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Recently, a new symmetry of mesons has been found upon truncation of the quasizero modes of the
overlap Dirac operator in lattice simulations. Namely, the ρ, ρ0, ω, ω0, a1, b1, h1, and possibly f1 J ¼ 1

mesons get degenerate after removal of the quasizero modes. This emergent symmetry has been established
to be SUð4Þ ⊃ SUð2ÞL × SUð2ÞR × Uð1ÞA. It is higher than the symmetry of the QCD Lagrangian and
provides not only a mixing of quarks of given chirality in the isospin space, but also the mixing of left-
handed and right-handed components. Here we study, with the overlap Dirac operator, the isovector J ¼ 2

mesons upon the quasizero mode reduction and observe a similar degeneracy. This result further supports
the SUð4Þ symmetry in mesons of given spin J ≥ 1.
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I. INTRODUCTION

In recent Nf ¼ 2 dynamical lattice simulations with the
overlap Dirac operator, a large degeneracy of the spin J ¼ 1
ρ, ρ0, ω, ω0, a1, b1, h1, and possibly f1 mesons has been
discovered upon removal of the lowest-lying eigenmodes of
the Dirac operator from the valence quark propagators [1,2].1

The correlators have demonstrated a clean exponential
decay, suggesting that the mesons survive this truncation.
One expects a priori that upon elimination of the

quasizero modes of the Dirac operator, the chiral symmetry
should be restored, since the quark condensate of the
vacuum is connected with the density of the quasizero
modes via the Banks-Casher relation [5]. However, it has
turned out that not only are degeneracy patterns from the
SUð2ÞL × SUð2ÞR and Uð1ÞA symmetries observed, but
also a larger degeneracy that includes all possible chiral
multiplets for J ¼ 1 mesons. This symmetry has been
established to be SUð4Þ ⊃ SUð2ÞL × SUð2ÞR × Uð1ÞA and
includes both the isospin rotations of quarks of given
chirality as well as the rotations of chirality itself (chiral-
spin rotations) [6,7].
The SUð4Þ symmetry is higher than the SUð2ÞL ×

SUð2ÞR × Uð1ÞA symmetry of the QCD Lagrangian and
should be consequently considered as an emergent sym-
metry that reflects the QCD dynamics in J ¼ 1 mesons
without the quasizero modes of the Dirac operator. This
symmetry implies the absence of the color-magnetic field in
the system and might be interpreted as a manifestation of
the dynamical QCD string.
In the present paper, we study the isovector J ¼ 2

mesons upon the reduction of the lowest-lying eigenmodes

from the overlap valence quark propagators. We obtain
the same symmetry patterns as for J ¼ 1 mesons, which
supports consequently the existence of the SUð4Þ
symmetry in J ≥ 1 mesons after the quasizero mode
reduction.
The structure of the article is as follows: In Sec. II we

discuss the parity-chiral, chiral-spin and SUð4Þ multiplets
for the tensor mesons and respective interpolators and our
expectations for the truncation of the lowest-lying Dirac
eigenmodes. In Sec. III we describe the lattice technical-
ities. The results are presented in Sec. IV. Conclusions are
given in Sec. V. Additional tables are provided in the
Appendix.

II. THEORETICAL PREDICTIONS
FOR THE LOW-MODE REMOVAL

We discuss the theoretical predictions for the tensor
meson spectrum after low-mode removal, which come
either from the SUð2ÞL × SUð2ÞR and Uð1ÞA restorations
[8,9] or from the higher SUð4Þ symmetry [6,7]. We also
present interpolators with the respective symmetry trans-
formation properties.

A. Chiral symmetry predictions

In Fig. 1, we show the classification of tensor mesons
according to the parity-chiral group SUð2ÞL×SUð2ÞR×Ci,
with Ci denoting the parity group.
In a situation where the SUð2ÞL × SUð2ÞR chiral

symmetry is restored but no higher symmetry is present,
only mesons within each parity-chiral multiplet r must be
degenerate. For instance, in ð1; 0Þ⊕ð0; 1Þ, the a2 and ρ2
states, which are related via SUð2ÞA, should have the
same mass.2 If Uð1ÞA is restored as well, all four mesons
in the ð1=2; 1=2Þa and ð1=2; 1=2Þb representations should
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1A hint for this symmetry has been seen earlier with the

chirally improved Dirac operator [3]; for a previous lattice study
on the low-mode truncation, see Ref. [4].

2SUð2ÞA is the shorthand notation for the axial part of the
SUð2ÞL × SUð2ÞR transformations.
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be mass degenerate, i.e., the SUð2ÞL × SUð2ÞR × Uð1ÞA
restoration requires the following degeneracies3:

π2 ⟷ f2 ⟷ a02 ⟷ η2 ð1Þ

and

a2 ⟷ ρ2: ð2Þ

The states from the singlet (0,0) representations are
invariant with respect to both SUð2ÞL × SUð2ÞR andUð1ÞA
transformations, and consequently these symmetries do not
constrain their masses.
One of the most interesting features of the parity-chiral

group (Fig. 1) is that two independent 2þþ isovector
(a2; a02) and two independent 2

þþ isoscalar (f2; f02) mesons
must exist. They differ from each other by the content of
left- and right-handed quarks, and therefore by the chiral
representation r. They are not connected via a SUð2ÞL ×
SUð2ÞR orUð1ÞA transformation, so their masses should be
different without additional symmetry constraints. If their
masses are degenerate, then there is a symmetry connecting
the states of Eq. (1) with the states of Eq. (2). Hence, in
such a situation a larger symmetry than SUð2ÞL ×
SUð2ÞR × Uð1ÞA has to be present. This issue will be
discussed in the next subsection.
In Table I, we classify the interpolators Oi used in our

lattice study into the irreducible representations r of the
parity-chiral group.

B. Predictions from SUð4Þ
The states and interpolators from the ð1=2; 1=2Þa and

ð1=2; 1=2Þb representations have the L̄R� R̄L chiral con-
tent, while the states (interpolators) from the (0,0) and
ð1; 0Þ⊕ð0; 1Þ representations contain the L̄L� R̄R quark

combinations. A symmetry that can connect these repre-
sentations is the SUð2Þcs (chiral-spin) rotation [6,7]. The
rotations in an imaginary chiral-spin space mix left-
and right-handed components of quarks of a given flavor.
The SUð2Þcs triplets and singlets are shown in Fig. 2. The
Uð1ÞA symmetry is a subgroup of the SUð2Þcs.
When we combine both SUð2ÞL × SUð2ÞR and SUð2Þcs

symmetries, we arrive at a SUð4Þ group with the funda-
mental vector [6,7]

Ψ ¼

0
BBB@

uL
uR
dL
dR

1
CCCA: ð3Þ

The SUð4Þ transformations mix both quarks of different
flavors and quarks of different chiralities. The irreducible
representations of SUð4Þ for q̄q systems are a singlet and a
15-plet. The 15-plet includes the following mesons:

f2 ↔ f02 ↔ π2 ↔ a2 ↔ a02 ↔ η2 ↔ ρ2; ð4Þ

and the singlet is ω2; see Fig. 2. All the states from the 15-
plet must be mass degenerate. To observe the SUð4Þ
symmetry, it is sufficient, however, to see at the same time
the degeneracy of one of the chiral multiplets and of one of
the SUð2Þcs triplets. For this purpose it is sufficient to study,
e.g., all possible isovector mesons ρ2; a2; a02; π2.

III. LATTICE TECHNICALITIES

A. Gauge field configurations

We use two-flavor dynamical overlap fermion gauge
field configurations on a 163 × 32 lattice with lattice
spacing a ∼ 0.12 fm generated and generously provided
by the JLQCD Collaboration [11,12]. The pion mass is
Mπ ¼ 289ð2Þ MeV [13]. The topological sector is fixed to
QT ¼ 0. Our gauge ensemble consists of 83 gauge
configurations.

B. Source smearing

In the previous studies of J ¼ 1 mesons [1,2], we have
used quark propagators with stochastic sources generated
by the JLQCD Collaboration. The spin J ¼ 2 mesons
require quark propagators with derivatives, however.
Given the JLQCD gauge configurations, we calculate
the quark propagators using our standard techniques with
different smearing widths of Gaussian type [14]. A set of
different extended sources with different smearing widths
allows for a larger operator basis in the variational
method.
Gaussian smearing has two parameters: the hopping

parameter κ and the number of smearing steps N. It
produces Gaussian-shaped covariant sources of different

FIG. 1 (color online). In the left column, the irreducible
representations r of SUð2ÞL × SUð2ÞR × Ci are given. Each
meson is denoted as ðI; JPCÞ, with I isospin, J total angular
momentum, P parity, and C charge conjugation. The SUð2ÞA and
Uð1ÞA connections are denoted by red and blue lines, respectively.

3The a2 meson in ð1=2; 1=2Þb is here denoted as a02 to
distinguish it from the a2 meson in ð1; 0Þ⊕ð0; 1Þ. The same is
true for the f2 meson, which in ð1=2; 1=2Þa is denoted as f02 to
distinguish it from the f2 in (0,0).
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widths. We choose the same parameters as in Ref. [10],
namely “narrow” n (κ ¼ 0.21, N ¼ 18) and “wide” w
(κ ¼ 0.191, N ¼ 41) sources. The derivative source is
constructed by applying a covariant derivative to the wide
source and is denoted as ∂k, with k ¼ 1; 2; 3.

C. Truncated quark propagator

We follow the procedure to remove an increasing amount
of the lowest-lying Dirac eigenmodes and study the effect
of this reduction on hadron masses. The truncated quark
propagators take the form

Skðx; yÞ ¼ Sfullðx; yÞ −
Xk
i¼1

1

λi
viðxÞv†i ðyÞ: ð5Þ

Here Sfullðx; yÞ denotes the untruncated propogator, Skðx; yÞ
the truncated propagator, λi the low-lying eigenvalues, viðxÞ
the eigenvectors, and k the number of removed lowest
modes. For instance, k ¼ 10 means that ten low modes
are removed from the quark propagator. We choose the
truncation steps in the rangek ¼ 2–30,which corresponds to
an eigenvalue cutoff between 8 and 180 MeV.

D. Meson spectroscopy

Our analysis is based on the variational method; see
Refs. [15–17]. The J ¼ 2 interpolators from Table I fall
into the irreducible representationE or T2 of the hypercubic
group Oh.

4 In addition, our interpolators Oi fall into
different irreducible representations of the parity-chiral
and SUð4Þ groups, as discussed in the previous chapter.

FIG. 2 (color online). The SUð2Þcs triplets are denoted by green
lines; ω2 and ρ2 mesons are SUð2Þcs singlets. The SUð4Þ 15-plet
is indicated by purple lines; ω2 is the SUð4Þ singlet.

TABLE I. List of tensor and vector meson interpolatorsO classified with respect to the chiral representations r and
to the irreducible representations E; T2 of the hypercubic groupOh. The interpolators are defined in accordance with
Ref. [10]; n and w denote two different smearing widths of the quark sources.

I; JPC O r Oh

ρ2ð1; 2−−Þ
Qijkā∂kγjγ5bn −Qijkānγjγ5b∂k ð1; 0Þ⊕ð0; 1Þ E
Qijkā∂k

γjγ5bw −Qijkāwγjγ5b∂k

jϵijkjā∂kγjγ5bn − jϵijkjānγjγ5b∂k ð1; 0Þ⊕ð0; 1Þ T2jϵijkjā∂k
γjγ5bw − jϵijkjāwγjγ5b∂k

a2ð1; 2þþÞ

Qijkā∂kγjbn −Qijkānγjb∂k ð1; 0Þ⊕ð0; 1Þ
E

Qijkā∂kγjbw −Qijkāwγjb∂k
Qijkā∂kγjγtbn −Qijkānγjγtb∂k ð1=2; 1=2ÞbQijkā∂kγjγtbw −Qijkāwγjγtb∂k
jϵijkjā∂kγjbn − jϵijkjānγjb∂k ð1; 0Þ⊕ð0; 1Þ

T2

jϵijkjā∂kγjbw − jϵijkjāwγjb∂k
jϵijkjā∂kγjγtbn − jϵijkjānγjγtb∂k ð1=2; 1=2Þbjϵijkjā∂kγjγtbw − jϵijkjāwγjγtb∂k

π2ð1; 2−þ)
Qijkā∂k

γjγtγ5bn −Qijkānγjγtγ5b∂k ð1=2; 1=2Þa E
Qijkā∂kγjγtγ5bw −Qijkāwγjγtγ5b∂k
jϵijkjā∂k

γjγtγ5bn − jϵijkjānγjγtγ5b∂k
ð1=2; 1=2Þa T2jϵijkjā∂kγjγtγ5bw − jϵijkjāwγjγtγ5b∂k

ρð1; 1−−Þ
ānγjbn ð1; 0Þ⊕ð0; 1Þ

T1

āwγjbw
ānγjγtbn ð1=2; 1=2Þbāwγjγtbw

a1ð1; 1þþÞ ānγjγ5bn ð1; 0Þ⊕ð0; 1Þ
āwγjγ5bw

b1ð1; 1þ−)
ānγjγtγ5bn ð1=2; 1=2Þa
āwγjγtγ5bw

4For a mapping of the irreducible representations of Oh to the
first few J numbers, see Ref. [18]. The interpolators in E and T2

representations are orthogonal, thus masses can be extracted
separately.
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We construct the cross-correlation matrices

CijðtÞ ¼ hOiðtÞO†
jð0Þi ð6Þ

and solve a generalized eigenvalue problem:

CðtÞ~vnðt; t0Þ ¼ λnðt; t0ÞCðt0Þ~vnðt; t0Þ; ð7Þ

where t0 ¼ 1 is chosen as a reference time slice in our
analysis. From the solution of this eigenvalue problem, we
determine the energy levels of a given quantum channel.
We choose time ranges where the eigenvalues λðt; t0Þ decay
exponentially, i.e.,

λðnÞðt; t0Þe−Enðt−t0Þð1þOðe−ΔEnðt−t0ÞÞ; ð8Þ

and apply a one-exponential fit to extract masses En, where
n labels the ground (n ¼ 1) and excited (n > 1) states.

IV. RESULTS

As a consistency check, we first extract masses of
the isovector J ¼ 1 mesons (ρ; ρ0; a1; b1, Fig. 3), and
compare them to the results shown in Refs. [1,2], where
propagators obtained within the JLQCD Collaboration
have been used. This comparison shows full agreement
between both results.
In Fig. 4 we show the eigenvalues of the correlation

matrix for all isovector tensor mesons before and after
removal of the lowest 30 modes. While the eigenvalues
are different for the different mesons in the untruncated
case, they become identical in the truncated case. The

TABLE II. Results of fits to the eigenvalues at a truncation level k ¼ 0; 16; 20; 30 for J ¼ 1; 2 mesons. States are denoted by
n ¼ 1; 2;…. Corresponding mass values am are given in lattice units; t denotes the fit range, and i labels the interpolators used in the
construction of the cross-correlation matrix in a given quantum channel according to Ref. [10].

k ¼ 0 k ¼ 16

State n am χ2=d:o:f t i State n am χ2=d:o:f t i

a2∶T2 1 0.918� 0.056 6.28=5 3–9 2 4 6 8 a2∶T2 1 0.986� 0.044 0.84=3 4–8 2 4 6 8
2 1.292� 0.147 1.10=3 3–7 2 1.015� 0.059 0.64=2 4–7

ρ2∶T2 1 1.209� 0.040 1.24=2 2–5 2 4 ρ2∶T2 1 1.023� 0.063 0.82=2 4–7 2 4
π2∶T2 1 0.979� 0.176 0.19=2 4–7 6 8 π2∶T2 1 0.986� 0.049 0.69=3 4–8 6 8
a2∶E 1 0.913� 0.078 0.37=2 4–7 2 8 a2∶E 1 1.037� 0.039 4.02=3 4–8 2 8
ρ2∶E 1 1.212� 0.034 2.80=3 2–6 8 10 ρ2∶E 1 1.010� 0.031 1.84=4 3–8 8 10
ρ∶T1 1 0.519� 0.014 1.82=7 4–12 1 4 5 8 ρ∶T1 1 0.606� 0.014 1.38=5 6–12 1 4 5 8

2 0.928� 0.151 1.61=4 4–9 2 0.609� 0.013 4.55=7 4–12
a1∶T1 1 0.689� 0.023 4.25=3 3–7 1 4 a1∶T1 1 0.618� 0.012 1.50=4 5–10 1 4
b1∶T1 1 0.688� 0.036 2.11=3 3–7 22 25 b1∶T1 1 0.607� 0.015 3.70=5 4–10 22 25

k ¼ 20 k ¼ 30

State n am χ2=d:o:f t i State n am χ2=d:o:f t i

a2∶T2 1 0.982� 0.040 1.04=3 4–8 2 4 6 8 a2∶T2 1 1.042� 0.023 0.80=4 3–8 2 4 6 8
2 0.987� 0.047 1.61=3 4–8 2 1.044� 0.028 0.93=3 3–7
3 1.456� 0.061 1.54=3 3–7 3 1.459� 0.046 0.50=3 3–7
4 1.550� 0.071 1.62=3 3–7 4 1.507� 0.048 1.97=3 3–7

ρ2∶T2 1 0.987� 0.052 3.31=3 4–8 2 4 ρ2∶T2 1 1.042� 0.026 2.00=4 3–8 2 4
2 1.552� 0.072 1.72=3 3–7 2 1.502� 0.052 2.17=3 3–7

π2∶T2 1 0.990� 0.044 0.62=3 4–8 6 8 π2∶T2 1 1.043� 0.024 0.86=4 3–8 6 8
2 1.467� 0.065 1.74=3 3–7 2 1.477� 0.048 0.65=3 3–7

a2∶E 1 1.044� 0.040 9.25=3 4–8 2 8 a2∶E 1 1.053� 0.035 5.62=3 4–8 2 8
2 1.102� 0.045 7.86=3 4–8 2 1.138� 0.037 3.61=3 4–8

ρ2∶E 1 1.029� 0.031 5.62=4 3–8 8 10 ρ2∶E 1 1.047� 0.024 8.32=6 3–10 8 10
2 1.470� 0.060 4.91=3 3–7 2 1.466� 0.042 4.59=3 3–7

ρ∶T1 1 0.629� 0.011 4.87=5 5–11 1 4 5 8 ρ∶T1 1 0.657� 0.008 8.82=6 4–11 1 4 5 8
2 0.611� 0.010 4.69=5 5–11 2 0.669� 0.007 8.85=6 4–11
3 1.216� 0.032 0.37=2 3–6 3 1.224� 0.030 2.55=2 3–6
4 1.278� 0.053 0.85=2 3–6 4 1.245� 0.044 2.63=2 3–6

a1∶T1 1 0.632� 0.011 1.41=5 5–11 1 4 a1∶T1 1 0.668� 0.009 4.73=5 5–11 1 4
2 1.215� 0.031 0.94=3 3–7 2 1.222� 0.029 2.59=3 3–7

b1∶T1 1 0.620� 0.010 11.77=6 4–11 22 25 b1∶T1 1 0.657� 0.009 8.38=7 4–12 22 25
2 1.287� 0.056 1.97=3 3–7 2 1.240� 0.045 3.94=4 3–8
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degeneracy pattern is completely in line with the expect-
ation from the SUð4Þ symmetry, as discussed in Sec. II.
Namely, the a2 (n ¼ 1; 2), ρ2 (n ¼ 1), and π2 (n ¼ 1)
eigenvalues of the meson cross-correlators in T2 become
identical. The same holds true for the excited states of a2
(n ¼ 3; 4), ρ2 (n ¼ 2), and π2 (n ¼ 2).
In Fig. 5 we show effective mass plots for all isovector

mesons after truncation of the lowest Dirac modes. The
quality of the plateau is worse than for the J ¼ 1 states,
where no derivative operators are used. This is why the
error bars for the extracted masses are larger than for the
J ¼ 1 case. A comparison to the case of untruncated J ¼ 2
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FIG. 4 (color online). Eigenvalues of J ¼ 2 tensor mesons: (a) Full case (k ¼ 0). (b) After excluding k ¼ 30 low modes in T2.

 0

 300

 600

 900

 1200

 1500

0 8 40 65 105 125 180

0 2 6 10 16 20 30mass,
 MeV

σ, MeV

k

ρ  , state 1
a1, state 1
b1, state 1
ρ  , state 2

FIG. 3 (color online). Mass evolution of J ¼ 1 isovector
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FIG. 5 (color online). ρ2, a2, a02, π2 in T2: Effective masses after excluding (a) k ¼ 16, (b) k ¼ 30 low modes.
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mesons shows that the quality of the signal essentially
improves after truncation, in line with our previous obser-
vations in Refs. [1–3]. The fit ranges and the extracted
masses are given in the Appendix.
The final results for the masses of the two lowest a2

states and the lowest states of π2 and ρ2 as a function of
the truncation level are given in Fig. 6. We observe a
clear onset of the SUð4Þ symmetry after elimination of
the lowest 10–20 modes (truncation energy 65 to
125 MeV), in agreement with the respective results for
the J ¼ 1 isovector mesons shown in Fig. 3. In both the
J ¼ 1 and J ¼ 2 mesons we see the SUð4Þ [and con-
sequently SUð2ÞL × SUð2Þ and SUð2ÞCS] symmetries
upon elimination of the near-zero modes from the valence
quark propagators.
Finally, we compare in Fig. 6(b) the lowest energy level

for J ¼ 2mesons with the lowest J ¼ 1 energy level and its
first excitation. No degeneracy is observed between the first
excited J ¼ 1 level and the ground J ¼ 2 level. This hints
at the absence of some additional symmetry that would
connect states with different J. However, to come to a
definite conclusion, we need much larger volumes: our
small volume could affect in a different manner the J ¼ 1
radially excited level and the ground J ¼ 2 level.

V. SUMMARY AND CONCLUSIONS

We have studied the spin-2 isovector mesons upon
removal of the lowest-lying Dirac eigenmodes from the
valence quark propagators. Upon truncation of a small

amount of the quasizero modes, we have found the same
SUð4Þ symmetry pattern as in our previous study of J ¼ 1
mesons. This supports the existence of the SUð4Þ sym-
metry in J ≥ 1 mesons without the quasizero modes. This
symmetry includes the rotations of right- and left-handed
quarks in the isospin space as well as rotations in the chiral-
spin space that mix the left- and right-handed components.
This symmetry group implies the absence of the color-
magnetic field in the system without the quasizero modes
and might be interpreted as a manifestation of the dynami-
cal color-electric string in QCD.
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APPENDIX: MASSES AND FITS

Single exponential effective mass fits and correspond-
ing χ2=d:o:f: are presented in Table II for truncations
k ¼ 0; 16; 20; 30.
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FIG. 6 (color online). Ground state and excited state mass evolutions of (a) J ¼ 2 mesons in T2, (b) J ¼ 1 and J ¼ 2 mesons. The
value k denotes the truncation step and σ the corresponding energy gap.
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