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The current standard model of cosmology, ΛCDM, requires dark matter to make up around 25% of the
total energy budget of the Universe. Yet, quite puzzlingly, there appears to be no candidate particle in the
current Standard Model of particle physics. Assuming the validity of the cold dark matter (CDM) paradigm,
dark matter has evaded detection thus far either because it is intrinsically a weakly interacting substance or
because its interactions are suppressed by its high constituent mass and low number density. Most
approaches to explain dark matter to date assume the former and therefore require beyond-the-Standard-
Model particles that have yet to be observed directly or indirectly. Given the dearth of evidence for this class
of candidates it is timely to consider the latter possibility, which allows for candidates that may or may not
arise from the Standard Model. In this work we extend a recent study of this general class of so-called
macro dark matter—candidates with characteristic masses of grams and geometric cross sections of cm2.
We consider new bounds that can be set using existing data from the resonant bar gravitational wave
detectors NAUTILUS and EXPLORER.
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I. INTRODUCTION

The last two decades have ushered in a new era of
precision cosmology with a plethora of modern experi-
ments and observations all leading to the so-called ΛCDM
concordance model of the Universe. A crucial component
of this model is the cold dark matter (CDM) making up
around 25% of the total energy density of our Universe, as
inferred from observations on large scales (see e.g. [1–4]).
On intermediate scales its existence is observed indirectly
due to the discrepancies between the gravitational and
luminous masses of large astrophysical systems. The dark
matter cannot be made of ordinary baryonic matter (see e.g.
[5–7], and references therein) nor can it consist of any
fundamental particle of the Standard Model of particle
physics.
Although a tremendous effort has been devoted to the

study of particle candidates that are intrinsically weakly
interacting, such as weakly interacting massive particles
and axions, alternative dark matter candidates deserve
increased attention given the lack of direct detection of
those canonical possibilities to date (see e.g. [8,9]). Other
candidates can couple to Standard Model particles with
high probability but are nevertheless effectively weakly
interacting or “dark” because they are very massive, and
therefore have a lower number density. Several examples

exist in the literature, most notably nuclear-dense candi-
dates with a Standard Model basis (e.g. [10–12]). Other
similarly massive candidates include compact objects with
some connection to the Standard Model (e.g. [13–15]),
primordial black holes [16], and other candidates that may
be found in the literature (e.g. [17–21]).
Awide range of Earth-based constraints on nuclear-dense

candidates (nuclearites) was considered in [22] and more
recent bounds were presented in [23]. Such constraints are
only made for candidates with a fixed internal mass density
of roughly 3.5 × 1014 g=cm3, and therefore they obey the
specific cross section–mass relation σX ∝ M2=3

X . Recently,
however, a model-independent study of the general class of
“macroscopic” candidates has been considered in [24].
These macro dark matter candidates, referred to as macros,
have characteristic masses and geometric cross sections of
grams and cm2 and may or may not have a Standard Model
origin. A number of Earth-based, astrophysical, and cos-
mological observations were used in [24] to place constraints
on macros.
Here we improve upon the constraints found in [24] by

extending existing work on nuclearite constraints from
resonant bar gravitational wave detectors for application to
macro dark matter. The use of large aluminum bars as
detectors of gravitational waves has been studied for more
than five decades [25], and their sensitivity to cosmic
rays has been appreciated for some time [26]. Because of
the thermoacoustic effect and their resonant properties,
such aluminum bars are also sensitive (when cryogenically
cooled) to other exotic cosmic impactors, such as
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monopoles [27] and nuclearites [28]. The resonant bar
experiments NAUTILUS [29], which ran from 2003–2012
in Frascati, Italy, and EXPLORER [30], which ran from
2003–2009 at CERN, were recently used to constrain
nuclearite dark matter with masses up to ∼10−4 g [31].
Compared to nuclearites, macro dark matter has the

added complexity that both the cross section and mass are
independent parameters, and both of these determine macro
detectability. Macros of a fixed mass with larger cross
sections, for example, will experience more drag and so
would arrive at a detector with less energy; they would
therefore have a lower probability to reach a detection
threshold. Here we expand on the work of [27] and [28], to
compute the detectability of macro dark matter as a
function of both its cross section and mass. We then use
the null results of [31] to constrain a portion of the macro
parameter space and improve on the constraints found in
[24] on the elastic scattering cross section of macro dark
matter with baryons.

II. MACRO DETECTION VIA RESONANT
BAR DETECTORS

A. Macro velocity evolution

Given an incoming macro galactic velocity, v0, its
evolution as it impacts the Earth as a function of the
reduced cross section, σX=MX, is approximately given by

vXðrÞ ¼ v0e
− σX
MX

hρri; ð1Þ

where hρri is the column density encountered by the
macro. This column density can have three distinct con-
tributions, the first being atmospheric. Simple atmospheric
models give an atmospheric density that depends exponen-
tially on altitude:

ρðzÞ ¼ ρ0e−z=H; ð2Þ

where z is the altitude above sea level, ρ0 ≃ 10−3 g=cm3,
and the scale height H ≃ 10 km. Writing z ¼ r cos θ,
where θ is the impact angle, the column density encoun-
tered through the atmosphere is

hρriatm ¼
Z

∞

r
dr0ρ≃ ρ0H

cos θ
e−z=H: ð3Þ

In addition, we shall conservatively assume that at angles
θ > π=3 the macro would encounter an additional column
density of 100 meters water equivalent, or

hρriobst ¼ 104 g=cm2; ð4Þ

due to surrounding structures, mountains, or other
obstacles. Lastly, at angles θ > π=2 the macro would pass
though the Earth and encounter a column density,

hρri⊕ ¼ 2R⊕ρ⊕j cos θj: ð5Þ

B. Thermoacoustic detection of cosmic particles

Upon its passage through the (identical) NAUTILUS or
EXPLORER detectors, a very dense object would deposit
energy in a line along its track in the detector. Because the
macro velocity is supersonic in the aluminum, the energy
deposition would be nearly instantaneous. The resulting
near-instantaneous thermal expansion would source a
pressure wave that would excite the bar’s longitudinal
vibrational modes. As described in e.g. [27,28,31], for a bar
of radius R and length L, the energy of the lowest mode is

ΔE ¼ 4

9π

γ2

ρLv2s

�
dEX

dx

�
2

Gðz0; l0; θ0Þ; ð6Þ

where γ is the Grüneisen parameter, ρ is the bar density, vs
is the longitudinal sound speed, and the energy lost by a
nuclearite or, more generally, a macro is

���� dEX

dx

���� ¼ ρσXv2X: ð7Þ

The geometric function that depends on the track through
the bar is

Gðz0; l0; θ0Þ ¼
�
L
πR

sin

�
πz0
L

�
sin ðπl0

2L cos θ0Þ
cos θ0

�2
; ð8Þ

where z0 is the distance of the track midpoint to one end of
the bar, θ0 is the angle between the track and the bar axis
and l0 is the length of the track. For the bars described in
[31], R ¼ 0.3 m and L ¼ 3 m; the full geometric accep-
tance is therefore 19.54 m2 sr.

C. Application of nuclearite analysis to macros

In Ref. [31] it is reported that, for the parameters specific
to the NAUTILUS and EXPLORER aluminum bars, a
vertical impact at the bar center results in an energy
deposition (in units of temperature) into the fundamental
mode of

ΔE ¼ 10.7 K

�
vXξðMÞ
10−3c

�
4

; ð9Þ

where, in our notation, ξðMÞ ¼ ðM=1.5 ngÞ1=3 is a function
that characterizes the radius of a passing nuclearite as a
function of its mass.1

It is straightforward to apply the analysis in [31] to macro
dark matter, considering a nuclearite of mass 1.5 ng would
have a cross section σ0 ≃ π × 10−16 cm2 at the reference

1For an object of constant density σX ∝ M2=3; hence from (6)
and (7) the ξðMÞ4 dependence in (9) can be understood.
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density of 3.5 × 1014 g=cm3. The energy deposition by a
macro can then be readily translated by making the
replacement

ξðMÞ2 → σX
σ0

ð10Þ

in (9). We will furthermore use 250 km=s as a reference
velocity and reinsert the geometric function, G, writing the
excitation energy as

ΔE ¼ 5.2 K
�

vX
250 km=s

�
4
�
σX
σ0

�
2

Gðz0; l0; θ0Þ: ð11Þ

Given the detection threshold of 2 K used in [31] and the
macro velocity upon impact given in (1), the fraction of
impacts for a given pair of macro parameters ðσX;MXÞ that
exceeds this threshold is determined by performing a
Monte Carlo simulation over the possible bar impact points
and macro trajectories.
We can, however, give a semianalytic estimate of the

constrained region in the σX −MX plane by recognizing
that at large σX=MX the only macros that can make it to the
detector with sufficiently high velocity (quantified below)
will come from nearly directly overhead. For those impacts
Gðz0; l0; θ0Þ is maximized at unity. The requirement for
resonant bar detection is then

�
v0

250 km=s

�
2

e−2
σX
MX

hρri
�
σX
σ0

�
≳ 0.62: ð12Þ

This inequality is saturated at the critical value σX;c, which
may be solved implicitly as a function of MX:

σX;c ¼ −
MX

2hρriWðxÞ: ð13Þ

Here

x≃ −1.24 × hρri σ0
MX

�
v0

250 km=s

�
−2
; ð14Þ

and WðxÞ is known as the Lambert-W function, defined
implicitly by the relation

x ¼ WðxÞ expWðxÞ: ð15Þ

WðxÞ has an infinite number of branches; however, the
branch W−1ðxÞ delineates the top of the constrained region
in the σX −MX plane according to (13).
We must also ensure that the macro velocity exceeds the

sound velocity of aluminum, vs ≃ 2 × 10−5c; otherwise the
energy loss rate formula (7) breaks down [31]. From (1) this
requires that

σX ≲ 1

hρri log
v0
vs

MX

≲ 3.7 × 10−3 cm2

�
MX

1 g

�
ð16Þ

where we have used an approximate atmospheric depth2 of
hρri ¼ 103 g=cm2 and v0 ¼ 250 km=s. For masses larger
than roughly 10−10 g this turns out to be more restrictive
than using (13), so it sets the upper edge of the region of
constraint in that range.
Lastly, we consider the macro flux limitation. At large

σX=MX, we cannot use the full geometric acceptance of
≃19.54 m2 sr because of significant additional drag that
would be experienced by the macros during their passage
through (i) the environment surrounding the detector (e.g.
other buildings, mountains, etc.) and (ii) the integrated
depth through the Earth. Likewise, macros with small
σX=MX are more likely to make it to the detector with
high enough velocity and energy deposition. Therefore, for
the largest σX=MX we use only 1=4 of the geometric
acceptance since we can only trust their ability to make it
through the atmosphere. For σX=MX ≲ 10−4 cm2=g a
macro could easily pass through surrounding obstacles
so that using 1=2 of the full acceptance is justified. Finally,
for σX=MX ≲ ðρ⊕R⊕Þ−1 ≃ 3 × 10−10 cm2=g the macro
could pass freely through the Earth and in that case we
may use the full acceptance. These approximations ignore
the detector efficiency as a function of impact trajectory;
however this is taken into account in the Monte Carlo
simulation.
Given an isotropic dark matter flux of

1

4π
nXv0 ≃ 1.2 × 10−9 m−2 sr−1 day−1

×

�
1 g
MX

��
ρX

0.4 GeV=cm3

��
v0

250 km=s

�
ð17Þ

and the combined 3,921 live-time days of NAUTILUS and
EXPLORER, the maximum number of events expected is

N ≃ 10−4
�
1 g
MX

�
ð18Þ

for a local dark matter density, ρX ¼ 0.4 GeV=cm3, and
v0 ¼ 250 km=s. A macro impact would be a random
(Poisson) process; therefore a null detection of macro

2We have neglected the additional integrated depth the macro
must pass through due to concrete in the roofing of the building in
which EXPLORER was housed, as well as the experimental
components mounted to the top of the bars [32]. On the other
hand, EXPLORER was itself run at 430 m above sea level at
CERN, so we have overestimated the atmospheric depth to it.
These two complications (at least) partially offset each other and,
in any case, they can be neglected considering the level of
accuracy required here.
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passages for which N > 3 events are expected will rule
them out at greater than 95% confidence. It follows that,
accounting for the usable fraction of the geometric accep-
tance mentioned above, the following macro dark matter
candidates are ruled out by this analysis:

MX <

8>>><
>>>:

3 × 10−5 g; if σX
MX

≲ 10−9 cm2

g ;

2 × 10−5 g; if 10−9 cm2

g ≲ σX
MX

≲ 10−4 cm2

g ;

10−5 g; if 10−4 cm2

g ≲ σX
MX

≲ 10−3 cm2

g :

ð19Þ

Note that at the smallest σX=MX our bound differs slightly
from the one found in [31] because of both our choice
of v0 ¼ 250 km=s and 95% confidence requirement.
Deviations from these estimates are expected at low enough
σX because of the decreasing excitation energy as a function
of σX, as seen in (11). The results of our more accurate
Monte Carlo analysis are illustrated in Fig. 1, where,
however, we have used the fixed value of v0 ¼ 250 km=s.

III. DISCUSSION

Here we have been able to extend existing constraints on
nuclearites [31], based on resonant bar gravitational wave
detectors, to place new constraints on macro dark matter
coupling to baryons. If macros also couple to photons with
their geometric cross section then the cosmic microwave
background (CMB) constraints indicating σX=MX ≲ 4.5 ×
10−7 cm2=g (dashed line in Fig. 1), when taken in combi-
nation with the mica constraints, completely overlap with

these constraints. Nevertheless, our results are relevant since
they directly constrain macro-baryon coupling which could,
in principle, be different frommacro-photon coupling. Also,
the resonant bar detectors have acted as a local probe that
directly constrains macro properties in the solar neighbor-
hood without relying on the (albeit reasonable) assumption
that the local dark matter is of similar form and composition
to dark matter in different parts and epochs of the Universe.
Here the velocity distribution of macros was taken to be

isotropic; in reality the Earth (with the Solar System) moves
through the Galaxy at approximately 200–250 km=s and
this should result in an anisotropic distribution observed on
the Earth. Also, the macro velocity distribution presumably
has a tail from which it is common to draw an initial macro
velocity, v0 significantly larger than 250 km=s. This means
that the constraints inferred here are conservative and the
region of constraint should extend upwards to larger σX, i.e.
the constraint is stronger than σX=MX ≲ 3.7 × 10−3 cm2=g.
Therefore, greater overlap is expected with those determined
from large-scale structure, which are σX=MX ≲ 3.3 ×
10−3 cm2=g [34]. On the other hand, the range of
σX=MX constrained here is only log-sensitive to v0, so
we do not expect this to significantly enhance our results.
Here we have also made modest improvements to the

constraints inferred from both Skylab [35] and ancient mica
[36] compared to those presented in [24]. For both detectors
we have more carefully calculated their acceptance, taking
into account the column density encountered by a macro as a
function of its impact angle—this resulted in more rounded
corners of the constrained regions. For the mica samples
studied in [36] the orientation during their ∼500 Myr
exposure time is unknown; we therefore computed the
minimum region that is ruled out for a flat mica sample
oriented either parallel or perpendicular to the Earth’s surface
and have presented those constraints in Fig. 1.
The new constraints presented here on macro dark matter

from resonant bar detectors provide overlap with both the
Skylab and mica constraints, and also fill in part of the gap
between the large-scale structure and mica bounds on the
coupling of macros to baryons. In future studies, however, a
dedicated experiment of this type is far from ideal due to its
relatively limited exposure, which is proportional to the
detector surface area and experiment lifetime.
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FIG. 1 (color online). Existing constraints (described in detail
in [24]) on macro dark matter that scatters elastically with
baryons and our new constraints from resonant bars displayed
in red. Note the marginal overlap between the resonant bar and
large-scale structure constraints and that slight improvements to
the Skylab and mica constraints have been made as compared to
[24]; both of these points are explained in the Discussion section.
The CMB constraint [24,33], applicable if macros couple to
photons, rules out macros above the dashed line.
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