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Nambu-Goldstone dark matter in a scale invariant bright hidden sector
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We consider a scale invariant extension of the standard model (SM) with a combined breaking of
conformal and electroweak symmetry in a strongly interacting hidden SU(n,) gauge sector with n, vector-
like hidden fermions. The (pseudo) Nambu-Goldstone bosons that arise due to dynamical chiral symmetry
breaking are dark matter (DM) candidates. We focus on n; = n. = 3, where SU(3) is the largest symmetry
group of hidden flavor which can be explicitly broken into either U(1) x U(1) or SU(2) x U(1). We study
DM properties and discuss consistent parameter space for each case. Because of different mechanisms of
DM annihilation the consistent parameter space in the case of SU(2) x U(1) is significantly different from
that of SU(3) if the hidden fermions have a SM U(1), charge of O(1).
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I. INTRODUCTION

What is the origin of mass? This is a long-standing
question and still remains unsolved [1].

The recent discovery of the Higgs particle [2,3] may hint
how to go beyond the standard model (SM). The measured
Higgs mass and top quark mass [4] are such that the
SM remains perturbative below the Planck scale [5-7].
According to Bardeen [8], “the SM does not, by itself, have
a fine-tuning problem.” Because the Higgs mass term is the
only term, which breaks scale invariance at the Lagrangian
level in the SM, we may ask about the origin of this mass
term. Mostly scale invariance is hardly broken by quantum
anomaly [9]. Therefore, a dimensional transmutation can
occur at the quantum level, which can be used to generate a
la Coleman-Weinberg [10] the Higgs mass term in a
classically scale invariant extension of the SM [11-45].
Dynamical chiral symmetry breaking [46,47] can also be
used [48-54]. The idea is the same as that of technicolor
model [55,56], where the only difference is that we now
allow the existence of fundamental scalars.

In this paper we consider the latter possibility, in particular
the model studied in [48-52]. In this model the scale,
generated in a QCD-like hidden sector, is transmitted to
the SM sector via a real SM singlet scalar S to trigger
spontaneous breaking of electroweak (EW) gauge symmetry
[48,49] (see also [57]). Moreover, due to the dynamical chiral
symmetry breaking in the hidden sector there exist Nambu-
Goldstone (NG) bosons, which are massive, because the
coupling y of § with the hidden sector fermions breaks
explicitly chiral symmetry. Therefore, the mass scale of the
NG bosons, which are dark matter (DM) candidates, is not
independent (as it is not the case in the most of DM models); it
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is smaller than the hidden sector scale, which is in the TeV
region unless the coupling y is very small, i.e., <O(107%).

As in [51,52] we employ the Nambu-Jona-Lasinio (NJL)
theory [46,47] as alow-energy effective theory of the hidden
sector and base our calculations on the self-consistent mean
field (SCMF) approximation [58,59] of the NJL theory,
which is briefly outlined in Sec. III. In [51,52] the maximal
global flavor symmetry SU(3), [along with a U(1),] has
been assumed. In this paper we relax this assumption and
consider in detail the cases, in which SU(3),, is broken into
its subgroups. We find in Sec. IV that the consistent
parameter space can be considerably extended if SU(3),
is broken to its subgroup SU(2),, x U(1) ;. The mainreason
is that, if SU(3)y, is broken, a new mechanism for the DM
annihilation, inverse DM conversion, becomes operative at
finite temperature: A pair of lighter DM particles annihilate
into a pair of heavier (would-be) DM particles, which
subsequently decay into SM particles (mainly into two ys).

Before we discuss the DM phenomenology of the model,
we develop an effective theory for DM interactions (a linear
sigma model) in the framework of the SCMF approximation
of the NJL theory. Using the effective theory we compute the
DM relic abundance and analyze the direct and indirect DM
detection possibilities in Sec. IV. Section V is devoted to
Conclusion, and in Appendix A we give explicitly the NJL
Lagrangian in the SCMF approximation in the case that
SU(3)y is broken into U(1)z x U(1)z. In Appendix B the
inverse DM (mesons for QCD) propagators and also how the
NJL parameters are fixed can be found. The one-loop
integrals that are used in our calculations are collected in
Appendix C.

II. THE MODEL

We consider a classically scale invariant extension of the
SM studied in [48—52]1 which consists of a hidden

'See also [60].
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SU(n.)y gauge sector coupled via a real singlet scalar S to
the SM. The hidden sector Lagrangian of the model is
written as

1 .
Ly = —ETrF2 + Trp (iy* 0, + gur*G,
+90r'B, —yS)y. (1)

where G, is the gauge field for the hidden QCD, B, is the
U(1)y, gauge field, i.e.,

B, = cosOyA, —sinbyZ,, g =e/cosby, (2)
and the n; (Dirac) fermions y;(i = 1, ..., ny) in the hidden
sector belong to the fundamental representation of
SU(n.)y. The trace in (1) is taken over the flavor as well
as the color indices. The hidden fermions carry a common
U(1)y charge Q, implying that they contribute only to ITyy
of the gauge boson self-energy diagrams so that the S, 7', U
parameters remain unchanged. The Lgy, g part of the total
Lagrangian L = Ly + Lgv.s contains the SM gauge and
Yukawa interactions along with the scalar potential

1 1
Vsmss = Ag(H H)* + 1/1554 - E}“HSSZ(HTH)’ (3)

where H” = (H", (h + iG)/2) is the SM Higgs doublet
field, with H* and G as the would-be Nambu-Goldstone
fields.” The basic mechanism to trigger the EW symmetry
breaking is very simple: The nonperturbative effect of
dynamical chiral symmetry breaking in the hidden sector
generates a robust scale which is transferred into the SM
sector through the real singlet S. Then the mass term for the
Higgs potential is generated via the Higgs portal term in
(3), where the “—” in front of the positive Azg iS an
assumption.

A. Global symmetries

The Yukawa coupling of the hidden fermions with the
singlet S breaks explicitly chiral symmetry. Therefore, in
the limit of the vanishing Yukawa coupling matrix y;; the
global symmetry SU(ny); x SU(ng)g x U(1)y, x U(1), s
present at the classical level, where U(1), is broken by
anomaly at the quantum level down to its discrete subgroup
Zo,s and the unbroken U(1), ensures the conservation
of the hidden baryon number. The non-Abelian part of the
chiral symmetry SU(ns); x SU(ns)g is broken dynami-
cally down to its diagonal subgroup SU(n;), by the
nonvanishing chiral condensates (p;y;), implying the
existence of n; —1 NG bosons ¢,(a =1,....,n7; —1). In

*This classically scale invariant model is perturbatively re-
normalizable, and the Green’s functions are infrared finite
[61,62].
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the n = 3 case the NG bosons are like the mesons in the
real hadron world:

=gy, 7= () F i)/ V2,
K* = (o F ighs) V2, KUK) = (e + (2)ih7)/ V2,
= ¢s, 4)

where 7% will mix with 7° to form the mass eigenstates 77
and 7. (The ~ should avoid the confusion with the real
mesons 7° etc.)

In the presence of the Yukawa coupling the chiral
symmetry is explicitly broken; this is the only coupling
which breaks the chiral symmetry explicitly. Because of
this coupling the NG bosons become massive. An appro-
priate chiral rotation of y; can diagonalize the Yukawa
coupling matrix:

yij = i0ij(y; 2 0) (5)

can be assumed without loss of generality, which implies
that U(1)"~! corresponding to the elements of the Cartan
subalgebra of SU(n,) are unbroken. We assume that none
of y; vanishes so that all the NG bosons are massive. If two
y;s are the same, say y; = y,, one U(1) is promoted to an
SU(2). Similarly, if three y;s are the same, a product group
U(1)xU(1) is promoted to an SU(3), and so on. In addi-
tion to these symmetry groups, there exists a discrete Z,,

Zy: wi — (expi(n/2)ys)y; =irsy; and S — —S.

(6)

This discrete symmetry is anomalous for odd n¢, because
the chiral transformation in (6) is an element of the
anomalous U(1),. If n, is even, then the chiral trans-
formation is an element of the anomaly-free subgroup Z,, ,
of U(1),. Needless to say that this Z, is broken by a
nonvanishing vacuum expectation value (VEV) of S, which
is essential to trigger the EW gauge symmetry breaking.

B. Dark matter candidates

The NG bosons, which arise due to the dynamical chiral
symmetry breaking in the hidden sector, are good DM
candidates, because they are neutral and their interactions
with the SM part start to exist at the one-loop level so that they
are weak. However, not all NG bosons can be DM, because
their stability depends on the global symmetries that are
intact. In the following we consider the case for n = 3,
which can be simply extended to an arbitrary ns. Forn, = 3
there are three possibilities of the global symmetries:

(i) Uy x U(1)z

(i) SU(2)y x U(1)3

if y; # y) # ys, (7)

if y; =y, # ys. (8)

115007-2
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TABLE 1. The NG bosons and DM candidates for n; = 3.

U A Kt Kk g

U(l)y charge 0 0 0 0 0 0 0 o0

7 0 2 -2 -1 1 -1 10

B 0 0 0 3 3 -3 -3 0

SU(2)y 3 2 2 1
SU(3)y 8

(iii) SU3)y if y, = y2 = 3, )

where we have suppressed U(1), which always exists, and
the case (iii) has been treated in detail in [52]. Without loss of
generality we can assume that the elements of the Cartan
subalgebra corresponding to U(1)z and U(1)j are

1 0 0 1 0 0
B=|0o -1 o, B=|0 1 0o ]. (10
0 0 0 00 -2

In Table I we show the NG bosons for n; = 3 with their
quantumnumbers. As we can see from Table I the NG bosons
7° and 7% are unstable for the case (i) and in fact can decay
into two ys, while for the case (i) only 7% is unstable. Whether
the stable NG bosons can be realistic DM particles is a
dynamical question, which we will address later on.

C. Perturbativity and stability of the scalar
potential at high energy

Before we discuss the nonperturbative effects, we con-
sider briefly the perturbative part at high energies, i.e.,
above the scale of the dynamical chiral symmetry breaking
in the hidden sector. As explained in the Introduction, it is
essential for our scenario of explaining the origin of the EW
scale to work that the scaler potential is unbounded below
and the theory remains perturbative (no Landau pole)
below the Planck scale. So, we require:
4z > Ay, Ag >0,

A > AHS > 0, |y|2 < 471', (11)

23/ Zhs — dys > O. (12)

In the following discussion we assume that the perturbative
regime (of the hidden sector) starts around g, = 1 TeV and
g5(qo)/4n = 1. Although in this model the Higgs mass
depends mainly on two parameters, Ay and Ayg, lowering
Au(qo) < 0.13 will destabilize the Higgs potential while
increasing Ay (qq) > 0.14 will require a larger mixing with
S, which is strongly constrained. Therefore, we consider
the RG running of the couplings with A4 (q,) fixed at 0.135
and rely on one-loop approximations. In the case that the
hypercharge Q of the hidden fermions is different from
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FIG. 1 (color online). Stability constraint. The allowed area in
the Ag — y plane for different values of A55(go) with Ay (q,) fixed
at 0.135 (qp = 1 TeV) is shown, where we have used Q = 1/3
and assumed the SU(3), flavor symmetry defined in (9). The
green (dark gray) circles, red (gray) circles, and blue (light gray)
points stand for 15(g) = 0.1,0.06, and 0.02.

zero, these fermions contribute to the renormalization
group (RG) running of the U(1), gauge coupling consid-
erably. We found that Q < 0.8 should be satisfied for ¢ to
remain perturbative below the Planck scale.

Because of (12) the range of Ag is constrained for a given
Ans and Ay: The larger Ay is, the larger Ag has to be. But
there is an upper limit for A5(g,) because of perturbativity.
In Fig. 1 we show the allowed area in the 1¢ — y plane for
different values of Ay5(qo) with A5 (go) fixed at 0.135 in the
SU(3)y case (9), i.e., y =y, = y, = y3.” The green (dark
gray) circles, red (gray) circles, and blue (light gray) points
stand for Ayg(go) = 0.1,0.06, and 0.02. There will be no
allowed region for A55(qq) = 0.12. We have used Q = 1/3,
but the allowed area does not depend very much on Q as
long as O < 0.8 is satisfied [which ensures perturbativity of
the U(1), gauge coupling]. If SU(3), is broken, then the
vertical axis in Fig. 1 represents the largest among y;s.

III. NAMBU-JONA-LASINIO METHOD

A. NJL Lagrangian in a mean-field approximation

Following [51] we replace the high energy Lagrangian
Ly in (1) by the NJL Lagrangian

Lay = Trp(iy*d, + ¢ Or*B, — yS)y + 2GTrd'®
+ Gp(det® + H.c.), (13)

where

The same analysis has been performed in [52], but without
including the constraint (12).

115007-3
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n2
1

e
O =yi(1—ys)y EZ aTrpa?(1—ys)y.  (14)
a=0

and A(a =1, ..., nj% — 1) are the Gell-Mann matrices with

0 = ,/2/31. The effective Lagrangian Ly has three-
dimensional parameters G, Gp and the cutoff A, which
have canonical dimensions of —2, —5, and 1, respectively.
Since the original Lagrangian £y has only one independent
scale, the parameters G, G, and A are not independent. We
restrict ourselves to n, = ny = 3, because in this case these
parameters, up-to an overall scale, can be approximately
fixed from hadron physics [58,59]. The six-fermi inter-
action in (13) is present due to chiral anomaly of the
axial U(1), and is invariant under Zg, so that the NJL
Lagrangian (13) has the same global symmetry as the high
energy Lagrangian (1). Furthermore, as we mentioned in
Sec. IT A, we can assume without loss of generality that the
Yukawa coupling matrix y is diagonal [see (5)]. To deal
with the nonrenormalizable Lagrangian (13) we employ
[51] the SCMF approximation which has been intensely
studied by Hatsuda and Kunihiro [58,59] for hadron
physics. The NJL parameters for the hidden QCD is then
obtained by the upscaling of the actual values of G, G, and
the cutoff A from QCD hadron physics. That is, we assume
that the dimensionless combinations

G'/?A = 1.82, (=Gp)'PA =229,  (15)
which are satisfied for hadrons, remain unchanged for a
higher scale of A.

Below we briefly outline the SCMF approximation. We
go via a Bogoliubov-Valatin transformation from the
perturbative vacuum to the “BCS” vacuum, which
we simply denote by |0). This vacuum is so defined that
the mesons (mean fields) are collected in the VEV of the
chiral bilinear:

@ = 0|y (1 —ys)w|0)

1
= ——— (diag(6,,0,,03) +

i Fi074,). (16)

where we denote the pseudo-NG boson fields after sponta-
neous chiral symmetry breaking by ¢,. The dynamics of
the hidden sector creates a nonvanishing chiral condensate
(O|w;y;]0) which is nothing but —(5,)/4G. The actual
value of (5;) can be obtained through the minimization of
the scalar potential, as we describe shortly. In the SCMF
approximation one splits up the NJL Lagrangian (13) into
the sum

Ly = Lo+ Ly, (17)

where £; is normal ordered (i.e., (0|£;]0) = 0), and £,
contains at most fermion bilinears which are not normal
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ordered. At the nontrivial lowest order only L, is relevant
for the calculation of the effective potential, the DM mass,
and the DM interactions. The explicit form for £, can be
found in Appendix A. The effective potential can be
obtained by integrating out the hidden fermion fields in
the BCS vacuum. At the one-loop level we find

1 Gp
~ _ ~)
VNJL(UiaS)*%i;;3O'i 16G3010263
- Z n.dy(M;), (18)

where Iy(m) is given in Eq. (Cl), and the constituent
fermion masses M; are given by
- Gp . .

M; :o'i+yiS_8_(§)20'i+lo'j+2’ (19)
where 6, = 6, and 65 = 6,. Once the free parameters of
the model y;, 4y, Ayg, A are given, the VEVs of 6; and S
can be determined through the minimization of the scalar
potential Vgy s + VgL, Where Vg g is defined in (3).
After the minimum of the scalar potential is fixed, the mass

spectrum for the CP-even particles /1, S, and ¢ as well as the
DM candidates with their properties are obtained.

B. The value of y and hidden chiral phase transition

The Yukawa coupling in (1) violates explicitly chiral
symmetry and plays a similar role as the current quark mass
in QCD. It is well known that the nature of chiral phase
transition in QCD depends on the value of the current quark
mass. Therefore, it is expected that the value of y strongly
influences the nature of the chiral phase transition in the
hidden sector, which has been confirmed in [51]. The
hidden chiral phase transition occurs above the EW phase
transition, where the nature of the EW phase transition is
not known yet. In the following discussions, we restrict
ourselves to

0 <y <0.006, (20)

because in this case the hidden chiral phase transition is a
strong first order transition [51] and can produce gravita-
tional wave back ground [63,64], which could be observed
by future experiments such as Evolved Laser Interferometer
Space Antenna (eLISA) experiment [65]. Needless to say
that the smaller is y, the better is the NJL approximation to
chiral symmetry breaking.

IV. DARK MATTER PHENOMENOLOGY

A. Dark matter masses

Our DM candidates are the pseudo-NG bosons, which
occur due to the dynamical chiral symmetry breaking in the
hidden sector. They are CP-odd scalars, and their masses

115007-4
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FIG. 2 (color online). Left: The area in the mg-mpy plane for 0.0005 < y; =y, = y3 < 0.006 in the SU(3), case (9), where

Mpy = Mz = Mz= = Mo = M= = my. The ratio mg/mpy = 2 is satisfied on the blue (gray) dashed line, on which the resonance
condition in the s-channel diagram for the DM annihilation (Fig. 10) is satisfied. Right: The ratio m;o/m+ versus y;/y, in the
U(1)z x U(1)j case (7), where y; and y; are fixed at 0.002 and 0.006, respectively. The constraints imposed on Ay, A, and Ag are such
that we obtain a correct Higgs mass and the perturbativity (11) as well as stability (12) constraints are satisfied.

are generated at one-loop in the SCMF approximation as
the real meson masses, where we here, too, restrict
ourselves to n, = ny = 3. Therefore, their inverse propa-
gators can be calculated in a similar way as in the QCD
case, which is given in Appendix B.

First we consider the SU(3), case (9) to obtain the
DM mass mDM4 and the mass of the singlet mg for
0.001 £y; =y, = y3 £0.006. In Fig. 2 (left) we show
the area in the mg-mpy; plane, in which we obtain a correct
Higgs mass, while imposing the perturbativity (11) as well
as stability (12) constraints. The upper limit of mpy; for a
given my is due to the upper limit of the Yukawa coupling
[see (20)], while its lower limit comes from the lower limit
of the Yukawa coupling, which is taken to be 0.0005 here.
The upper limit for my is dictated by the upper limit of Ag,
which is fixed by the perturbativity and stability constraints
(11) and (12). The lowest value of mg, 250 GeV, comes
from the lowest value of Ag, which is set at 0.05 here. If
SU(3)y is only slightly broken, the DM mass will not
change very much.

We next consider the U(1)z x U(1)j case (7). We may
assume without loss of generality that the hierarchy y; <
v, < y3 is satisfied. In Fig. 2 (right) we show the ratio
mz/m+ versus y;/y,, where we have fixed y; and y; at
0.002 and 0.006, respectively. We can conclude from
Fig. 2 (right) that 7° is the lightest among the pseudo-
NG bosons and the ratio m;o/m;: does not practically
depend on the scalar couplings Ay,Ays, and Ag. The
SU(2)y case (8) can be realized if two of y; are the same.
There are two independent possibilities: (a) y; = y, < y3,
and (b) y; < y, = y3. The mass spectrum for the case (b) is

“Since SU(3),, is unbroken, all the DM particles have the mass
which is denoted by mpy here.

similar to that for the U(1)3 x U(1)j case. In particular, 7°
is the lightest among the pseudo-NG bosons. As for the
case (a) the mass hierarchy
My =Mz = Mz < Mg = Mgo = mg= <my  (21)
is always satisfied.
The different type of the DM mass spectrum will have an

important consequence when discussing the DM relic
abundance.

B. Effective interactions for DM decay
and annihilations

As discussed in Sec. I B, if the SU(3),, flavor symmetry
is broken to U(1); x U(1), there will be two real
decaying would-be DM particles 7, 7°, and three pairs of
complex DM particles (K, KO), K™, and 7=. Here we will
derive effective interactions for these DM fields by inte-
grating out the hidden fermions at the one-loop order. The
one-loop integrals and their lowest order expressions of
expansion in the external momenta in the large A limit are
given in Appendix B. Except for the ¢-¢-y and ¢-y-y
interactions, we assume SU(2), flavor symmetry, i.e.,

(01) = (o2). M, = M,,
Z;Z - Z;ri - Z;r(),

Zi=Zg =Zpo,
(22)

where Zs are the wave function renormalization constants
given in (B8), and o; in Sec. IV stand for ;. This is
because, we have to assume at least SU(2),, for a realistic
parameter space as we will see.

@) ¢-¢-y

115007-5
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i+ RO K+ RS
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~ .
NP o R0
K-, KO K=K
FIG. 3. The ¢-¢-y coupling (charge radius), which vanishes

in the SU(3), limit. The 7-7-y coupling vanishes in the
SU(2), limit.

The corresponding one-loop diagram is shown in Fig. 3,
where the right diagram in Fig. 3 yields zero contribution.

‘Cfﬁz}’ = AW(GK*K*ya”i(-’_ayi(_ + Gkokoyaﬂi(oay[:(o
+ Gty 0,80,77)
+ 7%(Grg-20,K0,K™ + Gyogo,0,K°0,K"

+ Gpip20,770,77), (23)

where A(Z),, = 0,A(Z), — 0,A(Z),. The effective cou-
plings in the large A limit are

PHYSICAL REVIEW D 91, 115007 (2015)

G 2
GK*K_;/ = 2Z,~(tnC€Q<1 _8—(;D2<62>> I¢2Y(M3,M1),

G 2
GKOI_(O;/ = ZZkol’lceQ(l _8—(?2<61>> I¢27(M3,M2),

G 2
Gﬂ+ﬂ.—7 :2Z7~T:tl’lceQ<1 —8—(;D2<63>> I(/)Zy(Mz,Ml),
Gikrk-z= —ZWGK+K-;~ Ggogoz = _tWGKOI_(Oy’
GIL'+7Z_2 = _tWGlr*ﬂ'yv (24)

fiy = (sin @y / cos Oy )* = 0.3, and 1> (m,,. my,) is given in
(C4). In the SU(2)y, limit, we obtain Ggogzo, = Gg+-, and
Gt ny = 0, because Iy (m,.my)—(m,—m,)/(487*m;)
as my — mg,.

(i) ¢ = yy

The diagram in Fig. 4 shows the decay of 77, 7° and S into
two ys, but they can also decay two Zs and y and Z, if the
processes are kinematically allowed. Using the NJL
Lagrangian (A2) and (C5) in Appendix C we find that
the effective interaction takes the form

1
2

101
£(/)}/2 = Zr]g/" p <§ Gm/ZA/wAaﬁ + Gr]yZA/,wZ(l/f + —GnZzZWZaﬁ>

1. 1 1
+ Zﬂ o <E G,,OJ,zAWAa/,v + Gr[OyZAﬂl/Z{lﬂ + E G,rozzZWZaﬁ> s (25)
where in the large A limit
12 a Gp _ Gp _ Gp
G =2~ 02| (1= 2le) = o) 0+ (1= s 2len) = (o) 5 = (2= 2 fo) + o) )5 |
(26)
|
Gm/Z - —thm,z, GV[ZZ = t%VGﬂyz’ 1 1
Ls, =S| =GgA A" 4+ Gy, 74,2 +=GgpnZ,,7M |,
aa Gp . . % 5 IS rZ3 ) u
Gﬂoyzzzﬁ n.—Q 1_—2<63> (Ml _MZ )’
T 8G (28)
Gayz = ~twGaop, Gz = 1y Gy (27) where we find from (D8)
As we see from (27), the 7° — yy decay vanishes in the G = a 0? z v, M (29)
SU(2)y limit, because M, = M, in this limit. T3 Ayt
The decay of S into two y, two Z, and yZ can be '
y y y GS}/Z - _tWGSyZ’ Gszz - I%VGS;/L (30)

described by

Y Y

FIG. 4. Decay of DM and S into two ys. In the SU(2),, limit 7°
does not decay.

(iii) Dark matter conversion

The diagrams in Figs. 5 and 6 are examples of DM
conversion, in which two incoming DM particles are
annihilated into a pair of two DM particles which are
different from the incoming ones. There are DM conversion
amplitudes, which do not vanish in the SU(3),, limit, and
those which vanish in the limit. Except the last nK*z
interaction term, the effective interaction term below do not
vanish the SU(3),, limit.

115007-6
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FIG. 5. Examples for DM conversion. FIG. 6. This DM conversion vanishes in the SU(3),, limit.

1 -~ ~ o~ 1 - 1 ~ ~ o~
Ly = 5(;,72,@;72(1(01(0 +KTK™) + 5 Gl <2 (7°) + ;z+n->
~n ~ |~ 1 ~nZ ~  ~ ~ o~ =0~
4 G (KK" + KK (E (79)? + ﬁ+7z—) + Genii((KOK° = KTK)70 + V2K°K 7 + V2K K+ 70),  (31)
where

Grao =3 232inc (1= gy (en) ) | (1= 28 2lo) = (o)) ) A M)

+ 4(1 - %@Q)zljﬁ(m,m) - 2<1 —%@)) <1 —%(2@51) - <63>))1(},?(M1,M3)}

4 Gp 2
#3225 (5 ) o, 15) + 200 00,), (32)
—4 1 Gp ? 2 ? 3A( M Gp 4128 2B
Gpp =4Z3Z5n, —@@%) 8G2( (01)=(03)) | 1,5(M )—|—3Z,,Zn 3G2 (1¢4(M1>—1¢4(M3))’ (33)
G 2 G 2 Gp
Gy :4Z1~<Z7~,nc<1 —8(;<al>> <1 —8;2@—3)) I (M. M3) + 4Z;Zgn, <8G2> 103 (M, M3), (34)

4 _ip 12, Gp 2 Gp
:7§Zﬁ ZyZin 1—@< 1) 1—@@3)

<[ (1= o) )it 1) = (1= 25 ) = o) ) 01100

4 Gp\2
b2 22 () g0 ) - B0, (39)

G71K2n'

|
and I;;f}(ma,mb), etc. are defined in (C8)—(C12) in

_of! ) PORY | R
Appendix C. We have not included the contribu- £¢zS—S<§ansn ++Gpes(KK+ K7K)

tions from the diagram like one in Fig. 6, because Lo o oms
they are negligibly suppressed in a realistic + G (E (7") +”+”_)>- (36)
parameter space, in which SU(3), is only weakly
broken. Similarly, G,2,, too, is negligibly small N
~ =+

(G2a/ Gz ~107%), so that we will not take into i o s
account the #K’z interactions in computing the DM [\ S R U g
relic abundance. . o

(iv) Dark matter coupling with § T /

The diagrams in Figs. 7 and 8 show dark matter L T

interactions with the singlet S. The DM coupling with S
(Fig. 7) can be described by

FIG.7. DM coupling with one S. In a realistic parameter space
there is an accidental cancellation between these two diagrams.
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Using (C15)—(C17) in Appendix C we find in the large A limit

2 G 2 Gp
ans_ 3 n [4)’1(1_8(;1)2(2<51>—<03>)> I¢25(M1)+2y3(1 8G2< >> I%,;?s(Mﬁ]
2 G
=22 () it 00 = 2 015, )
Grs=—2Zzn.(1- G (01) 2( 1" (M, M) + y31'4 (M, M3)) —2Zzn G I8, (M) (38)
K2 = ke 8G2 01 Yl g \M3, My ) =+ Y3l o o (M, M3 kel g2 Yilypg\My),
G 2 G
Ges = =4znc (1= g2 (00 ) 338500 = 2Zome (G s 1) (39)

The DM coupling with two Ss (Fig. 8) can be described by
Lol ~2 oY | Bt Licoya =i
£¢zsz = ES Eanszﬂ + +GK252(K K +K'K ) + G 5 (77: ) +r'r s (40)

where

s = =3 2|7 (1~ g o) = (o)) Q138 (M) + 12 1)
+23(1- 28 (0 ) CrA ) + B, 01)

1 Gp
3277 <8G2> (4y2122S2(M1) _yglgzsz(M3))’ (41)

G 2
G = —2Zgn, <1 _8—GD2<01>) (yllﬁs (M3, M) +Y§I;$Sz(M1,M3) +y1y3I;§S2(M1,M3))

G
- Zin (0 )15 01), @)

G Gp
Ges: ==22an. (1= 25 t0) )| RI) + B2 01)) = Zane (2 ) 315, 03), @)

(v) Dark matter coupling with two ys
The diagram in Fig. 9 shows the annihilation of z* pair into two s, where the annihilations into yZ, two Zs, and also into
two Ss are also possible if they are kinematically allowed.

ey @ o o

FIG. 8. DM coupling with two Ss. These diagrams contribute to
the DM relic abundance if the mass of S is comparable with or
less than the DM masses. FIG. 9. DM annihilation into two ys.
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1 1. “030 =il L. el
Ly = ZAWA”” <G,72y22(77)2 +Giep (KK +KTK™) + Gy ( (702 +7t7 >>

1

2

1
2

1 Lm0 -
+ EAMZW <G,7zyZ§ (1)?* + szyz(KOKO + KK )+Gp,y <— (7°) + ﬁﬁr))

1 1 . .- -~ 1 . .
+ 3 Zu?" <anzz 5 (1)? + Grop (KK’ + KTK) + G oo (5 (7) + ;mz-) ) , (44)

where A(Z),, = 0,A(Z), — 9,A(Z),. Using the approxi-
mate form (C29) and (C30) we find

Gypp = Zin, % Q> A;(yy) = Z;n, % O Az (yy).  (45)

_ _ 2
Gﬂzyz = —IWan},z, anzz = tWGﬂzyz,

a a
Grep = Zghe Q* A (ry) = Zgn, - Q> A (yy),

Gz = —twGgrp, Grz = 3Gy,

Gpp =Zzn, % Q> Az (7).

Geyz =~twGpp.  Gpp =13Gpep, (46)
where

4 G 2 G
At =5 |- (1- g o)) M+ vtz @)
and A;(yy) = Ag(ry) = Az(yy) in the SU(3)y limit. In a
realistic parameter space for the SU(2), case, the ratio
Az (ry)/ A;(yr), for instance, is at most 1.004.

In the following discussions we shall use the effective
interaction terms derived above to compute the DM relic
abundance as well as the cross sections for the direct and
indirect detections of DM.

C. Relic abundance of dark matter

The SU(3), case (9) has been discussed in [51,52], and
so we below consider only the (i) and (ii) cases, which
are defined in (7) and (8), respectively. In a one-component
DM system, the velocity-averaged annihilation cross
section (v6) should be ~10™ GeV~2 to obtain a realistic
DM relic abundance Qh? =0.12. A rough estimate of
the velocity-averaged annihilation cross section for
DM conversion (Fig. 5) shows (vo(ijn — 7777))=
107 (1 = mz/m2)!/*> GeV~2, where it vanishes if SU(3)y
is unbroken. The reason for the large annihilation cross
section for DM conversion is that the coupling of the
hidden fermions to the hidden mesons is of O(1): There is
no coupling constant for the coupling as one can see from
the NJL Lagrangian (A2). That is, the annihilation cross
section for DM conversion is about four orders of

|

magnitude larger than that in an ordinary case, unless
the masses of the incoming and outgoing DMs are almost
degenerate.

L @@HUQ);xUQ1);

There exists a problem for the U(1); x U(1)j case (7),
which we will discuss now. As we have found in the
previous subsection, the lightest NG boson in the U(1), x
U(1)j case is always the lightest between the neutral ones
within the one-loop analysis in the NJL approximation and
that without of loss of generality we can assume it is 7°. Its
dominant decay mode is into two ys. The decay width can
be calculated from the effective Lagrangian (25):

i 97.0%a? Gp 2
L0 —yy) = Wm;fo <1 —@<03>

x (1/My = 1/M,)?
=107 x Q*m, (1/My = 1/My)*,  (48)

which should be compared with the expansion rate H of the
Universe at T = mixo,

W =7 x 10°Q*(mz /M)’ (AM /M, )*[TeV/M|]
+o(aM?), 49)

where AM = M, — M,. Therefore, unless the U(l),
charge QO of the hidden fermions is very small or the
constituent fermion masses M, and M, are accurately fine-
tuned (or both), 7° decays immediately into two ys. Since
the stable DM particles can annihilate into two 7%s with a
huge DM conversion rate, there will be almost no DM left
in the end. Since we want to assume neither a tinny Q nor
accurately fine-tuned constituent fermion masses, we will
not consider below the DM phenomenology based on the
U(1); x U(1)j flavor symmetry.

2. (i) SUQ2)y xU(1);

Now we come to the case (ii) in (8), which means
¥ = ¥, < y3. In this case the unstable NG boson is 77 which
can decay into two ys (and also into two Ss if it is
kinematically allowed). Because of SU(2),, 7#° is now
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h
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FIG. 10. DM annihilation into the SM particles via an internal S line and S — /& mixing. In the actual calculation of the cross section we
use the localized expression for the one-loop part, i.e., G,z etc. given in (37)~(39).

stable and mj; = mz = mz+ [see (21)]. Furthermore, m o
and mg+, which are slightly larger than m;, are exactly
degenerate in this case, i.e., my = mg+ = mgo. In the
parameter region (20) we can further constrain the param-
eter space. Since y is a measure of the explicit chiral
symmetry breaking and at the same time is the strength of
the connection to the SM side, the smaller is y, the smaller
is the DM mass, and the larger is the cutoff A. We have also
found that for a given set of 14, Ay, and Ag the value (S)
remains approximately constant as y varies, implying that
mg also remains approximately constant because the Higgs
mass my, = 126 GeV and v, = (h) =246 GeV have to
have a fixed value whatever y is. Consequently, the DM
masses are smaller than mg, unless y; 2 0.015 or Ag and Ay
are very small (or both). We have found, as long as we
assume (20), that Ag <0.03 and Agzg < 0.04 have to be
satisfied to realize that S is lighter than DM. However, these
values of Ag and Ayg are too small for the DM annihilation
cross sections into two Ss (diagrams in Fig. 8) to make the
DM relic abundance realistic. In summary, there are three
groups of DM in the SU(2),, case (8); the heaviest decaying

SU(2), singlet 7, two SU(2), doublet ({K’ K~}
{K",K°}) and lightest SU(2), triplet (z*, 7°).

Before we compute the DM relic abundance, let us
simplify the DM notion:

- =0~y = -
21 =70, to represent K, K+, K°, 5 to represent 7%, 7°
(50)
with the masses
my = mg, m, = mg and
my = mz(m; > my > my), (51)

respectively, where y; are real scalar fields. There are three
types of annihilation processes which enter into the
Boltzmann equation:

xixi < XX, (52)

XiXj < XXl (53)

in addition to the decay of y, into two ys, where X stands
for the SM particles, and the second process (53) is called
DM conversion. There are two types of diagrams for the
annihilation into the SM particles, Figs. 9 and 10. The
diagrams in Fig. 10 are examples in which a one-loop
diagram and a tree-diagram are connected by an internal S
or a S —h mixing. The same process can be realized by
using the right diagram in Fig. 7 for the one-loop part. It
turns out that there is an accidental cancellation between
these two diagrams so that the velocity-averaged annihila-
tion cross section is at most ~10~!!1 GeV~2, unless near the
resonance in the s-channel [51]. The effective ¢-¢-y
interaction (23) can also contribute to the s-channel anni-
hilation into the SM particles. However, as we have
mentioned, the effective coupling G+ -, is very small in
the realistic parameter space. For instance, m;( Gix-/
Gyes ~ 1075, where Gi+k-, and Ggog are given in (24)
and (38), respectively. Note also that the DM conversion
with three different DMs involved is forbidden by SU(3),,.
In the SU(2), x U(1); case, for instance, iz~ — K°K™ is
indeed allowed. However, it is strongly suppressed
(G,x2,/Gpx2 ~ 107%), because SU(3)y, is only weakly
broken in the realistic parameter space. So we will ignore
this type of process, too, in the Boltzmann equation.

Using the notion for thermally averaged cross sections
and decay width (of y;)

(o(ii: XX)).,  (vo(ii:jj)).  (T(Liyy)).  (54)
the reduced mass 1/u = (3 ;m7') and the inverse temper-
ature x = /T, we find for the number per comoving

volume Y; = n;/s [66]

dYy M _
2l = _0.2644!? [”—ZPL] {(va(ll;XX))(YlY, —-7,7))
dx X
Y,Y, - - Y. Y, - _
+ (wo(122))( Y, Y, = 22277 ) + (ve(11533)) [ VY, - 2227, 7, (55)
Y)Y, Y3Y;
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dy M - - Y,Y
2 — 026491 |FEPE N (06(22; XX)) (Y, 5 — T2 75) — (00(22; 1)) V¥, — 22227,
dx X Y2Y2
YiY5 o -
+ (v6(22;33)) <Y2Y2 Sttt Y2Y2> } (56)
Y3Y3
dy M -
C5 026492 [” "L] {(va(33;XX)>(Y3Y3 —7,75)
x?
Y3Y Y3Y
_ <vo(33;11))<Y1Y1 ;_* Y,¥, > - <w(33;22)><Y2Y2 ;_3 Y2Y2>} (57)
33 3Y
|
where ¢, = 115.75 is the total number of effective The relic abundance Qh? is given by
degrees of freedom, s is the entropy density, Mpy is Y som.
the Planck mass, and ¥; = n;/s in thermal equilibrium. Qh? === /22 L (58)
Pe

Although (ve(ii; XX)) is much smaller than 10~ GeV~2,
we can obtain a realistic value of QA?. The mechanism
is the following [67]. If y; does not differ very much
from y; =y,, the differences among m;,m,, and ms
are small. Then at finite temperature inverse DM con-
versions (which are kinematically forbidden at zero
temperature) can become operative, because the DM
conversions cross sections are large, i.e., 1075 GeV—2
phase space, as we have mentioned above. That is, the
inverse conversion ysys,¥.¥» — ¥1¥1 — YYyy can play a
significant role.

|

Q2 = (Q, + 49, + 3Q;)h? = 0.119,

my = m; = 202.0 GeV,

where Y, is the asymptotic value of Y;, s, = 2890/cm? is
the entropy density at present, p, = 3H?/87G = 1.05 x
1073h> GeV/cm?® is the critical density, and h is the
dimensionless Hubble parameter. Before we scan the
parameter space, we consider a representative point in
the four-dimensional parameter space with Q = 1/3:

y3 = 0.00424, = 0.00296,
Ay =0.13, Ay = 0.135, (59)

Yi=MX
Ags = 0.06,

which gives

mg = 324.1 GeV,

my = my = 196.3 GeV,my = m; = 178.1 GeV,

/4)(v6(33;22)) = 4.06 x 107 GeV~2,

(ve(11,22,33; XX)) = (9.29,9.38,1.26) x 107! GeV~2,
(v6(11;22)) = 4(v6(22;11)) =3.90 x 10~ GeV2,
(vo(11;33)) = 3(ve(33;11)) = 4.30 x 1075 GeV 2,
(v5(22;33)) = (3/

(T(1;77)) = 6.45x 10713 GeV~!,
(va(1l;7y)) = 6.

Fig. 11 (left) shows Qh? (red (gray)), Q;h? = Q,h* (black),
4Q,h?> = 4Qh* (green (gray line between the black and
dashed gray lines)), and 3Q;h*> = 3Q,h? (blue (gray)) for
the parameter values (59) as a function of the inverse
temperature x = u/7T. In Fig. 11 (right) we show the total
relic DM abundance QA as a function of y, (= y,), where
the other parameters are fixed as (59). Since a realistic value
of Qh? for the SU(3), case (9) can be obtained only near
the resonance, i.e., mg/mpy = 2, the parameter space for
the SU(2),, case (8) is considerably larger than that for the
SU(3)y case (9). Note, however, that the realistic parameter
space for the SU(2),, case is not continuously connected to

59 x 107 GeV2 =7.73 x 1073 cm? s~

that for the SU(3),, case, as we can see from Fig. 11 (right)
[SU(3), means the point at y; = y3].

D. Indirect and direct detection of dark matter

1. Monochromatic y-ray line from DM annihilation

As we can see from Fig. 9, two DM particles can
annihilate into two ys. Therefore, the charge Q of the
hidden fermions can be constrained from the y-ray obser-
vations [68-70]. Since in the SU(2), case the relic
abundance of the 7 dark matter is dominant, we consider
here only its annihilation into two ys. We will take into
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FIG. 11 (color online).  Left: The relic DM abundances, Qh? (red (dashed gray)), Q7h* = Q, h? (black), 4Q,h* = 4Qyh* (green (gray
line between the black and dashed gray lines)), and 3Q;4> = 3Q,h?* (blue (gray)), as a function of the inverse temperature x = u/T for
the parameter values (59). Though 7 is almost in thermal equilibrium, its presence is essential for the K and # numbers to decrease as x
decreases. In the end the relic abundance of 7 dominates. Right: The total relic abundance QA? as a function of y,(=y,) for

y3 = 0.00424, where the other parameters are fixed as (59).

account only the s-wave contribution to the annihilation
cross section, and correspondingly we assume that p =
p' = (m3,0) and that the photon momenta take the form
k = (mz k) and k' = (mz —k) with their polarization
tensors e(k) = (0,e(k)) and e(k") = (0, (k")) satisfying

0=¢c(k)-k=ek) -k =elk)-p=celk)-p,
O=¢lk) - k=ek) kK =€) -p=el)-p', (60)
respectively.

To compute the annihilation rate we use the effective
interaction (44). We find that the annihilation amplitude can
be written as

ab

I, (ab) = / ' b
m,(a ) = Gﬂzyz (k -k g,w - kﬂky) X , (61)

2, 77

where G 2,2 is given in (46). Then (the s-wave part of) the
corresponding velocity-averaged annihilation cross sec-
tions are

G2 2m?2
(vo(7 7 — ab)) = —=X "%
4
ab
(1/2) 24
1y (1 — m%/4m3) vZ'
(B/4)t, (1 —m%/m2)'? 7z
(62)

The energy E, of y-ray line produced by the annihilation into
vZ is mz(1 — m%/4m2). In practice, however, due to finite
detector energy resolution this line cannot be distinguished
from the E,, = mj, line. Therefore, we simply add both cross
sections. So we compute (vo),,.,, = (vo(z7 — yy))+
(vo(mw — yZ)) with Q = 1/3 as a function of m; for
different values of 1y, A5, and 15¢, which is shown in Fig. 12
(right), where Qh? is required to be consistent with the
PLANCK experiment at 4¢ level [71]. As we see from
Fig. 12 (right) the velocity-averaged annihilation cross
section is mostly less than 1072 cm?/s in the parameter
space we are considering, and consequently the Fermi LAT
and HESS constraints given in Fig. 12 (left) are well
satisfied. The red (gray) points are those for the SU(3),
(9) case.
The differential y-ray flux is given by

do dN"" dN7?

— x (v6),, —— + (Vo) ; ———
dE, " dE, "7 dE, ,

= (v0),,.,70(E, — mpy). (63)

Prospects observing such line spectrum is discussed in
detail in [72-74]. Obviously, with an increasing energy
resolution the chance for the observation increases.
Observations of monochromatic y-ray lines of energies
of 0(100) GeV not only fix the charge of the hidden sector
fermions, but also yields a first experimental hint on the
hidden sector.

2. Direct detection of dark matter

As we can see from Fig. 11 (left), the relic abundance of
the K dark matter is about three orders of magnitude
smaller than that of the z dark matter. Therefore, we
consider only the spin-independent elastic cross section
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Left: The Fermi Lat [68,69] (black) and HESS [70] (red (gray)) upper bounds on the velocity-averaged DM

annihilation cross section for monochromatic y-ray lines, where this graph is taken from [70]. Right: The velocity-averaged DM
annihilation cross section (vo),, ., as a function of m; with Q = 1/3. Since (vo),,, , is proportional to O, our calculations can be
simply extended to the case of an arbitrary Q. The red (gray) points are those for the SU(3), case (9).

og; of 7 off the nucleon. The subprocess is the left diagram
in Fig. 13 (left), where ¢ is the localized one-loop
contribution (39), and we ignore the right diagram. The
result of [75] can be used to find

zz , [ fmy sin20 (1 1\1%/ mym; \?
os1=— G — - — Az )
. T 2u,my; 2 mj,  mg my + m;

(64)

where G 25 is given in (39), my is the nucleon mass, and
f‘ ~ 0.3 stems from the nucleonic matrix element [76]. We
assume | cos 8| = 0.9 to satisfy the LHC constraint, where 6
is the & — S mixing angle. In Fig. 13 (right) we show in the
m;-cg; plane the area in which QA% = 0.12 & 0.01(40)
[71] is satisfied. The predicted values of og for mj; =
150 GeV is too small even for the future direct DM
detection experiment such as XENON1T, whose sensitivity
is of O(107#7) cm? [77]. The smallness of o, results from

FIG. 13 (color online).

the smallness of the coupling G 25, whose smallness comes
from small Yukawa coupling y; and the accidental can-
cellation between the left and right diagrams in Fig. 7. The
red (gray) points are those for the SU(3), (9) case. We
recall that the realistic parameter space for the SU(2),, case
is not continuously connected to that for the SU(3),, case,
as one could see from Fig. 11 (right), in which y; = y; has
to be satisfied for the SU(3), case.

If the relic abundance of the K dark matter were of
0(0.1), the nonzero K°-K’-y/Z and K*-K~-y/Z couplings
shown in Fig. 13 would lead to a serious problem.
Fortunately, the effective coupling is very small as we
have already noticed: m%(GK+ Ky~ 107, where this
coupling for 7 vanishes in the SU(2), case.

Note that because an accidental U(1), (the hidden
baryon number), not only the DM candidates, but also
the lightest hidden baryons are stable. The hidden mesons
in our model are neutral, while the charge of the hidden

-45
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10—46 E? _g
107 - -
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Oﬁ F N 3
10% N =
105! L > -
107 g E
1 0-53 E o b P b P by ]
0 100 200 300 400 500 600

m. [GeV]

Left: Subdiagrams contributing to the spin-independent elastic cross section og; off the nucleon. Since the relic

abundance of K is negligibly small, the right diagram does not contribute. Right: The spin-independent elastic cross section og; of 7 as a
function of m;. The red (gray) points are those for the SU(3),, case (9). The result should be compared with the XENONIT sensitivity of

0(10~47) cm? [77].
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baryons b formed by three hidden fermions is Q; = 3 x Q.
Let us roughly estimate the amount of relic stable hidden
baryons and antibaryons in the Universe, where we assume
that the hidden proton and neutron are the lightest baryons
in the SU(2), case (8). As the hidden sector is described
by a scaled-up QCD, the hidden meson-baryon coupling
Gypp 1s approximately the same as in QCD, ie,
Gypp ~ 13, which is independent of Q. Using this fact,
we can estimate Y; = n;/s and obtain Y; = (04,6,9) x
1071¢ for m; = 1,5 and 8 TeV, respectively. There are
severe constraints on Y. The most severe constraints exist
for Q; = 1, which come from the search of heavy isotopes
in sea water [4] and also from its influence on the large
scale structure formation of the Universe [78]. We therefore
conclude that Q; = 1, i.e., Q = 1/3 is ruled out. Another
severe cosmological constraint is due to catalyzed BBN
[79], which gives Y; <2 x 10715 [80] (see also [81]). The
CMB constraint based on the Planck data is Q,;h2 < 0.001
[82], which can be satisfied in our model if m; < 6 TeV.
(See also [83] in which the constraints in the Q;-DM mass
plane are given, where these constraints are satisfied in a
wide area of the parameter space of the present model.).
In most of our analyses on DM here we have used
Q = 1/3. The relic abundances of DMs depend on Q,
because the decay rate of the neutral would-be DM 75
depends on Q. The change of Q can be compensated by
varying the ratio of y; to y; = y», as far as the difference of
two hypercharges are not very much different. As for the
indirect detection of DM, the annihilation cross section into
two ys (62) being proportional to Q* should be multiplied
with (3Q)* for Q different from 1/3. The spin-independent
elastic cross section ogy (64) is independent on Q. This
means that our basic results obtained in this paper can be
simply extended to the case with Q different from 1/3.

V. CONCLUSION

We have considered a QCD-like hidden sector model
[48-51], in which dynamical chiral symmetry breaking
generates a mass scale. This generated scale is transmitted
to the SM sector via a real SM singlet scalar S to trigger
spontaneous breaking of EW gauge symmetry [48,49].
Because the SM is extended in a classically scale invariant
way, “Mass without mass” [1,84] is realized in this model.
Since chiral symmetry is dynamically broken, there exist
NG bosons, which are massive because the coupling of S
with the hidden sector fermions breaks explicitly the
SU(ns); x SU(ny)g chiral symmetry down to one of its
diagonal subgroups. The mass scale of these NG bosons is
calculable once the strength of this coupling and the scale
of the QCD-like hidden sector are given. The smallest
subgroup is the Cartan subalgebra U(1)"~!. Because of
this (accidentally) unbroken subgroup, the NG bosons
charged under U(1)"~! are stable: There exist at least
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n? —n; DM candidates. We have restricted ourselves to

n. =ny =3, because in this case we can relate using
hadrons the independent parameters of the NJL model,
which we have used as a low-energy effective theory for the
hidden sector. There are three possibilities: (i) U(1)p x
U(1)g, (i) SU(2)y, x U(1), and (iii) SU(3),, where the
possibility (iii) has been studied in [51,52]. It turns out that
the first case (i) is unrealistic, unless this case is very close
to (ii) or (iii), or/and the hypercharge Q of the hidden
fermions is tiny. This is because the lightest NG boson is
neutral under U(1)3 x U(1)z so that it can decay into two
ys and the stable DM candidates annihilate into them
immediately. Therefore, we have mainly studied the case
(i1) with y; = y, < y3. In this case the unstable NG boson
is 77 (the heaviest among the pseudo-NG bosons) and can
decay into two ys. The annihilation cross section into the
SM particles via the singlet S is very much suppressed,
except in the resonance region in the s-channel annihilation
diagram of DM. However, we have found another mecha-
nism for the stable DMs to annihilate: If y; does not differ
very much from y, = y,, the differences among m;, mg,
and mj are small. At finite temperature the inverse DM
conversions (which are kinematically forbidden at zero
temperature) can become operative, because the DM
conversions cross sections are large ~107> GeV~2.
Consequently, the realistic parameter space of the case
(ii) is significantly larger than that of the case (iii), which
has been obtained in [51,52].

With a nonzero Q the hidden sector is doubly connected
with the SM sector; we have a bright hidden sector at hand.
The connection via photon and Z opens possibilities to
probe the hidden sector at collider experiments such as
ete™ collision [85]. In particular, the would-be DM, 7, can
decay into two ys, which would give a smoking-gun event.
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APPENDIX A: THE NJL LAGRANGIAN IN THE
SELF-CONSISTENT MEAN FIELD (SCMF)
APPROXIMATION

Here we consider the NJL Lagrangian Ly (13) in the
SCMF approximation [58]. In the SCMF approximation
one splits up the NJL Lagrangian (13) into the sum

Laiw = Lo + Ly, (A1)
where £; is normal ordered (i.e., (0|£;|0) = 0), and L,
contains at most fermion bilinears which are not normal
ordered. We find that £, can be written as
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£0:£K+LD+‘CM’

where
. - Gp. .\ .
Ly = Try(iy*0, + ¢ Qr*B,)w — | 61 + 1S — 52 0203 |y

- Gp . Gp _
= |02 + 28 — 50103 |yws — | 63+ 38 — 50162 | W33
8 8G

. 1 . 2. Gp (. . 1 - - 2 . - _
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. mn G _ Gp .\ .
-1 2ﬂ+<1—ﬁ 3) 751112—1\/_77 < —8—;203)1//2}’51//1
- iﬁfﬁ(l -

5'2)117375’//1

2
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—s 2)11/ Vsy¥s3 — ivV2K~

—i\/if(o(l 8G261 yarsws — iV2K"

_Gp
8G?
Gp
8 G Y3YsWo
1

. 2 . 2. G - . N . 2. . _
—l[—’?8+ 3’70—D<(01—0’2)”0—\/§(01+0'2)’78—\/;(014‘0'2)’10)} 3V5W3,

Gp [ (202 2 e 2 2y s
Lp=c2 [ 2Kk — =2+ S (0°) -3 (110)2) iy — (2\/?*'18 + 2K+K°> Vv,

i 1
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Here 7° stands for ¢, and the meson fields are defined in (4).
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APPENDIX B: DETERMINATION OF THE NJL and replace y;§ by the current quark masses, i.e.,

PARAMETERS G.Gp, AND A viS = y,S - m,, y3§ - m,;. Then we compute the real
As in [51] we apply the NJL Lagrangian (A2) with ¢ = meson masses m,, mg, m,, n, and decay constants f, fx.
0 to describe the real hadrons, where we assume SU(2),, We obtain the following inverse meson propagators:

[=(p?) =Tp(p?)

Y

1 G Gp Gp
:—ﬁ+87GD:»’63+ <1 8G2 > 2ncl¢2(p2,ml,m1) G2 nclgz( ) (Bl)
T+ (p?) = Tgogo(P?)
1 Gp Gp Gp
= —% 8G3 (o] + <1 8G2 > 2ncl¢2(p2,m1, ms) Gz nclgz( ) (BZ)

1 G 1 2 G 2
I3(p?) = —— 2 <01 ——G3> +§ (1 —S—GD2(201 — 03)> nclgz(pZ,ml,ml)

2G  6G? 4
4/ Gp \? 4G, Gp
+§(1—@61> 1,/, (P m%m3)+3G2 LI£2(m ) — 3G2” 1[/,-(’"3)7 (B3)
1 G Gp 24
(p?) = _E_Té(z"l +03) + (1 to RG2 (o) +03)) g”clgz(Pz,ml»ml)
Gp 22 2G
w14 e ) St s, ) =328 218 )+ 2 ). (B4
V2G 2v2 Gp G
F,,xﬂo(])z) = 24G3D (61 —03) +T (1 Y (20, — )) (1 +8—(§2(61 + 03))ncl‘;2(p2,m1,m1)
2V2( G Gp V26
_T(I_S—GDZGI> (1 32 (201)> N ¢z(p2,m3,m3)+T2Dnc(lgz(ml)—Igz(m3)), (B5)
where the 1ntegrals ,(p?,my,my) and Igz(m) are defined in Appendix (C2), and
m; =m, + 0o — Gp 0,03, msy = my + 03 — —= 0,2 (B6)
! 8G? ’ 8G?

The pion and kaon masses are the zeros of the inverse propagators, i.e.,
Te(p? =m?) =0, Tg(p? =mg®) =0, (B7)

while the 7 and ' meson masses are obtained from the zero eigenvalues of the real part of the #* — #° mixing matrix. The
wave function renormalization constants can be obtained from

_ dl“,,i p2 _ dl' g+ p2
Z” 1 — (2 ) , Z[( 1 — K (2 ) , (BS)
dp pr=m,> dp pr=my>?
and the pion and kaon decay constants are defined as
1 o .
Yruyss\op Tio)y|n (p)) =1 aPus
OTegry, rs 5 (o1 + io)ylz* (p)) = ivV2f (B9)
1 . . .
(O Tryry s 5 (04 + ios)y|K*(p)) = l\/ifl(pu' (B10)
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TABLE II. Values of the QCD NJL parameters obtained by
fitting the pion and kaon decay constants and the meson masses,
where we have assumed the SU(2),, flavor symmetry.

Parameter

Value (MeV) 361 406 930 5.95 163

(2GP)=1/2 (LG5 AP, m,

We use m,, mg, m,, my, f,, and fg to determine the QCD
NJL parameters. The best fit values of the parameters are
given in Table II. In Table III we compare the meson masses
and decay constants calculated in the NJL theory with the
experimental values. As we see from Table III, the NJL
mass is about 16% smaller than the experimental value.
This seems to be a general feature of the NJL theory [58]
(see also [86]).

APPENDIX C: ONE-LOOP INTEGRALS

(i) Vacuum energy
To compute the effective potential (18) we need the
vacuum energy

Iy(m) = / (‘Z‘) Indet(k—m)
161 - (A‘*m( A2> —m*In <1+2—2> +m2A2>.
(C1)

(ii) Inverse propagator of dark matter
|
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TABLE III. Comparison of the NJL values with the corre-
sponding experimental values.

Theory (MeV) Experimental value (MeV)

m, 136 140(z*)135(x°)
Mg 499 494(K*)498(K°, K°)
m, 460 548

my 960 958

fx 93 92(x”)

fx 105 110(K™)

There are two types of diagrams which contribute to the
inverse propagator of dark matter:
d*l Tr (I=p+my)rs(+my)rs

P omamy) = / —V—%x—wb’

#(m)= / @ =)

:—Em {M m2In (1 +i—i)] . (@)

These expressions are used to find DM masses and
wave function renormalization constants given in (B8),
respectively.

(i) ¢p-¢p-y amplitude

I;zy<p’pl’ma’mb) = (_1)/1(

d*l Tr(l+my)ys(I— p' + my)y* (I + p+ my)ys
l

+(p < plimy <> my),

2m)* (L4 p)? = mp) (P = m3)((1 = p')* — m})
—(ptp" = p*p*)(p + P')dyp (Mg, my) + - - (C3)
with p? = p'?, where - - - stands for higher order terms in the expansion of the external momenta, and
1, (m,,my) = 1 ! —(my — my)(m3 + 5Sm2my, + Sm,m? + m;)
@2y Mg, Ny, 87 2(m2 _mlz))z(mu+mh)2 a b a a'™b a'p b
1
-3 (m + 3m3my, + m2m? + 3m,m3 + m}) ln(m%,/mi)z). (C4)
The effective ¢-¢-y interaction Lagrangian is given in (23).
(iv) ¢-y-y amplitude
The ¢(p)-y(k)-y(k') three-point function is needed to compute the decay 7 into two ys (Fig. 4):
d*l Tr(l =K + m)y*(I+m)y*(I+ k +m)ys
kK, -1 k< K,
o) = 1) [ s B = (= 7 ) T K
= ’2 €Ml’aﬂkak/ﬁ + (C5)

A m
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The amplitude is thanks to y5 gauge invariant even for a finite A, i.e., kDI;‘;Z (k,k',m) = k;];‘;z (k,k',m) = 0. The amplitude
without y5 correspond to the S(p)-y(k)-y(k’) three-point function, which we denote by Ij’(k, k', m). This amplitude is not
gauge invariant so that we need to apply the least subtraction method [52]. The subscript 0 indicates that the amplitude is
unsubtracted, and we denote the subtracted gauge-invariant one by I%"(k, k', m). In Appendix C we demonstrate how to use
the least subtraction method for this case.

(V) ¢-¢p-¢p-¢p amplitude

The ¢(p)-¢p(p)-¢'(k)-¢' (K')- four-point function is needed to compute the DM conversion cross section (diagrams of
Fig. 5):

d*l Te(I+my)ys(I— p' + my)ys(L+ 9 — k+m,)ys(I+ p+ my)ys
i2r)* (P =mz)((1=p')? =mp)((I+p—k)* =mZ)((L+ p)* —m})

Ig4<p’ p/7 ka k/7maﬂmb7mc7md) = (_1)/

+(pop.kok)+(pop)+kek) (Co)
d*'l Tr(l+m,)(I+p+p +my)
1B,(p, p'.m,, = (-1 = . Cc7
B0 mem) = ) [ G s P ()
At the lowest order in the expansion in the external momenta we obtain
1 m21In(A?/m?2) — m?In(A?/m2)
124(0,0,0,0,ma,ma,mc,mc) :41(1;4‘(”1(1,’"0) =-12 2 — ) 4o, (C8)
1 2 — 2 In(A2/m2) — m3 In(A2/m2
14,(0,0.0,0, my. o, . my) = 4124 (g, mg) = —— (Malta T mama = mig) (A7 ma) = myIn(A"/my)
/ / 4 (my — mg)(my + my)
m
a4 > (C9)
m, +my
1
14,(0,0,0,0,m,, m,, my, m,) = 414 (m,) = —— (=1 + In(A%/m2) + - - ), (C10)
¢ 4 472
-1 m3In(A?/m2) — m3 In(A%/m?)
15.0.0.m ) = I mgemy) = 7 (<42 + WomBEml ) e
-1
124(0,0, My, My) = Iif(mu) = 4—2(—/\2 —2m2 + 3m2In(A?/m2) + - ), (C12)
T
where - - - stands for terms of O(A~?) and higher. These expressions are used for the effective couplings defined in
(32)-(35).
(vi) ¢-¢-S amplitude
To obtain the ¢(p)-¢(p')-S(k) three-point function (Fig. 7) we need
d*l Te(l+ p +my)ys(L+ my)ys(I— p' + my)
Is(po g = (=1) [ ; tpep) (D)
s ’ iQa)* (L+ p)? = mp) (P =my) (1= p')? = m)
d*l Te(l+ p+ p' + m,) ([ + m,)
12 (p,pl.m,) = (-1 a a_ Cl4
At the lowest order in the expansion in the external momenta we obtain
4, .(0,0,m,,my,) =21'4 (m,, m,) L —L%—l(m —my) In(A?/m2) +m721n(m2/m2) +---
¢2S s Uy as b ¢2S as b 27[2 ma + mb 2 a b b 2(ma _|_ mb)z a b )
(C15)
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1,6(0.0.m,.m,) = 2124 (m,) = < 1+ 1In(A2/m2) + - ), (C16)

1
4)25(0 0,m,) —I¢2S(m )= 2(A2—|—2m3—3m§1n(A2/m§)+---). (C17)

These expressions are used for the effective couplings defined in (37)-(39).
(vil) ¢p-¢p-S-S amplitude
Similarly,

A LK e ) — (— d*l Tr(l+m)ys(l— p' +my) I+ p—k+my) (I + p+ my)ys
g (P P s K g, myy me,mg) = ( 1)/ (2n)* (P —m2) (L= p')> =m2)((I+ p—k)> =m3)((I+ p)* — m})

+ (k< k), (C18)

s o [ TR m )R w0 = k) my )y
ol ) = (1) [ s+ = = s 2
4 (ko K), (C19)

d*l Tr(l =K + m)(I +m)(I + k + m)
i2n)* (I +k)? = m?)(P —m?)((1 - K)? —m?)

5. omg) = (-1) [ +lk oK), (€20

At the lowest order in the expansion in the external momenta we obtain

1 1 m’

{/}252(0 0,0,0, ma,m,,) 2]{1/:;‘5,2 (ma, mh) = —2—71-2 [m (mh(Sma + Smh) —I—mln(mi/mﬁo

—In(A%/m2) + -], (C21)
24 1 27,2
¢2s2(0 0,0,0,m,, m,) = 2I¢2s’( a) = —2—ﬂ2(2—ln(A /mi)+ ), (C22)
(0.0.0.0.m,.my) = 215 (momy) = — 1 ma(mq + 3my) In(A2/m3) + mj(my, + 3my) In(A*/m)
/Sz o w28 (g + my)? (mg +my)
=2(m +m3) + - ) (C23)
1
15,:(0.0.0.0.my.my) = 2038, (my) = = (=1 +In(A/md) + ). (C24)
m

G52 (0.m) = 215, (m) = 75 (5 = 3In(A2/m?) + - ). (C25)

These expressions are used for the effective couplings defined in (41)—(43).

(viii) ¢-¢p-y-y amplitude

The next example is the ¢(p)-¢(p’)-y(k)-y (k") four-point function. The diagrams at the one-loop level are shown in
Fig. 9:

d*l Tr(l+my)ys(I— ¢ + mp)y(L+p =k +m )y (I + g+ my)ys
IA’”; ) lskak/v as B c) — _1 / <
o (P PR Kmas o me) = (S1) [ sy (1= =) (4 p— K= m2) (L + p) = md)
+(peop kol pycv)+kskucsv)+(pop), (C26)
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B.uv / / _ (_ d4l Tr(l_k+ma) (l+ma)YS(l pl"i_mh)yﬂ(l"_p( k+mb)75
R k) = 1) [ e e P T 7R =)

+(p < p), (C27)
PR d*l Tr(I =K +m)"(I+m)y*(I+ k+m ,
Tt (ko Kom) = (1) / i(2r)* ((1 i k)? —+m2))é/l2(——’r—nz))(]zl(——'l;’)2t m)2) +kokpov). (C28)

The subscript 0 indicates that the amplitudes are unsubtracted, and therefore they are not gauge invariant. We apply the least

subtraction method to obtain gauge invariant amplitudes 12;” v, 12;” v

space is close to that of the SU(2),, case (8), we consider them only in this case. At the lowest order in the expansion in the

and Ig;” ¥, respectively. Since the realistic parameter

external momenta we obtain
A v /
I p (k, k', m) +

1

Cuv / _
I(/)2 (k,k',m) = o

in the large A limit. The result is used for the effective
Lagrangian (44) and (61).

APPENDIX D: LEAST SUBTRACTION
PROCEDURE

The cutoff A breaks gauge invariance explicitly and to
restore gauge invariance we have to subtract non-gauge
invariant terms from the original amplitude. In renorma-
lizable theories there is no problem to define a finite
renormalized gauge invariant amplitude. In the limit of
A — oo the gauge noninvariant terms are a finite number
of local terms, which can be cancelled by the corre-
sponding local counterterms so that the subtracted ampli-
tude is, up to its normalization, independent of the
regularization scheme. To achieve such a uniqueness in
cutoff theories, one needs an additional prescription.

In [52] a novel method called the “least subtraction
procedure” has been proposed. The basic idea is to keep the
subtraction terms to the minimum necessary. Consider an
unsubtracted amplitude

I3 (kK om) =

da*l Tr(l- k’+M)

e (ke Ky — ) + (C29)

Tom

(k- K'g" — ki) + (C30)
AO/tl /4,1[< pn vkl k ) (Dl)

with n, photons and n scalars (scalars and axial scalars).
Expand the amplitude in the external momenta k’s and p’s:

AO-#] <+ Hng ZAO Hiee g (D2)

where A(‘)’f}] u consists of mth order monomials of the
) g

(0) -
external momenta. In general, AO.M]..‘/I,,Q = Aoy,

atp =0,k =0 is nonvanishing and we can subtract it
because it is not gauge invariant. We keep the tensor

structure of .A(()O;l ., s the tensor structure of the counter-
Bt

terms for A(()";)]

the counterterms is required. We continue this until no more
new tensor structure is needed.

To illustrate the subtraction method we consider the
S(p)-y(k)-y(k') three-point function, which is given by

.. (m > 0) until a new tensor structure for
g

3
Ao (k, k) Zy,neQ/

i=1
+ (k< K,u<v),

where we use the on shell conditions k> = k’> = 0. Without
loss of generality the amplitude can be written as

-AO,/u/(k’ k/> = AO,g(k’ k/)gm/ + -A(),k (k’ kl)kukz//

+ By i (k. k' )k, k. (D4)

2r)* (14 k)2 = M?)(P2

= M})((1=K)? = M?)
(D3)

|
The last term does not contribute to the gauge invariance
kA, (k, k') = kA, (k, k") = 0, and so we ignore it. The
corresponding one-loop diagram is the one in Fig. 4 with 7
replaced by S. According to the least subtraction method,
we expand the amplitude in the external momenta k and k’.
At the second order, for instance, we find
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n.€2Q2

Ay (k. K) = == (k- k)

yiA4 2 2
— T (2A? + M?), D5
XZ3Mi(A2+M%)3( + 1) ( )
22 4
2k p) =22 yil 202 4 2M?
Ag ik k) 4?4 3M,-(A2+Mi2)3( +2M5).
(D6)

In the A - oo limit the second order amplitude will be
gauge invariant, but it is not at a finite A. Moreover, there
are infinitely many ways of subtraction to make the second
order amplitude gauge invariant. However, none of them is
preferential. The least subtraction method uses the lower
order amplitude, i.e.,

PHYSICAL REVIEW D 91, 115007 (2015)

A*M; (0)

0 i
A&;(k, K) = —Zm Api(k k) =0

(D7)

in this case, how to subtract the second order amplitude.
At the lowest order in the derivative expansion, what is
to be subtracted is unique; it is the g,, term. We keep
this tensor structure as the tensor structure of the
counterterms for higher order terms until a new tensor
structure for the counterterms is required. However, in
the case of Ay, (k. k') there will be no new tensor
structure appearing in higher orders. This implies that
Agi(k, k') remains unsubtracted [i.e., Ai(k k)=
Ay (k, k)] so that the subtracted gauge invariant am-
plitude is given by

2 A4
00 =T ()

g+ Tk - k' (A* +3M?)
90M? (A% + M?)

where D = M? — 2xyk - k.

yin.e*Q*M,; 4 A?
= -3 2O S gk K - kk’/dx/ A2+D2>
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