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We consider a scale invariant extension of the standard model (SM) with a combined breaking of
conformal and electroweak symmetry in a strongly interacting hidden SUðncÞ gauge sector with nf vector-
like hidden fermions. The (pseudo) Nambu-Goldstone bosons that arise due to dynamical chiral symmetry
breaking are dark matter (DM) candidates. We focus on nf ¼ nc ¼ 3, where SUð3Þ is the largest symmetry
group of hidden flavor which can be explicitly broken into either Uð1Þ × Uð1Þ or SUð2Þ ×Uð1Þ. We study
DM properties and discuss consistent parameter space for each case. Because of different mechanisms of
DM annihilation the consistent parameter space in the case of SUð2Þ × Uð1Þ is significantly different from
that of SUð3Þ if the hidden fermions have a SM Uð1ÞY charge of Oð1Þ.
DOI: 10.1103/PhysRevD.91.115007 PACS numbers: 95.35.+d, 12.60.-i

I. INTRODUCTION

What is the origin of mass? This is a long-standing
question and still remains unsolved [1].
The recent discovery of the Higgs particle [2,3] may hint

how to go beyond the standard model (SM). The measured
Higgs mass and top quark mass [4] are such that the
SM remains perturbative below the Planck scale [5–7].
According to Bardeen [8], “the SM does not, by itself, have
a fine-tuning problem.” Because the Higgs mass term is the
only term, which breaks scale invariance at the Lagrangian
level in the SM, we may ask about the origin of this mass
term. Mostly scale invariance is hardly broken by quantum
anomaly [9]. Therefore, a dimensional transmutation can
occur at the quantum level, which can be used to generate a
la Coleman-Weinberg [10] the Higgs mass term in a
classically scale invariant extension of the SM [11–45].
Dynamical chiral symmetry breaking [46,47] can also be
used [48–54]. The idea is the same as that of technicolor
model [55,56], where the only difference is that we now
allow the existence of fundamental scalars.
In this paper we consider the latter possibility, in particular

the model studied in [48–52]. In this model the scale,
generated in a QCD-like hidden sector, is transmitted to
the SM sector via a real SM singlet scalar S to trigger
spontaneous breaking of electroweak (EW) gauge symmetry
[48,49] (see also [57]). Moreover, due to the dynamical chiral
symmetry breaking in the hidden sector there exist Nambu-
Goldstone (NG) bosons, which are massive, because the
coupling y of S with the hidden sector fermions breaks
explicitly chiral symmetry. Therefore, the mass scale of the
NG bosons, which are dark matter (DM) candidates, is not
independent (as it is not the case in themost ofDMmodels); it

is smaller than the hidden sector scale, which is in the TeV
region unless the coupling y is very small, i.e., ≲Oð10−4Þ.
As in [51,52] we employ the Nambu-Jona-Lasinio (NJL)

theory [46,47] as a low-energy effective theory of the hidden
sector and base our calculations on the self-consistent mean
field (SCMF) approximation [58,59] of the NJL theory,
which is briefly outlined in Sec. III. In [51,52] the maximal
global flavor symmetry SUð3ÞV [along with a Uð1ÞV] has
been assumed. In this paper we relax this assumption and
consider in detail the cases, in which SUð3ÞV is broken into
its subgroups. We find in Sec. IV that the consistent
parameter space can be considerably extended if SUð3ÞV
is broken to its subgroupSUð2ÞV ×Uð1Þ ~B0 . Themain reason
is that, if SUð3ÞV is broken, a new mechanism for the DM
annihilation, inverse DM conversion, becomes operative at
finite temperature: A pair of lighter DM particles annihilate
into a pair of heavier (would-be) DM particles, which
subsequently decay into SM particles (mainly into two γs).
Before we discuss the DM phenomenology of the model,

we develop an effective theory for DM interactions (a linear
sigmamodel) in the framework of the SCMF approximation
of theNJL theory. Using the effective theorywe compute the
DM relic abundance and analyze the direct and indirect DM
detection possibilities in Sec. IV. Section V is devoted to
Conclusion, and in Appendix Awe give explicitly the NJL
Lagrangian in the SCMF approximation in the case that
SUð3ÞV is broken into Uð1Þ ~B0 ×Uð1Þ ~B. In Appendix B the
inverseDM (mesons forQCD) propagators and also how the
NJL parameters are fixed can be found. The one-loop
integrals that are used in our calculations are collected in
Appendix C.

II. THE MODEL

We consider a classically scale invariant extension of the
SM studied in [48–52]1 which consists of a hidden
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SUðncÞH gauge sector coupled via a real singlet scalar S to
the SM. The hidden sector Lagrangian of the model is
written as

LH ¼ −
1

2
TrF2 þ Trψ̄ðiγμ∂μ þ gHγμGμ

þ g0QγμBμ − ySÞψ ; ð1Þ

where Gμ is the gauge field for the hidden QCD, Bμ is the
Uð1ÞY gauge field, i.e.,

Bμ ¼ cos θWAμ − sin θWZμ; g0 ¼ e= cos θW; ð2Þ

and the nf (Dirac) fermions ψ iði ¼ 1;…; nfÞ in the hidden
sector belong to the fundamental representation of
SUðncÞH. The trace in (1) is taken over the flavor as well
as the color indices. The hidden fermions carry a common
Uð1ÞY charge Q, implying that they contribute only to ΠYY
of the gauge boson self-energy diagrams so that the S; T;U
parameters remain unchanged. The LSMþS part of the total
Lagrangian LT ¼ LH þ LSMþS contains the SM gauge and
Yukawa interactions along with the scalar potential

VSMþS ¼ λHðH†HÞ2 þ 1

4
λSS4 −

1

2
λHSS2ðH†HÞ; ð3Þ

where HT ¼ ðHþ; ðhþ iGÞ ffiffiffi
2

p Þ is the SM Higgs doublet
field, with Hþ and G as the would-be Nambu-Goldstone
fields.2 The basic mechanism to trigger the EW symmetry
breaking is very simple: The nonperturbative effect of
dynamical chiral symmetry breaking in the hidden sector
generates a robust scale which is transferred into the SM
sector through the real singlet S. Then the mass term for the
Higgs potential is generated via the Higgs portal term in
(3), where the “−” in front of the positive λHS is an
assumption.

A. Global symmetries

The Yukawa coupling of the hidden fermions with the
singlet S breaks explicitly chiral symmetry. Therefore, in
the limit of the vanishing Yukawa coupling matrix yij the
global symmetry SUðnfÞL × SUðnfÞR × Uð1ÞV ×Uð1ÞA is
present at the classical level, where Uð1ÞA is broken by
anomaly at the quantum level down to its discrete subgroup
Z2nf , and the unbroken Uð1ÞV ensures the conservation
of the hidden baryon number. The non-Abelian part of the
chiral symmetry SUðnfÞL × SUðnfÞR is broken dynami-
cally down to its diagonal subgroup SUðnfÞV by the
nonvanishing chiral condensates hψ̄ iψ ii, implying the
existence of n2f − 1 NG bosons ϕaða ¼ 1;…; n2f − 1Þ. In

the nf ¼ 3 case the NG bosons are like the mesons in the
real hadron world:

~π0 ¼ ϕ3; ~π� ¼ ðϕ1 ∓ iϕ2Þ=
ffiffiffi
2

p
;

~K� ¼ ðϕ4 ∓ iϕ5Þ=
ffiffiffi
2

p
; ~K0ð ~̄K0Þ ¼ ðϕ6 þ ð−Þiϕ7Þ=

ffiffiffi
2

p
;

~η8 ¼ ϕ8; ð4Þ

where ~η8 will mix with ~η0 to form the mass eigenstates ~η
and ~η0. (The ~ should avoid the confusion with the real
mesons π0 etc.)
In the presence of the Yukawa coupling the chiral

symmetry is explicitly broken; this is the only coupling
which breaks the chiral symmetry explicitly. Because of
this coupling the NG bosons become massive. An appro-
priate chiral rotation of ψ i can diagonalize the Yukawa
coupling matrix:

yij ¼ yiδijðyi ≥ 0Þ ð5Þ

can be assumed without loss of generality, which implies
that Uð1Þnf−1 corresponding to the elements of the Cartan
subalgebra of SUðnfÞ are unbroken. We assume that none
of yi vanishes so that all the NG bosons are massive. If two
yis are the same, say y1 ¼ y2, one Uð1Þ is promoted to an
SUð2Þ. Similarly, if three yis are the same, a product group
Uð1Þ×Uð1Þ is promoted to an SUð3Þ, and so on. In addi-
tion to these symmetry groups, there exists a discrete Z4,

Z4∶ ψ i → ðexp iðπ=2Þγ5Þψ i ¼ iγ5ψ i and S → −S:

ð6Þ

This discrete symmetry is anomalous for odd nf, because
the chiral transformation in (6) is an element of the
anomalous Uð1ÞA. If nf is even, then the chiral trans-
formation is an element of the anomaly-free subgroup Z2nf

of Uð1ÞA. Needless to say that this Z4 is broken by a
nonvanishing vacuum expectation value (VEV) of S, which
is essential to trigger the EW gauge symmetry breaking.

B. Dark matter candidates

The NG bosons, which arise due to the dynamical chiral
symmetry breaking in the hidden sector, are good DM
candidates, because they are neutral and their interactions
with theSMpart start to exist at theone-loop level so that they
are weak. However, not all NG bosons can be DM, because
their stability depends on the global symmetries that are
intact. In the following we consider the case for nf ¼ 3,
which can be simply extended to an arbitrary nf. For nf ¼ 3

there are three possibilities of the global symmetries:

ðiÞ Uð1Þ ~B0 ×Uð1Þ ~B if y1 ≠ y2 ≠ y3; ð7Þ

ðiiÞ SUð2ÞV ×Uð1Þ ~B if y1 ¼ y2 ≠ y3; ð8Þ
2This classically scale invariant model is perturbatively re-

normalizable, and the Green’s functions are infrared finite
[61,62].
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ðiiiÞ SUð3ÞV if y1 ¼ y2 ¼ y3; ð9Þ

where we have suppressed Uð1ÞV which always exists, and
the case (iii) has been treated in detail in [52].Without loss of
generality we can assume that the elements of the Cartan
subalgebra corresponding to Uð1Þ ~B0 and Uð1Þ ~B are

~B0 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; ~B ¼

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ð10Þ

In Table I we show the NG bosons for nf ¼ 3 with their
quantumnumbers.Aswecan see fromTable I theNGbosons
~π0 and ~η8 are unstable for the case (i) and in fact can decay
into two γs,while for thecase (ii) only ~η8 is unstable.Whether
the stable NG bosons can be realistic DM particles is a
dynamical question, which we will address later on.

C. Perturbativity and stability of the scalar
potential at high energy

Before we discuss the nonperturbative effects, we con-
sider briefly the perturbative part at high energies, i.e.,
above the scale of the dynamical chiral symmetry breaking
in the hidden sector. As explained in the Introduction, it is
essential for our scenario of explaining the origin of the EW
scale to work that the scaler potential is unbounded below
and the theory remains perturbative (no Landau pole)
below the Planck scale. So, we require:

4π > λH; λS > 0; 4π > λHS > 0; jyj2 < 4π; ð11Þ

2
ffiffiffiffiffiffiffiffiffiffi
λHλS

p
− λHS > 0: ð12Þ

In the following discussion we assume that the perturbative
regime (of the hidden sector) starts around q0 ¼ 1 TeV and
g2Hðq0Þ=4π ≃ 1. Although in this model the Higgs mass
depends mainly on two parameters, λH and λHS, lowering
λHðq0Þ < 0.13 will destabilize the Higgs potential while
increasing λHðq0Þ > 0.14 will require a larger mixing with
S, which is strongly constrained. Therefore, we consider
the RG running of the couplings with λHðq0Þ fixed at 0.135
and rely on one-loop approximations. In the case that the
hypercharge Q of the hidden fermions is different from

zero, these fermions contribute to the renormalization
group (RG) running of the Uð1ÞY gauge coupling consid-
erably. We found that Q≲ 0.8 should be satisfied for g0 to
remain perturbative below the Planck scale.
Because of (12) the range of λS is constrained for a given

λHS and λH: The larger λHS is, the larger λS has to be. But
there is an upper limit for λSðq0Þ because of perturbativity.
In Fig. 1 we show the allowed area in the λS − y plane for
different values of λHSðq0Þwith λHðq0Þ fixed at 0.135 in the
SUð3ÞV case (9), i.e., y ¼ y1 ¼ y2 ¼ y3.

3 The green (dark
gray) circles, red (gray) circles, and blue (light gray) points
stand for λHSðq0Þ ¼ 0.1; 0.06, and 0.02. There will be no
allowed region for λHSðq0Þ≳ 0.12. We have usedQ ¼ 1=3,
but the allowed area does not depend very much on Q as
long asQ < 0.8 is satisfied [which ensures perturbativity of
the Uð1ÞY gauge coupling]. If SUð3ÞV is broken, then the
vertical axis in Fig. 1 represents the largest among yis.

III. NAMBU-JONA-LASINIO METHOD

A. NJL Lagrangian in a mean-field approximation

Following [51] we replace the high energy Lagrangian
LH in (1) by the NJL Lagrangian

LNJL ¼ Trψ̄ðiγμ∂μ þ g0QγμBμ − ySÞψ þ 2GTrΦ†Φ

þ GDðdetΦþ H:c:Þ; ð13Þ

where

TABLE I. The NG bosons and DM candidates for nf ¼ 3.

~π0 ~πþ ~π− ~K0 ~Kþ ~K− ~̄K
0 ~η8

Uð1ÞY charge 0 0 0 0 0 0 0 0
~B0 0 2 −2 −1 1 −1 1 0
~B 0 0 0 3 3 −3 −3 0
SUð2ÞV 3 2 2 1
SUð3ÞV 8
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S
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0
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FIG. 1 (color online). Stability constraint. The allowed area in
the λS − y plane for different values of λHSðq0Þ with λHðq0Þ fixed
at 0.135 (q0 ¼ 1 TeV) is shown, where we have used Q ¼ 1=3
and assumed the SUð3ÞV flavor symmetry defined in (9). The
green (dark gray) circles, red (gray) circles, and blue (light gray)
points stand for λHSðq0Þ ¼ 0.1; 0.06, and 0.02.

3The same analysis has been performed in [52], but without
including the constraint (12).
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Φij ¼ ψ̄ ið1 − γ5Þψ j ¼
1

2

Xn2f−1
a¼0

λajiTrψ̄λ
að1 − γ5Þψ ; ð14Þ

and λaða ¼ 1;…; n2f − 1Þ are the Gell-Mann matrices with

λ0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
1. The effective Lagrangian LNJL has three-

dimensional parameters G;GD and the cutoff Λ, which
have canonical dimensions of −2, −5, and 1, respectively.
Since the original LagrangianLH has only one independent
scale, the parametersG;GD, and Λ are not independent. We
restrict ourselves to nc ¼ nf ¼ 3, because in this case these
parameters, up-to an overall scale, can be approximately
fixed from hadron physics [58,59]. The six-fermi inter-
action in (13) is present due to chiral anomaly of the
axial Uð1ÞA and is invariant under Z6, so that the NJL
Lagrangian (13) has the same global symmetry as the high
energy Lagrangian (1). Furthermore, as we mentioned in
Sec. II A, we can assume without loss of generality that the
Yukawa coupling matrix y is diagonal [see (5)]. To deal
with the nonrenormalizable Lagrangian (13) we employ
[51] the SCMF approximation which has been intensely
studied by Hatsuda and Kunihiro [58,59] for hadron
physics. The NJL parameters for the hidden QCD is then
obtained by the upscaling of the actual values of G;GD and
the cutoff Λ from QCD hadron physics. That is, we assume
that the dimensionless combinations

G1=2Λ ¼ 1.82; ð−GDÞ1=5Λ ¼ 2.29; ð15Þ

which are satisfied for hadrons, remain unchanged for a
higher scale of Λ.
Below we briefly outline the SCMF approximation. We

go via a Bogoliubov-Valatin transformation from the
perturbative vacuum to the “BCS” vacuum, which
we simply denote by j0i. This vacuum is so defined that
the mesons (mean fields) are collected in the VEV of the
chiral bilinear:

φ≡ h0jψ̄ð1 − γ5Þψ j0i

¼ −
1

4G
ðdiagð ~σ1; ~σ2; ~σ3Þ þ iðλaÞTϕaÞ; ð16Þ

where we denote the pseudo-NG boson fields after sponta-
neous chiral symmetry breaking by ϕa. The dynamics of
the hidden sector creates a nonvanishing chiral condensate
h0jψ̄ iψ ij0i which is nothing but −h ~σii=4G. The actual
value of h ~σii can be obtained through the minimization of
the scalar potential, as we describe shortly. In the SCMF
approximation one splits up the NJL Lagrangian (13) into
the sum

LNJL ¼ L0 þ LI; ð17Þ

where LI is normal ordered (i.e., h0jLIj0i ¼ 0), and L0

contains at most fermion bilinears which are not normal

ordered. At the nontrivial lowest order only L0 is relevant
for the calculation of the effective potential, the DM mass,
and the DM interactions. The explicit form for L0 can be
found in Appendix A. The effective potential can be
obtained by integrating out the hidden fermion fields in
the BCS vacuum. At the one-loop level we find

VNJLð ~σi; SÞ ¼
1

8G

X
i¼1;2;3

~σ2i −
GD

16G3
~σ1 ~σ2 ~σ3

−
X

i¼1;2;3

ncIVðMiÞ; ð18Þ

where IVðmÞ is given in Eq. (C1), and the constituent
fermion masses Mi are given by

Mi ¼ ~σi þ yiS −
GD

8G2
~σiþ1 ~σjþ2; ð19Þ

where ~σ4 ¼ ~σ1 and ~σ5 ¼ ~σ2. Once the free parameters of
the model yi; λH; λHS; λS are given, the VEVs of ~σi and S
can be determined through the minimization of the scalar
potential VSMþS þ VNJL, where VSMþS is defined in (3).
After the minimum of the scalar potential is fixed, the mass
spectrum for theCP-even particles h; S, and ~σ as well as the
DM candidates with their properties are obtained.

B. The value of y and hidden chiral phase transition

The Yukawa coupling in (1) violates explicitly chiral
symmetry and plays a similar role as the current quark mass
in QCD. It is well known that the nature of chiral phase
transition in QCD depends on the value of the current quark
mass. Therefore, it is expected that the value of y strongly
influences the nature of the chiral phase transition in the
hidden sector, which has been confirmed in [51]. The
hidden chiral phase transition occurs above the EW phase
transition, where the nature of the EW phase transition is
not known yet. In the following discussions, we restrict
ourselves to

0 < y≲ 0.006; ð20Þ

because in this case the hidden chiral phase transition is a
strong first order transition [51] and can produce gravita-
tional wave back ground [63,64], which could be observed
by future experiments such as Evolved Laser Interferometer
Space Antenna (eLISA) experiment [65]. Needless to say
that the smaller is y, the better is the NJL approximation to
chiral symmetry breaking.

IV. DARK MATTER PHENOMENOLOGY

A. Dark matter masses

Our DM candidates are the pseudo-NG bosons, which
occur due to the dynamical chiral symmetry breaking in the
hidden sector. They are CP-odd scalars, and their masses
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are generated at one-loop in the SCMF approximation as
the real meson masses, where we here, too, restrict
ourselves to nc ¼ nf ¼ 3. Therefore, their inverse propa-
gators can be calculated in a similar way as in the QCD
case, which is given in Appendix B.
First we consider the SUð3ÞV case (9) to obtain the

DM mass mDM
4 and the mass of the singlet mS for

0.001≲ y1 ¼ y2 ¼ y3 ≲ 0.006. In Fig. 2 (left) we show
the area in the mS-mDM plane, in which we obtain a correct
Higgs mass, while imposing the perturbativity (11) as well
as stability (12) constraints. The upper limit of mDM for a
given mS is due to the upper limit of the Yukawa coupling
[see (20)], while its lower limit comes from the lower limit
of the Yukawa coupling, which is taken to be 0.0005 here.
The upper limit for mS is dictated by the upper limit of λS,
which is fixed by the perturbativity and stability constraints
(11) and (12). The lowest value of mS, 250 GeV, comes
from the lowest value of λS, which is set at 0.05 here. If
SUð3ÞV is only slightly broken, the DM mass will not
change very much.
We next consider the Uð1Þ ~B0 × Uð1Þ ~B case (7). We may

assume without loss of generality that the hierarchy y1 <
y2 < y3 is satisfied. In Fig. 2 (right) we show the ratio
m ~π0=m ~π� versus y1=y2, where we have fixed y1 and y3 at
0.002 and 0.006, respectively. We can conclude from
Fig. 2 (right) that ~π0 is the lightest among the pseudo-
NG bosons and the ratio m ~π0=m ~π� does not practically
depend on the scalar couplings λH; λHS, and λS. The
SUð2ÞV case (8) can be realized if two of yi are the same.
There are two independent possibilities: (a) y1 ¼ y2 < y3,
and (b) y1 < y2 ¼ y3. The mass spectrum for the case (b) is

similar to that for theUð1Þ ~B0 ×Uð1Þ ~B case. In particular, ~π0

is the lightest among the pseudo-NG bosons. As for the
case (a) the mass hierarchy

m ~π ¼ m ~π0 ¼ m ~π� < m ~K ¼ m ~K0 ¼ m ~K� < m~η ð21Þ

is always satisfied.
The different type of the DMmass spectrum will have an

important consequence when discussing the DM relic
abundance.

B. Effective interactions for DM decay
and annihilations

As discussed in Sec. II B, if the SUð3ÞV flavor symmetry
is broken to Uð1Þ ~B0 ×Uð1Þ ~B, there will be two real
decaying would-be DM particles ~η; ~π0, and three pairs of

complex DM particles ð ~K0; ~̄K
0Þ; ~K�, and ~π�. Here we will

derive effective interactions for these DM fields by inte-
grating out the hidden fermions at the one-loop order. The
one-loop integrals and their lowest order expressions of
expansion in the external momenta in the large Λ limit are
given in Appendix B. Except for the ϕ-ϕ-γ and ϕ-γ-γ
interactions, we assume SUð2ÞV flavor symmetry, i.e.,

hσ1i ¼ hσ2i; M1 ¼ M2; Z ~K ¼ Z ~K� ¼ Z ~K0 ;

Z ~π ¼ Z ~π� ¼ Z ~π0 ; ð22Þ

where Zs are the wave function renormalization constants
given in (B8), and σi in Sec. IV stand for ~σi. This is
because, we have to assume at least SUð2ÞV for a realistic
parameter space as we will see.
(i) ϕ-ϕ-γ
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FIG. 2 (color online). Left: The area in the mS-mDM plane for 0.0005 < y1 ¼ y2 ¼ y3 < 0.006 in the SUð3ÞV case (9), where
mDM ¼ m ~π0 ¼ m ~π� ¼ m ~K0 ¼ m ~K� ¼ m~η. The ratio mS=mDM ¼ 2 is satisfied on the blue (gray) dashed line, on which the resonance
condition in the s-channel diagram for the DM annihilation (Fig. 10) is satisfied. Right: The ratio m ~π0=m ~π� versus y1=y2 in the
Uð1Þ ~B0 ×Uð1Þ ~B case (7), where y1 and y3 are fixed at 0.002 and 0.006, respectively. The constraints imposed on λH; λHS, and λS are such
that we obtain a correct Higgs mass and the perturbativity (11) as well as stability (12) constraints are satisfied.

4Since SUð3ÞV is unbroken, all the DM particles have the mass
which is denoted by mDM here.
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The corresponding one-loop diagram is shown in Fig. 3,
where the right diagram in Fig. 3 yields zero contribution.

Lϕ2γ ¼ AμνðGKþK−γ∂μ
~Kþ∂ν

~K− þGK0K̄0γ∂μ
~K0∂ν

~̄K
0

þGπþπ−γ∂μ ~π
þ∂ν ~π

−Þ
þ ZμνðGKþK−Z∂μ

~Kþ∂ν
~K− þ GK0K̄0Z∂μ

~K0∂ν
~̄K
0

þGπþπ−Z∂μ ~π
þ∂ν ~π

−Þ; ð23Þ

where AðZÞμν ¼ ∂μAðZÞν − ∂νAðZÞμ. The effective cou-
plings in the large Λ limit are

GKþK−γ ¼ 2Z ~K�nceQ

�
1 −

GD

8G2
hσ2i

�
2

Iϕ2γðM3;M1Þ;

GK0K̄0γ ¼ 2Z ~K0nceQ

�
1 −

GD

8G2
hσ1i

�
2

Iϕ2γðM3;M2Þ;

Gπþπ−γ ¼ 2Z ~π�nceQ

�
1 −

GD

8G2
hσ3i

�
2

Iϕ2γðM2;M1Þ;

GKþK−Z ¼ −tWGKþK−γ; GK0K̄0Z ¼ −tWGK0K̄0γ;

Gπþπ−Z ¼ −tWGπþπ−γ; ð24Þ

t2W ¼ ðsin θW= cos θWÞ2 ≃ 0.3, and Iϕγ2ðma;mbÞ is given in
(C4). In the SUð2ÞV limit, we obtain GK0K̄0γ ¼ GKþK−γ and
Gπþπ−γ ¼ 0, because Iϕ2γðma;mbÞ→ðmb−maÞ=ð48π2m3

aÞ
as mb → ma.
(ii) ϕ → γγ
The diagram in Fig. 4 shows the decay of ~η; ~π0 and S into

two γs, but they can also decay two Zs and γ and Z, if the
processes are kinematically allowed. Using the NJL
Lagrangian (A2) and (C5) in Appendix C we find that
the effective interaction takes the form

Lϕγ2 ¼
1

4
~ηϵμναβ

�
1

2
Gηγ2AμνAαβ þGηγZAμνZαβ þ

1

2
GηZ2ZμνZαβ

�

þ 1

4
~π0ϵμναβ

�
1

2
Gπ0γ2AμνAαβ þGπ0γZAμνZαβ þ

1

2
Gπ0Z2ZμνZαβ

�
; ð25Þ

where in the large Λ limit

Gηγ2 ¼Z1=2
~η nc

αffiffiffi
3

p
π
Q2

��
1−

GD

8G2
ð2hσ2i− hσ3iÞ

�
M−1

1 þ
�
1−

GD

8G2
ð2hσ1i− hσ3iÞ

�
M−1

2 −
�
2−

GD

8G2
ðhσ1iþhσ2iÞ

�
M−1

3

�
;

ð26Þ

GηγZ ¼ −tWGηγ2 ; GηZ2 ¼ t2WGηγ2 ;

Gπ0γ2 ¼ Z1=2
~π nc

α

π
Q2

�
1 −

GD

8G2
hσ3i

�
ðM−1

1 −M−1
2 Þ;

Gπ0γZ ¼ −tWGπ0γ2 ; Gπ0Z2 ¼ t2WGπ0γ2 : ð27Þ

As we see from (27), the ~π0 → γγ decay vanishes in the
SUð2ÞV limit, because M1 ¼ M2 in this limit.
The decay of S into two γ, two Z, and γZ can be

described by

LSγ2 ¼ S

�
1

2
GSγ2AμνAμν þ GSγZAμνZμν þ 1

2
GSZ2ZμνZμν

�
;

ð28Þ
where we find from (D8)

GSγ2 ¼
α

3π
Q2

X
i¼1;2;3

yiM−1
i ; ð29Þ

GSγZ ¼ −tWGSγ2 ; GSZ2 ¼ t2WGSγ2 : ð30Þ
(iii) Dark matter conversion
The diagrams in Figs. 5 and 6 are examples of DM

conversion, in which two incoming DM particles are
annihilated into a pair of two DM particles which are
different from the incoming ones. There are DM conversion
amplitudes, which do not vanish in the SUð3ÞV limit, and
those which vanish in the limit. Except the last ηK2π
interaction term, the effective interaction term below do not
vanish the SUð3ÞV limit.

FIG. 3. The ϕ-ϕ-γ coupling (charge radius), which vanishes
in the SUð3ÞV limit. The ~π- ~π-γ coupling vanishes in the
SUð2ÞV limit.

FIG. 4. Decay of DM and S into two γs. In the SUð2ÞV limit ~π0

does not decay.
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Lϕ4 ¼ 1

2
Gη2K2 ~η2ð ~K0 ~̄K

0 þ ~Kþ ~K−Þ þ 1

2
Gη2π2 ~η

2

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

�

þGK2π2ð ~K0 ~̄K
0 þ ~Kþ ~K−Þ

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

�
þGηK2π ~ηðð ~K0 ~̄K

0 − ~Kþ ~K−Þ ~π0 þ
ffiffiffi
2

p
~K0 ~K− ~πþ þ

ffiffiffi
2

p
~̄K
0 ~Kþ ~π−Þ; ð31Þ

where

Gη2K2 ¼ 4

3
Z ~ηZ ~Knc

�
1 −

GD

8G2
hσ1i

�
2
��

1 −
GD

8G2
ð2hσ1i − hσ3iÞ

�
2

I2A
ϕ4 ðM1;M3Þ

þ 4

�
1 −

GD

8G2
hσ1i

�
2

I2A
ϕ4 ðM3;M1Þ − 2

�
1 −

GD

8G2
hσ1i

��
1 −

GD

8G2
ð2hσ1i − hσ3iÞ

�
I1A
ϕ4 ðM1;M3Þ

�

þ 4

3
Z ~ηZ ~Knc

�
GD

8G2

�
2

ðI1B
ϕ4 ðM1;M3Þ þ 2I2B

ϕ4 ðM1ÞÞ; ð32Þ

Gη2π2 ¼ 4Z~ηZ ~πnc

�
1−

GD

8G2
hσ3i

�
2
�
1−

GD

8G2
ð2hσ1i− hσ3iÞ

�
2

I3A
ϕ4 ðM1Þþ

4

3
Z ~ηZ ~πnc

�
GD

8G2

�
2

ð4I2B
ϕ4 ðM1Þ− I2B

ϕ4 ðM3ÞÞ; ð33Þ

GK2π2 ¼ 4Z ~KZ ~πnc

�
1 −

GD

8G2
hσ1i

�
2
�
1 −

GD

8G2
hσ3i

�
2

I2A
ϕ4 ðM1;M3Þ þ 4Z ~πZ ~Knc

�
GD

8G2

�
2

I1B
ϕ4 ðM1;M3Þ; ð34Þ

GηK2π ¼
4ffiffiffi
3

p Z1=2
~η Z ~KZ

1=2
~π nc

�
1 −

GD

8G2
hσ1i

�
2
�
1 −

GD

8G2
hσ3i

�

×

��
1 −

GD

8G2
hσ1i

�
I1A
ϕ4 ðM1;M3Þ −

�
1 −

GD

8G2
ð2hσ1i − hσ3iÞ

�
I2A
ϕ4 ðM1;M3Þ

�

þ 4ffiffiffi
3

p Z1=2
~η Z ~KZ

1=2
~π nc

�
GD

8G2

�
2

ðI1B
ϕ4 ðM1;M3Þ − I2B

ϕ4 ðM1ÞÞ; ð35Þ

and I1A
ϕ4 ðma;mbÞ, etc. are defined in (C8)–(C12) in

Appendix C. We have not included the contribu-
tions from the diagram like one in Fig. 6, because
they are negligibly suppressed in a realistic
parameter space, in which SUð3ÞV is only weakly
broken. Similarly, GηK2π, too, is negligibly small

(GηK2π=Gη2K2 ∼ 10−4), so that we will not take into

account the ηK2π interactions in computing the DM
relic abundance.
(iv) Dark matter coupling with S
The diagrams in Figs. 7 and 8 show dark matter

interactions with the singlet S. The DM coupling with S

(Fig. 7) can be described by

Lϕ2S ¼ S

�
1

2
Gη2S ~η

2 þþGK2Sð ~K0 ~̄K
0 þ ~Kþ ~K−Þ

þGπ2S

�
1

2
ð ~π0Þ2 þ ~πþ ~π−Þ

�
: ð36Þ

FIG. 5. Examples for DM conversion. FIG. 6. This DM conversion vanishes in the SUð3ÞV limit.

FIG. 7. DM coupling with one S. In a realistic parameter space
there is an accidental cancellation between these two diagrams.
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Using (C15)–(C17) in Appendix C we find in the large Λ limit

Gη2S ¼ −
2

3
Z ~ηnc

�
4y1

�
1 −

GD

8G2
ð2hσ1i − hσ3iÞ

�
2

I2A
ϕ2SðM1Þ þ 2y3

�
1 −

GD

8G2
hσ1i

�
2

I2A
ϕ2SðM3Þ

�

−
2

3
Z ~ηnc

�
GD

8G2

�
ð4y1IBϕ2SðM1Þ − y3IBϕ2SðM3ÞÞ; ð37Þ

GK2S ¼ −2Z ~Knc

�
1 −

GD

8G2
hσ1i

�
2

ðy1I1Aϕ2SðM3;M1Þ þ y3I1Aϕ2SðM1;M3ÞÞ − 2Z ~Knc

�
GD

8G2

�
y1IBϕ2SðM1Þ; ð38Þ

Gπ2S ¼ −4Z ~πnc

�
1 −

GD

8G2
hσ3i

�
2

y1I2Aϕ2SðM1Þ − 2Z ~πnc

�
GD

8G2

�
y3IBϕ2SðM3Þ: ð39Þ

The DM coupling with two Ss (Fig. 8) can be described by

Lϕ2S2 ¼
1

2
S2
�
1

2
Gη2S2 ~η

2 þþGK2S2ð ~K0 ~̄K
0 þ ~Kþ ~K−Þ þGπ2S2

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

��
; ð40Þ

where

Gη2S2 ¼ −
2

3
Z ~ηnc

�
y21

�
1 −

GD

8G2
ð2hσ1i − hσ3iÞ

�
2

ð2I2A
ϕ2S2ðM1Þ þ I2B

ϕ2S2ðM1ÞÞ

þ 2y23

�
1 −

GD

8G2
hσ1i

�
2

ð2I2A
ϕ2S2ðM3Þ þ I2B

ϕ2S2ðM3ÞÞ
�

−
1

3
Z ~ηnc

�
GD

8G2

�
ð4y21ICϕ2S2

ðM1Þ − y23I
C
ϕ2S2

ðM3ÞÞ; ð41Þ

GK2S2 ¼ −2Z ~Knc

�
1 −

GD

8G2
hσ1i

�
2

ðy21I1Aϕ2S2ðM3;M1Þ þ y23I
1A
ϕ2S2ðM1;M3Þ þ y1y3I1Bϕ2S2ðM1;M3ÞÞ

− Z ~Knc

�
GD

8G2

�
y21I

C
ϕ2S2

ðM1Þ; ð42Þ

Gπ2S2 ¼ −2Z ~πnc

�
1 −

GD

8G2
hσ3i

�
2

y21ð2I2Aϕ2S2ðM1Þ þ I2B
ϕ2S2ðM1ÞÞ − Z ~πnc

�
GD

8G2

�
y23I

C
ϕ2S2

ðM3Þ: ð43Þ

(v) Dark matter coupling with two γs
The diagram in Fig. 9 shows the annihilation of π� pair into two γs, where the annihilations into γZ, two Zs, and also into

two Ss are also possible if they are kinematically allowed.

FIG. 8. DM coupling with two Ss. These diagrams contribute to
the DM relic abundance if the mass of S is comparable with or
less than the DM masses. FIG. 9. DM annihilation into two γs.
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Lϕ2G2 ¼ 1

4
AμνAμν

�
Gη2γ2

1

2
ð~ηÞ2 þ GK2γ2ð ~K0 ~̄K

0 þ ~Kþ ~K−Þ þGπ2γ2

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

��

þ 1

2
AμνZμν

�
Gη2γZ

1

2
ð~ηÞ2 þGK2γZð ~K0 ~̄K

0 þ ~Kþ ~K−Þ þGπ2γZ

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

��

þ 1

4
ZμνZμν

�
Gη2Z2

1

2
ð~ηÞ2 þ GK2Z2ð ~K0 ~̄K

0 þ ~Kþ ~K−Þ þGπ2Z2

�
1

2
ð ~π0Þ2 þ ~πþ ~π−

��
; ð44Þ

where AðZÞμν ¼ ∂μAðZÞν − ∂νAðZÞμ. Using the approxi-
mate form (C29) and (C30) we find

Gη2γ2 ¼ Z ~ηnc
α

π
Q2A~ηðγγÞ≃ Z ~ηnc

α

π
Q2A ~πðγγÞ; ð45Þ

Gη2γZ ¼ −tWGη2γ2 ; Gη2Z2 ¼ t2WGη2γ2 ;

GK2γ2 ¼ Z ~Knc
α

π
Q2A ~KðγγÞ≃ Z ~Knc

α

π
Q2A ~πðγγÞ;

GK2γZ ¼ −tWGK2γ2 ; GK2Z2 ¼ t2WGK2γ2 ;

Gπ2γ2 ¼ Z ~πnc
α

π
Q2A ~πðγγÞ;

Gπ2γZ ¼ −tWGπ2γ2 ; Gπ2Z2 ¼ t2WGπ2γ2 ; ð46Þ

where

A ~πðγγÞ ¼
4

3

�
−
�
1 −

GD

8G2
hσ3i

�
2

M−2
1 þ GD

8G2
M−1

3

�
; ð47Þ

and A~ηðγγÞ ¼ A ~KðγγÞ ¼ A ~πðγγÞ in the SUð3ÞV limit. In a
realistic parameter space for the SUð2ÞV case, the ratio
A ~πðγγÞ=A~ηðγγÞ, for instance, is at most 1.004.
In the following discussions we shall use the effective

interaction terms derived above to compute the DM relic
abundance as well as the cross sections for the direct and
indirect detections of DM.

C. Relic abundance of dark matter

The SUð3ÞV case (9) has been discussed in [51,52], and
so we below consider only the (i) and (ii) cases, which
are defined in (7) and (8), respectively. In a one-component
DM system, the velocity-averaged annihilation cross
section hvσi should be ∼10−9 GeV−2 to obtain a realistic
DM relic abundance Ωh2 ≃ 0.12. A rough estimate of
the velocity-averaged annihilation cross section for
DM conversion (Fig. 5) shows hvσð~η ~η → ~πþ ~π−Þi≃
10−5ð1 −m2

~π=m
2
~ηÞ1=2 GeV−2, where it vanishes if SUð3ÞV

is unbroken. The reason for the large annihilation cross
section for DM conversion is that the coupling of the
hidden fermions to the hidden mesons is of Oð1Þ: There is
no coupling constant for the coupling as one can see from
the NJL Lagrangian (A2). That is, the annihilation cross
section for DM conversion is about four orders of

magnitude larger than that in an ordinary case, unless
the masses of the incoming and outgoing DMs are almost
degenerate.

1. (i) Uð1Þ ~B0 × Uð1Þ ~B
There exists a problem for the Uð1Þ ~B0 ×Uð1Þ ~B case (7),

which we will discuss now. As we have found in the
previous subsection, the lightest NG boson in the Uð1Þ ~B0 ×
Uð1Þ ~B case is always the lightest between the neutral ones
within the one-loop analysis in the NJL approximation and
that without of loss of generality we can assume it is ~π0. Its
dominant decay mode is into two γs. The decay width can
be calculated from the effective Lagrangian (25):

Γð ~π0 → γγÞ ¼ 9Z ~πQ4α2

64π3
m3

~π0

�
1 −

GD

8G2
hσ3i

�
2

× ð1=M1 − 1=M2Þ2
≃ 10−6 ×Q4m3

~π0
ð1=M1 − 1=M2Þ2; ð48Þ

which should be compared with the expansion rateH of the
Universe at T ¼ m ~π0 ,

Γð ~π0 → γγÞ
H

≃ 7 × 108Q4ðm ~π0=M1Þ3ðΔM=M1Þ2½TeV=M1�
þOðΔM3Þ; ð49Þ

where ΔM ¼ M1 −M2. Therefore, unless the Uð1ÞY
charge Q of the hidden fermions is very small or the
constituent fermion massesM1 andM2 are accurately fine-
tuned (or both), ~π0 decays immediately into two γs. Since
the stable DM particles can annihilate into two ~π0s with a
huge DM conversion rate, there will be almost no DM left
in the end. Since we want to assume neither a tinny Q nor
accurately fine-tuned constituent fermion masses, we will
not consider below the DM phenomenology based on the
Uð1Þ ~B0 ×Uð1Þ ~B flavor symmetry.

2. (ii) SUð2ÞV × Uð1Þ ~B
Now we come to the case (ii) in (8), which means

y1 ¼ y2 < y3. In this case the unstable NG boson is ~ηwhich
can decay into two γs (and also into two Ss if it is
kinematically allowed). Because of SUð2ÞV , ~π0 is now
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stable and m ~π ¼ m ~π0 ¼ m ~π� [see (21)]. Furthermore, m ~K0

and m ~K� , which are slightly larger than m ~π , are exactly
degenerate in this case, i.e., m ~K ¼ m ~K� ¼ m ~K0 . In the
parameter region (20) we can further constrain the param-
eter space. Since y is a measure of the explicit chiral
symmetry breaking and at the same time is the strength of
the connection to the SM side, the smaller is y, the smaller
is the DMmass, and the larger is the cutoff Λ. We have also
found that for a given set of λH; λHS, and λS the value hSi
remains approximately constant as y varies, implying that
mS also remains approximately constant because the Higgs
mass mh ≃ 126 GeV and vh ¼ hhi≃ 246 GeV have to
have a fixed value whatever y is. Consequently, the DM
masses are smaller thanmS, unless yi ≳ 0.015 or λS and λHS
are very small (or both). We have found, as long as we
assume (20), that λS ≲ 0.03 and λHS ≲ 0.04 have to be
satisfied to realize that S is lighter than DM. However, these
values of λS and λHS are too small for the DM annihilation
cross sections into two Ss (diagrams in Fig. 8) to make the
DM relic abundance realistic. In summary, there are three
groups of DM in the SUð2ÞV case (8); the heaviest decaying

SUð2ÞV singlet ~η, two SUð2ÞV doublet ðf ~̄K0
; ~K−g;

f ~Kþ; ~K0gÞ and lightest SUð2ÞV triplet ð ~π�; ~π0Þ.
Before we compute the DM relic abundance, let us

simplify the DM notion:

χ1 ¼ ~η; χ2 to represent ~̄K
0
; ~K�; ~K0; χ3 to represent ~π�; ~π0

ð50Þ

with the masses

m1 ¼ m~η; m2 ¼ m ~K and

m3 ¼ m ~πðm1 > m2 > m3Þ; ð51Þ

respectively, where χi are real scalar fields. There are three
types of annihilation processes which enter into the
Boltzmann equation:

χiχi ↔ XX; ð52Þ

χiχj ↔ χkχl; ð53Þ

in addition to the decay of χ1 into two γs, where X stands
for the SM particles, and the second process (53) is called
DM conversion. There are two types of diagrams for the
annihilation into the SM particles, Figs. 9 and 10. The
diagrams in Fig. 10 are examples in which a one-loop
diagram and a tree-diagram are connected by an internal S
or a S − h mixing. The same process can be realized by
using the right diagram in Fig. 7 for the one-loop part. It
turns out that there is an accidental cancellation between
these two diagrams so that the velocity-averaged annihila-
tion cross section is at most ∼10−11 GeV−2, unless near the
resonance in the s-channel [51]. The effective ϕ-ϕ-γ
interaction (23) can also contribute to the s-channel anni-
hilation into the SM particles. However, as we have
mentioned, the effective coupling GKþK−γ is very small in
the realistic parameter space. For instance, m3

~K
GKþK−γ=

GK2S ∼ 10−5, where GKþK−γ and GK2S are given in (24)
and (38), respectively. Note also that the DM conversion
with three different DMs involved is forbidden by SUð3ÞV.
In the SUð2ÞV × Uð1Þ ~B case, for instance, ~η ~π− → ~K0 ~K− is
indeed allowed. However, it is strongly suppressed
(GηK2π=Gη2K2 ∼ 10−4), because SUð3ÞV is only weakly
broken in the realistic parameter space. So we will ignore
this type of process, too, in the Boltzmann equation.
Using the notion for thermally averaged cross sections

and decay width (of χ1)

hvσðii;XXÞi; hvσðii; jjÞi; hΓð1; γγÞi; ð54Þ

the reduced mass 1=μ ¼ ðPim
−1
i Þ and the inverse temper-

ature x ¼ μ=T, we find for the number per comoving
volume Yi ¼ ni=s [66]

dY1

dx
¼ −0.264g1=2�

�
μMPL

x2

��
hvσð11;XXÞiðY1Y1 − Ȳ1Ȳ1Þ

þ hvσð11; 22Þi
�
Y1Y1 −

Y2Y2

Ȳ2Ȳ2

Ȳ1Ȳ1

�
þ hvσð11; 33Þi

�
Y1Y1 −

Y3Y3

Ȳ3Ȳ3

Ȳ1Ȳ1

��
ð55Þ

FIG. 10. DM annihilation into the SM particles via an internal S line and S − hmixing. In the actual calculation of the cross section we
use the localized expression for the one-loop part, i.e., Gη2S etc. given in (37)–(39).
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− 0.602g−1=2�

�
xMPL

μ2

�
hΓð1; γγÞiðY1 − Ȳ1Þ;

dY2

dx
¼ −0.264g1=2�

�
μMPL

x2

��
hvσð22;XXÞiðY2Y2 − Ȳ2Ȳ2Þ − hvσð22; 11Þi

�
Y1Y1 −

Y2Y2

Ȳ2Ȳ2

Ȳ1Ȳ1

�

þ hvσð22; 33Þi
�
Y2Y2 −

Y3Y3

Ȳ3Ȳ3

Ȳ2Ȳ2

��
; ð56Þ

dY3

dx
¼ −0.264g1=2�

�
μMPL

x2

��
hvσð33;XXÞiðY3Y3 − Ȳ3Ȳ3Þ

− hvσð33; 11Þi
�
Y1Y1 −

Y3Y3

Ȳ3Ȳ3

Ȳ1Ȳ1

�
− hvσð33; 22Þi

�
Y2Y2 −

Y3Y3

Ȳ3Ȳ3

Ȳ2Ȳ2

��
; ð57Þ

where g� ¼ 115.75 is the total number of effective
degrees of freedom, s is the entropy density, MPL is
the Planck mass, and Ȳi ¼ ni=s in thermal equilibrium.
Although hvσðii;XXÞi is much smaller than 10−9 GeV−2,
we can obtain a realistic value of Ωh2. The mechanism
is the following [67]. If y3 does not differ very much
from y1 ¼ y2, the differences among m1; m2, and m3

are small. Then at finite temperature inverse DM con-
versions (which are kinematically forbidden at zero
temperature) can become operative, because the DM
conversions cross sections are large, i.e., 10−5 GeV−2 ×
phase space, as we have mentioned above. That is, the
inverse conversion χ3χ3; χ2χ2 → χ1χ1 → γγγγ can play a
significant role.

The relic abundance Ωh2 is given by

Ωih2 ¼
Yi∞s0mi

ρc=h2
; ð58Þ

where Yi∞ is the asymptotic value of Yi, s0 ¼ 2890=cm3 is
the entropy density at present, ρc ¼ 3H2=8πG ¼ 1.05 ×
10−5h2 GeV=cm3 is the critical density, and h is the
dimensionless Hubble parameter. Before we scan the
parameter space, we consider a representative point in
the four-dimensional parameter space with Q ¼ 1=3:

y3 ¼ 0.00424; y1 ¼ y2 ¼ 0.00296;

λS ¼ 0.13; λHS ¼ 0.06; λH ¼ 0.135; ð59Þ
which gives

Ωh2 ¼ ðΩ1 þ 4Ω2 þ 3Ω3Þh2 ¼ 0.119; mS ¼ 324.1 GeV;

m1 ¼ m~η ¼ 202.0 GeV; m2 ¼ m ~K ¼ 196.3 GeV; m3 ¼ m ~π ¼ 178.1 GeV;

hvσð11; 22; 33;XXÞi ¼ ð9.29; 9.38; 1.26Þ × 10−11 GeV−2;

hvσð11; 22Þi ¼ 4hvσð22; 11Þi ¼ 3.90 × 10−5 GeV−2;

hvσð11; 33Þi ¼ 3hvσð33; 11Þi ¼ 4.30 × 10−5 GeV−2;

hvσð22; 33Þi ¼ ð3=4Þhvσð33; 22Þi ¼ 4.06 × 10−5 GeV−2;

hΓð1; γγÞi ¼ 6.45 × 10−13 GeV−1;

hvσð11; γγÞi ¼ 6.59 × 10−14 GeV−2 ¼ 7.73 × 10−31 cm3 s−1:

Fig. 11 (left) showsΩh2 (red (gray)),Ω1h2 ¼ Ωηh2 (black),
4Ω2h2 ¼ 4ΩKh2 (green (gray line between the black and
dashed gray lines)), and 3Ω3h2 ¼ 3Ωπh2 (blue (gray)) for
the parameter values (59) as a function of the inverse
temperature x ¼ μ=T. In Fig. 11 (right) we show the total
relic DM abundance Ωh2 as a function of y1ð¼ y2Þ, where
the other parameters are fixed as (59). Since a realistic value
of Ωh2 for the SUð3ÞV case (9) can be obtained only near
the resonance, i.e., mS=mDM ≃ 2, the parameter space for
the SUð2ÞV case (8) is considerably larger than that for the
SUð3ÞV case (9). Note, however, that the realistic parameter
space for the SUð2ÞV case is not continuously connected to

that for the SUð3ÞV case, as we can see from Fig. 11 (right)
[SUð3ÞV means the point at y1 ¼ y3].

D. Indirect and direct detection of dark matter

1. Monochromatic γ-ray line from DM annihilation

As we can see from Fig. 9, two DM particles can
annihilate into two γs. Therefore, the charge Q of the
hidden fermions can be constrained from the γ-ray obser-
vations [68–70]. Since in the SUð2ÞV case the relic
abundance of the ~π dark matter is dominant, we consider
here only its annihilation into two γs. We will take into
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account only the s-wave contribution to the annihilation
cross section, and correspondingly we assume that p ¼
p0 ¼ ðm ~π; 0Þ and that the photon momenta take the form
k ¼ ðm ~π;kÞ and k0 ¼ ðm ~π;−kÞ with their polarization
tensors ϵðkÞ ¼ ð0; ϵðkÞÞ and ϵðk0Þ ¼ ð0; ϵðk0ÞÞ satisfying

0 ¼ ϵðkÞ · k ¼ ϵðkÞ · k0 ¼ ϵðkÞ · p ¼ ϵðkÞ · p0;

0 ¼ ϵðk0Þ · k ¼ ϵðk0Þ · k0 ¼ ϵðk0Þ · p ¼ ϵðk0Þ · p0; ð60Þ

respectively.
To compute the annihilation rate we use the effective

interaction (44). We find that the annihilation amplitude can
be written as

ΓμνðabÞ≃Gπ2γ2ðk · k0gμν − kμk0νÞ ×

8>>><
>>>:

ab

1 γγ

−tW γZ

t2W ZZ

; ð61Þ

where Gπ2γ2 is given in (46). Then (the s-wave part of) the
corresponding velocity-averaged annihilation cross sec-
tions are

hvσð ~π ~π → abÞi ¼ Gπ2γ2m
2
~π

4π

×

8>>><
>>>:

ab

ð1=2Þ γγ

t2Wð1 −m2
Z=4m

2
~πÞ γZ

ð3=4Þt4Wð1 −m2
Z=m

2
~πÞ1=2 ZZ

:

ð62Þ

The energyEγ of γ-ray line produced by the annihilation into
γZ is m ~πð1 −m2

Z=4m
2
~πÞ. In practice, however, due to finite

detector energy resolution this line cannot be distinguished
from theEγ ¼ m ~π line. Therefore, we simply add both cross
sections. So we compute hvσiγγþγZ ¼ hvσð ~π ~π → γγÞiþ
hvσð ~π ~π → γZÞi with Q ¼ 1=3 as a function of m ~π for
different values of λH; λS, and λHS, which is shown in Fig. 12
(right), where Ωh2 is required to be consistent with the
PLANCK experiment at 4σ level [71]. As we see from
Fig. 12 (right) the velocity-averaged annihilation cross
section is mostly less than 10−29 cm3=s in the parameter
space we are considering, and consequently the Fermi LAT
and HESS constraints given in Fig. 12 (left) are well
satisfied. The red (gray) points are those for the SUð3ÞV
(9) case.
The differential γ-ray flux is given by

dΦ
dEγ

∝ hvσiγγ
dNγγ

dEγ
þ hvσiγZ

dNγz

dEγZ

≃ hvσiγγþγZδðEγ −mDMÞ: ð63Þ
Prospects observing such line spectrum is discussed in
detail in [72–74]. Obviously, with an increasing energy
resolution the chance for the observation increases.
Observations of monochromatic γ-ray lines of energies
ofOð100Þ GeV not only fix the charge of the hidden sector
fermions, but also yields a first experimental hint on the
hidden sector.

2. Direct detection of dark matter

As we can see from Fig. 11 (left), the relic abundance of
the ~K dark matter is about three orders of magnitude
smaller than that of the ~π dark matter. Therefore, we
consider only the spin-independent elastic cross section
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FIG. 11 (color online). Left: The relic DM abundances, Ωh2 (red (dashed gray)), Ω1h2 ¼ Ωηh2 (black), 4Ω2h2 ¼ 4ΩKh2 (green (gray
line between the black and dashed gray lines)), and 3Ω3h2 ¼ 3Ωπh2 (blue (gray)), as a function of the inverse temperature x ¼ μ=T for
the parameter values (59). Though ~η is almost in thermal equilibrium, its presence is essential for the ~K and ~π numbers to decrease as x
decreases. In the end the relic abundance of ~π dominates. Right: The total relic abundance Ωh2 as a function of y1ð¼ y2Þ for
y3 ¼ 0.00424, where the other parameters are fixed as (59).
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σSI of ~π off the nucleon. The subprocess is the left diagram
in Fig. 13 (left), where • is the localized one-loop
contribution (39), and we ignore the right diagram. The
result of [75] can be used to find

σSI ¼
Z2

~π

π
G2

π2S

�
f̂mN

2vhm ~π

sin 2θ
2

�
1

m2
h

−
1

m2
S

��2� mNm ~π

mN þm ~π

�
2

;

ð64Þ
where Gπ2S is given in (39), mN is the nucleon mass, and
f̂ ∼ 0.3 stems from the nucleonic matrix element [76]. We
assume j cos θj≳ 0.9 to satisfy the LHC constraint, where θ
is the h − S mixing angle. In Fig. 13 (right) we show in the
m ~π-σSI plane the area in which Ωh2 ¼ 0.12� 0.01ð4σÞ
[71] is satisfied. The predicted values of σSI for m ~π ≳
150 GeV is too small even for the future direct DM
detection experiment such as XENON1T, whose sensitivity
is of Oð10−47Þ cm2 [77]. The smallness of σSI results from

the smallness of the couplingGπ2S, whose smallness comes
from small Yukawa coupling y1 and the accidental can-
cellation between the left and right diagrams in Fig. 7. The
red (gray) points are those for the SUð3ÞV (9) case. We
recall that the realistic parameter space for the SUð2ÞV case
is not continuously connected to that for the SUð3ÞV case,
as one could see from Fig. 11 (right), in which y1 ¼ y3 has
to be satisfied for the SUð3ÞV case.
If the relic abundance of the ~K dark matter were of

Oð0.1Þ, the nonzero ~K0- ~̄K
0
-γ=Z and ~Kþ- ~K−-γ=Z couplings

shown in Fig. 13 would lead to a serious problem.
Fortunately, the effective coupling is very small as we
have already noticed: m2

~K
GKþK−γ ∼ 10−6, where this

coupling for ~π vanishes in the SUð2ÞV case.
Note that because an accidental Uð1ÞV (the hidden

baryon number), not only the DM candidates, but also
the lightest hidden baryons are stable. The hidden mesons
in our model are neutral, while the charge of the hidden
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FIG. 12 (color online). Left: The Fermi Lat [68,69] (black) and HESS [70] (red (gray)) upper bounds on the velocity-averaged DM
annihilation cross section for monochromatic γ-ray lines, where this graph is taken from [70]. Right: The velocity-averaged DM
annihilation cross section hvσiγγþγZ as a function of m ~π with Q ¼ 1=3. Since hvσiγγþγZ is proportional to Q4, our calculations can be
simply extended to the case of an arbitrary Q. The red (gray) points are those for the SUð3ÞV case (9).

FIG. 13 (color online). Left: Subdiagrams contributing to the spin-independent elastic cross section σSI off the nucleon. Since the relic
abundance of ~K is negligibly small, the right diagram does not contribute. Right: The spin-independent elastic cross section σSI of ~π as a
function ofm ~π . The red (gray) points are those for the SUð3ÞV case (9). The result should be compared with the XENON1T sensitivity of
Oð10−47Þ cm2 [77].
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baryons ~b formed by three hidden fermions isQ ~b ¼ 3 ×Q.
Let us roughly estimate the amount of relic stable hidden
baryons and antibaryons in the Universe, where we assume
that the hidden proton and neutron are the lightest baryons
in the SUð2ÞV case (8). As the hidden sector is described
by a scaled-up QCD, the hidden meson-baryon coupling
GϕBB̄ is approximately the same as in QCD, i.e.,
GϕBB̄ ∼ 13, which is independent of Q. Using this fact,
we can estimate Y ~b ¼ n ~b=s and obtain Y ~b ≃ ð0.4; 6; 9Þ ×
10−16 for m ~b ¼ 1; 5 and 8 TeV, respectively. There are
severe constraints on Y ~b. The most severe constraints exist
for Q ~b ¼ 1, which come from the search of heavy isotopes
in sea water [4] and also from its influence on the large
scale structure formation of the Universe [78]. We therefore
conclude that Q ~b ¼ 1, i.e., Q ¼ 1=3 is ruled out. Another
severe cosmological constraint is due to catalyzed BBN
[79], which gives Y ~b ≲ 2 × 10−15 [80] (see also [81]). The
CMB constraint based on the Planck data is Ω ~bh

2 ≲ 0.001
[82], which can be satisfied in our model if m ~b ≲ 6 TeV.
(See also [83] in which the constraints in the Q ~b-DM mass
plane are given, where these constraints are satisfied in a
wide area of the parameter space of the present model.).
In most of our analyses on DM here we have used

Q ¼ 1=3. The relic abundances of DMs depend on Q,
because the decay rate of the neutral would-be DM η
depends on Q. The change of Q can be compensated by
varying the ratio of y3 to y1 ¼ y2, as far as the difference of
two hypercharges are not very much different. As for the
indirect detection of DM, the annihilation cross section into
two γs (62) being proportional to Q4 should be multiplied
with ð3QÞ4 for Q different from 1=3. The spin-independent
elastic cross section σSI (64) is independent on Q. This
means that our basic results obtained in this paper can be
simply extended to the case with Q different from 1=3.

V. CONCLUSION

We have considered a QCD-like hidden sector model
[48–51], in which dynamical chiral symmetry breaking
generates a mass scale. This generated scale is transmitted
to the SM sector via a real SM singlet scalar S to trigger
spontaneous breaking of EW gauge symmetry [48,49].
Because the SM is extended in a classically scale invariant
way, “Mass without mass” [1,84] is realized in this model.
Since chiral symmetry is dynamically broken, there exist
NG bosons, which are massive because the coupling of S
with the hidden sector fermions breaks explicitly the
SUðnfÞL × SUðnfÞR chiral symmetry down to one of its
diagonal subgroups. The mass scale of these NG bosons is
calculable once the strength of this coupling and the scale
of the QCD-like hidden sector are given. The smallest
subgroup is the Cartan subalgebra Uð1Þnf−1. Because of
this (accidentally) unbroken subgroup, the NG bosons
charged under Uð1Þnf−1 are stable: There exist at least

n2f − nf DM candidates. We have restricted ourselves to
nc ¼ nf ¼ 3, because in this case we can relate using
hadrons the independent parameters of the NJL model,
which we have used as a low-energy effective theory for the
hidden sector. There are three possibilities: (i) Uð1Þ ~B0 ×
Uð1Þ ~B, (ii) SUð2ÞV ×Uð1Þ ~B, and (iii) SUð3ÞV , where the
possibility (iii) has been studied in [51,52]. It turns out that
the first case (i) is unrealistic, unless this case is very close
to (ii) or (iii), or/and the hypercharge Q of the hidden
fermions is tiny. This is because the lightest NG boson is
neutral under Uð1Þ ~B0 ×Uð1Þ ~B so that it can decay into two
γs and the stable DM candidates annihilate into them
immediately. Therefore, we have mainly studied the case
(ii) with y1 ¼ y2 < y3. In this case the unstable NG boson
is ~η (the heaviest among the pseudo-NG bosons) and can
decay into two γs. The annihilation cross section into the
SM particles via the singlet S is very much suppressed,
except in the resonance region in the s-channel annihilation
diagram of DM. However, we have found another mecha-
nism for the stable DMs to annihilate: If y3 does not differ
very much from y1 ¼ y2, the differences among m ~π; m ~K ,
and m~η are small. At finite temperature the inverse DM
conversions (which are kinematically forbidden at zero
temperature) can become operative, because the DM
conversions cross sections are large ∼10−5 GeV−2.
Consequently, the realistic parameter space of the case
(ii) is significantly larger than that of the case (iii), which
has been obtained in [51,52].
With a nonzero Q the hidden sector is doubly connected

with the SM sector; we have a bright hidden sector at hand.
The connection via photon and Z opens possibilities to
probe the hidden sector at collider experiments such as
eþe− collision [85]. In particular, the would-be DM, ~η, can
decay into two γs, which would give a smoking-gun event.
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APPENDIX A: THE NJL LAGRANGIAN IN THE
SELF-CONSISTENT MEAN FIELD (SCMF)

APPROXIMATION

Here we consider the NJL Lagrangian LNJL (13) in the
SCMF approximation [58]. In the SCMF approximation
one splits up the NJL Lagrangian (13) into the sum

LNJL ¼ L0 þ LI; ðA1Þ

where LI is normal ordered (i.e., h0jLIj0i ¼ 0), and L0

contains at most fermion bilinears which are not normal
ordered. We find that L0 can be written as
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L0 ¼ LK þ LD þ LM; ðA2Þ
where

LK ¼ Trψ̄ðiγμ∂μ þ g0QγμBμÞψ −
�
~σ1 þ y1S −

GD

8G2
~σ2 ~σ3

�
ψ̄1ψ1

−
�
~σ2 þ y2S −

GD

8G2
~σ1 ~σ3

�
ψ̄2ψ2 −

�
~σ3 þ y3S −

GD

8G2
~σ1 ~σ2

�
ψ̄3ψ3

− i

�
~π0 þ 1ffiffiffi

3
p ~η8 þ

ffiffiffi
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r
~η0 −
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8G2

�
~σ3 ~π

0 þ 1ffiffiffi
3
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Here ~η0 stands for ϕ0, and the meson fields are defined in (4).
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APPENDIX B: DETERMINATION OF THE NJL
PARAMETERS G;GD, AND Λ

As in [51] we apply the NJL Lagrangian (A2) with g0 ¼
0 to describe the real hadrons, where we assume SUð2ÞV

and replace yiS by the current quark masses, i.e.,
y1S ¼ y2S → mu, y3S → ms. Then we compute the real
meson masses mπ; mK;mη; mη0 and decay constants fπ; fK .
We obtain the following inverse meson propagators:

Γπ�ðp2Þ ¼ Γπ0ðp2Þ

¼ −
1

2G
þ GD

8G3
σ3 þ

�
1 −
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8G2
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where the integrals IA
ϕ2ðp2; ma;mbÞ and IB

ϕ2ðmÞ are defined in Appendix (C2), and

m1 ¼ mu þ σ1 −
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8G2
σ1σ3; m3 ¼ ms þ σ3 −
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2: ðB6Þ

The pion and kaon masses are the zeros of the inverse propagators, i.e.,

Γπ�ðp2 ¼ mπ
2Þ ¼ 0; ΓK�ðp2 ¼ mK

2Þ ¼ 0; ðB7Þ

while the η and η0 meson masses are obtained from the zero eigenvalues of the real part of the η8 − η0 mixing matrix. The
wave function renormalization constants can be obtained from
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dp2

				
p2¼mπ

2

; ZK
−1 ¼ dΓK�ðp2Þ

dp2

				
p2¼mK

2

; ðB8Þ

and the pion and kaon decay constants are defined as

h0jTrψ̄γμγ5
1

2
ðσ1 þ iσ2Þψ jπþðpÞi ¼ i

ffiffiffi
2

p
fπpμ; ðB9Þ

h0jTrψ̄γμγ5
1

2
ðσ4 þ iσ5Þψ jKþðpÞi ¼ i

ffiffiffi
2

p
fKpμ: ðB10Þ
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We use mπ; mK;mη; mη0 ; fπ , and fK to determine the QCD
NJL parameters. The best fit values of the parameters are
given in Table II. In Table III we compare the meson masses
and decay constants calculated in the NJL theory with the
experimental values. As we see from Table III, the NJL η
mass is about 16% smaller than the experimental value.
This seems to be a general feature of the NJL theory [58]
(see also [86]).

APPENDIX C: ONE-LOOP INTEGRALS

(i) Vacuum energy
To compute the effective potential (18) we need the

vacuum energy

IVðmÞ¼
Z

d4k
ið2πÞ4 lndetðk−mÞ

¼ 1

16π2

�
Λ4 ln

�
1þm2

Λ2

�
−m4 ln

�
1þΛ2

m2

�
þm2Λ2

�
:

ðC1Þ

(ii) Inverse propagator of dark matter

There are two types of diagrams which contribute to the
inverse propagator of dark matter:

IA
ϕ2ðp2;ma;mbÞ¼

Z
d4l

ið2πÞ4
Trðl−pþmaÞγ5ðlþmbÞγ5
ððl−pÞ2−m2

aÞðl2−m2
bÞ

;

IB
ϕ2ðmÞ¼

Z
d4k

ið2πÞ4
m

ðk2−m2Þ

¼−
1

16π2
m

�
Λ2−m2 ln

�
1þΛ2

m2

��
: ðC2Þ

These expressions are used to find DM masses and
wave function renormalization constants given in (B8),
respectively.
(iii) ϕ-ϕ-γ amplitude

Iμ
ϕ2γ

ðp; p0; ma;mbÞ ¼ ð−1Þ
Z

d4l
ið2πÞ4

TrðlþmaÞγ5ðl − p0 þmbÞγμðlþ pþmbÞγ5
ððlþ pÞ2 −m2

bÞðl2 −m2
aÞððl − p0Þ2 −m2

bÞ
þ ðp ↔ p0; ma ↔ mbÞ;

¼ −ðpμp0ν − p0μpνÞðpþ p0ÞνIϕγ2ðma;mbÞ þ � � � ðC3Þ

with p2 ¼ p02, where � � � stands for higher order terms in the expansion of the external momenta, and

Iϕ2γðma;mbÞ ¼
1

8π2
1

ðm2
a −m2

bÞ2ðma þmbÞ2
�
1

2
ðma −mbÞðm3

a þ 5m2
amb þ 5mam2

b þm3
bÞ

−
1

3
ðm4

a þ 3m3
amb þm2

am2
b þ 3mam3

b þm4
bÞ lnðm2

a=m2
bÞ2

�
: ðC4Þ

The effective ϕ-ϕ-γ interaction Lagrangian is given in (23).
(iv) ϕ-γ-γ amplitude
The ϕðpÞ-γðkÞ-γðk0Þ three-point function is needed to compute the decay ~η into two γs (Fig. 4):

Iμν
ϕγ2

ðk; k0; mÞ ¼ ð−1Þ
Z

d4l
ið2πÞ4

Trðl − k0 þmÞγμðlþmÞγνðlþ kþmÞγ5
ððlþ kÞ2 −m2Þðl2 −m2Þððl − k0Þ2 −m2Þ þ ðk ↔ k0; μ ↔ νÞ

¼ i
4π2m

ϵμναβkαk0β þ � � � ðC5Þ

TABLE III. Comparison of the NJL values with the corre-
sponding experimental values.

Theory (MeV) Experimental value (MeV)

mπ 136 140ðπ�Þ135ðπ0Þ
mK 499 494ðK�Þ498ðK0; K̄0Þ
mη 460 548
mη0 960 958
fπ 93 92ðπ−Þ
fK 105 110ðK−Þ

TABLE II. Values of the QCD NJL parameters obtained by
fitting the pion and kaon decay constants and the meson masses,
where we have assumed the SUð2ÞV flavor symmetry.

Parameter ð2GQCDÞ−1=2 ð−GQCD
D Þ−1=5 ΛQCD mu ms

Value (MeV) 361 406 930 5.95 163
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The amplitude is thanks to γ5 gauge invariant even for a finite Λ, i.e., kνI
μν
ϕγ2

ðk; k0; mÞ ¼ k0μI
μν
ϕγ2

ðk; k0; mÞ ¼ 0. The amplitude

without γ5 correspond to the SðpÞ-γðkÞ-γðk0Þ three-point function, which we denote by Iμν0;Sðk; k0; mÞ. This amplitude is not
gauge invariant so that we need to apply the least subtraction method [52]. The subscript 0 indicates that the amplitude is
unsubtracted, and we denote the subtracted gauge-invariant one by IμνS ðk; k0; mÞ. In Appendix C we demonstrate how to use
the least subtraction method for this case.
(v) ϕ-ϕ-ϕ-ϕ amplitude
The ϕðpÞ-ϕðp0Þ-ϕ0ðkÞ-ϕ0ðk0Þ- four-point function is needed to compute the DM conversion cross section (diagrams of

Fig. 5):

IA
ϕ4ðp; p0; k; k0; ma;mb;mc;mdÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
TrðlþmaÞγ5ðl − p0 þmbÞγ5ðlþ p − kþmcÞγ5ðlþ pþmdÞγ5
ðl2 −m2

aÞððl − p0Þ2 −m2
bÞððlþ p − kÞ2 −m2

cÞððlþ pÞ2 −m2
dÞ

þ ðp ↔ p0; k ↔ k0Þ þ ðp ↔ p0Þ þ ðk ↔ k0Þ; ðC6Þ

IB
ϕ4ðp; p0; ma;mbÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
TrðlþmaÞðlþ pþ p0 þmbÞ
ðl2 −m2

aÞððlþ pþ p0Þ2 −m2
bÞ
: ðC7Þ

At the lowest order in the expansion in the external momenta we obtain

IA
ϕ4ð0; 0; 0; 0; ma;ma;mc;mcÞ ¼ 4I1A

ϕ4 ðma;mcÞ ¼ −
1

4π2
m2

a lnðΛ2=m2
aÞ −m2

c lnðΛ2=m2
cÞ

ðm2
a −m2

cÞ
þ � � � ; ðC8Þ

IA
ϕ4ð0; 0; 0; 0; ma;ma;ma;mdÞ ¼ 4I2A

ϕ4 ðma;mdÞ ¼ −
1

4π2

�
maðm2

a þmamd −m2
dÞ lnðΛ2=m2

aÞ −m3
d lnðΛ2=m2

dÞ
ðma −mdÞðma þmdÞ2

−
ma

ma þmd
þ � � �

�
; ðC9Þ

IA
ϕ4ð0; 0; 0; 0; ma;ma;ma;maÞ ¼ 4I3A

ϕ4 ðmaÞ ¼ −
1

4π2
ð−1þ lnðΛ2=m2

aÞ þ � � �Þ; ðC10Þ

IB
ϕ4ð0; 0; ma;mbÞ ¼ I1B

ϕ4 ðma;mbÞ ¼
−1
4π2

�
−Λ2 þm3

a lnðΛ2=m2
aÞ −m3

b lnðΛ2=m2
bÞ

ma −mb
þ � � �

�
; ðC11Þ

IB
ϕ4ð0; 0; ma;maÞ ¼ I2B

ϕ4 ðmaÞ ¼
−1
4π2

ð−Λ2 − 2m2
a þ 3m2

a lnðΛ2=m2
aÞ þ � � �Þ; ðC12Þ

where � � � stands for terms of OðΛ−2Þ and higher. These expressions are used for the effective couplings defined in
(32)–(35).
(vi) ϕ-ϕ-S amplitude
To obtain the ϕðpÞ-ϕðp0Þ-SðkÞ three-point function (Fig. 7) we need

IA
ϕ2Sðp; p0; ma;mbÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
Trðlþ pþmbÞγ5ðlþmaÞγ5ðl − p0 þmbÞ
ððlþ pÞ2 −m2

bÞðl2 −m2
aÞððl − p0Þ2 −m2

bÞ
þ ðp ↔ p0Þ; ðC13Þ

IB
ϕ2Sðp; p0; maÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
Trðlþ pþ p0 þmaÞðlþmaÞ
ððlþ pþ p0Þ2 −m2

aÞðl2 −m2
aÞ
: ðC14Þ

At the lowest order in the expansion in the external momenta we obtain

IA
ϕ2Sð0; 0; ma;mbÞ ¼ 2I1A

ϕ2Sðma;mbÞ ¼
1

2π2

�
−

m2
b

ma þmb
−
1

2
ðma −mbÞ lnðΛ2=m2

bÞ þ
m3

a

2ðma þmbÞ2
lnðm2

a=m2
bÞ þ � � �

�
;

ðC15Þ
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IA
ϕ2Sð0; 0; ma;maÞ ¼ 2I2A

ϕ2SðmaÞ ¼
ma

4π2
ð−1þ lnðΛ2=m2

aÞ þ � � �Þ; ðC16Þ

IB
ϕ2Sð0; 0; maÞ ¼ IB

ϕ2SðmaÞ ¼
1

4π2
ðΛ2 þ 2m2

a − 3m2
a lnðΛ2=m2

aÞ þ � � �Þ: ðC17Þ

These expressions are used for the effective couplings defined in (37)–(39).
(vii) ϕ-ϕ-S-S amplitude
Similarly,

IA
ϕ2S2ðp; p0; k; k0; ma;mb;mc;mdÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
TrðlþmaÞγ5ðl − p0 þmbÞðlþ p − kþmbÞðlþ pþmbÞγ5
ðl2 −m2

aÞððl − p0Þ2 −m2
bÞððlþ p − kÞ2 −m2

bÞððlþ pÞ2 −m2
bÞ

þ ðk ↔ k0Þ; ðC18Þ

IB
ϕ2S2ðp; p0; k; k0; ma;mb;mc;mdÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
TrðlþmaÞðlþ k0 þmaÞγ5ðlþ p − kþmbÞðlþ pþmbÞγ5
ðl2 −m2

aÞððlþ k0Þ2 −m2
bÞððlþ p − kÞ2 −m2

bÞððlþ pÞ2 −m2
bÞ

þ ðk ↔ k0Þ; ðC19Þ

IC
ϕ4ðp; p0; maÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
Trðl − k0 þmÞðlþmÞðlþ kþmÞ

ððlþ kÞ2 −m2Þðl2 −m2Þððl − k0Þ2 −m2Þ þ ðk ↔ k0Þ: ðC20Þ

At the lowest order in the expansion in the external momenta we obtain

IA
ϕ2S2ð0; 0; 0; 0; ma;mbÞ ¼ 2I1A

ϕ2S2ðma;mbÞ ¼ −
1

2π2

�
1

ðma þmbÞ2
�
mbð5ma þ 3mbÞ þ

m3
a

ðma þmbÞ
lnðm2

a=m2
bÞ
�

− lnðΛ2=m2
aÞ þ � � ��; ðC21Þ

IA
ϕ2S2ð0; 0; 0; 0; ma;maÞ ¼ 2I2A

ϕ2S2ðmaÞ ¼ −
1

2π2
ð2 − lnðΛ2=m2

aÞ þ � � �Þ; ðC22Þ

IB
ϕ2S2ð0; 0; 0; 0; ma;mbÞ ¼ 2I1B

ϕ2S2ðma;mbÞ ¼ −
1

2π2
1

ðma þmbÞ2
�
m2

aðma þ 3mbÞ lnðΛ2=m2
aÞ þm2

bðmb þ 3maÞ lnðΛ2=m2
bÞ

ðma þmbÞ

− 2ðm2
a þm2

bÞ þ � � �
�
; ðC23Þ

IB
ϕ2S2ð0; 0; 0; 0; ma;maÞ ¼ 2I2B

ϕ2S2ðmaÞ ¼ −
1

2π2
ð−1þ lnðΛ2=m2

aÞ þ � � �Þ; ðC24Þ

IC
ϕ2S2ð0; mÞ ¼ 2IC

ϕ2S2ðmÞ ¼ m
2π2

ð5 − 3 lnðΛ2=m2Þ þ � � �Þ: ðC25Þ

These expressions are used for the effective couplings defined in (41)–(43).
(viii) ϕ-ϕ-γ-γ amplitude
The next example is the ϕðpÞ-ϕðp0Þ-γðkÞ-γðk0Þ four-point function. The diagrams at the one-loop level are shown in

Fig. 9:

IA;μν
0;ϕ2 ðp; p0; k; k0; ma;mb;mcÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
TrðlþmaÞγ5ðl − p0 þmbÞγμðlþ p − kþmcÞγνðlþ pþmbÞγ5
ðl2 −m2

aÞððl − p0Þ2 −m2
bÞððlþ p − kÞ2 −m2

cÞððlþ pÞ2 −m2
bÞ

þ ðp ↔ p0; k ↔ k0; μ ↔ νÞ þ ðk ↔ k0; μ ↔ νÞ þ ðp ↔ p0Þ; ðC26Þ
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IB;μν
0;ϕ2 ðp; p0; k; k0; ma;mbÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
Trðl − kþmaÞγνðlþmaÞγ5ðl − p0 þmbÞγμðlþ p − kþmbÞγ5
ððl − kÞ2 −m2

aÞðl2 −m2
aÞððl − p0Þ2 −m2

bÞððlþ p − kÞ2 −m2
bÞ

þ ðp ↔ p0Þ; ðC27Þ

IC;μν
0;ϕ2 ðk; k0; mÞ ¼ ð−1Þ

Z
d4l

ið2πÞ4
Trðl − k0 þmÞγμðlþmÞγνðlþ kþmÞ

ððlþ kÞ2 −m2Þðl2 −m2Þððl − k0Þ2 −m2Þ þ ðk ↔ k0; μ ↔ νÞ: ðC28Þ

The subscript 0 indicates that the amplitudes are unsubtracted, and therefore they are not gauge invariant. We apply the least
subtraction method to obtain gauge invariant amplitudes IA;μν

ϕ2 ; IB;μν
ϕ2 , and IC;μν

ϕ2 , respectively. Since the realistic parameter

space is close to that of the SUð2ÞV case (8), we consider them only in this case. At the lowest order in the expansion in the
external momenta we obtain

IA;μν
ϕ2 ðk; k0; mÞ þ IB;μν

ϕ2 ðk; k0; mÞ ¼ 1

6π2m2
ðk · k0gμν − kμk0νÞ þ � � � ðC29Þ

IC;μν
ϕ2 ðk; k0; mÞ ¼ −

1

6π2m
ðk · k0gμν − kμk0νÞ þ � � � ðC30Þ

in the large Λ limit. The result is used for the effective
Lagrangian (44) and (61).

APPENDIX D: LEAST SUBTRACTION
PROCEDURE

The cutoff Λ breaks gauge invariance explicitly and to
restore gauge invariance we have to subtract non-gauge
invariant terms from the original amplitude. In renorma-
lizable theories there is no problem to define a finite
renormalized gauge invariant amplitude. In the limit of
Λ → ∞ the gauge noninvariant terms are a finite number
of local terms, which can be cancelled by the corre-
sponding local counterterms so that the subtracted ampli-
tude is, up to its normalization, independent of the
regularization scheme. To achieve such a uniqueness in
cutoff theories, one needs an additional prescription.
In [52] a novel method called the “least subtraction

procedure” has been proposed. The basic idea is to keep the
subtraction terms to the minimum necessary. Consider an
unsubtracted amplitude

A0;μ1…μng
ðΛ;p1…pns ; k1…kngÞ; ðD1Þ

with ng photons and ns scalars (scalars and axial scalars).
Expand the amplitude in the external momenta k’s and p’s:

A0;μ1…μng
¼

X
m¼0

AðmÞ
0;μ1…μng

; ðD2Þ

where AðmÞ
0;μ1…μng

consists of mth order monomials of the

external momenta. In general, Að0Þ
0;μ1…μng

¼ A0;μ1…μng

atp ¼ 0; k ¼ 0 is nonvanishing and we can subtract it
because it is not gauge invariant. We keep the tensor

structure of Að0Þ
0;μ1…μng

as the tensor structure of the counter-

terms for AðmÞ
0;μ1…μng

ðm > 0Þ until a new tensor structure for

the counterterms is required. We continue this until no more
new tensor structure is needed.
To illustrate the subtraction method we consider the

SðpÞ-γðkÞ-γðk0Þ three-point function, which is given by

A0;μνðk; k0Þ ¼
X3
i¼1

yince2Q2

Z
d4l

ið2πÞ4
Trðl − k0 þMiÞγμðlþMiÞγνðlþ kþMiÞ
ððlþ kÞ2 −M2

i Þðl2 −M2
i Þððl − k0Þ2 −M2

i Þ
þ ðk ↔ k0; μ ↔ νÞ; ðD3Þ

where we use the on shell conditions k2 ¼ k02 ¼ 0. Without
loss of generality the amplitude can be written as

A0;μνðk; k0Þ ¼ A0;gðk; k0Þgμν þA0;kðk; k0Þkμk0ν
þ B0;kðk; k0Þkνk0μ: ðD4Þ

The last term does not contribute to the gauge invariance
kνAμνðk; k0Þ ¼ k0μAμνðk; k0Þ ¼ 0, and so we ignore it. The
corresponding one-loop diagram is the one in Fig. 4 with ~η
replaced by S. According to the least subtraction method,
we expand the amplitude in the external momenta k and k0.
At the second order, for instance, we find
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Að2Þ
0;gðk; k0Þ ¼ −

nce2Q2

4π2
ðk · k0Þ

×
X
i

yiΛ4

3MiðΛ2 þM2
i Þ3

ð2Λ2 þM2
i Þ; ðD5Þ

Að2Þ
0;kðk; k0Þ ¼

nce2Q2

4π2
X
i

yiΛ4

3MiðΛ2 þM2
i Þ3

ð2Λ2 þ 2M2
i Þ:

ðD6Þ

In the Λ → ∞ limit the second order amplitude will be
gauge invariant, but it is not at a finite Λ. Moreover, there
are infinitely many ways of subtraction to make the second
order amplitude gauge invariant. However, none of them is
preferential. The least subtraction method uses the lower
order amplitude, i.e.,

Að0Þ
0;gðk; k0Þ ¼ −

X
i

Λ4Mi

ðΛ2 þM2
i Þ2

; Að0Þ
0;kðk; k0Þ ¼ 0

ðD7Þ

in this case, how to subtract the second order amplitude.
At the lowest order in the derivative expansion, what is
to be subtracted is unique; it is the gμν term. We keep
this tensor structure as the tensor structure of the
counterterms for higher order terms until a new tensor
structure for the counterterms is required. However, in
the case of A0;μνðk; k0Þ there will be no new tensor
structure appearing in higher orders. This implies that
A0;kðk; k0Þ remains unsubtracted [i.e., Akðk; k0Þ ¼
A0;kðk; k0Þ] so that the subtracted gauge invariant am-
plitude is given by

Aμνðk; k0Þ ¼ −
X
i

yince2Q2

4π2
ðgμνk · k0 − kμk0νÞ

�
Λ4

MiðΛ2 þM2
i Þ2

�

×

�
2

3
þ 7k · k0ðΛ2 þ 3M2

i Þ
90M2

i ðΛ2 þM2
i Þ

þ ðk · k0Þ2ðΛ4 þ 4Λ2M2
i þ 6M4

i Þ
63M4

i ðΛ2 þM2
i Þ2

þ � � �
�

¼ −
X
i

yince2Q2Mi

4π2
ðgμνk · k0 − kμk0νÞ

Z
1

0

dx
Z

1−x

0

dy
2Λ4

ðΛ2 þD2Þ2
ð1 − 4xyÞ

D2
; ðD8Þ

where D ¼ M2
i − 2xyk · k0.
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