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The discovery of a 125 GeV Higgs boson and rising lower bounds on the masses of superpartners have
led to concerns that supersymmetric models are now fine-tuned. Large stop masses, required for a 125 GeV
Higgs, feed into the electroweak symmetry breaking conditions through renormalization group equations
forcing one to fine-tune these parameters to obtain the correct electroweak vacuum expectation value.
Nonetheless, this fine-tuning depends crucially on our assumptions about the supersymmetry breaking
scale. At the same time, Uð1Þ extensions provide the most compelling solution to the μ problem, which is
also a naturalness issue, and allow the tree-level Higgs mass to be raised substantially above MZ. These
very well-motivated supersymmetric models predict a new Z0 boson which could be discovered at the LHC,
and the naturalness of the model requires that the Z0 boson mass should not be too far above the TeV scale.
Moreover, this fine-tuning appears at the tree level, making it less dependent on assumptions about the
supersymmetry breaking mechanism. Here we study this fine-tuning for several Uð1Þ supersymmetric
extensions of the Standard Model and compare it to the situation in the MSSM where the most direct tree-
level fine-tuning can be probed through chargino mass limits. We show that future LHC Z0 searches are
extremely important for challenging the most natural scenarios in these models.
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I. INTRODUCTION

The discovery of an approximately 125 GeV Higgs
[1,2] at the Large Hadron Collider (LHC) has interesting
implications for physics beyond the Standard Model (SM)
and supersymmetry (SUSY). On the one hand, it provides a
light Higgs boson, as expected from supersymmetry, and
can be fitted in the minimal supersymmetric standard
model (MSSM). On the other hand, the Higgs mass is
slightly heavier than the constrained version of the MSSM
(cMSSM) can accommodate naturally [3,4].
In the MSSM the Higgs mass causes a naturalness

problem because at tree level it has an upper bound of
the mass of the Z boson, MZ. The dominant higher-order
corrections to the Higgs mass come from stops, and to
obtain a 125 GeV Higgs they need to be rather heavy.
Heavy stops will provide a large contribution to the low-
energy value ofm2

Hu
, the soft breaking mass for the up-type

Higgs scalar, through the evolution of the renormalization
group equations (RGEs) from the grand unification (GUT)
scale to the electroweak (EW) scale. This affects the SUSY
prediction of the EW vacuum expectation value (VEV), v,
or MZ. This naturalness problem motivates both further
examination of nonminimal SUSY models that can raise
the Higgs mass without the need for heavy stops and

alternative possibilities for how the soft breaking param-
eters get generated, which might set them at lower energies,
reducing the influence the stops have on m2

Hu
.

In addition to that naturalness issue, often referred to as
the little hierarchy problem, the MSSM also suffers from
the μ problem. This is also a naturalness problem since
there should be a natural explanation of how the μ super-
potential parameter can be set to the same scale as the soft
breaking masses.
Uð1Þ extensions of the MSSM provide a very elegant

solution to this μ problem [5–12] and also raise the Higgs
mass with new F andD terms. Nonetheless, as was recently
demonstrated in the context of the exceptional supersym-
metric standard model (E6SSM) [13–15], such models
can still suffer from naturalness problems with the mass
of the new Z0 associated with the break down of the new
Uð1Þ appearing in the EW symmetry breaking (EWSB)
conditions at tree level [16]. Despite this the constrained
version of the E6SSM (cE6SSM) [17,18] was still found
to be significantly less tuned than the cMSSM. Tree-
level fine-tuning from the Z0 mass was also considered
previously [19].
However, this comparison of fine-tuning depends cru-

cially upon the assumptions of these gravity mediated
SUSY breaking motivated constrained models and, in
particular, the universality constraints being applied at
the GUT scale. As mentioned above, given the findings
at the LHC, it is worth considering other possibilities,
which may allow the soft masses to be set at lower energies.

*peter.athron@monash.edu
†dylan.harries@adelaide.edu.au
‡anthony.williams@adelaide.edu.au

PHYSICAL REVIEW D 91, 115024 (2015)

1550-7998=2015=91(11)=115024(36) 115024-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.115024
http://dx.doi.org/10.1103/PhysRevD.91.115024
http://dx.doi.org/10.1103/PhysRevD.91.115024
http://dx.doi.org/10.1103/PhysRevD.91.115024


As the scale at which the parameters fulfill some breaking
inspired constraints is lowered the stop masses contribute
less to the fine-tuning.
At the same time in Uð1Þ extensions, lowering the UV

boundary scale for the RGE evolution also allows even
larger F-term contributions to the Higgs mass, so long as
one only requires λ, the coupling between the Singlet
Higgs, S and the up- and down-type Higgs bosons, Hu and
Hd, to remain perturbative up to the UV scale and not all of
the way up to the GUT scale.
However, the tuning from the Z0 mass limit does not

disappear as the UV boundary condition is lowered. This
tuning appears in the EWSB conditions at tree level and is
quite difficult to avoid without introducing a pure gauge
singlet [20].
In this paper we investigate how big this tuning is if we

bring this scale all the way down to 20 TeV, effectively
minimizing the contribution from the stops. We find that
the Z0 limit is enough to already require moderate fine-
tuning in the E6SSM. We also show this is comparable to
the situation in the MSSM defined at the same scale if
charginos could be ruled out below 700 GeV. We then
show how this tuning from the Z0 mass looks for different
Uð1Þ extensions, finding that the current severity depends
upon the charges but that Z0 limits are important in
constraining the most natural scenarios of these models.
Therefore, the Z0 constraint is amongst the most important
in terms of tuning and attacking natural supersymmetry
experimentally and the next run of the LHC will be crucial
in this respect.
Finally, we make a case study, for a few benchmarks, of

the impact of raising the high-scale boundary condition,
MX, at which the SUSY breaking parameters must be fixed
by some SUSY breaking mechanism. We show that which
model has less fine-tuning depends on MX. We also see
rather complicated behavior in the tuning for the E6SSM
points due to the combination of different sources of tuning.
As mentioned earlier, the fine-tuning of the cE6SSMwas

recently studied [16] and there it was revealed that the
associated Z0 boson leads to a new source of fine-tuning
since its mass appears in the EWSB conditions.
However, in this study we will examine this source of

fine-tuning in more detail by considering low-energy
constructions where the usual fine-tuning problem from
the Higgs is minimized. We will also consider alternate
charges for the extra Uð1Þ symmetry to relax the focus on
the E6SSM and demonstrate that this is quite a generic
result.
To quantify the fine-tuning, we will employ the tradi-

tional Barbieri-Giudice measure [21,22]. This has been
used extensively within the literature e.g. Refs. [16,23–49].
A number of alternative measures have also been

applied in the literature [50–65] with varying motivations.
A very different approach is to work within a Bayesian
analysis. There the concept of naturalness is automatically

incorporated since in models where one must fine- tune
parameters to fit measured values of the observables, the
region with high likelihood will occupy a tiny prior volume
[4,66–70] suppressing the posterior. Indeed in the MSSM
and the next-to-MSSM (NMSSM) if one transforms GUT
scale parameters to the VEVs, the inverse of the Jacobian
for this transformation looks quite like the derivatives that
appear in the traditional fine-tuning measure [66,67,70]. If
one thinks more generally, then a model without fine-
tuning is one where the parameterization is such that all the
parameters are observables [69,70]. This provides a quite
general definition of fine-tuning as 1=jJj where jJj is the
determinant of the Jacobian for the coordinate transforma-
tion between the parameters and the observables.
Interestingly this means the tuning is the ratio of the
infinitesimal observable space volume element to the
infinitesimal parameter space element and coincides with
the measure proposed in Ref. [63] when the interval of
variation is taken to zero.
While this approach has many merits here we will

employ the traditional measure of fine-tuning because it
is both simple to apply and easy to compare with previous
results due to it’s widespread use. Fortunately the deriv-
atives which appear in these tunings are also similar to the
Bayesian motivated measure so there should not be too
large a discrepancy between the two approaches.
The structure of this paper is as follows. In Sec. II we

review the models we consider. In Sec. III we specify the
EWSB conditions of the models, with particular focus on
how the Z0 mass influences the prediction of MZ. Then in
Sec. IV we introduce our fine-tuning measure and our
approach to evaluating it to obtain the individual sensitiv-
ities. The results are then given in Sec. V.

II. Uð1Þ EXTENSIONS AND THE E6SSM

In this paper we consider Uð1Þ extensions of the MSSM
where the gauge group at low energies is

SUð3ÞC × SUð2ÞW ×Uð1ÞY ×Uð1Þ0: ð1Þ

Uð1Þ0 is the new gauge group beyond that of the SM and
MSSM. The minimal superfield content ofUð1Þ extensions
which solve the μ problem should be ordinary left-handed
quark Q̂i and lepton L̂i (i ¼ 1; 2; 3) superfields along
with right-handed superfields ûci , d̂

c
i , êci (i ¼ 1; 2; 3) for

the up-type (s)quarks, down-type (s)quarks and charged
(s)leptons respectively and three Higgs superfields, up-type
Ĥu, down-type Ĥd and a singlet under the SM gauge
group Ŝ.
Here we will refer to Uð1Þ extensions of the MSSM,

which solve the μ problem, as the USSM [8–12]. The
couplings for the Uð1Þ0 gauge group should allow the
following renormalizable superpotential terms required in
the USSM,
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WUSSM ¼ yUijû
c
i Ĥu · Q̂j þ yDijd̂

c
i Q̂j · Ĥd þ yEijê

c
i L̂j · Ĥd

þ λŜĤd · Ĥu; ð2Þ

with i; j ∈ f1; 2; 3g. For the SUð2Þ dot product we follow
the convention Â · B̂≡ ϵαβÂ

αB̂β ¼ Â2B̂1 − Â1B̂2.
The Uð1Þ0 charges should allow for cancellations of

gauge anomalies. The most elegant way to do this is to use
an extra Uð1Þ gauge symmetry that can be obtained from
the break down of the E6 gauge symmetry which is
anomaly free and have all matter fields that fill the three
generations of 27-plet representations of E6 survive down
to low energies. Such models are often referred to in the
literature as E6 inspired, and we will adopt this here.
The breaking of E6 into SOð10Þ gives rise to

E6 → SOð10Þ ×Uð1Þψ , and the subsequent breaking of
SOð10Þ into SUð5Þ gives SOð10Þ → SUð5Þ ×Uð1Þχ (this
is reviewed in e.g. Ref. [71]). The extra Uð1Þ gauge
symmetry at low energies should then be a linear combi-
nation of these in the E6 inspired case,

Uð1Þ0 ¼ Uð1Þχ cos θ þ Uð1Þψ sin θ: ð3Þ

In Table I the charges for several popular E6 inspired Uð1Þ
extensions are shown.
Uð1Þ and E6 inspired extensions of the MSSM have been

studied very widely in the literature [21,72–94] (or, for
reviews, see Refs. [71,95]). There has also been a lot of
work recently including investigations of the neutralino
sector [96–99]; the relic density of dark matter [100]; GUT
scale family symmetries which can explain the hierarchy of
masses in the fermion sector and their associated mixings
[101]; neutrino physics [102]; explanations of the matter-
antimatter asymmetry of the Universe though EW baryo-
genesis or leptogenesis [93,94,103]; decays of the Z0 boson
[104–107]; dipole moments [108]; anomaly mediated
SUSY breaking with D-term contributions [109] and the
(extended) Higgs sectors [110,111].
Here we will focus most on the special case where the

gauge symmetry is Uð1ÞN , under which the right-handed
neutrino N̂c does not participate in gauge interactions. This
is the case in the E6SSM [13–15], and closely related
variants [20,112–116]. Since the right-handed neutrino has
no gauge symmetry protecting it’s mass from becoming

extremely heavy such models may explain the tiny
observed masses of neutrinos via the see-saw mechanism
and the baryon asymmetry in the Universe via leptogenesis
[93,117,118]. Recently it has also been studied in the
context of EW baryogenesis [119].
The gauge coupling running in the E6SSM at the two-

loop level leads to unification more precisely than in the
MSSM [120] or, in slightly modified scenarios, two-step
unification can take place [112,121]. If the exotic particles
are light in these models this can open up nonstandard
decays of the SM-like Higgs boson [20,122,123].
The correct relic density could be obtained entirely

through an almost decoupled “inert” neutralino sector
[124]. However, this is no longer phenomenologically
viable due to limits from direct detection of dark matter
[125–127] and due to a significant suppression of the decay
of the lightest Higgs boson into SM states, due to a new
channel into inert singlinos opening up.
There are still several remaining options. One may

specialize to scenarios known as the EZSSM [115] where
the inert singlinos that cause these problems are entirely
decoupled and the relic abundance is fitted with a
binolike candidate with a novel mechanism involving
back-scattering into a heavier inert Higgsino. Another
well motivated scenario admits two possible dark matter
candidates [116], where one will be an inert singlino and
the other will have a similar composition to MSSM
neutralinos. The simplest phenomenologically viable
solution in that case is to make the singlinos extremely
light hot dark matter candidates, in which case the lightest
ordinary neutralino accounts for almost all of the
observed relic abundance.
The impact of gauge kinetic mixing in the case where

both of the extra Uð1Þ symmetries appearing from the
breakdown of E6 are present at low energy was studied in
Ref. [128]. The E6SSM was also included in studies
looking at how first- or second-generation sfermion masses
can be used to constrain the GUT scale parameters [129]
and the renormalization of VEVs [130,131]. The particle
spectrum and collider signatures of the cE6SSM have been
studied in a series of papers, [17,18,106,132]. The thresh-
old corrections to the DR gauge and Yukawa couplings in
the E6SSM have also been calculated and their numerical
impact in the constrained version examined [133].

TABLE I. The Uð1ÞY , Uð1Þψ , Uð1Þχ and Uð1ÞN charges of the chiral superfields in the E6 model. The specific case of Uð1ÞN ,
corresponding to the E6SSM, is obtained for θ ¼ arctan

ffiffiffiffiffi
15

p
.

Q̂ ûc d̂c L̂ êc N̂c Ŝ Ĥ2 Ĥ1 D̂ ˆ̄D Ĥ0
Ĥ0ffiffi

5
3

q
QY

i

1
6

− 2
3

1
3

− 1
2

1 0 0 1
2

− 1
2

− 1
3

1
3

− 1
2

1
2

2
ffiffiffi
6

p
Qψ

i
1 1 1 1 1 1 4 −2 −2 −2 −2 1 −1

2
ffiffiffiffiffi
10

p
Qχ

i
−1 −1 3 3 −1 −5 0 2 −2 2 −2 3 −3ffiffiffiffiffi

40
p

QN
i

1 1 2 2 1 0 5 −2 −3 −2 −3 2 −2
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With three generations of matter 27-plet representations
of E6 surviving to low energies, the low-energy matter
content in each generation, after integrating out the heavy
right-handed neutrinos, includes,

ðQ̂i; ûci ; d̂
c
i ; L̂i; êci Þ þ ðD̂i;

ˆ̄DiÞ þ ðŜiÞ þ ðĤu
i Þ þ ðĤd

i Þ;
ð4Þ

where the Ŝi, Ĥ
u
i and Ĥd

i have the quantum numbers of a
SM singlet, and up-, down-type Higgs fields, respectively,

and the D̂i and
ˆ̄Di are SUð3ÞC triplets that reside in the

same SUð5Þ multiplets as these Higgs-like states.
If one wishes to maintain gauge coupling unification this

set of states should be augmented by two extra SUð2Þ
doublet states H0 and H̄0 belonging to other 270 and 270

multiplets that must be incomplete at low energies.
The full superpotential for E6 inspired models coming

from 27 ⊗ 27 ⊗ 27 decomposition of the fundamental E6

representation will then be

WE6
¼ W0 þW1 þW2; ð5Þ

where

W0 ¼ λijkŜiĤ
d
j · Ĥ

u
k þ κijkŜiD̂j

ˆ̄Dk þ hNijkN̂
c
i Ĥ

u
j · L̂k

þ yUijkû
c
i Ĥ

u
j · Q̂k þ yDijkd̂

c
i Q̂k · Ĥ

d
j þ yEijkê

c
i L̂k · Ĥ

d
j ;

ð6Þ

W1 ¼ gQijkD̂iQ̂j · Q̂k þ gqijk
ˆ̄Did̂

c
j ûck; ð7Þ

W2 ¼ gNijkN̂
c
i D̂jd̂

c
k þ gEijkê

c
i D̂jûck þ gDijkQ̂i · L̂j

ˆ̄Dk: ð8Þ

Nonetheless, while this model is very elegant so far, the
superpotential of Eq. (5) contains dangerous terms which
can induce proton decay and lead to large flavor changing
neutral currents (FCNCs). There are a number of
approaches to suppress these terms, involving the use
of different discrete symmetries. Here for the purposes
of renormalization group running we will simply include
the following unsuppressed superpotential terms, which
follows the approach taken in work on the cE6SSM [17,18],

W ≈ yτL̂3 · Ĥdêc3 þ ybQ̂3 · Ĥdd̂
c
3 þ ytĤu · Q̂3ûc3

þ λiŜĤ
d
i · Ĥ

u
i þ κiŜD̂i

ˆ̄Di þ μ0Ĥ0 · ˆ̄H0; ð9Þ

where we denote by Ĥ3
d ≡ Ĥd, Ĥ

3
u ≡ Ĥu and Ŝ3 ≡ Ŝ the

third-generation Higgs and SM singlet fields that are
assumed to acquire nonzero VEVs. In addition to the
terms coming from the 27 ⊗ 27 ⊗ 27 interactions given in
Eq. (5), this superpotential also contains a bilinear term

μ0Ĥ0 · ˆ̄H0, arising from 270 ⊗ 270, which is invariant with

respect to the low-energy SM gauge group and the addi-
tional Uð1Þ0 symmetry and also anomaly free. This term is
responsible for setting the masses of the components of the

superfields Ĥ0, ˆ̄H0, included to ensure gauge coupling
unification, but it is not involved in the process of
EWSB. Consequently, the impact on the fine-tuning of
the value of μ0 is much smaller than that coming from other
sectors, and so can be safely neglected in our study. In all of
the scans we present below the value of μ0 is fixed
to μ0 ¼ 5 TeV.

III. ELECTROWEAK SYMMETRY BREAKING

The Higgs scalar potential for the E6 models considered
can be written as [13]

V ¼ VF þ VD þ Vsoft þ ΔV; ð10Þ
where

VF ¼ λ2jSj2ðjHdj2 þ jHuj2Þ þ λ2jHd ·Huj2; ð11Þ

VD ¼ ḡ2

8
ðjHuj2 − jHdj2Þ2 þ

g22
2
jH†

dHuj2

þ g021
2
ðQ1jHdj2 þQ2jHuj2 þQSjSj2Þ2; ð12Þ

Vsoft ¼ m2
SjSj2 þm2

Hd
jHdj2 þm2

Hu
jHuj2

þ ½λAλSHd ·Hu þ H:c:�: ð13Þ

In these expressions g2, g0 ¼ ffiffiffiffiffiffiffiffi
3=5

p
g1, and g01 are the

SUð2Þ, (non-GUT normalized) Uð1ÞY and Uð1Þ0 gauge
couplings, respectively, and ḡ2 ¼ g22 þ g02. The chargesQ1,
Q2 and QS are effective Uð1Þ0 charges for Hd, Hu and S,
respectively, and λ≡ λ3. In the case of theUð1Þχ model, VF

may also contain an elementary μ term, as occurs in the
MSSM. The term ΔV contains the Coleman-Weinberg
contributions to the effective potential. For the purposes of
this study, we include in ΔV only the one-loop contribu-
tions from the top quark and stop squarks,

ΔV ¼ 3

32π2

�
m4

~t1

�
ln
m2

~t1

Q2
−
3

2

�
þm4

~t2

�
ln
m2

~t2

Q2
−
3

2

�

− 2m4
t

�
ln
m2

t

Q2
−
3

2

��
: ð14Þ

Explicit expressions for the running DR top mass mt and
stop masses m~t1;2 are given below.
Demanding that the Higgs fieldsH1,H2 and the singlet S

acquire real VEVs of the form

hHdi¼
1ffiffiffi
2

p
�
v1
0

�
; hHui¼

1ffiffiffi
2

p
�

0

v2

�
; hSi¼ sffiffiffi

2
p ;

ð15Þ
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at the physical minimum leads to the minimization
conditions

f1 ¼ m2
Hd
v1 þ

λ2

2
ðv22 þ s2Þv1 −

λAλffiffiffi
2

p sv2 −
ḡ2

8
ðv22 − v21Þv1

þDHd
v1 þ

∂ΔV
∂v1 ¼ 0; ð16aÞ

f2 ¼ m2
Hu
v2 þ

λ2

2
ðv21 þ s2Þv2 −

λAλffiffiffi
2

p sv1

þ ḡ2

8
ðv22 − v21Þv2 þDHu

v2 þ
∂ΔV
∂v2 ¼ 0; ð16bÞ

f3 ¼ m2
Ssþ

λ2

2
ðv22 þ v21Þs −

λAλffiffiffi
2

p v2v1 þDSsþ
∂ΔV
∂s ¼ 0:

ð16cÞ

The quantitiesDHd
,DHu

andDS appearing above areUð1Þ0
D-term contributions that are absent in the MSSM and
NMSSM and are given by

Dϕ ≡ g021
2
ðQ1v21 þQ2v22 þQSs2ÞQϕ: ð17Þ

We also include these Uð1Þ0 D-term contributions in the
diagonalized stop masses,

m2
~t1;2

¼ 1

2

8<
:m2

Q3
þm2

u3 þ
ḡ2

8
ðv21 − v22Þ þDQ þDu þ 2m2

t

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

Q3
−m2

u3 þ
1

8
ðg22 − g21Þðv21 − v22Þ þDQ −Du

�
2

þ 4m2
t X2

t

s 9=
;; ð18Þ

where m2
t ¼ y2t v22=2, Xt ¼ At −

λsv1ffiffi
2

p
v2
, m2

Q3
, m2

u3 are soft
breaking scalar masses and At is a soft trilinear coupling.
By definition we takem~t1 to correspond to the lighter of the
two states.
As was noted in Ref. [16], the first two of the conditions

in Eq. (16) may be rewritten in the form

M2
Z

2
¼ −

λ2s2

2
þ ~m2

Hd
− ~m2

Hu
tan2β

tan2β − 1
þDHd

−DHu
tan2β

tan2β − 1
;

ð19Þ

sin 2β ¼
ffiffiffi
2

p
λAλs

~m2
Hd

þ ~m2
Hu

þ λ2s2 þDHd
þDHu

; ð20Þ

with M2
Z ¼ ḡ2v2=4, v2 ¼ v21 þ v22 and tan β ¼ v2=v1 and

where we have for convenience absorbed the effects of the
loop corrections into the soft masses,

~m2
Hd

¼ m2
Hd

þ 1

v1

∂ΔV
∂v1 ;

~m2
Hu

¼ m2
Hu

þ 1

v2

∂ΔV
∂v2 :

Written in the form of Eq. (19), we see the potential new
source of fine-tuning alluded to above, in the form of the
third term on the right-hand side. For large values of the
VEV s, the D-term contributions can be quite a bit larger
than M2

Z. In particular, recent experimental limits [134]

require that the Z0 mass be large, with for example bounds
of MZ0 ≳ 2.51 TeV in Uð1Þψ models and MZ0 ≳ 2.62 TeV
in Uð1Þχ models. To satisfy these limits typically requires
large values of the singlet VEV s. For example, s≳ 6 TeV is
required in the E6SSM with Uð1Þ0 ¼ Uð1ÞN , so that
jDH1

j; jDH2
j ≫ M2

Z for E6 models with QS ≠ 0. As a result
the remaining terms on the right-hand side of Eq. (19) must
be tuned to cancel this very large contribution to MZ.
Moreover, because this is a large tree-level fine-tuning, it
may negate the improvement in naturalness that is associated
with having a reduced need for heavy superpartners. InUð1Þ
extendedmodels for whichQS ≠ 0, the importance of theZ0
mass to the fine-tuning in these models can be made even
clearer by writing Eq. (19) in the form given in Ref. [16],

cðθ; tan βÞM
2
Z

2
¼ −

λ2s2

2
þ ~m2

Hd
− ~m2

Hu
tan2β

tan2β − 1

þ dðθ; tan βÞM
2
Z0

2
; ð21Þ

where

cðθ; tan βÞ ¼ 1 −
4

ðtan2β − 1Þ
g021
ḡ2

ðQ1 −Q2tan2βÞðQ1cos2β

þQ2sin2βÞ; ð22Þ

dðθ; tan βÞ ¼ Q1 −Q2tan2β
QSðtan2β − 1Þ : ð23Þ
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Written like so, it is evident that the fine-tuning contribution
coming from the new D terms depends both on the Uð1Þ0
charges and the Z0 mass, and that the tuning can be expected
to increasewithMZ0 . As shall be shown below, the exact size
of this tuning then depends strongly on the choice of Uð1Þ0
charges, via the coefficient d.
The extra Uð1Þ0 gauge symmetry may mix with the

Uð1ÞY gauge symmetry associated with hypercharge
through gauge kinetic mixing,

Lkin
mix ¼ −

sin χ
2

FY
μνFN

μν; ð24Þ

where FY
μν and FN

μν are field strengths associated with the
Uð1ÞY and Uð1ÞN , respectively. The gauge kinetic mixing
can have a significant impact on the phenomenology
[135–137] and may reduce the Z0 mass limit.
However, if the extra Uð1Þ gauge symmetry appears

from the breakdown of E6, then sin χ should be zero at the
GUT scale. Nonetheless, even if this term is zero at the
outset, it will still be radiatively generated if the trace of
theUð1Þ charges,PiQ

Y
i Q

0
i, is nonzero. In the cases studied

here, the trace of the charges over states in the complete
27-plets vanishes, but to be consistent with single-step

gauge coupling unification, we also included Ĥ0 and Ĥ0

which lead to a nonzero value for
P

iQ
Y
i Q

0
i. The value

induced by this at the EW scale though is rather small as
can be seen1 in Fig. 3 of Ref. [135], and this was also
checked with two-loop RGEs in the E6SSM [13,18]. For
this reason and due to the huge expansion in the number of
terms in the two-loop RGEs when one allows for gauge
kinetic mixing, we will neglect this in our analysis here and
throughout this paper.
In general, though, it is possible for gauge kinetic mixing

to be much larger, which can be the case if one considers an
additional 5þ 5̄ pair of SUð5Þ multiplets [135] or which
has been looked at in the Uð1ÞB−L [136,137]. In such a
case, this will impact the results in two ways, firstly by
altering the Z0 limit from experiment and secondly by
altering the charges which appear in the EWSB condition,
which can be seen from examining Eqs. (21)–(23).

IV. THE FINE-TUNING MEASURE

As stated above, to quantify the resulting fine-tuning, we
apply the traditional Barbieri-Giudice measure [21,22]. A
specific model is characterized by a set of n model
parameters fpig and is defined at some input scale MX.
For a given parameter p in this set, one computes an
associated sensitivity,

Δp ¼
���� ∂ lnM2

Z

∂ lnp
���� ¼

���� p
M2

Z

∂M2
Z

∂p
����: ð25Þ

The coefficient Δp measures the fractional variation in M2
Z

resulting from a given variation in the parameter p. The
overall fine-tuning is then taken to be Δ ¼ maxifΔpi

g.
The sensitivity Δp may be calculated directly from the

expression forM2
Z in terms of the pi for a particular model,

which leads to a so-called master formula for calculating
the fine-tuning. A master formula for the E6SSM, obtained
from the tree-level scalar potential, was presented in
Ref. [16]. In order to derive the expression presented there,
the fact that s ≫ v was made use of to neglect certain
Oðv2Þ terms in the EWSB conditions, greatly simplifying
the final result. For the purposes of exploring a wider class
of E6 inspired models, we have derived the master formula
without neglecting any Oðv2Þ terms. The more complete
tree-level master formula is somewhat complicated. This is
because, unlike in the MSSM, even at tree level it is not
possible to solve explicitly for the VEVs v1, v2 in terms of
the Lagrangian parameters. It may be written in the form

Δp ¼ jCj−1 × jpj
MZ

����X
q

~Δq
∂q
∂p

����; ð26Þ

where the sum is over all low-energy running parameters
appearing in the tree-level EWSB conditions, i.e.,
q ∈ fλ; Aλ; m2

Hd
; m2

Hu
; m2

S; g1; g2; g
0
1g. Expressions for the

quantity C and the ~Δq appearing above are given in
Appendix A. It should be noted that the effects of Uð1Þ
mixing are neglected in deriving Eq. (26).
However, it is well known in the MSSM that radiative

corrections can significantly change (indeed, reduce) the
fine-tuning [138]. It is, therefore, important when studying
the fine-tuning to include loop corrections to the effective
potential in the fine-tuning measure. To do so it is most
convenient to work in terms of the EWSB conditions
Eq. (16), rather than Eq. (19). The general procedure that
we use is as follows (this method has also previously been
applied in the NMSSM; see, for example, Ref. [139]). For a
model in which m fields develop real VEVs (e.g. m ¼ 2 in
the MSSM, m ¼ 3 in the NMSSM and in the E6 models
considered), we require that themminimization conditions,

f1 ¼ f2 ¼ � � � ¼ fm ¼ 0; ð27Þ
continue to hold under an arbitrary variation in a model
parameter p → pþ δp, so that the variations δfi satisfy

δf1 ¼ δf2 ¼ � � � ¼ δfm ¼ 0: ð28Þ
Each fi is a function of the VEVs vj and l running
parameters qk evaluated at the scale of EWSB,
fi ¼ fiðvj; qkÞ. Thus for each fi we find that

1The specific incomplete multiplets we consider here corre-
spond to the third of the four possible embeddings referred to in
Ref. [135].
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Xm
j¼1

∂fi
∂vj

∂vj
∂p þ

Xl

k¼1

∂fi
∂qk

∂qk
∂p ¼ 0: ð29Þ

The quantities ∂fi∂vj are the elements of the CP-even Higgs

squared mass matrix M2
h of the model before rotating into

the mass eigenstate basis. When evaluated for all n model
parameters, the above system of equations can be concisely
expressed as

M2
h

0
BBBB@

∂v1∂p1
� � � ∂v1∂pn

..

. . .
. ..

.

∂vm∂p1
� � � ∂vm∂pn

1
CCCCA

¼ −

0
BBBB@

∂f1∂q1 � � � ∂f1∂ql
..
. . .

. ..
.

∂fm∂q1 � � � ∂fm∂ql

1
CCCCA

0
BBBB@

∂q1∂p1
� � � ∂q1∂pn

..

. . .
. ..

.

∂ql∂p1
� � � ∂ql∂pn

1
CCCCA: ð30Þ

The quantities forming the first matrix on the right-hand
side, along withM2

h, are easily calculated by differentiating
the conditions in Eq. (16) with respect to the VEVs and the
running parameters. The remaining derivatives ∂qk=∂p
must be determined using the RGEs. Once these have been
obtained, it is straightforward to solve for the ∂vi=∂p. The
sensitivities Δp are then simply linear combinations of the
∂vi=∂p and ∂qk=∂p. The effects of radiative corrections
may be easily included by including the Coleman-
Weinberg potential contributions ΔV in the EWSB con-
ditions. Here we use the one-loop corrections given
in Eq. (14).
Evaluating the derivatives ∂qk=∂p must, in general, be

done by numerically integrating the two-loop RGEs. This is
time consuming and presents an obstacle to doing large
scans of the parameter space. For studying models defined
at low energies, as we do here, we can take advantage of the
fact that the running is over much smaller scales than when
evolving up to the GUT scale. This makes it possible to use
approximate analytic solutions to the RGEs that exhibit
good accuracy over the range of scales considered. Given
the two-loop RG equation for a parameter q,

dq
dt

≡ βq ¼
1

16π2
βð1Þq þ 1

ð16π2Þ2 β
ð2Þ
q ; t≡ ln

Q
MX

;

ð31Þ

a Taylor series expansion of the solution may be used to
obtain the parameter at the scale Q,

qðQÞ¼ qðMXÞþ
Z

t

0

βqðt0Þdt0

≈qðMXÞþ
t

16π2

�
βð1Þq þ βð2Þq

16π2

�
þ t2

32π2
dβð1Þq

dt
þOðt2Þ:

ð32Þ

Expanded to this order, we obtain the leading log (LL) and
next-to-LL (NLL) contributions at two-loop order. The
Oðt2Þ terms not displayed above are formally of three-loop
order and are neglected. The derivative of the one-loop β
function is given by

dβð1Þq

dt
¼ 1

16π2
X
qk

βð1Þqk
∂βð1Þq

∂qk ; ð33Þ

where the sum is over all running parameters appearing in

βð1Þq . The β functions appearing on the right-hand side of
Eqs. (32) and (33) are evaluated at the scale MX, giving a
simple analytic expression for the parameters at the scale of
EWSB in terms of the model parameters at MX. Explicit
results for the relevant series expansions in the MSSM and
E6 models are presented in Appendix B.

V. RESULTS

Using the approach outlined above, we are able to scan
the low-energy parameter space of the MSSM and E6SSM
and calculate the fine-tuning in each. To do so, we
implemented the above expressions for computing the
fine-tuning in a modified version of the E6SSM spectrum
generator that was used in Ref. [16]. This code imple-
mented two-loop RGEs for all parameters except the soft
scalar masses. In order to properly include the fine-tuning
impact of the SUð3Þ gaugino soft mass M3, we have
extended the original code to make use of the two-loop
RGEs generated by SARAH [140–143] and FlexibleSUSY
[144], which also makes use of SOFTSUSY [145,146]. The
CP-even Higgs masses are calculated including the leading
one-loop effective potential contributions given in Ref. [18]
and for the light Higgs we use the leading two-loop2

contributions from Ref. [13] which are a generalization
of the corrections in the MSSM and NMSSM calculated
using effective field theory techniques [149,150]. To scan
over the MSSM parameter space, the equivalent MSSM
fine-tuning expressions were implemented into a modified
version of SOFTSUSY 3.3.10 [145]. For consistency with
the results produced in the E6 models, and for computa-
tional speed, for our main scans only the dominant one- and

2Two-loop corrections calculated for a nonminimal SUSY
model may now also be obtained from SARAH [147,148].
However, this was not available when the numerical work for
this paper was carried out, and such corrections go beyond the
required precision for studying fine-tuning here.
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two-loop corrections to the CP-even Higgs masses were
included. Finally, in all of the results below the fine-tuning
was evaluated at the scale Q ¼ MSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffim~t1m~t2

p , where

m~t1;2 are the running DR stop masses evaluated at
Q ¼ MSUSY.
As discussed in the Introduction, many recent papers

interested in natural supersymmetry have focused on light
stops, with much theoretical effort to find models where it
is easier to get a 125 GeV Higgs boson and light stops
simultaneously and much experimental effort to search for
light stops. This is entirely appropriate since there are many
good reasons to expect the soft masses to be set at high
energies. However, that is not the only possibility and the
fine-tuning problem depends strongly on the RG evolution
from the GUT scale, as the soft Higgs masses that appear in
the EWSB conditions pick up contributions from the soft
squark masses.
To illustrate this, in the left panel of Fig. 1 we show the

variation in fine-tuning for MX ¼ 20 TeV, 50 TeV,
100 TeVand 1016 GeV when we scan over the stop masses
and mixing, with 500 GeV ≤ mQ3

, mu3 ≤ 10 TeV and
−3810 GeV ≤ At ≤ −20 GeV. The remaining parameters
we fix such that at MSUSY they have the values μ ¼ −97.5,
B¼−84.8, M1¼92.1, M2¼95.9, M3¼352, Ab ¼ −117.9,
Aτ ¼ −7.8, mLi

¼ 400, mei ¼ 204, mQ1;2
¼ 438, mu1;2 ¼

436 and mdi ¼ 438 GeV (i ¼ 1; 2; 3). Here we denote by
M1, M2 and M3 the soft gaugino masses for Uð1Þ, SUð2Þ
and SUð3Þ, while Ab and Aτ are soft trilinear couplings
and the mϕ are soft scalar masses for the indicated fields.
The soft bilinear coupling B is defined such that at tree
level the mass of the CP-odd MSSM Higgs boson reads
m2

A ¼ 2Bμ= sin 2β. All off-diagonal couplings and scalar
masses are set to zero, as are the first- and second-
generation Yukawa couplings and soft trilinears.

Although we should stress that making this choice will
lead to a spectrum which is in conflict with the LHC limits,
doing so ensures that fine-tuning due to the other param-
eters is small, so that we avoid washing out the fine-tuning
impact of the stops when the tuning is small3 as can be the
case when the stop masses are less than 1 TeV. Note that the
Higgs mass is also allowed to vary in this scan, as shown in
the right panel of Fig. 1. This illustrates the tuning problem
which people have been worrying about since the discovery
of the 125 GeV Higgs boson as we see that raising the stop
masses is also pushing up the Higgs mass, meaning that
heavier Higgs masses require more fine-tuning. However,
for a low value of the UV scale this tuning is not so severe
unless the stops are very heavy, and a 125 GeV Higgs can
be obtained without much tuning in this unrealistic case
where we have minimized other sources of tuning. On the
other hand, the tuning becomes more severe as we increase
the cutoff such that for MX ¼ 1016 GeV a lightest stop
mass of 1–3 TeV can result in a fine-tuning of ≈100–1000
and the minimum tuning we find4 for a 125 GeV Higgs is
≈200, as shown in Fig. 1.
Since the stop mass does not have such a large impact on

the fine-tuning when the cutoff scale is very low we can use
this to see more clearly the impact of the Z0 mass on fine-
tuning. To do so we select a fixed low cutoff of MX ¼
20 TeV and compare the fine tuning between the MSSM
and E6SSM for two different values of the Z0 mass. We

FIG. 1 (color online). Left panel: Scatter plot of fine-tuning in the MSSM as a function of the lightest stop mass, m~t1 , for the cutoff
scales (from bottom to top) MX ¼ 20 TeV, MX ¼ 50 TeV, MX ¼ 100 TeV and MX ¼ 1016 GeV. Right panel: Scatter plot of fine-
tuning in the MSSM as a function of the lightest Higgs mass, mh1 , for the cutoff scales (from bottom to top) MX ¼ 20 TeV,
MX ¼ 50 TeV, MX ¼ 100 TeV and MX ¼ 1016 GeV.

3For models in which the spectrum is heavier, when the stop
masses are small the fine tuning reaches a lower bound imposed
by other heavier parameters.

4Note that in the calculation of the Higgs mass there is a
significant theoretical error, even with leading two-loop correc-
tions, which should be considered when thinking about what the
results imply for the minimum fine tuning in the model consistent
with the recent discovery of a 125 GeV Higgs.
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choose to look at MZ0 ¼ 2.5 TeV, which is just above the
current limits, and MZ0 ¼ 4.5 TeV, which should be in
reach in run II at the LHC [151] and then compare the fine
tuning calculated in each case to the tuning in the MSSM.
For this, we have performed a six-dimensional parameter
space scan in both the MSSM and E6SSM, varying those
parameters most relevant for the fine tuning and the Higgs
mass. Therefore, the set of parameters which we vary
includes μ, B and tan β for the MSSM, and λ, Aλ and tan β,
for the E6SSM, which appear at tree level in the EWSB
conditions of the models. While the RGE contribution from
large stop masses to the fine tuning is small for such a low
cutoff scale, the stop contributions to the effective potential
can play a significant role in reducing the fine tuning. For
this reason it is still important to properly treat the tuning
associated with stop contributions to the one-loop effective
potential, and so we also scan over the soft massesm2

Q3
,m2

u3
and the stop mixing At. The relevant parameters and ranges
that were scanned over are summarized in Table II. In
addition to this we also repeat each scan for three different
values of M2 to allow more variation in the chargino
masses.
In this case, we now consider realistic scenarios, where

the parameters that are not scanned over are set to values
which keep the associated states comfortably above their
experimental limits. So in both the MSSM and E6SSM, all
other soft scalar masses are set to 5 TeV. We require a valid
spectrum with no tachyonic states to exclude points which
would have an unrealistic minimum, for example due to the
appearance of charge or color breaking (CCB) minima.
We work in the third family approximation, taking the
first- and second-generation Yukawa couplings to be zero,
and we also assume that their associated soft trilinears
vanish. Similarly, we take Ab ¼ Aτ ¼ 0 GeV. The Uð1Þ
gaugino soft massM1 was fixed toM1 ¼ 300 GeV, and we
fix M3 ¼ 2000 GeV. Additionally, in the E6SSM the
Uð1ÞN gaugino soft mass M0

1 is held fixed with
M0

1 ¼ M1 ¼ 300 GeV, and μ0 ¼ 5 TeV.
In Fig. 2, results from the scan are plotted showing the

tuning for each case against the lightest Higgs mass. As
expected, the dependence on the Higgs mass is now quite
weak, while the minimum tuning in the model for the

E6SSM is increased by the mass of the Z0 boson. So in the
case of a very low cutoff the tuning required to get a
125 GeV Higgs is not so large. However, the tuning from
the Z0 mass appears already at tree level and is, therefore,
not suppressed when the cutoff scale is low. In our scan we
find that, for the points satisfying the current limit on the
mass of the Z0 boson and having an approximately
125 GeV Higgs, the minimum fine-tuning that can be
achieved is Δmin ≈ 121. If run II of the LHC further pushes
up the limit on the Z0 mass to be above 4.5 TeV then the
fine-tuning in the model will be greater than at least Δmin ≈
394 for a Higgs mass between 124.5 and 125.5 GeV.
This demonstrates two important points about these

Uð1Þ extensions—first, that limits on the Z0 mass play
an incredibly important role in constraining natural scenar-
ios in such models and, second, that the tuning from the Z0
limits in these models depends less on assumptions about
SUSY breaking than the tuning required by the 125 GeV
Higgs measurement which concerns people in the MSSM.
There is another limit which plays a similar role.

Chargino limits directly constrain the μ parameter (or
effective μ parameter in these Uð1Þ extensions). The
LEP bound [152] on chargino masses, excluding
m~χ�

1
≲ 104 GeV, implies that jμj should only be greater

than ∼100 GeV, which is not substantially larger than MZ.
Consequently, the bound from LEP is not high enough to
have an impact on the fine-tuning obtained in the models
and parameter space regions that we have studied, as we
have checked explicitly. Significantly larger lower bounds
on the μ parameter, and therefore on the fine-tuning, may

FIG. 2 (color online). Scatter plot of fine-tuning vs lightest
Higgs mass for the MSSM (light blue, bottom band), E6SSM
with MZ0 ¼ 2.5 TeV (dark blue, middle band) and E6SSM with
MZ0 ¼ 4.5 TeV (dark yellow, top band). Note that there are
points for which the fine-tuning in the MSSM and E6SSM with
MZ0 ¼ 2.5 TeV is larger than is visible on this plot and those
below; however, these points are obscured by the overlaid data for
the E6SSMwithMZ0 ¼ 4.5 TeV, and it is the lower bound on the
achievable tuning that is of interest here.

TABLE II. The parameters scanned over and the ranges of
values used in the MSSM and the E6SSM models.

MSSM E6SSM

2 ≤ tan β ≤ 50 2 ≤ tan β ≤ 50
−1 TeV ≤ μ ≤ 1 TeV −3 ≤ λ ≤ 3
−1 TeV ≤ B ≤ 1 TeV −10 TeV ≤ Aλ ≤ 10 TeV
200 GeV ≤ mQ3

≤ 2000 GeV 200 GeV ≤ mQ3
≤ 2000 GeV

200 GeV ≤ mu3 ≤ 2000 GeV 200 GeV ≤ mu3 ≤ 2000 GeV
−10 TeV ≤ At ≤ 10 TeV −10 TeV ≤ At ≤ 10 TeV
M2 ¼ 100, 1050, 2000 GeV M2 ¼ 100, 1050, 2000 GeV
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arise from chargino limits coming from LHC searches.
However, the chargino limits from the LHC depend on
whether there are light sleptons or sneutrinos and the mass
difference between the lightest chargino and lightest
neutralino. Current limits placed by CMS and ATLAS
extend up tom~χ�

1
≈ 700–740 GeV if there are light sleptons

[153,154] with much weaker bounds if there are no light
sleptons or sneutrinos.5

Nonetheless, for the MSSM the impact of potential
chargino mass limits is shown in Fig. 3. There we see
that if the full parameter space with m~χ�

1
< 700 GeV was

excluded, the impact would be to make the tuning in the
MSSM with a 20 TeV cutoff similar to that of the E6SSM
with the same cutoff and a Z0 mass just larger than current
limits. In the E6SSM, while raising the chargino limit can
have the same impact in principle, due to current limits on
the Z0 mass already imposing a significant degree of tuning,
chargino masses do not make much of a noticeable change.
The exact level of tuning from the Z0 depends on the

charges of the extra Uð1Þ gauge symmetry it is associated
with. In Fig. 4 we look at the fine-tuning for other Uð1Þ
extensions for the same Z0 masses as we did for the E6SSM.
To simplify the analysis we fix tan β ¼ 10, but scan over
the remaining parameters as in Table II and fix the rest to
the same values we did in the scan carried out for Fig. 2. In
order to more clearly identify the lower bound on the

obtainable tuning in each model, the parameter values for
points in these main grid scans with a low fine-tuning were
then used as the starting points for smaller scans about
those values. In these smaller scans the parameters were
more finely varied to populate the low fine-tuning regions.
As can be seen in Fig. 4, the severity of the tunings varies

quite a bit. This is because the charges appear as coefficients
in front of theZ0mass in theEWSBcondition. These charges
change the value of the coefficient d in Eq. (21). The values
of the coefficient d in each model, for tan β ¼ 10, is
f−0.01;0.40;0.50;0.81g for fUð1ÞI;Uð1ÞN;Uð1Þψ ;Uð1Þηg
and this determines which of the models are most tuned.
Interestingly, the coefficient d is very small (and neg-

ative) in the case of the Uð1ÞI . This allows a dramatic
reduction in the fine-tuning from the Uð1ÞI symmetry.
This is a result of the Hu charge associated with Uð1ÞI
vanishing, which means that the D terms to the lightest
Higgs which is predominantly Hu at large tan β are sup-
pressed, making it difficult to raise the Higgs mass in the
same way as happens in the other models and explaining
why heavier Higgs values in this model can’t be obtained.
Therefore, the fine-tuning behavior in this model is closer
to that of the MSSM, and in this case raising the Z0 mass
limit to 4.5 TeV will have little impact on naturalness. From
naively estimating the tuning, using the d coefficient one
can estimate that Z0 limits need to be around 15 TeV before
they will raise the tuning in this model.
Finally we want to emphasize that while in Fig. 2 the

E6SSM looks more fine-tuned than the MSSM this
depends on the high scale boundary, MX, where the
parameters are assumed to be set by some SUSY breaking
mechanism. Indeed in Ref. [16] a constrained version of
the E6SSM, with the high scale boundary at the GUT
scale, is considered and there the cE6SSM was found to be
less tuned than the cMSSM. Since a 125 GeV Higgs can
be achieved in the E6SSM with lighter stops, then if the
cutoff is large, the larger stop masses of the MSSM can
make that model more fine-tuned due to large RGE
effects.
To further illustrate this point, we looked at how the

tuning varies with MX for low tuning benchmarks in the
MSSM and E6SSM. These benchmarks are defined in
Table III and the results are shown in Fig. 5. Since the
behavior is quite complicated we now discuss these in
detail as it provides some insight into the many differences
in the tuning between the two models.
In the top panel one can see that the MSSM BM1 tuning

(dotted curve) steadily climbs as the cutoff scale is
increased, as one would expect when the tuning originates
from large soft masses entering from the RGEs. The panel
on the middle left confirms this, showing that the largest
tuning contributions come from ΔAt

and Δm2
Hu

with the
former being the larger sensitivity until MX ≈ 108 GeV at
which point Δm2

Hu
takes over, leading to the small kink in

overall tuning which can be seen in the dotted curve in the

FIG. 3 (color online). Scatter plot of fine-tuning vs lightest
Higgs mass in the MSSM with 200 GeV ≤ m~χ�

1
≤ 400 GeV

shown in light blue (bottom band), 500 GeV ≤ m~χ�
1
≤ 600 GeV

in dark blue (middle band), and 700 GeV ≤ m~χ�
1
≤ 800 GeV in

dark yellow (top band).

5Useful summary plots of these limits may be found on the
public pages of ATLAS, https://atlas.web.cern.ch/Atlas/GROUPS/
PHYSICS/CombinedSummaryPlots/SUSY/ATLAS_SUSY_
EWSummary/ATLAS_SUSY_EWSummary.png and CMS
http://cms.web.cern.ch/sites/cms.web.cern.ch/files/styles/large/public/
field/image/Image_03_exclusion_Combined.png?itok=8FMBpu_1.
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top panel. In this case we have chosen a point with large
mixing, which is known to reduce the MSSM tuning.
We found this does not eliminate the tuning as there is
still a strong sensitivity to At, but we did find that large
mixing lead to less fine-tuning overall for the points we
examined.
Comparing the MSSM tunings to the E6SSM tunings

one can see that which point is more fine-tuned depends on
the scale at which the parameters are defined. This
illustrates that any statement about which model is more
tuned depends on the high scale boundary, MX.
For E6SSM BM1 the fine-tuning is shown by the solid

curve in the top panel of Fig. 5 and the individual
sensitivities are given in the middle right panel. The tuning
actually reduces initially as the cutoff is increased from
20 TeV. This occurs because the largest sensitivity is
initially Δλ (shown in solid light blue in the middle right
panel). This contains some terms proportional to M02

Z ,
which provide the dominant contribution to this sensitivity
at very lowMX. However, asMX is increased contributions
from the soft masses become more important and these

actually start to cancel the large contribution to Δλ coming
from MZ0 until Δλ passes through zero. At the same time
though these large soft masses also cause other sensitivities
to grow, in particular ΔM3

. The fine-tuning rises with MX

once MX ≳ 105–106 GeV, but remains lower than that of
the other points, until MX ≈ 108 GeV. Eventually the ΔM3

sensitivity leads to this point being the most fine-tuned of
the four shown in Fig. 5.
Although the gluino mass and M3ðMSUSYÞ have similar

values to those in the MSSM BM1 point, in the E6SSM
M3ðMXÞ is larger due to the altered RGE running from
exotic matter.6 This is why this E6SSM BM1 has a larger
tuning at larger values of MX, coming from ΔM3

.
Interestingly other sensitivities are suppressed by this

effect since at the same time larger M3 at higher scales
reduces the soft squark masses at MX. Therefore, the stop
mass contributions are ameliorated, compared to the

FIG. 4 (color online). Top left panel: Scatter plot of the fine-tuning vs lightest Higgs mass in the Uð1ÞI model. Top right panel: Scatter
plot of the fine-tuning vs lightest Higgs mass in the Uð1Þψ model. Bottom panel: Scatter plot of the fine-tuning vs lightest Higgs mass in
the Uð1Þη model. In each plot points with MZ0 ¼ 2.5 TeV are shown in dark blue (bottom band), and points with MZ0 ¼ 4.5 TeV are
shown in dark yellow (top band).

6This altered RGE running is a result of the exotic matter
introduced to keep the extra Uð1Þ anomaly free.
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MSSM, both by allowing lighter stops atMSUSY and by the
modified RGE running. Nonetheless the stops still do lead
to Δm2

Hu
increasing with the cutoff through the

usual mechanism.7

By contrast the tuning for E6SSM BM2 is very different,
as is shown by the dashed line in the top panel, with the
individual sensitivities given in the bottom right panel. This
point was chosen as it had a much lighter gluino mass that
is just above the experimental limit of 1.4 TeV [155]. At
20 TeV this benchmark is not amongst the lowest tuned
points, since at that scale the tree-level tuning from MZ0

dominates. However, the reduction inM3 means thatΔM3
is

substantially lower and only becomes the dominant tuning
at a much larger scale of MX ≳ 1012–1013 GeV, giving a
tuning at 1016 GeV of ≈546, which is far below that of the
other three benchmark points.

TABLE III. Parameters for the MSSM and E6SSM benchmark points. In the E6SSM, we define μeff ≡ λs=
ffiffiffi
2

p
and Beff ¼ Aλ. The soft

masses m2
Hd
, m2

Hu
and m2

S are those that satisfy the EWSB conditions including one-loop Coleman-Weinberg corrections involving the
top and stops. For E6SSM BM1 (BM2) we also set μ0 ¼ 5000.0 (897.9) GeV, Bμ0 ¼ 5000.0 ð−4.21 × 105Þ GeV2, Aκ1;2;3 ¼ 0

ð−1389.2Þ GeV, Aλ1;2 ¼ 0 ð−52.9Þ GeV, m2
D1;2;3

¼ 2.5 × 107 ð4.81 × 106Þ GeV2, m2
D̄1;2;3

¼ 2.5 × 107 ð4.90 × 106Þ GeV2, m2
Hd

1;2
¼

2.5 × 107 ð4.46 × 106Þ GeV2, m2
Hu

1;2
¼ 2.5 × 107 ð4.81 × 106Þ GeV2, m2

S1;2
¼ 2.5 × 107 ð5.28 × 106Þ GeV2, m2

H0 ¼ 2.5 × 107 ð4.94 ×
106Þ GeV2 and m2

H0 ¼ 2.5 × 107 ð4.87 × 106Þ GeV2.

MSSM BM1 MSSM BM2 E6SSM BM1 E6SSM BM2

tan βðMZÞ 10 10 10 10
sðMSUSYÞ [GeV] � � � � � � 6700 6700
κ1;2;3ðMSUSYÞ � � � � � � 0.6 0.52
λ1;2ðMSUSYÞ � � � � � � 0.2 0.13
μeffðMSUSYÞ [GeV] 689.7 1013.5 1093.3 1313.0
BeffðMSUSYÞ [GeV] 345.7 1032.5 3792.7 817.8
AτðMSUSYÞ [GeV] 0 −5057.9 0 −88.5
AbðMSUSYÞ [GeV] 0 −5707.2 0 −1720.7
AtðMSUSYÞ [GeV] −3335.7 −2734.8 −1100 −1103.2
m2

L1;2
ðMSUSYÞ [GeV2] 2.5 × 107 6.35 × 106 2.5 × 107 4.94 × 106

m2
L3
ðMSUSYÞ [GeV2] 2.5 × 107 6.22 × 106 2.5 × 107 4.90 × 106

m2
e1;2ðMSUSYÞ [GeV2] 2.5 × 107 6.27 × 106 2.5 × 107 5.21 × 106

m2
e3ðMSUSYÞ [GeV2] 2.5 × 107 6.03 × 106 2.5 × 107 5.11 × 106

m2
Q1;2

ðMSUSYÞ [GeV2] 2.5 × 107 7.37 × 106 2.5 × 107 5.76 × 106

m2
Q3
ðMSUSYÞ [GeV2] 4.45 × 106 3.97 × 106 4.50 × 105 3.61 × 106

m2
u1;2ðMSUSYÞ [GeV2] 2.5 × 107 7.30 × 106 2.5 × 107 5.54 × 106

m2
u3ðMSUSYÞ [GeV2] 4.0 × 106 6.60 × 105 5.86 × 105 2.04 × 106

m2
d1;2

ðMSUSYÞ [GeV2] 2.5 × 107 7.30 × 106 2.5 × 107 5.88 × 106

m2
d3
ðMSUSYÞ [GeV2] 2.5 × 107 7.03 × 106 2.5 × 107 5.78 × 106

m2
Hd
ðMSUSYÞ [GeV2] 1.82 × 106 8.96 × 106 4.06 × 107 1.04 × 107

m2
Hu
ðMSUSYÞ [GeV2] −3.60 × 105 −9.35 × 105 5.0 × 105 −2.66 × 105

m2
SðMSUSYÞ [GeV2] � � � � � � −3.10 × 106 −3.17 × 106

M1ðMSUSYÞ [GeV] 300 260.8 300 173.4
M2ðMSUSYÞ [GeV] 2000 479.2 1050 281.4
M3ðMSUSYÞ [GeV] 2000 1312.3 2000 1200
M0

1ðMSUSYÞ [GeV] � � � � � � 300 175.2
MZ0 [GeV] � � � � � � 2473.2 2512.7
mh1 [GeV] 124.3 124.4 125.0 126.2
m~t1 [GeV] 1942.1 861.6 993.8 1665.0
m~t2 [GeV] 2220.1 2023.9 1174.8 2094.4
m~g [GeV] 2259.8 1472.9 2290.0 1407.4
ΔðMX ¼ 20 TeVÞ 157.3 242.8 165.3 402.1
ΔðMX ¼ 1016 GeVÞ 1089.0 949.0 1722.3 546.7

7Wherein m2
Hu
ðMSUSYÞ receives a positive contribution to it’s

mass from m2
Hu
ðMXÞ and a negative contribution from m2

Q3
ðMXÞ

and m2
u3ðMXÞ, allowing heavy stop masses to cause fine-tuning.

In this case m2
Hu
ðMSUSYÞ is held fixed so as the cutoff increases

the values of these soft masses atMX will be larger and there will
be a bigger cancellation between them, increasing the sensitivity
of MZ to both m2

Hu
and the soft scalar masses for the stops.
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In addition to this, the soft parameters in E6SSM BM2
follow a pattern similar to that found in the constrained
model. With the exception of the parameters m2

Q3
, m2

u3 ,
m2

Hd
, m2

Hu
, and M3, the values of which are given in

Table III, the soft masses at the SUSY scale correspond to
the values that result in the cE6SSM with m0 ¼ 2.2 TeV,
M1=2 ¼ 1003 GeV, A0 ¼ 500 GeV, κ1;2;3ðMXÞ ¼ 0.1923,
λðMXÞ ¼ 0.2646 and λ1;2ðMXÞ ¼ 0.1. This leads to a

FIG. 5 (color online). Top panel: Scatter plot of the fine-tuning as a function of the cutoff scale MX for the four benchmark points
given in Table III. Middle left panel: Individual sensitivities for MSSM BM1 plotted against the high scale MX which give the
overall tuning shown by the dotted line in the top panel. Middle right panel: Individual sensitivities for E6SSM BM1 plotted against the
high scale MX which give the overall tuning shown by the solid line in the top panel. Bottom left panel: Individual sensitivities for
MSSM BM2 plotted against the high scale MX which give the overall tuning shown by the dash-dotted line in the top panel. Bottom
right panel: Individual sensitivities for E6SSM BM2 plotted against the high scale MX which give the overall tuning shown by the
dashed line in the top panel.
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significant reduction in the contributions to the RG
running of m2

Hu
and m2

Q3
coming from terms of the form

g21Σ1 and, to a lesser extent, g021 Σ0
1. Here we define for the

E6SSM (see also Eqs. (B8)–(B9) for general Uð1Þ inspired
models)

Σ1 ¼
X3
i¼1

ðm2
Qi

− 2m2
ui þm2

di
þm2

ei −m2
Li
þm2

Hu
i
−m2

Hd
i

þm2
D̄i

−m2
Di
Þ −m2

H0 þm2

H0 ;

Σ0
1 ¼

X3
i¼1

ð6m2
Qi

þ 3m2
ui þ 6m2

di
þm2

ei þ 4m2
Li
− 4m2

Hu
i

− 6m2
Hd

i
þ 5m2

Si
− 9m2

D̄i
− 6m2

Di
Þ þ 4m2

H0 − 4m2

H0 :

In the unconstrained case, this contribution acts to drive up
the values of m2

Q3
and m2

Hu
, and thus the associated tuning

sensitivities, at the cutoff scale MX. In the case of E6SSM
BM2, on the other hand, the reduced splitting between the
soft masses leads to a much smaller contribution from these
terms. Together with the reduction in M3 described above,
this allows to maintain the observed low fine-tuning at very
large values of MX.
MSSM benchmark BM2 (dash-dotted in top panel,

individual sensitivities in bottom left panel) is designed
to be similar to E6SSM BM2, for a reasonable comparison.
However, from the individual sensitivities one can see that
the behavior is quite similar to MSSM BM1, though in this
case Δm2

Hu
becomes the largest tuning at a higher MX and

does not reach such large values, since more of the tuning is
from the mixing in this case.

VI. CONCLUSIONS

Prior to stringent experimental constraints on the mass of
the lightest Higgs boson and squarks in supersymmetric
models, a simple picture of a natural SUSY model emerged
from theoretical reasoning, with soft masses set to similar
values at the GUT scale through local gravity interactions
with the hidden sector. Through the use of renormalization
group running, one can then see that at the EW scale the
stops enter the EWSB condition for MZ; therefore, it was
expected that these masses should not be much bigger than
100 GeV. However, to disturb this elegant picture, first LEP
placed constraints on the Higgs mass, requiring it to be
above 114.4 GeV [156,157], which already introduced
significant tuning for constrained models since heavy stops
are required to raise the lightest Higgs mass above its tree-
level bound. Then, recently, this problem got much worse
since the LHC measured the Higgs mass to be around
125 GeV.
Uð1Þ extensions motivated by the μ problem, E6 GUT

theories and the connection to string theory contain both F-
andD-term contributions to the light Higgs mass which can

raise the tree-level mass, evading the need for large
radiative corrections to increase it. However, such models
come with their own fine-tuning problem, where the Z0
mass appears in the EWSB condition for MZ at tree level.
While in a previous study of the constrained E6SSM it was
found that the tuning is less severe than the MSSM, it was
still significant.
In light of such difficulties it is worth considering

whether the simple picture which emerged is wrong in
some way and if there are other possibilities that allow
naturalness. Or to phrase this in a more challenging manner
are there ways to constrain the naturalness of these models
that do not rely upon assumptions about how SUSY is
broken?
We have investigated this question here in the context of

the MSSM and Uð1Þ extensions. Since the RG evolution
links the soft masses together and causes these problems
from stop and gluino masses the most conservative
approach to placing naturalness limits is to choose a low
cutoff. We find that in the MSSM the most direct way to
constrain naturalness in the model without making assump-
tions about the SUSY breaking scale is through limits on
the chargino masses. Current LHC limits on charginos are
not model independent and thereby leave many gaps where
one can have light charginos.
In contrast we find that in Uð1Þ extensions of the MSSM

there is an additional way to constrain the naturalness of the
models, which is through the Z0 mass limit. We find when
we impose a low cutoff of 20 TeV for setting the soft
masses, the lowest tuning in the E6SSM compatible with a
Z0 mass of 2.5 TeV was Δ ≈ 121, while if the LHC run II
can place a limit of 4.5 TeVonM0

Z then the tuning would be
approximately 394. By comparison the current situation in
the MSSM only requires a tuning of around 38. This should
be interpreted as saying that in the most conservative limits
one can place on naturalness in these models, the tuning in
the E6SSM is worse. However, if there are no charginos
below 700 GeV then the situation in the two models would
be the same.
This should also be contrasted with what happens as we

raise the high scale boundary, MX. We showed that for our
benchmark points, which one is more tuned depends very
strongly on MX. The E6SSM tuning is sufficiently
complicated by the interplay of these different sources
of tension in the EWSB conditions that a small reduction
in fine-tuning can even occur for a moderate increase in
MX. However, as MX increases towards the scale where
the gauge couplings unify, the familiar tunings do domi-
nate, though with tunings from the gluino mass appearing
to be more significant relative to those from soft scalar
masses.
We also looked at the tuning in differentUð1Þ extensions

for fixed tan β ¼ 10. We found that in every case except for
the Uð1ÞI the fine-tuning was much worse for the larger Z0
mass, further emphasizing the importance of this in Uð1Þ
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extensions. The Uð1ÞI model showed the least tuning due
to the vanishing charge of the Hu state. This model is quite
interesting in the sense that it provides a solution to the μ
problem while avoiding the large tuning (with current
limits) from the Z0 mass. However, one should remember
we are looking at conservative limits on naturalness here
and there is no solution to the usual tuning coming from the
large stops needed to get a 125 GeV Higgs in this model,
which will be a problem as the UV scale is raised.
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APPENDIX A: FINE-TUNING
MASTER FORMULA

To write down the tree-level master formula, it is
convenient to define the quantities

zi ¼ ϵijk
∂fj
∂s

∂fk
∂ tan β ðA1Þ

with f1; f2; f3 as given in Eq. (16). The relevant partial
derivatives are

∂f1
∂ tan β ¼ −

2MZ

ḡ
cos2β

�
λAλsffiffiffi

2
p cos β þ sin β

�
m2

Hd
þ s2

2
ðλ2 þ g021 Q1QSÞ

þM2
Z

�
5

2
−
4λ2

ḡ2
−
4g021
ḡ2

Q1Q2 þ
6g021
ḡ2

Q2
1

��
þ 3M2

Zsin
3β

�
2λ2

ḡ2
− 1þ 2g021

ḡ2
ðQ1Q2 −Q2

1Þ
�	

;

∂f1
∂s ¼ 2MZ

ḡ

�
sðλ2 þ g021 Q1QSÞ cos β −

λAλffiffiffi
2

p sin β

�
;

∂f2
∂ tan β ¼ 2MZ

ḡ
cos2β

�
λAλsffiffiffi

2
p sin β þ cos β

�
m2

Hu
þ s2

2
ðλ2 þ g021 Q2QSÞ

þM2
Z

�
5

2
−
4λ2

ḡ2
−
4g021
ḡ2

Q1Q2 þ
6g021
ḡ2

Q2
2Þ
�
þ 3M2

Zcos
3β

�
2λ2

ḡ2
− 1þ 2g021

ḡ2
ðQ1Q2 −Q2

2Þ
�	

;

∂f2
∂s ¼ 2MZ

ḡ

�
sðλ2 þ g021 Q2QSÞ sin β −

λAλffiffiffi
2

p cos β
�
;

∂f3
∂ tan β ¼ 2M2

Z

ḡ2
cos2β½g021 QSsðQ2 −Q1Þ sin 2β −

ffiffiffi
2

p
λAλ cos 2β�;

∂f3
∂s ¼ m2

S þ
2λ2M2

Z

ḡ2
þ g021

2
QS

�
4M2

Z

ḡ2
ðQ1cos2β þQ2sin2βÞ þ 3QSs2

�
:

For a running parameter q appearing in the tree-level EWSB conditions, the corresponding contribution to the individual
sensitivity can then be written

~Δq ¼ z1
∂f1
∂q þ z2

∂f2
∂q þ z3

∂f3
∂q : ðA2Þ

It is straightforward to compute the appropriate derivatives directly from the EWSB conditions, Eq. (16). Similarly, the
quantity C appearing in Eq. (26) is given by

C ¼ 1

2

�
z1

∂f1
∂MZ

þ z2
∂f2
∂MZ

þ z3
∂f3
∂MZ

�
; ðA3Þ

with
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∂f1
∂MZ

¼ 2

ḡ
cos β

�
m2

Hd
þ λ2s2

2
þ g021

2
Q1QSs2 þ

6g021
ḡ2

Q2
1M

2
Z

�
−

ffiffiffi
2

p λAλs
ḡ

sin β

þ 3M2
Z

ḡ
cos β cos 2β þ 6

ḡ3
M2

Z sin β sin 2β½λ2 þ g021 ðQ1Q2 −Q2
1Þ�;

∂f2
∂MZ

¼ 2

ḡ
sin β

�
m2

Hu
þ λ2s2

2
þ g021

2
Q2QSs2 þ

6g021
ḡ2

Q2
2M

2
Z

�
−

ffiffiffi
2

p λAλs
ḡ

cos β

−
3M2

Z

ḡ
sin β cos 2β þ 6

ḡ3
M2

Z cos β sin 2β½λ2 þ g021 ðQ1Q2 − ~Q2
2Þ�;

∂f3
∂MZ

¼ 4MZ

ḡ2

�
λ2s −

λAλffiffiffi
2

p sin 2β þ g021 QSsðQ1cos2β þQ2sin2βÞ
�
:

APPENDIX B: RGE CONTRIBUTIONS

Provided that one does not run over too large a range of scales, the solutions to the RG equations for a model can be
reasonably well approximated by a Taylor series, Eq. (32). For a parameter p, this reads

qðQÞ ¼ qðMXÞ þ
t

16π2

�
βð1Þq þ βð2Þq

16π2

�
þ t2

ð16π2Þ2 b
ð2Þ
q ðMXÞ;

where we have for convenience defined

bð2Þq ðMXÞ ¼
1

2!

X
qk

βð1Þqk

∂βq
∂qk

����
MX

:

We have constructed the necessary series solutions in both the MSSM and the Uð1Þ extended models. Due to the smallness
of the first- and second-generation Yukawa couplings, we neglect them in our calculations. The corresponding soft SUSY
breaking trilinears are likewise omitted. Additionally, all soft mass matrices are assumed diagonal, and the gaugino masses
are taken to be real.
In the MSSM, the relevant parameters for the fine-tuning calculation are μ, B, m2

Hu
, m2

Hd
at tree level. For the

renormalization group running of the relevant parameters SOFTSUSY uses the one- and two-loop RGEs from [158,159].
The corresponding Oðt2Þ contributions are

bð2Þμ ¼ μ

2

�
45y4t þ 45y4b þ 9y4τ þ 30y2t y2b þ 6y2t y2τ þ 18y2by

2
τ − 32g23ðy2t þ y2bÞ

− 12g22ð3y2t þ 3y2b þ y2τÞ −
4

5
g21ð11y2t þ 8y2b þ 6y2τÞ þ 3g42 −

189

25
g41 þ

18

5
g21g

2
2

�
; ðB1aÞ

bð2ÞB ¼ 72y4t At þ 72y4bAb þ 16y4τAτ þ 12y2t y2bðAt þ AbÞ þ 12y2τy2bðAb þ AτÞ − 32g23y
2
t ðAt −M3Þ − 32g23y

2
bðAb −M3Þ

− 18g22y
2
t ðAt −M2Þ − 18g22y

2
bðAb −M2Þ − 6g22y

2
τðAτ −M2Þ −

26

5
g21y

2
t ðAt −M1Þ −

14

5
g21y

2
bðAb −M1Þ

−
18

5
g21y

2
τðAτ −M1Þ þ 12g42M2 þ

396

25
g41M1; ðB1bÞ

bð2Þ
m2

Hd

¼ 72y4bðm2
Hd

þm2
Q3

þm2
d3
þ 2A2

bÞ þ 6y2t y2bðm2
Hu

þm2
Hd

þ 2m2
Q3

þm2
u3 þm2

d3
þ ðAt þ AbÞ2Þ

þ 12y2τy2bð2m2
Hd

þm2
Q3

þm2
d3
þm2

L3
þm2

e3 þ ðAτ þ AbÞ2Þ þ 16y4τðm2
Hd

þm2
L3

þm2
e3 þ 2A2

τÞ
− 32g23y

2
bðm2

Hd
þm2

Q3
þm2

d3
þ A2

b − 2M3Ab þ 2M2
3Þ − 18g22y

2
bðm2

Hd
þm2

Q3
þm2

d3
þ A2

b − 2M2Ab þ 2M2
2Þ

− 6g22y
2
τðm2

Hd
þm2

L3
þm2

e3 þ A2
τ − 2M2Aτ þ 2M2

2Þ −
14

5
g21y

2
bðm2

Hd
þm2

Q3
þm2

d3
þ A2

b − 2M1Ab þ 2M2
1Þ

−
18

5
g21y

2
τðm2

Hd
þm2

L3
þm2

e3 þ A2
τ − 2M1Aτ þ 2M2

1Þ − 18g42M
2
2 −

198

25
g41ðS þ 3M2

1Þ; ðB1cÞ
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bð2Þ
m2

Hu

¼ 72y4t ðm2
Hu

þm2
Q3

þm2
u3 þ 2A2

t Þ þ 6y2t y2bðm2
Hu

þm2
Hd

þ 2m2
Q3

þm2
u3 þm2

d3
þ ðAt þ AbÞ2Þ

− 32g23y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2AtM3 þ 2M2

3Þ − 18g22y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2AtM2 þ 2M2

2Þ

−
26

5
g21y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2AtM1 þ 2M2

1Þ þ
198

25
g41ðS − 3M2

1Þ − 18g42M
2
2: ðB1dÞ

In these expressions the quantity S is defined by

S ¼ m2
Hu

−m2
Hd

þ
X3
i¼1

ðm2
Qi

−m2
Li
− 2m2

ui þm2
di
þm2

eiÞ: ðB2Þ

If, in addition, the one-loop contributions to the effective potential from top and stop loops are included, it is also necessary
to construct the expansions for m2

Q3
, m2

u3 and At. The coefficients read

bð2Þ
m2

Q3

¼ 24y4t ðm2
Hu

þm2
Q3

þm2
u3 þ 2A2

t Þ þ 24y4bðm2
Hd

þm2
Q3

þm2
d3
þ 2A2

bÞ
þ 4y2t y2bðm2

Hu
þm2

Hd
þ 2m2

Q3
þm2

u3 þm2
d3
þ ðAt þAbÞ2Þ þ 2y2by

2
τð2m2

Hd
þm2

Q3
þm2

L3
þm2

d3
þm2

e3 þ ðAb þAτÞ2Þ

−
32

3
g23y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þA2
t − 2M3At þ 2M2

3Þ−
32

3
g23y

2
bðm2

Hd
þm2

Q3
þm2

d3
þA2

b − 2M3Ab þ 2M2
3Þ

− 6g22y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þA2
t − 2M2At þ 2M2

2Þ− 6g22y
2
bðm2

Hd
þm2

Q3
þm2

d3
þA2

b − 2M2Ab þ 2M2
2Þ

−
26

15
g21y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þA2
t − 2M1At þ 2M2

1Þ−
14

15
g21y

2
bðm2

Hd
þm2

Q3
þm2

d3
þA2

b − 2M1Ab þ 2M2
1Þ

þ 96g43M
2
3 − 18g42M

2
2 þ

66

25
g41ðS −M2

1Þ; ðB3aÞ

bð2Þ
m2

u3
¼ 48y4t ðm2

Hu
þm2

Q3
þm2

u3 þ 2A2
t Þ þ 4y2t y2bðm2

Hu
þm2

Hd
þ 2m2

Q3
þm2

u3 þm2
d3
þ ðAt þ AbÞ2Þ

−
64

3
g23y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2M3At þ 2M2

3Þ − 12g22y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2M2At þ 2M2

2Þ

−
52

15
g21y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þ A2
t − 2M1At þ 2M2

1Þ þ 96g43M
2
3 −

264

25
g41ðS þ 4M2

1Þ; ðB3bÞ

bð2ÞAt
¼ 144y4t Atþ24y4bAbþ14y2t y2bðAtþAbÞþ2y2by

2
τðAbþAτÞ−64g23y

2
t ðAt−M3Þ−36g22y

2
t ðAt−M2Þ−

52

5
g21y

2
t ðAt−M1Þ

−
32

3
g23y

2
bðAb−M3Þ−6g22y

2
bðAb−M2Þ−

14

15
g21y

2
bðAb−M1Þ−64g43M3þ12g42M2þ

572

25
g41M1: ðB3cÞ

We can similarly obtain the two-loop β functions and

coefficients bð2Þp for a general set of Uð1Þ0 charges. Two-
loop RGEs for the gauge and Yukawa couplings, gaugino
masses and soft trilinears, along with the one-loop RGEs
for the soft scalar masses, were originally obtained in
Ref. [18] for the particular case of the E6SSM. Flexi-
bleSUSYuses full one- and two-loop RGEs from SARAH,
which for the models considered here are based on
Ref. [159] and the recent extension8 in Ref. [160] to

include models with multiple Uð1Þ gauge groups, in the
most general case where the trace of the matrix formed
from the charges QY

i of the Uð1ÞY gauge symmetry and Qi
of the extra Uð1Þ0 symmetry does not vanish, i.e.P

iQ
Y
i Qi ≠ 0.

When this trace is nonzero, it will also induce gauge
kinetic mixing to be generated during RGE evolution
and this is the case in the models we consider here.9

However, when these models are evolved down from the

8In the version of SARAH which we used the extra terms from
this extension were included for all terms except the trilinear and
bilinear soft masses. We have been in contact with the SARAH
author about this and understand they will be included in future
versions.

9In E6 inspired models with only complete 27-plet matter
multiplets this trace would vanish. However, since we
assume some incomplete multiplets so that our models are
consistent with gauge coupling unification this trace doesn’t
vanish.
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GUT scale, the radiatively generated gauge kinetic
mixing gives an off-diagonal gauge coupling, g11, of
just ≈0.02 at the EW scale [13] and so it does not play a
large role. At the same time if gauge kinetic mixing is
included the RGE expressions become very large and
unmanageable, so we neglected the gauge kinetic mix-
ing by setting the SARAH flag NOU1MIXING to true.
At tree level in the EWSB conditions the parameters that

must be considered are λ, Aλ, m2
Hu
, m2

Hd
, m2

S and g1, g2 and
g01. Neglecting kinetic mixing, the two-loop β functions for
the relevant gauge couplings read

βð1Þg1 ¼ 48

5
g31; ðB4aÞ

βð2Þg1 ¼ 2

25
g31ð30g021 ΠY

Q þ 117g21 þ 135g22 þ 300g23 − 10Σκ

− 15Σλ − 65y2t − 35y2b − 45y2τÞ; ðB4bÞ

βð1Þg2 ¼ 4g32; ðB4cÞ

βð2Þg2 ¼ 2

5
g32ð5g021 ΠL

Q þ 9g21 þ 115g22 þ 60g23 − 5Σλ − 15y2t

− 15y2b − 5y2τÞ; ðB4dÞ

βð1Þg0
1
¼ g031 ΣQ; ðB4eÞ

βð2Þg0
1
¼ 2

5
g031 ð−15ΣκðQ2

D̄þQ2
DþQ2

SÞ−30y2bðQ2
dþQ2

1þQ2
QÞ

þ120g23ΠC
Q−10y2τðQ2

eþQ2
LþQ2

1Þþ15g22ΠL
Q

þ10g021 ΠQþ6g21ΠY
Q−10ΣλðQ2

SþQ2
1þQ2

2Þ
−30y2t ðQ2

uþQ2
2þQ2

QÞÞ: ðB4fÞ

In order to keep these expressions compact, we have used
the notation

ΣQ ¼
X
i

Q2
i ¼

321

40
cos2θ þ 217

24
sin2θ þ 27

8
ffiffiffiffiffi
15

p sin 2θ

to denote the trace over the Uð1Þ0 charges, along with10

ΣY
Q¼

X
i

ffiffiffi
5

3

r
QY

i Qi¼−
3ffiffiffiffiffi
10

p cosθ−
1ffiffiffi
6

p sinθ;

ΠQ¼
X
i

Q4
i

¼2049

1600
cos4θþ 483

80
ffiffiffiffiffi
15

p cos3θsinθþ681

160
cos2θsin2θ

þ 9

16
ffiffiffiffiffi
15

p cosθsin3θþ1297

576
sin4θ;

ΠY
Q¼

X
i

� ffiffiffi
5

3

r
QY

i

�
2

Q2
i ¼

59

40
cos2θþ31

24
sin2θ

þ 3

8
ffiffiffiffiffi
15

p sin2θ;

ΠL
Q¼3Q2

1þ3Q2
2þQ2

H0 þQ2

H0 þ3Q2
Lþ9Q2

Q

¼39

20
cos2θþ19

12
sin2θþ 3

4
ffiffiffiffiffi
15

p sin2θ;

ΠC
Q¼Q2

dþQ2
DþQ2

D̄þ2Q2
QþQ2

u¼
1

2
:

Note that in these expressions the Uð1ÞY and
Uð1Þ0 charges are assumed to be GUT-normalized. The
expressions in terms of the E6 mixing angle θ follow from
the charge assignments given in Table I and hold provided
that Uð1Þ mixing is neglected. Similarly, we write

Σλ ¼ λ21 þ λ22 þ λ23; Σκ ¼ κ21 þ κ22 þ κ23;

Πλ ¼ λ41 þ λ42 þ λ43; Πκ ¼ κ41 þ κ42 þ κ43:

The correspondingOðt2Þ coefficients for the gauge couplings
are simply

bð2Þg1 ¼ 3456

25
g51; ðB5aÞ

bð2Þg2 ¼ 24g52; ðB5bÞ

bð2Þg0
1
¼ 3

2
g051 Σ2

Q: ðB5cÞ

The one- and two-loop contributions to the β function for
λ and the Oðt2Þ coefficient in the series expansion
are

βð1Þλ ¼ λ

�
2λ2 þ 2Σλ þ 3Σκ þ 3y2t þ 3y2b þ y2τ − 3g22

−
3

5
g21 − 2ðQ2

1 þQ2
2 þQ2

SÞg021
�
; ðB6aÞ

10The first of these is the trace which is assumed to vanish in
Ref. [159]. Although we use the NOU1MIXING flag to neglect
gauge kinetic mixing, SARAH does this by removing the RGE
for the off diagonal gauge couplings and effectively setting them
to zero at all scales by removing all terms involving them from the
RGEs. Therefore, some terms with this trace remain and the
RGEs shown here do not reduce to those which one would obtain
from Ref. [159] or Ref. [18] unless ΣY

Q ¼ 0. Note, however, these
contributions do not appear in the corresponding trilinears due to
the version of SARAH used.
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βð2Þλ ¼ λ

�
−2λ2ðλ2 þ 2Σλ þ 3ΣκÞ − 4Πλ − 6Πκ − 3λ2ð3y2t þ 3y2b þ y2τÞ − 3ð3y4t þ 3y4b þ 2y2t y2b þ y4τÞ þ 6g22Σλ

þ 2

5
g21ð2y2t − y2b þ 3y2τ þ 2Σκ þ 3ΣλÞ þ g021 ½4Q2

Sλ
2 − 6ðQ2

2 −Q2
Q −Q2

uÞy2t − 6ðQ2
1 −Q2

Q −Q2
dÞy2b

− 2ðQ2
1 −Q2

L −Q2
eÞy2τ − 6ðQ2

S −Q2
D −Q2

D̄ÞΣκ − 4ðQ2
S −Q2

1 −Q2
2ÞΣλ�

þ 16g23ðy2t þ y2b þ ΣκÞ þ
33

2
g42 þ

297

50
g41 þ 2g041 ½2Q4

1 þ 2Q4
2 þ 2Q4

S þ ðQ2
1 þQ2

2 þQ2
SÞΣQ�

þ 9

5
g21g

2
2 þ 6g021 g

2
2ðQ2

1 þQ2
2Þ þ

6

5
g21g

02
1 ½Q2

1 þQ2
2 þ ðQ2 −Q1ÞΣY

Q�
	
; ðB6bÞ

bð2Þλ ¼ λ
n
2λ2ð3λ2þ4Σλþ6ΣκÞþ4Πλþ6Πκþ6



Σλþ

3

2
Σκ

�
2þ7λ2ð3y2t þ3y2bþy2τÞþð3y2t þ3y2bþy2τÞð2Σλþ3ΣκÞ

þ3

15
2
y4t þ

15

2
y4bþ

3

2
y4τ þ5y2by

2
t þ3y2by

2
τ þy2t y2τ

�
−
1

5
g21ð12λ2þ16y2bþ22y2t þ12y2τ þ12Σλþ13ΣκÞ

−3g22ð4λ2þ6y2t þ6y2bþ2y2τ þ4Σλþ3ΣκÞ−16g23ðy2t þy2bþΣκÞ−2g021 ½4ðQ2
1þQ2

2þQ2
SÞðλ2þΣλÞ

þ3ΣκðQ2
1þQ2

2þQ2
SþQ2

DþQ2
D̄Þþ3y2bð2Q2

1þQ2
2þQ2

dþQ2
QþQ2

SÞþ3y2t ðQ2
1þ2Q2

2þQ2
QþQ2

SþQ2
uÞ

þy2τð2Q2
1þQ2

2þQ2
eþQ2

LþQ2
SÞ�−

15

2
g42−

279

50
g41þ2g041 ðQ2

1þQ2
2þQ2

SÞðQ2
1þQ2

2þQ2
S−ΣQÞ

þ9

5
g21g

2
2þ6g021 g

2
2ðQ2

1þQ2
2þQ2

SÞþ
6

5
g21g

02
1 ðQ2

1þQ2
2þQ2

SÞ
o
: ðB6cÞ

It is sufficient for our purposes to consider the trilinear coupling aλ ≡ λAλ, rather than Aλ, for which the relevant
expressions read

βð1Þaλ ¼ aλ
h
2λ2 þ 2Σλ þ 3Σκ þ 3y2t þ 3y2b þ y2τ − 3g22 −

3

5
g21 − 2ðQ2

1 þQ2
2 þQ2

SÞg021
i

þ λ
h
4λaλ þ 4Σaλ þ 6Σaκ þ 6ytat þ 6ybab þ 2yτaτ þ 6g22M2 þ

6

5
g21M1 þ 4g021 M

0
1ðQ2

1 þQ2
2 þQ2

SÞ
i
; ðB7aÞ

βð2Þaλ ¼ aλ
n
−2λ2ðλ2 þ 2Σλ þ 3ΣκÞ − 4Πλ − 6Πκ − 3λ2ð3y2t þ 3y2b þ y2τÞ − 3ð3y4t þ 3y4b þ 2y2t y2b þ y4τÞ

þ 6g22Σλ þ
2

5
g21ð2y2t − y2b þ 3y2τ þ 2Σκ þ 3ΣλÞ þ g021 ½4Q2

Sλ
2 − 6ðQ2

2 −Q2
Q −Q2

uÞy2t − 6ðQ2
1 −Q2

Q −Q2
dÞy2b

− 2ðQ2
1 −Q2

L −Q2
eÞy2τ − 6ðQ2

S −Q2
D −Q2

D̄ÞΣκ − 4ðQ2
S −Q2

1 −Q2
2ÞΣλ� þ 16g23ðy2t þ y2b þ ΣκÞ þ

33

2
g42 þ

297

50
g41

þ 2g041 ½2Q4
1 þ 2Q4

2 þ 2Q4
S þ ðQ2

1 þQ2
2 þQ2

SÞΣQ� þ
9

5
g21g

2
2 þ 6g021 g

2
2ðQ2

1 þQ2
2Þ þ

6

5
g21g

02
1 ðQ2

1 þQ2
2Þ
o

þ λ
n
−4λaλðλ2 þ 2Σλ þ 3ΣκÞ − 4λ2ðλaλ þ 2Σaλ þ 3ΣaκÞ − 16Πaλ − 24Πaκ − 6λaλð3y2t þ 3y2b þ y2τÞ

− 6λ2ð3ytat þ 3ybab þ yτaτÞ − 12½3y3t at þ 3y3bab þ ytybðytab þ ybatÞ þ y3τaτ�
þ 32g23½ytat þ ybab þ Σaκ − ðy2t þ y2b þ ΣκÞM3� þ 12g22ðΣaλ − ΣλM2Þ

þ 2

5
g21½4ytat − 2ybab þ 6yτaτ þ 4Σaκ þ 6Σaλ − 2ð2y2t − y2b þ 3y2τ þ 2Σκ þ 3ΣλÞM1�

þ 4g021 ½3ytðQ2
Q −Q2

2 þQ2
uÞðat − ytM0

1Þ þ 3ybðQ2
Q −Q2

1 þQ2
dÞðab − ybM0

1Þ þ yτðQ2
L −Q2

1 þQ2
eÞðaτ − yτM0

1Þ
þ 2Q2

Sλðaλ − λM0
1Þ þ 2ðQ2

1 þQ2
2 −Q2

SÞðΣaλ − ΣλM0
1Þ þ 3ðQ2

D þQ2
D̄ −Q2

SÞðΣaκ − ΣκM0
1Þ�

− 66g42M2 −
594

25
g41M1 − 8g041 M

0
1½2ðQ4

1 þQ4
2 þQ4

SÞ þ ðQ2
1 þQ2

2 þQ2
SÞΣQ�

−
18

5
g22g

2
1ðM2 þM1Þ − 12g22g

02
1 ðQ2

1 þQ2
2ÞðM2 þM0

1Þ −
12

5
g21g

02
1 ðQ2

1 þQ2
2ÞðM1 þM0

1Þ
o
; ðB7bÞ
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bð2Þaλ ¼ λ

�
4λaλ þ 4Σaλ þ 6Σaκ þ 6ytat þ 6ybab þ 2yτaτ þ 6g22M2 þ

6

5
g21M1 þ 4g021 M

0
1ðQ2

1 þQ2
2 þQ2

SÞ
�

×

�
2λ2 þ 2Σλ þ 3Σκ þ 3y2t þ 3y2b þ y2τ − 3g22 −

3

5
g21 − 2ðQ2

1 þQ2
2 þQ2

SÞg021
�

þ aλ

�
2λ2ð3λ2 þ 4Σλ þ 6ΣκÞ þ 4Πλ þ 6Πκ þ 6

�
Σλ þ

3

2
Σκ

�
2

þ 7λ2ð3y2t þ 3y2b þ y2τÞ þ ð3y2t þ 3y2b þ y2τÞð2Σλ þ 3ΣκÞ

þ 3

�
15

2
y4t þ

15

2
y4b þ

3

2
y4τ þ 5y2by

2
t þ 3y2by

2
τ þ y2t y2τ

�
−
1

5
g21ð12λ2 þ 16y2b þ 22y2t þ 12y2τ þ 12Σλ þ 13ΣκÞ

− 3g22ð4λ2 þ 6y2t þ 6y2b þ 2y2τ þ 4Σλ þ 3ΣκÞ− 16g23ðy2t þ y2b þΣκÞ− 2g021 ½4ðQ2
1 þQ2

2 þQ2
SÞðλ2 þΣλÞ

þ 3ΣκðQ2
1 þQ2

2 þQ2
S þQ2

D þQ2
D̄Þ þ 3y2bð2Q2

1 þQ2
2 þQ2

d þQ2
Q þQ2

SÞ þ 3y2t ðQ2
1 þ 2Q2

2 þQ2
Q þQ2

S þQ2
uÞ

þ y2τð2Q2
1 þQ2

2 þQ2
e þQ2

L þQ2
SÞ�−

15

2
g42 −

279

50
g41 þ 2g041 ðQ2

1 þQ2
2 þQ2

SÞðQ2
1 þQ2

2 þQ2
S −ΣQÞ þ

9

5
g21g

2
2

þ 6g021 g
2
2ðQ2

1 þQ2
2 þQ2

SÞ þ
6

5
g21g

02
1 ðQ2

1 þQ2
2 þQ2

SÞ
	
þ λ

�
16λ3aλ þ 16Πaλ þ 24Πaκ þ 8λ

X3
i¼1

λiðλiaλ þ aλiλÞ

þ 12λ
X3
i¼1

κiðκiaλ þ aκiλÞ þ 8
X3
i¼1

X3
j¼1

λiλjðaλiλj þ λiaλjÞ þ 18
X3
i¼1

X3
j¼1

κiκjðκiaκj þ aκiκjÞ

þ 24
X3
i¼1

X3
j¼1

λiκjðλiaκj þ aλiκjÞ þ 72y3t at þ 72y3bab þ 16y3τaτ þ 12ytybðatyb þ ytabÞ þ 12ybyτðabyτ þ ybaτÞ

þ 30λytðaλyt þ λatÞ þ 30λybðaλyb þ λabÞ þ 10λyτðaλyτ þ λaτÞ− 32g23ytðat − ytM3Þ− 32g23ybðab − ybM3Þ
− 32g23ðΣaκ −M3ΣκÞ− 12g22λðaλ − λM2Þ− 18g22ytðat − ytM2Þ− 18g22ybðab − ybM2Þ

− 6g22yτðaτ − yτM2Þ− 12g22ðΣaλ −M2ΣλÞ−
12

5
g21λðaλ − λM1Þ−

26

5
g21ytðat − ytM1Þ−

14

5
g21ybðab − ybM1Þ

−
18

5
g21yτðaτ − yτM1Þ−

12

5
g21ðΣaλ −M1ΣλÞ−

8

5
g21ðΣaκ −M1ΣκÞ− 8g021 λðQ2

1 þQ2
2 þQ2

SÞðaλ − λM0
1Þ

− 12g021 ytðQ2
2 þQ2

Q þQ2
uÞðat − ytM0

1Þ− 12g021 ybðQ2
1 þQ2

Q þQ2
dÞðab − ybM0

1Þ− 4g021 yτðQ2
1 þQ2

L þQ2
eÞðaτ − yτM0

1Þ
− 8g021 ðQ2

1 þQ2
2 þQ2

SÞðΣaλ −M0
1ΣλÞ− 12g021 ðQ2

S þQ2
D þQ2

D̄ÞðΣaκ −M0
1ΣκÞ

þ 48g42M2 þ
576

25
g41M1 þ 8g041 M

0
1ΣQðQ2

1 þQ2
2 þQ2

SÞ
�
; ðB7cÞ

where

Σaλ ¼ λ1aλ1 þ λ2aλ2 þ λ3aλ3 ; Σaκ ¼ κ1aκ1 þ κ2aκ2 þ κ3aκ3 ;

Πaλ ¼ λ31aλ1 þ λ32aλ2 þ λ33aλ3 ; Πaκ ¼ κ31aκ1 þ κ32aκ2 þ κ33aκ3 :

Note that aλi ≡ λiAλi , aκi ≡ κiAκi , at ≡ ytAt, ab ≡ ybAb and aτ ≡ yτAτ. Defining

Σ1 ¼
X3
i¼1

ðm2
Qi

− 2m2
ui þm2

di
þm2

ei −m2
Li
þm2

Hu
i
−m2

Hd
i
þm2

D̄i
−m2

Di
Þ −m2

H0 þm2
H̄0 ; ðB8Þ

Σ0
1 ¼

X3
i¼1

ð6QQm2
Qi

þ 3Qum2
ui þ 3Qdm2

di
þQem2

ei þ 2QLm2
Li
þ 2Q2m2

Hu
i
þ 2Q1m2

Hd
i

þQSm2
Si
þ 3QD̄m

2
D̄i

þ 3QDm2
Di
Þ þ 2QH0m2

H0 þ 2QH̄0m2
H̄0 ; ðB9Þ

the one- and two-loop β functions and the Oðt2Þ coefficients for m2
Hd

are
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H0 þ

X3
i¼1

ð3Q3
dm

2
di
þ 3Q3

D̄m
2
D̄i

þ 3Q3
Dm

2
Di

þQ3
em2

ei þ 2Q3
1m

2
Hd

i
þ 2Q3

2m
2
Hu

i
þ 2Q3

Lm
2
Li
þ 6Q3

Qm
2
Qi

þQ3
Sm

2
Si
þ 3Q3

um2
uiÞ

P. ATHRON, D. HARRIES, AND A. G. WILLIAMS PHYSICAL REVIEW D 91, 115024 (2015)

115024-24



þ 2Q2Q2
H̄0m2

H̄0 þ 2Q2Q2
H0m2

H0 þQ2

X3
i¼1

ð3Q2
dm

2
di
þ 3Q2

D̄m
2
D̄i

þ 3Q2
Dm

2
Di

þQ2
em2

ei

þ 2Q2
1m

2
Hd

i
þ 2Q2

2m
2
Hu

i
þ 2Q2

Lm
2
Li
þ 6Q2

Qm
2
Qi

þQ2
Sm

2
Si
þ 3Q2

um2
uiÞ

�
; ðB11bÞ

bð2Þ
m2

Hu

¼ 72y4t ðm2
Hu

þm2
Q3

þm2
u3Þ þ 144y2t a2t þ 8λ4ðm2

Hd
þm2

Hu
þm2

SÞ þ 16λ2a2λ

þ 6y2t y2bðm2
Hd

þm2
Hu

þ 2m2
Q3

þm2
u3 þm2

d3
Þ þ 6ðytab þ ybatÞ2

þ 12λ2y2t ðm2
Hd

þ 2m2
Hu

þm2
S þm2

Q3
þm2

u3Þ þ 12ðλat þ ytaλÞ2
þ 6λ2y2bð2m2

Hd
þm2

Hu
þm2

S þm2
Q3

þm2
d3
Þ þ 6ðλab þ ybaλÞ2

þ 2λ2y2τð2m2
Hd

þm2
Hu

þm2
S þm2

L3
þm2

e3Þ þ 2ðλaτ þ yτaλÞ2

þ 4
X3
i¼1

½λ2λ2i ðm2
Hd

i
þm2

Hu
i
þm2

Hd
þm2

Hu
þ 2m2

SÞ þ ðλaλi þ λiaλÞ2�

þ 6
X3
i¼1

½λ2κ2i ðm2
Hd

þm2
Hu

þ 2m2
S þm2

Di
þm2

D̄i
Þ þ ðλaκi þ κiaλÞ2�

− 32g23y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þ 2M2
3Þ − 32g23ða2t − 2ytatM3Þ

− 18g22y
2
t ðm2

Hu
þm2

Q3
þm2

u3 þ 2M2
2Þ − 18g22ða2t − 2ytatM2Þ

− 6g22λ
2ðm2

Hd
þm2

Hu
þm2

S þ 2M2
2Þ − 6g22ða2λ − 2λaλM2Þ

−
26

5
g21y

2
t ðm2

Hu
þm2

Q3
þm2

u3 þ 2M2
1Þ −

26

5
g21ða2t − 2ytatM1Þ

−
6

5
g21λ

2ðm2
Hd

þm2
Hu

þm2
S þ 2M2

1Þ −
6

5
g21ða2λ − 2λaλM1Þ

− 12g021 y
2
t ðQ2

2 þQ2
Q þQ2

uÞðm2
Hu

þm2
Q3

þm2
u3 þ 2M02

1 Þ − 12g021 ðQ2
2 þQ2

Q þQ2
uÞ

× ða2t − 2ytatM0
1Þ þ 6g021 y

2
t ðQ2 þQQ þQuÞð2Q2m2

Hu
þ 2Q2m2

Q3
þ 2Q2m2

u3 þ Σ0
1Þ

þ 12Q2g021 a
2
t ðQ2 þQQ þQuÞ þ 12Q2g021 y

2
bðQ1 þQQ þQdÞðm2

Hd
þm2

Q3
þm2

d3
Þ

þ 12Q2g021 a
2
bðQ1 þQQ þQdÞ þ 4Q2g021 y

2
τðQ1 þQL þQeÞðm2

Hd
þm2

L3
þm2

e3Þ
þ 4Q2g021 a

2
τðQ1 þQL þQeÞ − 4g021 λ

2ðQ2
1 þQ2

2 þQ2
SÞðm2

Hd
þm2

Hu
þm2

S þ 2M02
1 Þ

− 4g021 ðQ2
1 þQ2

2 þQ2
SÞða2λ − 2λaλM0

1Þ þ 2g021 λ
2ðQ1 þQ2 þQSÞΣ0

1

þ 4Q2g021 ðQ1 þQ2 þQSÞ
X3
i¼1

½λ2i ðm2
Hd

i
þm2

Hu
i
þm2

SÞ þ a2λi �

þ 6Q2g021 ðQS þQD þQD̄Þ
X3
i¼1

½κ2i ðm2
S þm2

Di
þm2

D̄i
Þ þ a2κi �

− 96Q2g23g
02
1 M

2
3ð2QQ þQu þQd þQD þQD̄Þ − 72g42M

2
2

− 12Q2g22g
02
1 M

2
2ð9QQ þ 3QL þ 3Q1 þ 3Q2 þQH̄0 þQH0 Þ þ 288

25
g41ðΣ1 − 3M2

1Þ

−
3

5
g21g

02
1 ½4Q2M2

1ð2Qd þ 2QD̄ þ 2QD þ 6Qe þ 3Q1 þ 3Q2 þQH̄0 þQH0 þ 3QL

þQQ þ 8QuÞ þ 4M02
1 ð3Q2

d þ 3Q2
D̄ − 3Q2

D þ 3Q2
e − 3Q2

1 þ 3Q2
2 þQ2

H̄0 −Q2
H0

− 3Q2
L þ 3Q2

Q − 6Q2
uÞ − ð2Q2Σ1 þ Σ0

1ÞΣY
Q� − 4Q2g041 ½2M02

1 ð9Q3
d þ 9Q3

D̄ þ 9Q3
D

þ 3Q3
e þ 6Q3

1 þ 6Q3
2 þ 2Q3

H̄0 þ 2Q3
H0 þ 6Q3

L þ 18Q3
Q þ 3Q3

S þ 9Q3
uÞ þ ð6Q2M02

1 − Σ0
1ÞΣQ�; ðB11cÞ
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while those for m2
S are

βð1Þ
m2

S
¼

X3
i¼1

½4λ2i ðm2
Hd

i
þm2

Hu
i
þm2

SÞ þ 4a2λi þ 6κ2i ðm2
S þm2

Di
þm2

D̄i
Þ þ 6a2κi �

− 8Q2
Sg

02
1 M

02
1 þ 2QSg021 Σ0

1; ðB12aÞ

βð2Þm2
S
¼

X3
i¼1

½−16λ4i ðm2
Hu

i
þm2

Hd
i
þm2

SÞ − 24κ4i ðm2
Di

þm2
D̄i

þm2
SÞ

− 32λ2i a
2
λi
− 48κ2i a

2
κi � − 12λ2y2t ð2m2

Hu
þm2

Hd
þm2

S þm2
Q3

þm2
u3Þ

− 12λ2y2bðm2
Hu

þ 2m2
Hd

þm2
S þm2

Q3
þm2

d3
Þ

− 4λ2y2τðm2
Hu

þ 2m2
Hd

þm2
S þm2

L3
þm2

e3Þ − 12ðλat þ ytaλÞ2 − 12ðλab þ ybaλÞ2

− 4ðλaτ þ yτaλÞ2 þ 32g23
X3
i¼1

½κ2i ðm2
S þm2

Di
þm2

D̄i
þ 2M2

3Þ þ a2κi − 2κiaκiM3�

þ 12g22
X3
i¼1

½λ2i ðm2
Hd

i
þm2

Hu
i
þm2

S þ 2M2
2Þ þ a2λi − 2λiaλiM2�

þ 4

5
g21

X3
i¼1

½3λ2i ðm2
Hd

i
þm2

Hu
i
þm2

S þ 2M2
1Þ þ 2κ2i ðm2

S þm2
Di

þm2
D̄i

þ 2M2
1Þ

þ 3ða2λi − 2λiaλiM1Þ þ 2ða2κi − 2κiaκiM1Þ�

þ 4g021
X3
i¼1

½2λ2i ðQ2
1 þQ2

2 −Q2
SÞðm2

Hd
i
þm2

Hu
i
þm2

S þ 2M02
1 Þ

− 2QSλ
2
i ðQ1m2

Hd
i
þQ2m2

Hu
i
þQSm2

SÞ þ 3κ2i ðQ2
D þQ2

D̄ −Q2
SÞ

× ðm2
S þm2

Di
þm2

D̄i
þ 2M02

1 Þ − 3QSκ
2
i ðQSm2

S þQDm2
Di

þQD̄m
2
D̄i
Þ

þ 2ða2λi − 2λiaλiM
0
1ÞðQ2

1 þQ2
2 −Q2

SÞ þ 3ða2κi − 2κiaκiM
0
1ÞðQ2

D þQ2
D̄ −Q2

SÞ�
− 24QSg021 y

2
t ðQ2m2

Hu
þQQm2

Q3
þQum2

u3Þ − 24QSg021 y
2
bðQ1m2

Hd
þQQm2

Q3
þQdm2

d3
Þ

− 8QSg021 y
2
τðQ1m2

Hd
þQLm2

L3
þQem2

e3Þ þ 32QSg23g
02
1

X3
i¼1

ð2QQm2
Qi

þQum2
ui

þQdm2
di
þQDm2

Di
þQD̄m

2
D̄i
Þ þ 12QSg22g

02
1

�
QH̄0m2

H̄0 þQH0m2
H0

þ
X3
i¼1

ð3QQm2
Qi

þQLm2
Li
þQ1m2

Hd
i
þQ2m2

Hu
i
Þ
�
þ 4

5
QSg21g

02
1

�
3QH̄0m2

H̄0 þ 3QH0m2
H0

þ
X3
i¼1

ð2Qdm2
di
þ 2QD̄m

2
D̄i

þ 2QDm2
Di

þ 6Qem2
ei þ 3Q1m2

Hd
i
þ 3Q2m2

Hu
i
þ 3QLm2

Li

þQQm2
Qi

þ 8Qum2
uiÞ

�
þ 8QSg041

�
3QSM02

1 ð9Q2
d þ 9Q2

D̄ þ 9Q2
D þ 3Q2

e þ 6Q2
1 þ 6Q2

2

þ 2Q2
H̄0 þ 2Q2

H0 þ 6Q2
L þ 18Q2

Q þ 5Q2
S þ 9Q2

uÞ þ 2Q3
H̄0m2

H̄0 þ 2Q3
H0m2

H0

þ
X3
i¼1

ð3Q3
dm

2
di
þ 3Q3

D̄m
2
D̄i

þ 3Q3
Dm

2
Di

þQ3
em2

ei þ 2Q3
1m

2
Hd

i
þ 2Q3

2m
2
Hu

i
þ 2Q3

Lm
2
Li

þ 6Q3
Qm

2
Qi

þQ3
Sm

2
Si
þ 3Q3

um2
uiÞ þ 2QSQ2

H̄0m2
H̄0 þ 2QSQ2

H0m2
H0
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þQS

X3
i¼1

ð3Q2
dm

2
di
þ 3Q2

D̄m
2
D̄i

þ 3Q2
Dm

2
Di

þQ2
em2

ei þ 2Q2
1m

2
Hd

i
þ 2Q2

2m
2
Hu

i
þ 2Q2

Lm
2
Li

þ 6Q2
Qm

2
Qi

þQ2
Sm

2
Si
þ 3Q2

um2
uiÞ

�
; ðB12bÞ

bð2Þ
m2

S
¼ 8

X3
i¼1

½2λ4i ðm2
Hd

i
þm2

Hu
i
þm2

SÞ þ 4λ2i a
2
λi
þ 3κ4i ðm2

S þm2
Di

þm2
D̄i
Þ þ 6κ2i a

2
κi �

þ 8
X3
i¼1

X3
j¼1

½λ2i λ2jðm2
Hd

i
þm2

Hu
i
þm2

Hd
j
þm2

Hu
j
þ 2m2

SÞ þ ðλiaλj þ λjaλiÞ2�

þ 24
X3
i¼1

X3
j¼1

½λ2i κ2jðm2
Hd

i
þm2

Hu
i
þ 2m2

S þm2
Di

þm2
D̄i
Þ þ ðλiaκj þ κjaλiÞ2�

þ 18
X3
i¼1

X3
j¼1

½κ2i κ2jð2m2
S þm2

Di
þm2

D̄i
þm2

Dj
þm2

D̄j
Þ þ ðκiaκj þ κjaκiÞ2�

þ 12λ2y2t ð2m2
Hu

þm2
Hd

þm2
S þm2

Q3
þm2

u3Þ þ 12λ2y2bðm2
Hu

þ 2m2
Hd

þm2
S

þm2
Q3

þm2
d3
Þ þ 4λ2y2τð2m2

Hd
þm2

Hu
þm2

S þm2
L3

þm2
e3Þ þ 12ðλat þ ytaλÞ2

þ 12ðλab þ ybaλÞ2 þ 4ðλaτ þ yτaλÞ2 − 32g23
X3
i¼1

½κ2i ðm2
S þm2

Di
þm2

D̄i
þ 2M2

3Þ

þa2κi − 2κiaκiM3� − 12g22
X3
i¼1

½λ2i ðm2
Hd

i
þm2

Hu
i
þm2

S þ 2M2
2Þ þ a2λi − 2λiaλiM2�

−
4

5
g21

X3
i¼1

½3λ2i ðm2
Hd

i
þm2

Hu
i
þm2

S þ 2M2
1Þ þ 3a2λi − 6λiaλiM1

þ 2κ2i ðm2
S þm2

Di
þm2

D̄i
þ 2M2

1Þ þ 2a2κi − 4κiaκiM1�

þ 2g021
X3
i¼1

½−4λ2i ðQ2
1 þQ2

2 þQ2
SÞðm2

Hd
i
þm2

Hu
i
þm2

S þ 2M02
1 Þ

þ 2λ2i ðQ1 þQ2 þQSÞðQSm2
Hd

i
þQSm2

Hu
i
þQSm2

S þ Σ0
1Þ − 4ðQ2

1 þQ2
2 þQ2

SÞ
× ða2λi − 2λiaλiM

0
1Þ þ 2QSa2λiðQ1 þQ2 þQSÞ − 6κ2i ðQ2

S þQ2
D þQ2

D̄Þ
× ðm2

S þm2
Di

þm2
D̄i

þ 2M02
1 Þ þ 3κ2i ðQS þQD þQD̄ÞðQSm2

S þQSm2
Di

þQSm2
D̄i

þ Σ0
1Þ

− 6ðQ2
S þQ2

D þQ2
D̄Þða2κi − 2κiaκiM

0
1Þ þ 3QSa2κiðQS þQD þQD̄Þ�

þ 12QSg021 y
2
t ðQ2 þQQ þQuÞðm2

Hu
þm2

Q3
þm2

u3Þ þ 12QSg021 a
2
t ðQ2 þQQ þQuÞ

þ 12QSg021 y
2
bðQ1 þQQ þQdÞðm2

Hd
þm2

Q3
þm2

d3
Þ þ 12QSg021 a

2
bðQ1 þQQ þQdÞ

þ 4QSg021 y
2
τðQ1 þQL þQeÞðm2

Hd
þm2

L3
þm2

e3Þ þ 4QSg021 a
2
τðQ1 þQL þQeÞ

− 96QSg23g
02
1 M

2
3ð2QQ þQu þQd þQD þQD̄Þ − 12QSg22g

02
1 M

2
2ð9QQ þ 3QL þ 3Q1

þ 3Q2 þQH̄0 þQH0 Þ − 6

5
QSg21g

02
1 ½2M2

1ð2Qd þ 2QD̄ þ 2QD þ 6Qe þ 3Q1 þ 3Q2 þQH̄0

þQH0 þ 3QL þQQ þ 8QuÞ − Σ1ΣY
Q� − 4QSg041 ½2M02

1 ð9Q3
d þ 9Q3

D̄ þ 9Q3
D þ 3Q3

e þ 6Q3
1

þ 6Q3
2 þ 2Q3

H̄0 þ 2Q3
H0 þ 6Q3

L þ 18Q3
Q þ 3Q3

S þ 9Q3
uÞ þ ð6QSM02

1 − Σ0
1ÞΣQ�: ðB12cÞ

If the one-loop contributions to the effective potential from top and stop loops are also included, it is necessary to consider
the expansions for yt, at, m2

Q3
and m2

u3 . The required expressions for yt read
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βð1Þyt ¼ yt

�
λ2 þ 6y2t þ y2b −

16

3
g23 − 3g22 −

13

15
g21 − 2g021 ðQ2

2 þQ2
Q þQ2

uÞ
�
; ðB13aÞ

βð2Þyt ¼ yt

�
−22y4t − 5y4b − 5y2t y2b − y2by

2
τ − λ2ðλ2 þ 3y2t þ 4y2b þ y2τ þ 2Σλ þ 3ΣκÞ

þ 2g021 ½λ2ðQ2
1 −Q2

2 þQ2
SÞ þ 2y2t ð2Q2

Q þQ2
uÞ þ y2bðQ2

1 −Q2
Q þQ2

dÞ�

þ 16g23y
2
t þ 6g22y

2
t þ g21

�
6

5
y2t þ

2

5
y2b

�
þ 128

9
g43 þ

33

2
g42 þ

3913

450
g41

þ 2g041 ½2ðQ4
2 þQ4

Q þQ4
uÞ þ ðQ2

2 þQ2
Q þQ2

uÞΣQ� þ 8g23g
2
2 þ

136

45
g23g

2
1

þ 32

3
g23g

02
1 ðQ2

Q þQ2
uÞ þ g22g

2
1 þ 6g22g

02
1 ðQ2

2 þQ2
QÞ

þ 2

5
g21g

02
1

�
3Q2

2 þ
1

3
Q2

Q þ 16

3
Q2

u þ ð3Q2 þQQ − 4QuÞΣY
Q

�	
; ðB13bÞ

bð2Þyt ¼ yt

�
54y4t þ

13

2
y4b þ 13y2t y2b þ y2by

2
τ þ λ2

�
5

2
λ2 þ 15y2t þ 5y2b þ y2τ þ 2Σλ þ 3Σκ

�

−
16

3
g23ðλ2 þ 2y2b þ 12y2t Þ − 6g22ðλ2 þ y2b þ 6y2t Þ − g21

�
22

15
λ2 þ 4

3
y2b þ

52

5
y2t

�
− 2g021 ½λ2ðQ2

1 þ 2Q2
2 þQ2

S þQ2
Q þQ2

uÞ þ y2bðQ2
1 þQ2

2 þ 2Q2
Q þQ2

u þQ2
dÞ

þ12y2t ðQ2
2 þQ2

Q þQ2
uÞ� þ

128

9
g43 −

15

2
g42 −

143

18
g41

þ 2g041 ðQ2
2 þQ2

Q þQ2
uÞðQ2

2 þQ2
Q þQ2

u − ΣQÞ þ 16g23g
2
2 þ

208

45
g23g

2
1

þ 32

3
g23g

02
1 ðQ2

2 þQ2
Q þQ2

uÞ þ
13

5
g22g

2
1 þ 6g22g

02
1 ðQ2

2 þQ2
Q þQ2

uÞ

þ 26

15
g21g

02
1 ðQ2

2 þQ2
Q þQ2

uÞ
	
; ðB13cÞ

and those for at read

βð1Þat ¼ at

�
λ2 þ 6y2t þ y2b −

16

3
g23 − 3g22 −

13

15
g21 − 2g021 ðQ2

2 þQ2
Q þQ2

uÞ
�

þ yt

�
2λaλ þ 12ytat þ 2ybab þ

32

3
g23M3 þ 6g22M2 þ

26

15
g21M1

þ 4g021 M
0
1ðQ2

2 þQ2
Q þQ2

uÞ
�
; ðB14aÞ

βð2Þat ¼ at

�
−22y4t − 5y4b − 5y2t y2b − y2by

2
τ − λ2ðλ2 þ 3y2t þ 4y2b þ y2τ þ 2Σλ þ 3ΣκÞ

þ 2g021 ½λ2ðQ2
1 −Q2

2 þQ2
SÞ þ 2y2t ð2Q2

Q þQ2
uÞ þ y2bðQ2

1 −Q2
Q þQ2

dÞ�

þ 16g23y
2
t þ 6g22y

2
t þ g21

�
6

5
y2t þ

2

5
y2b

�
þ 128

9
g43 þ
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The one- and two-loop β functions and the resulting Oðt2Þ coefficient for m2
Q3

are
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