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We consider the possibility that the heavier CP-even Higgs boson (H0) in the minimal supersymmetric
standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the
126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal
supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the
supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with
universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h0),
which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary
gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs
boson can decay into various invisible final states for a considerable region of the MSSM parameter space
with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal
boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the
MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified
scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire
Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the
searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the
extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter
space at the LHC.
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I. INTRODUCTION

With the discovery [1–4] of a neutral state around a mass
of 126 GeV at the CERN Large Hadron Collider (LHC), a
new era has begun in our quest for the understanding of the
fundamental constituents of matter and the forces between
them. Although the properties of the discovered state are
consistent with the properties of the standard model (SM)
Higgs boson, it also opens up a window for searches of new
physics. It is well known that the SM Higgs sector suffers
from the naturalness and hierarchy problems, thereby
rendering a light Higgs boson technically unnatural. The
most popular, and well-motivated, extension of the SM
which renders a light Higgs boson technically natural
includes supersymmetric models [5], of which the minimal
supersymmetric standard model (MSSM) is perhaps the
most economical, and hence compelling [6]. In the MSSM
the Higgs spectrum is richer as compared to the Higgs
sector of the SM, and consists of two Higgs superfields (H1

and H2). After spontaneous symmetry breaking the model
contains two CP-even Higgs bosons (h0,H0;Mh0 < MH0),
one CP-odd Higgs boson (A0), and two charged states
(H�). At the tree level the Higgs sector of the MSSM is
rather constrained and is described by two parameters,
usually taken to be the mass of A0 (MA) and the ratio of the
vacuum expectation values of the two Higgs fields,
tan β≡ hH0

2i=hH0
1i. Discovery of more than one Higgs

boson at the LHC would point towards an extension of the

SM, of which supersymmetry as embodied in the minimal
supersymmetric standard model is a leading candidate. It
would, therefore, be important to discover an extended
Higgs sector at the LHC, if it exists. However, from the
point of view of supersymmetry, it is crucial to discover the
supersymmetric partners of the SM states as predicted by
the MSSM such as squarks, gluinos and sleptons, as well as
neutralinos and charginos. In the absence of any signal for
supersymmetric particles, it would, therefore, be appro-
priate to ask the question of whether nonobservation of an
extended Higgs sector would imply that the new physics is
at a much higher scale. This question is intimately con-
nected with the decay patterns of the Higgs bosons of the
MSSM. It is possible that the Higgs bosons of the MSSM
may decay into some of the lighter particles of the super-
symmetric spectrum at a rapid rate. This, in particular,
would include light neutralino pairs. This decay can be an
important decay channel in certain regions of the MSSM
parameter space. Hence we need to study the invisible
decay of the second lightest Higgs boson extensively.
Another aspect of this issue is that even though MSSM
could be ruled out, there are appealing alternatives, namely
the nonminimal or next-to-minimal supersymmetric stan-
dard model (NMSSM) whose Higgs [7–14] and neutralino
[15–17] sectors are richer than the MSSM, thereby increas-
ing the possibility of an invisibly decaying Higgs boson.
Furthermore, in the NMSSM there is a possibility of a low
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mass pseudoscalar in the Higgs spectrum. Thus, there is a
distinct possibility of the scalar Higgs boson(s) decaying
invisibly into these pseudoscalars [18].
The invisible Higgs decay width has been constrained by

various groups by performing fits of the signal strengths in
various search channels using the latest LHC Higgs data
[19,20]. Direct searches for invisible decaying Higgs
produced in association with a Z boson have been carried
out by the ATLAS [21,22] and CMS [23] collaborations at
the LHC, and they have excluded branching ratios of more
than 65% and 75%, respectively, with 95% CL. The CMS
Collaboration [24] has also carried out a similar search for
invisible branching ratios of the Higgs boson produced in
the vector boson fusion process and put an upper limit of
69% on the invisible branching ratio of the lightest Higgs
boson. All these searches have in turn put constraints on the
MSSM parameter space. Although specific regions of the
MSSM parameter space have been ruled out by these
experiments, there is still a large portion of the MSSM
parameter space which remains unexplored. Recently, the
question of the invisible decays of the lightest Higgs boson
in the context of the MSSM and the NMSSM have been
discussed in detail [18,25]. In this paper we carry this
investigation further by analyzing the decay patterns and
the invisible decays of the heavier Higgs boson (H0) of the
MSSM. For this purpose we identify the state observed near
126 GeV at the CERN LHC with the lightest Higgs boson
(h0) of the MSSM. We systematically study the scenarios
under which such a possibility can arise and discuss
different aspects of these scenarios.
The plan of the paper is as follows. In Sec. II we discuss

the relevant features of the Higgs sector of the MSSM and
enumerate the two regions, the decoupling and the non-
decoupling regions, of its parameter space. In Sec. III we
discuss the neutralino sector and the neutralino mass matrix
of the MSSM with two different kinds of grand unified
theory (GUT) boundary conditions on its parameters,
namely universal and nonuniversal boundary conditions
and the composition of neutralinos. In Sec. IV we sum-
marize the analytical expressions for the decay of second
lightest Higgs boson to neutralinos in the MSSM with an
appropriate choice of the parameter space, taking all the
experimental contraints into account. In Sec. V we present
our calculations and numerical results for the invisible
decay of the second lightest Higgs boson and comment
on how some of them may be rendered visible (quasi-
invisibility). Finally, in Sec. VI we summarize our results
and conclusions.

II. HIGGS SECTOR OF THE MINIMAL
SUPERSYMMETRIC STANDARD MODEL

The ATLAS [1,2] and CMS [3,4] experiments at the
CERN LHC have independently observed a resonance,
whose properties are consistent with the SM Higgs boson.
The ATLAS experiment after collecting data at an inte-
grated luminosity of 4.8 fb−1 at

ffiffiffi
s

p ¼ 7 TeV in 2011 and
5.8 fb−1 at

ffiffiffi
s

p ¼ 8 TeV in 2012 confirmed the evidence
for the production of a neutral boson with a measured mass
of 126.0� 0.4ðstatÞ � 0.4ðsystÞ GeV, with a significance
of 5.9σ. The CMS experiment, after collecting 5.1 fb−1 at
7 TeVand 5.3 fb−1 at 8 TeV, reported evidence of a neutral
boson at 125.3� 0.4ðstatÞ � 0.5ðsystÞ GeV with a signifi-
cance of 5.8σ. As mentioned in the Introduction, within the
framework of the MSSM, we identify this resonance with
the lightest Higgs boson of the model. We recall that the
tree-level Higgs boson masses are determined by CP-odd
Higgs boson mass MA and tan β. Requiring that the
production cross section of a 126 GeV Higgs boson
decaying to two photons agrees with the one observed at
the CERN LHC divides the MSSM Higgs parameter space
into two distinct regions [26]:

(i) The nondecoupling regime whereMA≲130GeV.—
In this region the heavier CP-even state H0 is SM-
like, and the light CP-even Higgs state h0 and the
CP-odd Higgs state A0 are almost degenerate in
mass [27] and close to MZ, while the charged Higgs
bosons are nearly degenerate withH0 [28]. The LHC
phenomenology for this sector has been discussed in
the past [29–31].

(ii) The decoupling limit where MA ≳ 300 GeV.—In
this region the light CP-even Higgs boson h0 is SM-
like, and all the other physical Higgs bosons are
heavy and almost degenerate with A0 [32]. The
decoupling properties of the MSSMHiggs sector are
not special to supersymmetry. Rather, they are a
generic feature of nonminimal Higgs sectors.

The nondecoupling scenario, which leads to a light SM-
like Higgs, is highly constrained. Thus, the decoupling
regime is a more viable scenario as far as the MSSM Higgs
search results are concerned. Therefore, we consider only
this scenario in this paper. For the nondecoupling regime of
supersymmetric models, see, e.g., Ref. [25].
Having summarized the experimental results and the

different scenarios, we now summarize the aspects of
the MSSM Higgs sector that are relevant to our discussion.
The massesMh=H and the mixing angle α of the neutral CP-
evenHiggs states arewell known.These can bewritten as [33]

M2
h=H ¼ 1

2
ðM2

A þM2
Z þ ΔM2

11 þ ΔM2
22∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

A þM4
Z − 2M2

AM
2
Zc4β þ C

q
Þ; ð2:1Þ
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tan α ¼ 2ΔM2
12 − ðM2

A þM2
ZÞsβ

ΔM2
11 − ΔM2

22 þ ðM2
Z −M2

AÞc2β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

A þM4
Z − 2M2

AM
2
Zc4β þ C

q ; ð2:2Þ

where

C ¼ 4ΔM4
12 þ ðΔM2

11 − ΔM2
22Þ2 − 2ðM2

A −M2
ZÞðΔM2

11 − ΔM2
22Þc2β − 4ðM2

A þM2
ZÞΔM2

12s2β; ð2:3Þ

and c4β ≡ cos 4β, c2β ≡ cos 2β, cβ ≡ cos β, and sβ ≡ sin β.
Furthermore, ΔMij; i; j ¼ 1; 2 quantify the radiative cor-
rections to the CP-even Higgs boson mass matrix.
The dominant radiative corrections arising from the top-

stop sector are contained in ΔM22. Identifying the reso-
nance discovered at 126 GeV with h0, one can then write
the dominant radiative correction to the Higgs boson mass
matrix in terms of the mass Mh of h0 as

ΔM2
22 ¼

M2
hðM2

A þM2
Z −M2

hÞ −M2
AM

2
Zc

2
2β

M2
Zc

2
β þM2

As
2
β −M2

h

; ð2:4Þ

where we have used the approximation ΔM22 ≫
ΔM11;ΔM12, and where MA is the mass of the pseudo-
scalar Higgs boson A0. We note that there is another
solution for ΔM2

22, which is unphysical [34] and is,
therefore, not relevant.
With this approximation we can write the mass ofH0 and

the mixing angle α in terms of MA and tan β as

M2
H ¼ ðM2

A þM2
Z −M2

hÞðM2
Zc

2
β þM2

As
2
βÞ −M2

AM
2
Zc

2
2β

M2
Zc

2
β þM2

As
2
β −M2

h

;

ð2:5Þ

α ¼ −tan−1
� ðM2

Z þM2
AÞcβsβ

M2
Zc

2
β þM2

As
2
β −M2

h

�
: ð2:6Þ

Thus, in principle, one can calculate the mass of H0.
However, in actual practice the mass of H0 will depend on
other parameters of the model, which include the super-
symmetry conserving Higgs bilinear parameter μ and the
supersymmetry breaking scale MS. In order to obtain a
handle on the behavior of solutions of interest to us, we
perform a numerical scan using the package CalcHEP [35].
For our study we use a set of inputs which are consistent
with the known experimental constraints, and also which
have the possibility of leading to spectra that may be visible
in the near future. Thus, we are guided by the principle of
search for SUSY in upcoming experiments and choices of
parameters that continue to make low energy SUSY a
viable option to address the naturalness and hierarchy
problems of the SM. We have calculated the dependence
of MH on μ for different values of tan β and the super-
symmetry breaking scaleMS. In Figs. 1 and 2 we show the
dependence of MH on μ for values of MA ¼ 300 GeV and

MA ¼ 500 GeV. From these two figures we conclude that
MH does not vary significantly as a function of μ. For fixed
values of tan β it has a weak dependence on MS. However,
MH has a significant dependence onMA and tan β, and can
be described fully in terms of these two parameters when
we use the fact that Mh is in the range 123–129 GeV. This
feature was pointed out earlier in Refs. [36–38]. Our results
agree with these works. In the present work these results
have been obtained numerically by using as input the
parametersMS, tan β and μ as detailed above, and adjusting
the scalar trilinear coupling At so as to haveMh in the range

tan 5, MS 1.5 TeV

tan 2.5, MS 3 TeV

1000 500 0 500 1000
298

300

302

304

306

308

310

312

FIG. 1 (color online). MH as a function of μ forMA ¼ 300 GeV
for two different values of tan β and the supersymmetry breaking
scale MS.

tan 5, MS 1.5 TeV

tan 2.5, MS 3 TeV

1000 500 0 500 1000

496
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502

504
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508
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FIG. 2 (color online). MH as a function of μ forMA ¼ 500 GeV
for two different values of tan β and the supersymmetry breaking
scale MS.
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123–129 GeV. We have checked that the results of our
calculations are in good agreement with those of [33].

III. THE NEUTRALINO SECTOR OF THE MSSM
WITH GUT BOUNDARY CONDITIONS

In order to study the invisible decays of H0 to neutra-
linos, we consider the neutralino sector of the MSSM in
some detail. For this purpose we consider the neutralino
mass matrix of the model and the implications of the GUT
boundary conditions on the neutralino spectrum. This

analysis will lead to a general understanding of the nature
of mixing between the gaugino and Higgsino states, as well
as those of the physical neutralino states after electroweak
symmetry breaking.
We recall that the neutralinos are an admixture of the

fermionic partners of the two Higgs doublets, H1 and H2,
and the fermionic partners of the neutral gauge bosons.
When the electroweak symmetry is broken, the physical
mass eigenstates are obtained from the diagonalization of
the neutralino mass matrix [39–41]

MMSSM ¼

0
BBB@

M1 0 −mZ sin θW cos β mZ sin θW sin β

0 M2 mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cos β mZ cos θW cos β 0 −μ
mZ sin θW sin β −mZ cos θW sin β −μ 0

1
CCCA; ð3:1Þ

where M1 and M2 are the Uð1ÞY and the SUð2ÞL soft
supersymmetry breaking gaugino mass parameters, μ is the
Higgs(ino) mass parameter, MZ is the Z boson mass, θW is
the weak mixing angle and tan β≡ v2=v1 is the ratio of the
vacuum expectation values of the neutral components of the
two Higgs doublet fields H1 and H2. The gaugino mass
parameters M1 and M2 may have some relation between
them, or they can be completely arbitrary. If we assume that
the MSSM is embedded in a grand unified theory, then the
boundary conditions at the GUT scale imply a definite
relation between the gaugino masses, which would imply a
relation between them at the weak scale following the
renormalization group evolution. Here we consider two
types of boundary conditions on Mi that follow from
embedding of MSSM in a grand unified theory, namely
the universal boundary conditions and the nonuniversal
boundary conditions.

A. Universal boundary condition

In the MSSM, with universal gaugino masses at the
grand unified scale, usually referred to as mSUGRA, the
soft supersymmetry breaking gaugino mass parameters Mi
and the corresponding gauge couplings αiði ¼ 1; 2; 3Þ
satisfy the boundary condition

M1 ¼ M2 ¼ M3 ¼ m1=2; ð3:2Þ

α1 ¼ α2 ¼ α3 ¼ αG; ð3:3Þ

at the grand unified scale MG. Using the one-loop renorm-
alization group equations [42] for the gaugino masses and
the gauge couplings leads to the ratio

M1∶M2∶M3 ≃ 1∶2∶7.1; ð3:4Þ

for the soft gaugino masses at the electroweak scale
MZ. In the following, for definiteness, we consider the
value of tan β ¼ 10. If one is interested in Higgs
bosons decaying invisibly into light neutralinos, it is
appropriate to consider a light or massless eigenstate of
the mass matrix (3.1). It was shown earlier [18,25] that with
the gaugino mass parameters satisfying the universal
boundary conditions at the GUT scale, it is not possible
to satisfy the masslessness condition for the lightest
neutralino following from the determinant of the mass
matrix (3.1) and the experimental constraints as implied by
the LEP experiments [43]. Thus, a massless neutralino is
ruled out with universal boundary conditions (3.3) at the
GUT scale.

B. Nonuniversal boundary condition

Universal soft supersymmetry breaking gaugino masses
are not the only possibility in a grand unified theory. In fact,
nonuniversal boundary conditions for the soft gaugino
masses can arise quite naturally in SUð5Þ; SOð10Þ and
E6 supersymmetric grand unified theories.
In grand unified supersymmetric models, gaugino

masses are generated by a nonsinglet chiral superfield
Φn that appears linearly in the gauge kinetic function fðΦÞ,
which is an analytic function of the chiral superfields Φ in
the theory [44]. The gaugino masses are generated from the
coupling of the field strength superfield Wa with fðΦÞ,
when the auxiliary part FΦ of a chiral superfield Φ in fðΦÞ
gets a vacuum expectation value (VEV). When FΦ gets a
VEV hFΦi, we obtain the Lagrangian containing the
gaugino masses,

Lg:k: ⊃
hFΦiab
MP

λaλb þ H:c:; ð3:5Þ
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where λa;b are gaugino fields. Here, we denote by λ1, λ2

and λ3 the Uð1ÞY , SUð2ÞL and SUð3ÞC gaugino fields,
respectively. Since the gauginos belong to the adjoint
representation of the gauge group, Φ and FΦ can belong
to any of the representations appearing in the symmetric
product of the two adjoint representations of the unified
gauge group.
For example, in the case where the SM gauge group is

embedded in the grand unified gauge group SUð5Þ, the
symmetric product of the two adjoint (24-dimensional)
representations of SUð5Þ leads to

ð24 ⊗ 24ÞSymm ¼ 1 ⊕ 24 ⊕ 75 ⊕ 200: ð3:6Þ

In Table I we summarize the ratios of gaugino masses
which result when FΦ belongs to different representations
of SUð5Þ in the decomposition (3.6).
Similarly, nonuniversal gaugino masses can arise

from the embedding of MSSM in a grand unified theory
based on SOð10Þ and E6. For these gauge groups we have
the decomposition
SOð10Þ:

ð45 ⊗ 45ÞSymm ¼ 1 ⊕ 54 ⊕ 210 ⊕ 770; ð3:7Þ

E6:

ð78 ⊗ 78ÞSymm ¼ 1 ⊕ 650 ⊕ 2430: ð3:8Þ

The analogs of Table I for the gauge groups SO(10) and E6

are given in Appendix A of [18], where a detailed
discussion has been presented on the phenomenological
consequences of different choices of the grand unified
gauge group. We note that in the present work we are not
necessarily looking at very light neutralinos as the second
lightest Higgs boson can be heavy and can decay into
neutralinos that are massive.

C. Composition of neutralinos

The composition of the lightest neutralino ~χ01 in terms of
the gauginos and Higgsinos can be written as [45,46]

~χ01 ¼ Z11
~Bþ Z12

~W3 þ Z13
~H0
1 þ Z14

~H0
2 ð3:9Þ

where

Z1i ¼
�
1;−

cot θWðM1 −mχ0
1
Þ

M2 −mχ0
1

;
ðM1 −mχ0

1
Þðμ sin β þmχ0

1
cos βÞ

mZ sin θWðmχ0
1
þ μ sin 2βÞ ;−

ðM1 −mχ0
1
Þðμ cos β þmχ0

1
sin βÞ

mZ sin θWðmχ0
1
þ μ sin 2βÞ

�
: ð3:10Þ

The composition of the second lightest neutralino can be written as

~χ02 ¼ Z21
~Bþ Z22

~W3 þ Z23
~H0
1 þ Z24

~H0
2 ð3:11Þ

where

Z2i ¼
�
1;−

cot θWðM1 −mχ0
2
Þ

M2 −mχ0
2

;
ðM1 −mχ0

2
Þðμ sin β þmχ0

2
cos βÞ

mZ sin θWðmχ0
2
þ μ sin 2βÞ ;−

ðM1 −mχ0
2
Þðμ cos β þmχ0

2
sin βÞ

mZ sin θWðmχ0
2
þ μ sin 2βÞ

�
: ð3:12Þ

The possibility of H0 decaying into neutralinos depends on
the mass of the neutralinos into which it can decay. Our
objective is to study the invisible decay of the second
lightest Higgs boson into neutralinos. For this purpose, we
carry out a study of the neutralino mass as a function ofM1

and μ, as these parameters, apart from M2, control the
neutralino mass matrix, and hence the neutralino mass
eigenvalues. We have considered the constant mass
curves for both the lightest and the second lightest
neutralinos. Furthermore, we have considered each of

the scenarios, namely, the case of arbitrary gaugino
masses, universal masses, and nonuniversal gaugino
masses, respectively, at the grand unified scale in Figs. 3,
4, 5, 6, 7 and 8.
For arbitrary supersymmetry breaking gaugino masses at

the grand unified scale, we choose the parameter
M2 ¼ 200 GeV, a choice we shall discuss in the following.
It is obvious that choosing universal or nonuniversal
boundary conditions at the grand unified scale is a rather
restrictive condition.

TABLE I. Ratios of the gaugino masses at the GUT scale in the
normalizationM1ðGUTÞ ¼ 1, and at the electroweak scale in the
normalization M1ðEWÞ ¼ 1 for F-terms in different representa-
tions of SUð5Þ. These results are obtained by using 1-loop
renormalization group equations.

SUð5Þ MG
1 MG

2 MG
3 MEW

1 MEW
2 MEW

3

1 1 1 1 1 2 7.1
24 1 3 −2 1 6 −14.3
75 1 − 3

5
− 1

5
1 −1.18 −1.41

200 1 1
5

1
10

1 0.4 0.71
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FIG. 3. The contours of constant lightest neutralino massm~χ0
1
in

the MSSM with arbitrary gaugino masses at the GUT scale in the
μ −M1 plane. Here the value of the parameter M2 ¼ 200 GeV.
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FIG. 4. The contours of constant second lightest neutralino
massm~χ0

2
in the MSSMwith arbitrary gaugino masses at the GUT

scale in the μ −M1 plane. Here the value of M2 ¼ 200 GeV.
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FIG. 5. The contours of constant lightest neutralino mass m~χ0
1

in the μ −M1 plane in the MSSM with universal soft gaugino
masses at the GUT scale.
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FIG. 6. The contours of constant second lightest neutralino
mass m~χ0

2
in the μ −M1 plane in the MSSM with universal soft

gaugino masses at the GUT scale.
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FIG. 7. The contours of constant lightest neutralino massm~χ0
1
in

the μ −M1 plane with the MSSM embedded in SO(10), and with
nonuniversal soft gaugino masses at the GUT scale.
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FIG. 8. The contours of constant second lightest neutralino
mass m~χ0

1
in the μ −M1 plane with the MSSM embedded in E6,

and with nonuniversal soft gaugino masses at the GUT scale.
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In Figs. 3 and 4we plot the contours of the constant lightest
and second lightest neutralinomasses in the μ −M1 plane for
arbitrary gaugino masses at the GUT scale. It is clear thatm~χ0

1

increases with M1 but does not change significantly with μ.
On the other hand the second lightest neutralino mass m~χ0

2

does not change appreciably with M1 but increases with μ.
This is primarily because ~χ01 is binolike, and ~χ02 is a
Higgsinolike state. For low values of M1, the mass of ~χ01 is
almost equal to M1, and it is binolike for all values of μ.
Furthermore, when M1 > μ, ~χ01 is Higgsinolike. At large μ,
and whenM1 > M2ð200 GeVÞ, ~χ01 will be winolike. We see
from Fig. 3 that with arbitrary gaugino masses and withM1

larger than 150GeVandμ larger than 250GeV, themass of ~χ01
approaches 150 GeV, and thus, beyond these values, a
300 GeV Higgs cannot decay into two lightest neutralinos.
For low values of M1 and with μ < M2ð200 GeVÞ,

~χ02 is Higgsinolike. Furthermore, for values of μ >
M2ð200 GeVÞ, ~χ02 is winolike for all values of M1. For
values of μ < M1, ~χ02 is Higgsinolike. In Fig. 4 we see that
for M1 ≥ 150 GeV and μ ≥ 200 GeV, the mass of ~χ02
approaches 150 GeV, and hence for values larger than
these, a 300 GeV second lightest Higgs cannot decay into
two second lightest neutralinos. Thus, only when M1 is
large and μ is relatively small, or if μ is large and M1 is
relatively small, H0 can decay invisibly into neutralinos.
It is instructive to consider here the case of universal

boundary conditions on the gaugino masses at the grand
unified scale. Considering the values of M1 in the range
200–400 GeV, which implies values of M2 in the range of
400–800 GeV, for low values of μ, ~χ01 is Higgsino-like, and
for large values of μ, where μ > M1; μ, m~χ0

1
is binolike.

Similarly, for values of M2 > M1; μm~χ0
2
is Higgsinolike. In

Figs. 5 and 6 we plot the contours of constant neutralino
masses in the μ −M1 plane for the case of universal
boundary conditions on the soft gaugino masses at the
grand unified scale. Here m~χ0

1
and m~χ0

2
do not change

significantly as a function ofM1. However, both the masses
are an increasing function of μ. From Fig. 5 we see that with
μ larger than 175 GeV, m~χ0

1
approaches 150 GeV, and thus,

a 300 GeV Higgs cannot decay into two lightest neutralinos
for the case of universal boundary conditions. For values of
μ larger than 275 GeV, m~χ0

1
approaches 250 GeV for

M1 ≥ 300 GeV. Hence, for these values of μ, a 500 GeV
Higgs cannot decay into lightest neutralinos.. However, for
lowM1 larger values of μ will be allowed. In Fig. 6 we can
see m~χ0

2
dominantly depends on μ. For μ larger than

150 GeV, m~χ0
2
crosses the 150 GeV limit and the decay

of the 300 GeV second lightest Higgs into two second
lightest neutralinos will be forbidden for these values of μ
for any value ofM1. Similarly, for a 500 GeV Higgs boson,
μ ¼ 250 GeV is the limit because for higher values of μ,
m~χ0

2
approaches a value of 250 GeV.

In Figs. 7 and 8 we discuss two typical examples of
nonuniversal boundary conditions on the gaugino masses at
the GUT scale. The first is the case of SO(10) GUTwith the
condition that the three gaugino masses are in the ratio
M1∶M2∶M3 ¼ 1∶6∶ −14.3, and the second one is
with E6 GUT with the boundary condition in which the
three gaugino masses are in the ratio M1∶M2∶M3 ¼
1∶50.2∶70.9. The case of SOð10Þ is akin to that universal
boundary condition discussed above because the range of
M2 values considered is greater than the range ofM1 and μ.
The range of values ofM1 considered here is 100–300 GeV.
For M1 < μ, ~χ01 is bino dominated, and for M1 > μ, ~χ01 is
Higgsino dominated. On the other hand, the particular
choice of E6 representation is very interesting because this
is the only GUT representation in which the lightest CP-
even Higgs h0 can decay into two lightest neutralinos. With
the E6 boundary condition we can see that the mass of the
lightest neutralinos does not depend on μ, whereas in the
case of SO(10) the mass depends on bothM1 and μ. For this
E6 representation the range ofM1 values considered here is
20–80 GeV, with values of M1 < μ;M2 for the entire
parameter space. Hence in this case ~χ01 is always binolike.
We recall here that there are additional constraints

coming from the LEP analysis of the Z0 decay in invisible
modes, on the μ −M1 parameter space. The invisible decay
of the lightest Higgs boson to the lightest neutralinos, if
kinematically allowed, is mainly constrained by the Z
invisible decay rate. This invisible decay width has been
measured very precisely by the LEP experiments [43] with

ΓðZ0 → ~χ01 ~χ
0
1Þ < 3 MeV: ð3:13Þ

The Z width to a pair of lightest neutralinos can be written
as [47]

ΓðZ0 → ~χ01 ~χ
0
1Þ¼

GFm3
Z

6
ffiffiffi
2

p
π
ðZ2

13−Z2
14Þ

�
1−

4m2
~χ0
1

m2
Z0

�3=2

: ð3:14Þ

For our analysis we have taken tan β ¼ 10 [28]. The
trilinear soft supersymmetry breaking coupling At has been
adjusted in order to obtain a lightest Higgs boson mass of
≈126 GeV. The gluino mass is taken to be 1400 GeV [48],
and the squarks are assumed to have a mass above 1 TeV
[49], thereby respecting the current experimental bounds.
In our calculations we have imposed the constraint of the

lightest chargino mass bound of m~χþ > 94 GeV following
from the LEP experiments as well as the bound from the
invisible Z0 decay width coming from Z0 decay into
neutralinos [50].
Having discussed in some detail the correlations among

the parameters of the neutralino sector, we now turn to the
implications of this analysis for the possible invisible
decays of H0 for a choice of parameters which are
consistent with the constraints discussed in this section.
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IV. DECAY OF THE SECOND LIGHTEST HIGGS BOSON TO NEUTRALINOS IN THE MINIMAL
SUPERSYMMETRIC STANDARD MODEL

We now address the main issue of this paper, namely the invisible decays of the heavier CP-even Higgs boson H0 into
neutralinos in the MSSM [51,52]. We consider these decays in the decoupling regime of the MSSM, where the Higgs boson
H0 is relatively heavy. In the decoupling regime, the heavy H0 can decay into neutralinos which are not necessarily light.
For this purpose we catalog the decay widths of the heavier CP-even Higgs boson into a pair of lighter neutralinos in the

MSSM. These can be written as

ΓðH0 → ~χ01 ~χ
0
1Þ ¼

GFM2
WMH

2
ffiffiffi
2

p
π

ð1 − 4m2
~χ0
1

=M2
HÞ3=2½ðZ12 − tan θWZ11ÞðZ13 cos α − Z14 sin αÞ�2; ð4:1Þ

where Zij are the elements of the matrix Z which diagonalizes the neutralino mass matrix (3.1). In the decoupling limit,
when the mass of the pseudoscalar A0 is large compared to the mass of the Z boson MZ, the Higgs mixing angle
α → β − π=2, so that the decay width (4.1) can be written as

ΓðH0 → ~χ01 ~χ
0
1Þ ¼

GFM2
WMH

2
ffiffiffi
2

p
π

ð1 − 4m2
~χ0
1

=M2
HÞ3=2½ðZ12 − tan θWZ11ÞðZ13 sin β þ Z14 cos βÞ�2: ð4:2Þ

Similarly, the decay width of H0 into a pair of second lightest neutralinos can be written as

ΓðH0 → ~χ02 ~χ
0
2Þ ¼

GFM2
WMH

2
ffiffiffi
2

p
π

ð1 − 4m2
~χ0
2

=M2
HÞ3=2½ðZ22 − tan θWZ21ÞðZ23 cos α − Z24 sin αÞ�2; ð4:3Þ

which in the decoupling regime becomes

ΓðH0 → ~χ02 ~χ
0
2Þ ¼

GFM2
WMH

2
ffiffiffi
2

p
π

ð1 − 4m2
~χ0
2

=M2
HÞ3=2½ðZ22 − tan θWZ21ÞðZ23 sin β þ Z24 cos βÞ�2: ð4:4Þ

On the other hand, the decay width for the process H0 → χ01χ
0
2 can be written as

ΓðH0 → ~χ01 ~χ
0
2Þ ¼

GFM2
WMHffiffiffi
2

p
π

F2
121½1þ ðm2

~χ0
1

=M2
H −m2

~χ0
2

=M2
HÞ2 − 2ðm2

~χ0
1

=M2
H þm2

~χ0
2

=M2
HÞ�1=2

× ½1 −m2
~χ0
1

=M2
H −m2

~χ0
2

=M2
H − 2ðϵ1ϵ2=M2

HÞm~χ0
1
m~χ0

2
�; ð4:5Þ

where

F121 ¼
1

2
ðZ22 − tan θWZ21ÞðZ13 cos α − Z14 sin αÞ

þ 1

2
ðZ12 − tan θWZ11ÞðZ23 cos α − Z24 sin αÞ;

ð4:6Þ
which in the decoupling regime reduces to

F121 ¼
1

2
ðZ22 − tan θWZ21ÞðZ13 sin β þ Z14 cos βÞ

þ 1

2
ðZ12 − tan θWZ11ÞðZ23 sin β þ Z24 cos βÞ;

ð4:7Þ
and where the constants ϵis (i ¼ 1, 2, 3, 4) stand for the
sign of the neutralino mass. When the neutralino mass

matrix is diagonalized, we allow the sign of the ith
eigenvalue to be either positive or negative.
In our previous work [18], we had considered the

possibility of the lightest Higgs boson decaying into
lightest neutralinos in the MSSM and the NMSSM. As
the mass of the lightest Higgs boson is fixed to be 126 GeV,
we considered the case of the lightest neutralino with mass
m~χ0

1
< mh0=2. We concluded that such a constraint on the

neutralino mass is not satisfied with either universal or
nonuniversal boundary conditions on the soft gaugino
masses at the GUT scale. The only exception to this
conclusion was a nonuniversal scenario with a very large
dimensional representation (2430) of the gauge group E6.
However, this is not an appealing possibility. The constraint
on the light neutralino masses was obeyed in the MSSM
only with arbitrary gaugino masses at the GUT scale. Since
in the present paper we are considering the invisible decay
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of the heavier Higgs bosonH0, the lightest neutralinos need
not be massless or very light. Thus, in the following we
consider the case of massive neutralinos, which can arise in
all three cases, i.e., universal, nonuniversal, and arbitrary
soft gaugino masses at the GUT scale.

V. RESULTS FOR THE INVISIBLE DECAY
OF THE HEAVIER HIGGS BOSON

Having summarized the results for the decay widths for
the invisible decay of the heavier Higgs boson in the
previous section, we now evaluate these decay widths using
the parameter space of the MSSM allowed by the present
experimental constraints. For this purpose, we use the
boundary conditions as implied by the embedding of the
MSSM in a grand unified theory, as well as for arbitrary
soft gaugino masses at the GUT scale. As discussed in the
last section, the final states in the decay process that are of
interest to us are χ0i χ

0
j ; i ¼ 1; 2.

We first summarize the parameter space used in our
analysis. The trilinear soft supersymmetry breaking param-
eter At pertaining to the stop is adjusted to obtain the
lightest Higgs boson mass in the range 123–127 GeV,
although it does not affect the neutralino sector. To get the
lightest Higgs mass in this range we use the “maximal
mixing" scenario [53], wherein

At − μ cot β ¼
ffiffiffi
6

p
MS; ð5:1Þ

whereMS is the soft supersymmetry breaking scale, which
we take to be 1.5 TeV. The gluino mass is taken to be
1.4 TeV, and squarks are assumed to have masses above
1 TeV. Slepton masses are assumed to be greater than
500 GeV, thereby respecting all current experimental
bounds [54]. For the case of an arbitrary boundary con-
dition on the gaugino mass parameters, we have taken
M2 ¼ 200 GeV. Furthermore, we have also imposed the
constraint of the lightest chargino mass m~χþ > 94 GeV as
implied by the LEP experiments, as well as the bound on
the invisible Z0 width into neutralinos. We note that
decreasing the value of M2 increases the chargino mass
bound on μ, thereby eliminating the parameter space with a
large invisible branching ratio for the lightest Higgs
boson [50].
In addition, we have also imposed the constraints

resulting from (g − 2) of the muon, as well as flavor
constraints following from b → sγ and Bs → μþμ−. We
have implemented these constraints using CalcHEP. The
input parameters thus obtained are summarized in
Table II [55,56].

We now present the results of our calculations as
constant branching ratio contours in the μ −M1 plane
for two different values of MA ≈MH ¼ 300 GeV,
500 GeV. For the case of arbitrary soft supersymmetry
breaking gaugino mass parameters, we have taken M2 ¼
200 GeV and tan β ¼ 10. In Fig. 9 we observe that the
branching ratio for H0 → ~χ01 ~χ

0
1 can be at most 16% for

MA ¼ 300 GeV and also in a very narrow region of the
parameter space. Furthermore, from Fig. 10 we can see that
this branching fraction reduces with an increase in the value
of MA, having a value of 10% for MA ¼ 500 GeV.

TABLE II. Input parameters for the MSSM consistent with all the experimental constraints.

tan β ¼ 10 MS ¼ 1.5 TeV MA ¼ 300, 500 GeV M2 ¼ 200 GeV
M3 ¼ 1402 GeV At ¼ 3600 GeV Ab ¼ 3600 GeV Aτ ¼ 1000 GeV
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FIG. 9. The contours of constant branching ratio for
(H0 → ~χ01 ~χ

0
1) in the μ −M1 plane for MA ¼ 300 GeV with

arbitrary gaugino masses at the GUT scale. Here M2 is taken
to be 200 GeV. The shaded region represents the region allowed
by the Wilkinson Microwave Anisotropy Probe (WMAP) data.
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FIG. 10. The contours of constant branching ratio for
(H0 → ~χ01 ~χ

0
1) in the μ −M1 plane for MA ¼ 500 GeV with

arbitrary gaugino masses at the GUT scale. Here M2 is taken
to be 200 GeV. The shaded region is allowed by the WMAP data.
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Since we are considering the MSSM with Rp conserva-
tion, the lightest neutralino is an absolutely stable particle.
In this case it is important to check that it is not over-
produced in the early universe. We have, therefore, calcu-
lated the relic density of the lightest neutralino for the range
of parameters used in our calculations using micrOMEGAs
[57], and imposed the constraints following from the
WMAP data [58,59]. The result of this calculation is
shown in Fig. 9 as the shaded region allowed by the
constraints of the relic density considerations. Similarly, in
Fig. 10 the shaded region is the region allowed by the
WMAP data.
This behavior of the decay H0 → ~χ01 ~χ

0
1 may be under-

stood as follows. At low values ofM1, χ0i is binolike for all
values of μ in the region of the parameter space that we are
considering. The Higgs decay to a neutralino is suppressed
because of the small value of Z14 for tan β ¼ 10. The mass
of the lightest neutralino increases with the increase in the
value of M1. In Fig. 9, for M1 ≥ 150 GeV there is a
kinematic suppression for MA ¼ 300 GeV, resulting in a
smaller branching ratio. On the other hand, for MA ¼
500 GeV there is no kinematic suppression; hence the
branching ratio does not fall off, as is clear from Fig. 10.
For small values of M1 and for all values of μ in the

parameter space that we are considering, the quantity
ðM1 −m~χ0

1
Þ is close to zero, so that the decay width for

H → ~χ01 ~χ
0
1 is reduced, as can be seen from the analytical

results in the previous section, Eq. (4.3). From Eq. (3.10),
we observe that Z13 is almost zero. Hence the branching
fraction for both values ofMA ¼ 300 GeV and 500 GeV is
small. For fixed μ, with increasing M1 > μ, ~χ01 is
Higgsinolike, ðM1 −m~χ0

1
Þ increases, the total width

decreases, and hence the branching ratio increases. For
fixed M1 with decreasing μ, ðM1 −m~χ0

1
Þ increases.

Furthermore, the denominator (total width) decreases with
increasing μ, the numerator decreases faster, and hence the
branching fraction decreases with μ. Hence, to obtain a
constant branching fraction, we have to increase M1 and μ
simultaneously until the factor ð1 − 4m2

~χ0
1

=M2
HÞ3=2 starts

dominating and causes kinematic suppression for the case
of MA ¼ 300 GeV.
We note that the total width has been calculated using

CalcHEP, and depending on the values of parameters M1

and μ, different channels contribute to the total width,
which has been used in the calculations presented here.
We may mention here that if we increase the value of

M2 > 200 GeV, large branching fractions for the invisible
decay would still be possible. On the other hand, values of
M2 < 200 GeV will exclude the region of parameter space
with a considerable invisible branching fraction.
We now turn to the invisible decayH0 → ~χ01 ~χ

0
2 for values

of MA ≈MH ¼ 300 GeV and 500 GeV. In Figs. 11 and 12
we show the contours of constant branching ratios for this
decay. For MA ¼ 300 GeV the branching ratio can be at

most 12%, and forMA ¼ 500 GeV it is at most 6%. As we
have seen in the case of the decayH0 → χ01χ

0
1 here, we see a

kinematic suppression in the case of a 300 GeV Higgs
boson for large values of M1 and μ. The reason is that the
sum of the masses of the lightest and the second lightest
neutralino reaches its limiting value and the decay H0 →
χ01χ

0
2 is no longer possible. On the contrary, for a 500 GeV

Higgs boson there is no kinematic suppression, because
MH, which is nearly equal toMA in the decoupling regime,
is sufficient to produce a lightest and a second lightest
neutralino for this particular region of the parameter space,
and the decay width is governed by the function F121 in
Eq. (4.7). We note that the shaded region in these figures
represents the region allowed by the WMAP data.
In Figs. 13 and 14 we show the contours of the constant

branching ratio for the decay H0 → ~χ02 ~χ
0
2 in the μ −M1

plane for values of MA ≈MH ¼ 300 and 500 GeV, respec-
tively. The branching ratio can be at most 2% in the case of
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FIG. 11. The contours of the constant branching ratio of
(H0 → ~χ01 ~χ

0
2) in the μ −M1 plane for MA ¼ 300 GeV with

arbitrary gaugino masses at the GUT scale. Here M2 is taken
to be 200 GeV. The shaded region is allowed by WMAP data.
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FIG. 12. The contours of the constant branching ratio for
(H0 → ~χ01 ~χ

0
2) in the μ −M1 plane for MA ¼ 500 GeV with

arbitrary gaugino masses at the GUT scale. Here M2 is taken
to be 200 GeV. The shaded region is allowed by WMAP data.
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a 300 GeV second lightest Higgs, and it reaches a value of
about 5% in the case of a 500 GeV second lightest Higgs
boson. There is a kinematic suppression for a 300 GeV
Higgs for values of μ larger than 200 GeV as discussed
earlier, but for a 500 GeV Higgs there is no such
suppression and the branching ratio actually increases with
increasingMA in some regions of the parameter space. The
shaded region in these figures represents the region allowed
by the WMAP data.
The mass of the second lightest neutralino becomes

almost equal to M1 for large values of μ and M1. Hence, in
this region the branching ratio goes to zero. And from Fig. 4
we can see that for values larger than M1 ¼ 100 GeV, m~χ0

2

does not depend on M1 but depends only on μ. Hence, for
fixed values of μ, the quantities Z22, Z23 and Z24 increase
with M1 as ðM1 −mχ0

1
Þ increases with M1. Therefore, the

width H0 → ~χ02 ~χ
0
2 also increases. We have checked that the

total width decreases with M1. So the branching fraction

H0 → ~χ02 ~χ
0
2 increases with M1. Now for a fixed M1, the

quantity ðM1 −mχ0
1
Þ decreases with μ. Furthermore, Z22

decreases with μ:Z23 and Z24 also decrease, having ðM1 −
mχ0

1
Þ in the numerator and ðmχ2

0
þ μ sin 2βÞ in the denom-

inator. Also, the total width decreases with μ, but the
numerator in the branching ratio decreases much faster.
Hence the branching fraction H0 → ~χ02 ~χ

0
2 decreases with μ.

Let us recall that the branching ratio increases with M1.
Consequently, we have to increase bothM1 and μ to get the
contours of the constant branching ratio. This is reflected in
Figs. 13 and 14.
Having considered the case of arbitrary gaugino masses

at the GUT scale in detail, we now turn to the case of
universal boundary conditions. In Figs. 15, 16 and 17 we
have plotted the contours of the constant branching ratio
for H0 → ~χ01 ~χ

0
1, H

0 → ~χ01 ~χ
0
2, and H0 → ~χ02 ~χ

0
2, respectively,

for a 500 GeV second lightest Higgs boson with universal
boundary conditions on the gaugino masses at the grand
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FIG. 13. The contours of the constant branching ratio for
(H0 → ~χ02 ~χ

0
2) in the μ −M1 plane for MA ¼ 300 GeV with

arbitrary gaugino masses at the GUT scale. Here M2 is taken
to be 200 GeV. The shaded region represents the region allowed
by the WMAP data.
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FIG. 14. The contours of the constant branching ratio for
(H0 → ~χ02 ~χ

0
2) in the μ −M1 plane for MA ¼ 500 GeV with

arbitrary gaugino masses in the μ −M1 plane. Here M2 is taken
to be 200 GeV. The shaded region is allowed by WMAP data.
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FIG. 15. The contours of the constant branching ratio for
(H0 → ~χ01 ~χ

0
1) in the μ −M1 plane for MA ¼ 500 GeV with

universal gaugino masses at the GUT scale. The shaded region
is allowed by WMAP data.
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FIG. 16. The contours of the constant branching ratio for
(H0 → ~χ01 ~χ

0
2) in the μ −M1 for MA ¼ 500 GeV with universal

gaugino masses at the GUT scale. The shaded region is allowed
by WMAP data.
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unified scale. In this case the boundary conditions imply
M2 ≈ 2M1 and M3 ≈ 7M1 at the electroweak scale. Here
we see that the invisible branching ratios for ~χ01 ~χ

0
1 can attain

a value 9% and ~χ01 ~χ
0
2 can attain a value of 10%. The

branching ratio H0 → ~χ02 ~χ
0
2 can be at most 2%. We have

taken the range of M1 to be 200 GeV to 400 GeV for this
case. For this caseM2 andM3 depend onM1, and to respect
the experimental constraints we need to take M3 i.e. the
gluino mass above 1400 GeV. As discussed in the previous
section for values of μ larger than 275 GeV, the mass of the
lightest neutralino exceeds the limiting value of 250 GeV.
Hence, a 500 GeV Higgs boson cannot decay into lightest
neutralino pairs. In the case of the second lightest neu-
tralinos, μ ¼ 250 GeV is the limiting value because the
mass of the second lightest neutralino attains a value of
250 GeV, as can be seen from Fig. 6.
We note from the behavior of the branching ratios that

m~χ0
1
and m~χ0

2
do not have a significant dependence on M1

but depend on μ. This pattern is depicted in Figs. 5 and 6.
The behavior of H0 → ~χ02 ~χ

0
2 can also be understood in the

same manner. We note thatm~χ0
2
changes linearly with μ, and

in large parts of the parameter space it is practically equal to
μ. Hence from Eq. (3.12) we can see that the width of
H0 → ~χ02 ~χ

0
2 increases with M1. We have checked that the

total width decreases with increasing M1. Hence the
branching fraction also increases with M1. The total width
decreases with μ. Hence to get a constant branching ratio
we need increasing values of M1 with decreasing values of
μ. This can be seen from Fig. 17. The behavior of H0 →
~χ01 ~χ

0
1 is also similar to that of H0 → ~χ02 ~χ

0
2. The branching

fraction is dominated by the ðM1 −m~χ0
1
Þ term which

increases with M1. We note that for large values of M1

the behavior is almost the same as that of H0 → ~χ02 ~χ
0
2. The

shaded region in these figures represents the regions
allowed by the WMAP data. As we can see from
Figs. 15, 16 and 17 the universal boundary condition

scenario is very much constrained by the WMAP data.
Only small regions of the parameter space are allowed,
which can give rise to some invisible branching ratio.
In Fig. 18 we have considered an example of a

nonuniversal boundary condition on the gaugino masses.
For this we have chosen a 210 dimensional representation
of the gauge group SO(10) in which M1∶M2∶M3 is in the
ratio 1∶6∶ −14.3. We have plotted the contours of the
constant branching ratio for H0 → ~χ01 ~χ

0
1 in the μ −M1

plane. We can see that the branching ratio can go up to 10%
for a small region of the parameter space. The shaded
region in this figure represents the region allowed by the
WMAP data.
In Fig. 19 we have considered another example of a

nonuniversal boundary condition on gaugino masses for a
2430 dimensional representation of the gauge group E6.
The gaugino masses are in the ratio M1∶M2∶M3 ¼
1∶50.2∶70.9. This particular representation is somewhat
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FIG. 17. The contours of the constant branching ratio for
(H0 → ~χ02 ~χ

0
2) in the μ −M1 plane for MA ¼ 500 GeV for

universal gaugino masses at the GUT scale. The shaded region
is allowed by WMAP data.
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FIG. 18. The contours of the constant branching ratio for
(H0 → ~χ01 ~χ

0
1) in the μ −M1 plane for MA ¼ 500 GeV for

SO(10) with nonuniversal gaugino mass boundary conditions.
The shaded region is allowed by WMAP data.
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FIG. 19. The contours of the constant branching ratio of
(H0 → ~χ01 ~χ

0
1) in the μ −M1 plane for MA ¼ 500 GeV for E6

with a nonuniversal gaugino mass boundary condition. The
shaded region is allowed by WMAP data.
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special. Out of all the nonuniversal boundary conditions
this is the only representation in which r (defined as the
ratioM1=M2) satisfies the condition r ≤ 0.04, resulting in a
light neutralino. This actually allows the 126 GeV Higgs to
decay into lightest neutralinos. In this case we see that the
branching ratio for H0 → ~χ01 ~χ

0
1 can go up to 11% for a

tiny region of the μ −M1 parameter space. The shaded
region in this figure represents the region allowed by the
WMAP data.
For the case of Fig. 18 we see that for a particular value

ofM1 the branching fraction decreases with μ. Because the
quantity M1 −m~χ0

1
decreases with μ at a particular value of

M1,m~χ0
1
increases with μ as can be seen from Fig. 7. Hence

Z13 and Z14 decrease with μ. The term Z12 also decreases
with μ because the denominator 6M1 −m~χ0

1
decreases with

μ, but the rate of decrease is lower than the rate of increase
of M1 −m~χ0

1
in the numerator. The total width decreases

with μ, but here the rate of decrease is also less; hence the
branching fraction decreases with μ for a particular value
of M1.
Figure 19 corresponds to the situation where the mass of

the lightest neutralino is almost equal toM1 for all μ, as can
be seen from Fig. 8. Hence ðM1 −m~χ0

1
Þ is a very small

quantity which is more or less constant as a function of μ.
Hence Z12; Z13 and Z14 all decrease withM1 for a particular
μ, having m~χ0

1
, which is equal to M1, in the denominator.

But the total width also decreases with M1. Hence the
branching fraction remains almost constant as a function
of M1.
It is known that the 126 GeV Higgs boson of the MSSM

can decay invisibly only for arbitrary gaugino masses at the
GUT scale. Here we find that for the situation for the
second lightest Higgs boson, the MSSM is far more
interesting because it can decay invisibly, not only for
arbitrary gaugino masses but also for constrained boundary
conditions of universal and nonuniversal gaugino masses at
the GUT scale.
From the plots we notice that there are kinks in all the

contour plots for the branching ratios studied in this paper.
Although it is difficult to obtain analytical expressions for
the constant branching ratio contours, one thing that can be
easily understood is that depending on the mass of the
neutralinos, different decay channels will open up for
different ranges of values of μ and M1. Whenever the total
decay width in the denominator changes because of new
channels opening up, the constant branching ratio contour
plots show kinks.
The range of values of M1 and μ considered in this paper

is adequate for our study because beyond this range of M1

and μ the branching ratios fall and are therefore not relevant.
We have also considered the dependence of the branch-

ing ratios for the decaysH0 → ~χ01 ~χ
0
1,H

0 → ~χ01 ~χ
0
2 and H

0 →
~χ02 ~χ

0
2 on tan β. Figures 20, 21 and 22 show the dependence

of these two branching ratios on tan β forMA ≈MH ¼ 300

and 500 GeV for the choice of parameters shown in
Table III. These values of parameters are consistent with
all current experimental constraints.
The behavior of the tan β dependence of the invisible

branching ratios can be understood in the following
manner. In the MSSM, the H0 → bb̄ coupling is cos α

cos β times

its SM value, and the H0 → tt̄ coupling is sin α
sin β times the

SM value.
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FIG. 20 (color online). Branching ratio of (H0 → ~χ01 ~χ
0
1) with

MH ¼ 300 GeV (red line) and 500 GeV (blue line) as a function
of tan β.
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FIG. 21 (color online). Branching ratio of (H0 → ~χ01 ~χ
0
2) with

MH ¼ 300 GeV (red line) and 500 GeV (blue line) as a function
of tan β.
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FIG. 22 (color online). Branching ratio of (H0 → ~χ02 ~χ
0
2) with

MH ¼ 300 GeV (red line) and 500 GeV (blue line) as a function
of tan β.
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At low values of tan β the H0 coupling to the up-type
quarks is large; hence in this region its decay to top-antitop
quarks is dominant, if kinematically allowed. If the second
lightest Higgs has a mass of 500 GeV, the branching ratio
for this decay is 57%. In this region, the decay channel bb̄
or the invisible decay channels are not significant. If the
Higgs is not so heavy (around 300 GeV), then the top quark
channel is kinematically not available, and the main decay
channel will then be to two lightest Higgs and some of the
invisible channels.
In the case of moderate tan β, say tan β ¼ 7, the invisible

branching ratio for H0 → ~χ01 ~χ
0
1 peaks for both 300 GeVand

500 Gev Higgs bosons.
The branching ratio for H0 → ~χ01 ~χ

0
2 also peaks at

moderate values of tan β for 300 and 500 GeV second
lightest Higgs. On the other hand, ~χ02 being very heavy, the
300 GeV second lightest Higgs cannot decay into two ~χ02s
for any tan β for the parameter space considered. For the
500 GeV second lightest Higgs the branching ratio for
H0 → ~χ02 ~χ

0
2 peaks at moderate values of tan β.

For large values of tan β ≈ 30, Higgs coupling to the
down-type quarks is dominant, and bb̄ becomes the
dominant decay mode. The invisible decay channels are
once again insignificant.
In the case of the lightest Higgs decay, in the low tan β

region, the invisible decay would be significant, as the top
decay channel is kinematically closed. In the case of the
second lightest Higgs boson, low values of tan β do not give
significant invisible decay width, but for moderate values of
tan β ≈ 10 the invisible branching ratio can be significant.

In Fig. 23 we have considered the branching fraction of a
heavier Higgs boson to all the dominant decay channels.
The dominant visible channels are bb̄; ττ̄; hh [60,61]. With
an increase in the values of MH, the branching fraction for
the bb̄ channel decreases, ττ̄; hh channels are not signifi-
cant, and chargino and neutralino channels become impor-
tant. The neutralino branching fraction can be as large as
30%, and the chargino branching fraction can be about
50%. For this study the input parameters are M1 ¼ 150,
M2 ¼ 200, M3 ¼ 1400, μ ¼ 200 and tan β ¼ 10. We see
that if the second lightest Higgs is heavy enough it can have
major decay channels into the electroweakinos. It can be
inferred that in the future LHC run during the direct search
for the second lightest Higgs boson, its decay into super-
symmetric particles may play an important role in the
decoupling regime.

A. “Quasi-invisible” decays

We would like to draw attention to the fact that all the
decay channels of the second lightest Higgs boson that we
have considered and studied in detail in this paper are not
truly invisible. The H0 → ~χ01 ~χ

0
1 channel is truly invisible as

the lightest neutralino ~χ01 is the lightest supersymmetric
particle. It is the only stable supersymmetric particle
assuming conservation of R-parity. All other heavy neu-
tralinos will decay into the LSP and SM particles. Hence
H0 → ~χ01 ~χ

0
2 and H

0 → ~χ02 ~χ
0
2 cannot be considered invisible.

In Ref. [62] the authors have extensively studied the
electroweakino decays for different regions of the param-
eter space of the electroweak sector without assuming any
SUSY-breaking mediation scenario. There is a region of the
parameter space defined as scenario C in the paper where
jμj < M1;M2. In this region of the parameter space ~χ01 and
~χ02 are both Higgsinolike, and their masses are almost equal
to the Higgsino mass μ; hence they are almost mass
degenerate. It has been pointed out in the same reference
that the LSP multiplet production will be difficult to
observe at the LHC because of the mass degeneracy and
the soft decay products, especially when the production is
suppressed. Hence one has to be extremely careful while
looking at the decay of the electroweakinos at the future
LHC. Where the ~χ01 and ~χ02 are almost mass degenerate, we
have termed the decays H0 → ~χ01 ~χ

0
2 and H0 → ~χ02 ~χ

0
2 as

“quasi-invisible” decays. It is worth mentioning that one
must expect that the International Linear Collider (ILC)
will be able to identify the soft decay products, leptons and
jets of mass 10 GeV or less, which are produced in the
mass-degenerate case, because ILC has a cleaner environ-
ment for event reconstruction [62].

TABLE III. Input parameters for the plots of branching ratios versus tan β.

M1 ¼ 120 GeV MS ¼ 1.5 TeV MA ¼ 300, 500 GeV M2 ¼ 200 GeV
M3 ¼ 1402 GeV At ¼ 3600 GeV Ab ¼ 3600 GeV μ ¼ 200 GeV
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FIG. 23 (color online). The branching fraction of the heavier
Higgs to bb̄ (green line), neutralinos (red line), charginos (black
line), ττ (blue line), and lightest Higgs (orange line) as a function
of MH .
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Another intriguing possibility that could render some of
these channels “visible” is to adapt a strategy that has been
used in the past for dark matter searches. In other words, a
promising search for invisible decays is in the monojet
channel as in the case for the search of dark matter at the
LHC. When the second lightest Higgs boson decays into
invisible particles, monojet searches involving initial state
radiation from the gluons that fuse to produce the Higgs
boson could be used in these channels, so the Higgs
decaying into light neutralinos does not necessarily escape
the detection at the colliders. This same procedure is used
to look for dark matter at the LHC. In the case of invisible
decays one has to look for monojet signals H0 → ~χ01 ~χ

0
1 þ

jet as ~χ01 is the lightest supersymmetric particle. In
Refs. [63–65] it has been shown that the monojet signature
carries a good potential to constrain the invisible decay
width of a ≈125 GeV Higgs boson in a model-independent
fashion using the monojet search results by ATLAS and
CMS [66,67]. Now in the case of the MSSM with two CP-
even Higgs, we can employ a different strategy while
looking for the second lightest Higgs boson. One can
calculate the production cross section × invisible branching
in the MSSM for specific regions of the parameter space.
There are several standard model processes which can act
as background for the monojet signals. pp → Zð→ νν̄Þ þ
jet is the main irreducible background with the same
topology as our signal. There is QCD background as well.
The backgrounds can be estimated [68]. The background
can be reduced significantly using several pT cuts on the jet
and the missing transverse energy cut. Then one can find
the dependence of the signal significance S ¼ NS=

ffiffiffiffiffiffiffi
NB

p
(NS is the number of signal events and NB is the number of
background events) on different parameters for 14 TeV HL-
LHC with the desired integrated luminosity L. One can use
the LHC monojet search results at 14 TeV, i.e. the limits on
the monojet events to probe the regions in the MSSM
parameter space spanned by MA; tan β; μ [69]. Thus, one
can exclude regions of the MSSM parameter space at a
desired signal significance (90% or 95% C.L.).

VI. DISCUSSION AND CONCLUSION

In this work we have considered the possibility of
invisible decays of the second lightest Higgs boson ðH0Þ
in the MSSM in the decoupling regime. In the past various
studies have shown that certain regions of the parameter
space of the MSSM allow a Higgs boson in the mass range
123–129 GeV both in the decoupling and in the non-
decoupling regime, satisfying the LHC constraints. For
most of the parameter space, the lightest Higgs decay to the
lightest neutralinos is kinematically allowed, leading to
invisible decay modes. The main objective of those works
was to prove that it would therefore be very important to
study the couplings of the newly discovered particle at high
precision. Global fits have been performed on the couplings
of the newly discovered particle, in order to place upper

bounds on the invisible decay width. Taking these bounds
into account, the parameter space of these new physics
scenarios can be further constrained since the regions
giving a large invisible Higgs decay branching ratio will
be in conflict with the experiments.
In the present work, which is a sequel to previous

investigations [18], we are looking at the problem from
a different point of view. We are asking a related question.
We have considered the intriguing possibility that the
heavier CP-even Higgs ðH0Þ of the MSSM would decay
into invisible LSP’s. Knowing the invisible branching ratios
of the second lightest Higgs boson, one can look for it in the
future HL-LHC or ILC through the monojet signals.
From the limits given by the colliders on the monojet
signal, one can then probe the MSSM parameter space at a
desired confidence level. Hence it will also be possible to
detect or rule out the second lightest Higgs boson in the
MSSM in a certain mass range from the monojet searches
for its invisible decay. In other words, in our previous paper
[18], the study has been done to constrain the MSSM
parameter space looking at the possible invisible decay
width of the newly discovered 126 GeV Higgs boson. But
in this work we are following a different route and trying to
make a theoretical prediction on the search for the second
lightest Higgs boson of the MSSM. Our point is to
understand the invisible decay width of H0 consistent with
the current experimental constraints. In the scenarios that
we considered earlier, which partly motivated the present
study, we considered that the 125 GeV Higgs boson had
some partial decay channels into light neutralinos in the
MSSM, or that it would decay into neutralinos or light CP-
odd Higgs particles which could be present in the spectrum
of the NMSSM. In [25] the intriguing possibility was
considered that the 125 GeV Higgs was not the lightest
CP-even Higgs but the heavier one, while the lightest one
evaded detection altogether. Here, we have more
conservative assumptions, viz., that the 125 GeV resonance
is indeed the lightest CP-even Higgs, but we consider the
possibility that the heavier one has invisible decays. This
scenario can arise naturally in the decoupling region; i.e.,
the second lightest Higgs boson is quite heavy and could be
produced at future experiments at the LHC, which will
eventually decay into lighter particles. These final states
include neutralinos, charginos, bb; ZZ; ττ; hh. In the
present work we have tried to carry out an exhaustive
search of the MSSM parameter space where the second
lightest Higgs boson can decay into the lightest neutralinos,
and therefore it remains invisible. We have also
considered the decay of the second lightest Higgs into
the second lightest neutralinos because there are certain
regions of the parameter space where the lightest and the
second lightest neutralinos are almost mass degenerate;
hence the second lightest neutralino may remain invisible
(quasi-invisible) at the LHC. We have used semianalytical
formulas as a guide to our study. In the decoupling regime,
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which is a realistic scenario, the values of MA and MH are
nearly equal.
For our parameter choices guided by recent constraints

by LEP and LHC, we have taken the gaugino masses at the
electroweak scale to be within present constraints. We have
chosen At judiciously to get the lightest Higgs mass in the
range in which it has been detected. We have taken the soft
SUSY breaking scale MS to be large, around 1.5 TeV,
consistently. In this paper, we have first presented a detailed
analysis of the Higgs sector, as well as that of the neutralino
sector, in order to isolate the conditions under which it
becomes kinematically feasible for ðH0Þ to decay invisibly.
We have considered three different scenarios and have
scanned the parameter space in terms of invisible decay of
the second lightest Higgs boson in these three scenarios,
namely, arbitrary, universal and nonuniversal boundary
conditions on the soft gaugino masses at the GUT scale.
Our analysis reveals that it is typically not possible to have
such regions in the MSSM with GUT scale universal
boundary conditions on the soft gaugino masses. This
can be seen from Figs. 15, 16 and 17. The situation remains
similar even with nonuniversal boundary conditions, as can
be seen from Figs. 18 and 19. The main reason for this is
that there is not sufficient freedom in the choice of the
gaugino masses with these boundary conditions. On the
other hand, relaxing all constraints, as is the case with
general (arbitrary) boundary conditions, allows the invis-
ible branching ratios to be considerable. This can be seen
from Figs. 9, 10, 11, 12, 13 and 14.

From our study we conclude that there is a significant
portion of the parameter space where the invisible decays
can be quite significant. For instance, with universal or
nonuniversal boundary conditions, the invisible branching
ratio is not enhanced, but if we relax this constraint we can
have a more significant branching ratio in invisible decays.
Hence the monojet searches for the invisible decay of the
second lightest Higgs boson at the future colliders can be
used as a probe to look for the second lightest Higgs boson,
as well as to put constraints on the regions of the MSSM
parameter space. This would be most useful in the case of
arbitrary boundary conditions on the gaugino masses at the
GUT scale. One has to be more careful and find different
strategies in the case of universal and nonuniversal boun-
dary conditions.
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