flavor
parameters, meaning that in our case the 5D Yukawa
couplings, Y0

F are invariant under S3 × S3 symmetry, while
the 5D fermion bulk mass matrices, c0f are invariant
under S3 permutations. Explicitly, the democratic 5D
Yukawa couplings and 5D fermion bulk mass matrices
are given by

YDem
F ∝

0
BB@

1 1 1

1 1 1

1 1 1

1
CCA and cDemf ¼

0
BB@

af bf bf
bf af bf
bf bf af

1
CCA:

ð5:1Þ
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FIG. 6 (color online). Scan of the Vus versus Ve3 with random
perturbations around 2-3 symmetric Yukawa couplings as in the
previous figures, with ciν ∈ ½−2.2;−2.0�, and allowing for un-
physical CKM entries (although still hierarchical), in order to test
the quark-lepton correlation expressed in Eq. (4.6) and shown in
the graph with the diagonal line.
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FIG. 5 (color online). Scans of jVe3j versus jVμ3j (upper panels) and jVe2j versus jVμ3j (lower panels) using the 2-3 symmetric Yukawa
couplings of Eq. (4.2), with jdj ¼ 1=7 and random a; c; e; g, and their phases. Small random general perturbations of order 5% to these
terms are also included. The right-hand neutrino c parameters are also taken randomly, within three different windows, i.e., ciν ∈
½−2.5;−2.3� (left panels), ciν ∈ ½−2.2;−2.0� (center panels) and ciν ∈ ½−2.0;−1.8� (right panels). The points show agreement with the
nontrivial correlation of Eq. (4.9) (represented by the diagonal line in the upper graphs).
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Overall, there are four Yukawa matrices, YDem
u , YDem

d , YDem
e

and YDem
ν , corresponding to the up-quark sector, the down-

quark sector, the charged leptons and the neutrinos. There
are six fermion bulk c matrices, namely cDemq , cDemu , cDemd ,
cDeml , cDeme and cDemν .
Both matrices can be simultaneously diagonalized by the

same unitary transformation resulting in two zero eigen-
values for the Yukawa matrices, and two degenerate
eigenvalues for the bulk mass matrices, cDemf . The 5D
Yukawa and bulk mass matrices thus become, in their
diagonal basis,

Y0
F ¼ y0F

0
BB@

0 0 0

0 0 0

0 0 1

1
CCA and c0f ¼

0
BB@

c1
0

f 0 0

0 c1
0

f 0

0 0 c3
0

f

1
CCA;

ð5:2Þ

where y0F are complex Yukawa couplings and the index F
runs over u, d, e and ν. The elements ci0f are real and the
index fi runs over doublets qi, li as well as singlets ui, di, νi
and ei, with i the flavor index. Note that in this flavor
symmetric limit, all fermions except the t quark, b quark, τ
lepton and ντ neutrino are massless. The 5D flavor structure
of Eq. (5.2) yields the zeroth order CKM and PMNS
matrices for this scenario:

V0
i ¼

0
B@

cos θ0i sin θ0i 0

− sin θ0i cos θ0i 0

0 0 1

1
CA; ð5:3Þ

where i ¼ CKM, PMNS. The angle θ0i , depends on the
detailed structure of the symmetry breaking terms, δYF and
δcf in Eqs. (3.8) and (3.7), and is not fixed by the
underlying S3 × S3 symmetry. Addition of generic small
perturbations, as in Eqs. (3.7) and (3.8), breaks the flavor
symmetry and lifts the degeneracies to produce SM-like
masses and mixing angles. In the neutrino sector, the two
level degeneracy is lifted by a small amount ðδYFÞij. This
suggests a normal hierarchy ordering with one heavier
eigenstate, and with two lighter ones having similar masses.
Using Eq. (3.4) and taking the generic size of the
perturbations as ðδYFÞij ≃ δYν for simplicity yields the
following relations for the neutrino masses:

m1 ∼ δYν v e−ky1ða−1Þ;

m2 ∼ δYν v e−ky1ða−1Þ;

m3 ∼ ð1þ δYνÞv e−ky1ða−1Þ: ð5:4Þ

Neutrino mass data requires v e−ky1ða−1Þ ≃ 0.3 eV and
explaining the hierarchy problem requires ky1 ≃ 35, which
means that the value of the Higgs localization parameter

should be about a≃ 1.8. As explained in a previous
section, this value of a requires some fine-tuning of
parameters in the RS 5D Higgs potential. With modified
AdS5 metrics it is possible to remain in a nontuned region,
and in particular we find that the best region is obtained for
ν ∼ 0.2 and kL1 ∼ 0.3, where the parameter a can have
values as large as 4.5.10 In order to obtain the observed
neutrino mass hierarchy ratio r, defined as
r ¼ ðjm2j2 − jm1j2Þ=ðjm3j2 − jm1j2Þ≃ 0.03, the size of
the Yukawa coupling perturbations δY must be fixed to
δYν ≲ ffiffiffi

r
p ≃ 0.17. There are no restrictions on the values of

bulk mass parameter ciψ ’s (as long as they are within the
bounds a < cν þ cl).
Consider the elements Ve2, Ve3 and Vμ3 of the PMNS

matrix. As mentioned before, due to the plateau in the
neutrino sector, for a small a parameter, the 5D Yukawa
matrix structure is more or less preserved and therefore
these elements should be close to the ones shown in
Eq. (5.3) plus some perturbations. This matrix predicts
very small values for both jVe3j and jVμ3j and so the
perturbations should lift them (especially jVμ3j). The value
of Ve2 on the other hand is highly sensitive to the structure
of the neutrino Yukawa flavor violating matrix δYν

ij and can
be large or small. It turns out that when the c parameters are
such that a < c3l þ cjν and c3l < 1=2 (a region not generic in
usual warped extra dimension scenarios) the lifting of the
zero-order PMNS can be successful and we have

Ve2 ∼ sin θ0ν; ð5:5Þ

Ve3 ∝ δYν
13 fðc3l Þ; ð5:6Þ

Vμ3 ∝ δYν
23 fðc3l Þ: ð5:7Þ

Note in particular that we expect that
Ve3=Vμ3 ∝ δYν

13=δY
ν
23. In Fig. 7 we present a scan of the

model parameters to verify the validity of Eq. (5.5). In this
scan we randomly perturbed the values of the 5D param-
eters Yν, Ye, cl and cν, but kept the values of the three
relevant parameters c3l , δY

ν
13 and δYν

23 fixed. We see from
the figure that the values obtained for the matrix elements
Vμ3 and Ve3 can be made to lie within the experimental
bounds by fixing only these three parameters with all other
terms randomly perturbed. In particular, the formulas show
the sensitivity of these two PMNS mixing angles to the
flavor structure of the neutrino Yukawa matrix δYν, but not
to the charged lepton Yukawa matrix δYl or to the bulk
masses δciψ , except for δc3l . Knowing that experimentally
Vexp
μ3 ≃ 0.65 and Vexp

e3 ≃ 0.15, for the numerical evaluations
we took the bulk mass parameter of the third family lepton

10This is due to the fact that in the modified AdS5 case,
Eq. (5.4) will be slightly modified and higher values of the a
parameter become acceptable.
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doublet c3l < 1=2 to obtain larger mixing angles for small
δY ≃ 0.1, the same as in the quark sector, where c3q ≲ 1=2 is
needed to obtain a large top quarkmass, and thus it could be a
hint of a possible additional family symmetry among the
SUð2Þdoublets of the third family. The particular valuesused
in the scan are c3l ¼ 0.41, δYν

13 ¼ 0.008 and δYν
23 ¼ 0.13,

which produce PMNS angles consistent with the experiment
but with jVμ3j on the lower experimental side. When the
experimental uncertainty decreases and if the central value of
jVexp

μ3 j ends up on the higher end of the current allowed
region, this scenario will be under great pressure. We also
show how indeed the ratio Ve3=Vμ3 depends on the ratio
δYν

13=δY
ν
23 by increasing and decreasing the value of δYν

13,
resulting in larger or smaller values of jVe3j.
In the charged lepton sector and the up- and down-quark

sectors, massless states are also lifted by the flavor
symmetry breaking, and these masses emerge directly
proportional to the generic size of the perturbations in
the Yukawa matrix, δY, as described in [103].

Finally, in Table I we present a set of S3 symmetric
zeroth order bulk c parameters (many other points with the
same symmetry in the parameter space are possible),
which, with a small perturbation of order
δc≃ δY ≃ 10%, can lead to the SM in the modified
AdS5 scenario.11 For this specific point we have taken
the value of the warp exponent at the IR brane, Aðy1Þ, to be
exactly 35. With this assignment, there is only one more
free parameter in the model left to completely fix the
metric. This parameter can be either ν or the position of
the singularity, ys. Therefore one has the freedom to choose
the amount of departure from the pure AdS5. For the point
presented in Table I, we took ν≃ 0.32 and the value of the
localization of the Higgs field operator a is 4.46 as in the
previous example. With this starting point, the SM is then
easily reproduced by breaking the symmetry through
adding perturbations δci’s and δYij’s to lift the degeneracies
of the symmetric scenario. We require the δYij ≲ 0.1 and
δciψ ≲ 0.1 parameters to produce the SM masses, angles
and phases, by systematically using the approximate
formulas in this section up to any order of precision
consistent with the SM. In general the sensitivity to the
precise values of the 5D Yukawa couplings, δYij, is
minimal and randomly chosen matrices with δYij ≲ 0.1
produce all the required SM features.

VI. CONCLUSION

In this work, we have provided a warped extra dimen-
sional framework in which all of the fermions, including
neutrinos, are treated on equal footing, and where the SM
fermion flavor structure can still emerge out of a slightly

TABLE I. A parameter point for democratic flavor symmetry
in the localization parameter space (out of many possible points)
in the zeroth order 5D fermion c parameter space, consistent with
all the experimental and model constraints. For this point, we
have set all the zeroth order Yukawa coefficients to be universal,
y0u ¼ y0d ¼ y0ν ¼ y0e ¼ 4.4, and the Higgs localization parameter
to a ¼ 2.1. The modified AdS5 metric parameters are ν ¼ 1.1,
y1 ¼ 2.8 × 10−17 and Aðy1Þ ¼ 35.

f q l u d e ν

c1
0

f
0.55 0.55 0.55 0.65 0.65 5.00

c3
0

f
0.45 0.45 0.45 0.65 0.65 3.00
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FIG. 7 (color online). Scatter plots of Ve3 versus Vμ3 with random values of δYν, δYe, cl and cν. We have fixed c3l ¼ 0.41 and
ðδYνÞ23 ¼ 0.13 and have then taken ðδYνÞ13 ¼ 0.002 (left panel) ðδYνÞ13 ¼ 0.008 (center panel) and ðδYνÞ13 ¼ 0.032 (right panel). The
concentration of points in a precise region shows that the mixing angles Ve3 and Vμ3 are sensitive to only these three parameters. The
obtained values of Vμ3 lie on the lower side of the experimental window, whereas Ve3 depends on the ratio of Yukawa couplings
ðδYνÞ13=ðδYνÞ23, so that its smallness is due to a slight hierarchy in these.

11A similar point for the pure AdS5 was presented in [103].
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broken universal flavor symmetry. Essential for this sce-
nario is that all the matter fields must be in the bulk and, in
particular, the Higgs field should be as delocalized as
possible from the IR boundary. We have explored a general
warped scenario in which the metric is modified from the
usual AdS5 background. This setup has the advantage of
allowing lower KK masses (∼1 to 2 TeV), while still safe
from precision electroweak tests and flavor bounds. For our
study, the modified metric presents a further advantage, as
the neutrino mass generation in our framework is less fine
tuned. This is due to a numerical accident by which the
neutrino masses generated in the AdS5 background are too
small (at most ∼10−4 eV) in the parameter region of
interest (the neutrino plateau), while in the modified metric
neutrino masses can be up to 2 orders of magnitude larger,
in the same qualitative region of parameter space. A way
out in AdS5 would be to further delocalize the Higgs field,
although requiring such a delocalized Higgs to generically
solve the hierarchy problem, some degree of fine-tuning
must be introduced in the Higgs potential. These tensions
disappear when we use a modified AdS5 geometry, where
our flavor setup can be successfully implemented without
further fine-tuning.
In the parameter region of interest (the neutrino plateau)

the effective 4D neutrino masses do not have exponential
dependence on the bulk mass parameters ci, in contrast with
quark and charged lepton masses. Once a universal flavor
symmetry is slightly broken, the SM flavor structure emerges
due to the inherent features of warped space models, i.e., the
wave-function profiles of light quarks and charged leptons
are exponentially sensitive to the symmetry violating terms,
resulting in masses and mixing controlled by small flavor
violating terms. In the neutrino sector, in the plateau region
with a highly delocalized Higgs field, thewave functions are
not exponentially sensitive to Lagrangian parameters and
thus the original flavor symmetry is essentially preserved.
Overall results are similar in both RS and modified AdS5
types of scenarios, indicating that the precise nature of the
flavor symmetry or the precise nature of themetric solution is
not crucial for the main property of the scenarios.
For illustration, we choose two simple examples of

different symmetries which can provide an implementation
for this mechanism. In the first scenario, we study quark-
lepton complementarity associated with μ-τ symmetry (or
2-3 symmetry), known to lead to phenomenologically
viable neutrino masses and mixings. Assuming equal
Yukawa matrix couplings in the charged lepton and
down-quark sector, and equal Yukawa matrix couplings

in the neutrino and up-quark sector, as well as identical
localization for the doublet quark and lepton representa-
tions, mass differences emerge entirely from singlet rep-
resentation localization. The predictions of this
implementation are definite connections between PMNS
and CKM matrix elements, as given by Eqs. (4.9)
and (4.10).
In the second example, flavor democracy, the 5DYukawa

couplings for the fermions are invariant under the S3 × S3
symmetry, while the 5D fermion bulk mass matrices are
invariant under S3 family permutation invariance. Small
perturbations of Oð10%Þ are enough to generate the full
flavor structure of the SM in both quark and lepton sectors,
and the ratio of PMNS matrix elements can be simply
expressed in terms of these perturbations. Explicit expres-
sions appear in Eq. (5.5). Localization of the third lepton
family follows localization of the third quark family, hinting
at an additional quark-lepton symmetry. As distinctive
predictions and correlations appear in each implementation,
the model studied here would yield a very promising novel
laboratory for studying fermion flavor symmetries.
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APPENDIX: EXPLICIT EXPRESSIONS
FOR THE FIELD PROFILES

Here we derive the explicit expressions for the fermion
and Higgs profiles, as well as for the Yukawa couplings for
the modified AdS5 scenario. The fermion profiles are given
by

q0;iL ðyÞ ¼ qi0e
ð2−ciqÞAðyÞ; u0;iR ¼ ui0e

ðciuþ2ÞAðyÞ; ðA1Þ

while the Higgs profile is

hðyÞ ¼ h0eaky; ðA2Þ

with

qi0 ¼
ffiffiffi
k

p
ϵ
1
2
−ciqfðciqÞ≡

ffiffiffi
k

p
fðciqÞ;

ui0 ¼
ffiffiffi
k

p
ϵ
1
2
þciufð−ciuÞ≡

ffiffiffi
k

p
fð−ciuÞ; ðA3Þ

and

h0 ≡
ffiffiffi
k

p
e−ða−1Þkysh0

h0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kysð2ða − 1ÞkysÞ−
2

ν2
−1ðΓð1þ 2

ν2
; 2ða − 1Þkðys − y1ÞÞ − Γð1þ 2

ν2
; 2ða − 1ÞkysÞÞ

q ; ðA4Þ
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where

ϵ ¼ e−AðyÞ ¼ e−ky1
�
1 −

y1
ys

� 1

ν2 : ðA5Þ

The reduced profile functions fðcÞ are defined as fðcÞ≡ ϵ
1
2
−cfðcÞ, with

fðcÞ≡ ϵc−
1


kyseð1−2cÞkysðð1 − 2cÞkysÞ
1−2c
ν2

−1ðΓð1 − 1−2c
ν2

; ð1 − 2cÞkðys − y1ÞÞ − Γð1 − 1−2c
ν2

; ð1 − 2cÞkysÞÞ
q : ðA6Þ

Note that the Higgs and fermion profiles are defined differently, due to the specific Higgs potential we have considered
[157]. We can now write down the most general form for the Yukawa couplings as

yuij ¼ ~Yu
ijh0fðciqÞfð−cjuÞ; ðA7Þ

where the ~Yij’s are related to the 5D Yukawa couplings via the equation

~Yu
ij ≡ Yu

ij

ffiffiffi
k

p
ϵ1−cqþcuysekysða−c

i
qþcjuÞ½kysða − ciq þ cjuÞ�

cju−c
i
q

ν2
−1

×

�
Γ
�
ciq − cju

ν2
þ 1; ða − ciq þ cjuÞkðys − y1Þ

�
− Γ

�
ciq − cju

ν2
þ 1; ða − ciq þ cjuÞkys

��
: ðA8Þ

Before switching to the expressions in the RS metric, we
use the asymptotic expansion of the incomplete gamma
function

Γða;zÞ∼za−1e−z
�
1þa−1

z
þða−1Þða−2Þ

z2
þOðz−3Þ

�
:

ðA9Þ
Then we get the following asymptotic behavior, up to the
first order in Oðza−1Þ, with ϵ defined as in Eq. (A5):

fðcÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c

1 − ϵ1−2c

r
; ðA10Þ

h0 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − aÞ

1 − e2aky1ϵ2

r
; ðA11Þ

~Yu
ij ∼

eaky1ϵc
i
q−c

j
u − 1

a − ciq þ cju
Yu
ij: ðA12Þ

Keeping the Oðza−2Þ term not only gives a much better
approximation for the top and neutrino plateaus, but it also
gives a more transparent expression for these functions:

fðcÞ ∼ ϵc−
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2cÞkysν2

kysν2ðϵ2c−1 − 1Þ − ϵ2c−1 þ ð ys
ys−y1

Þ

s
; ðA13Þ

h0 ∼ ϵ−1e−aky1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − aÞ2kysν2

kysν2ð1 − aÞðϵ−2e−2aky1 − 1Þ − ϵ−2e−2aky1 þ ð ys
ys−y1

Þ

s
: ðA14Þ

From these formulas, valid for the general modified AdS5 metric, one can see that, taking the limits ν → ∞ and ys → ∞ we
obtain the expressions for the profiles in the RS metric:

fRSðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c

1 − ϵ1−2c

r
≡ ϵc−

1
2fRSðcÞ; hRS0 ¼ eð1−aÞky1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − aÞ
ϵ2ða−1Þ − 1

r
; ðA15Þ

~YRS;u
ij ≡ ϵ−ða−ciqþcjuÞ − 1

a − ciq þ cju
YRS;u
ij ; yRS;uij ¼ ~YRS;u

ij hRS0 fRSðciqÞfRSð−cjuÞ; ðA16Þ

where ϵ≡ e−ky1 .
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