
Covariant approximation averaging

Eigo Shintani,1,2,* Rudy Arthur,3 Thomas Blum,4,2 Taku Izubuchi,5,2 Chulwoo Jung,5 and Christoph Lehner5
1PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz,

Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

3CP3-Origins and the Danish Institute for Advanced Study DIAS, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

4Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
5High Energy Theory Group, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 18 February 2014; revised manuscript received 6 February 2015; published 30 June 2015)

We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using
covariant symmetries, we show that correlation functions can be constructed from inexpensive
approximations without introducing any systematic bias in the final result. We introduce a new class
of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the
approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator
computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare
the performance and computational cost of our new method with traditional methods using correlation
functions and masses of the pion, nucleon, and vector meson inNf ¼ 2þ 1 lattice QCD using domain-wall
fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo
calculations over conventional methods for the same cost.
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I. INTRODUCTION

In order to increase the confidence we have in the results
of a Monte Carlo simulation, a huge number of independent
ensembles is always required. In lattice QCD many
important observables suffer from notoriously large stat-
istical errors due to fluctuations induced by the gauge fields
used to compute expectation values, e.g., the neutron
electric dipole moment [1–4], the hadronic contributions
to the muon anomalous magnetic moment (g-2) [5], and the
η-η0 mass and mixing angle [6]. The precise determination
of these observables, which provide important ingredients
for the StandardModel (SM) and models beyond the SM, is
a challenging task for lattice QCD. In this paper we present
a detailed study of a new technique to efficiently evaluate
correlation functions in a Monte Carlo simulation. An
earlier publication by some of us already described the
method and provided a few examples [7].
In lattice QCD, the numerical path integral is evaluated

by Monte Carlo simulation to compute the expectation
value of an observable O½U� given as the weighted average
over configurations of gauge (gluon) fields, link variables
U generated under probability distribution P½U� on a
lattice, in an ensemble,

hOi ¼
X
U

O½U�P½U� ¼
XNconf

i¼1

1

Nconf
O½Ui�

þOð1=
ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
Þ as Nconf → ∞: ð1Þ

To increase the accuracy of the ensemble average given the
statistics of Nconf configurations, the development of
numerical algorithms to efficiently compute observables
is an important task. Traditionally translational symmetry
of the correlation function is exploited to increase statistics,

hOðx; yÞi ¼ hOðxg; ygÞi; ð2Þ

where the distance between operators on the shifted lattice
sites is held constant, ∥x − y∥ ¼ ∥xg − yg∥. Ignoring stat-
istical correlations between operators on shifted sites, the
different NG sets of Oðxg; ygÞ with sink location xg and
source location yg can be regarded as independent mea-
surements. However, this naively requires NG times the
computational cost of a single measurement.
The original idea to avoid the cost of NG measurements

while still performing NG shifts is low-mode averaging
(LMA) [8–11], in which the inverse of the Dirac operator
for each of g ∈ G is computed from its low-lying eigen-
vectors. The benefit of LMA is that, once the low modes
have been computed, the construction of the LMA esti-
mator is not only low cost but also useful for low-mode
deflation [12], i.e., as a preconditioner in the conjugate
gradient (CG) method. There have been many lattice
studies using LMA, primarily focused on low-mode domi-
nated observables, for example low-energy constants in the
ε-regime [13], or the chiral behavior of pseudoscalar
mesons in the p-regime [14]. They have shown that there
is some benefit from LMA for observables related to the
pion. On the other hand, attempts to use LMA for baryons*shintani@kph.uni‑mainz.de
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or heavy mesons [15–17] were not as successful, presum-
ably because these states are not dominated by a relatively
small number of low modes (we also found recent attempts
to use an extended method called low-mode substitution for
baryon spectroscopy in [18]).
Recently we extended the LMA idea to efficiently handle

the vast majority of hadronic states that are not dominated
by low modes [7]. The idea is to include all modes of the
Dirac operator but with dramatically reduced computa-
tional cost compared to the usual CG method. By using
covariant symmetries, approximate (and therefore in-
expensive) correlation functions are used to compute
expectation values without introducing any systematic error
(bias). All-mode-averaging (AMA) in which a relaxed
stopping condition of the CG is employed as in [19] takes
the contributions of all modes into account. The method is
broadly applicable to other fields using Monte Carlo
simulation, e.g., many-body systems, atomic systems,
and cold gas systems (see [20–24]). This paper gives a
detailed description of the covariant approximation aver-
aging (CAA) with primary examples, LMA and AMA [7].
We also present several numerical results with high
precision and cost-performance comparison with standard
methods.
This paper is organized as follows: in the next section we

describe the CAA procedure and compare LMA and AMA.
In Sec. III we show numerical results for AMA using
domain-wall fermions and compare to LMA and the
standard multisource method. In Sec. IV we present several
examples extending the approximation and the results of
some numerical tests. In the last section we summarize and
discuss further extensions of AMA. In Appendix B, the
possible small biases of AMA due to finite precision
floating point arithmetic are discussed, and we present
how to remove them completely in Appendix C.

II. COVARIANT APPROXIMATION AVERAGING

A. General argument

Under a symmetry transformation g ∈ G, the expectation
value of the transformed functional O½U� (for example, a
hadron propagator) is equivalent to that computed on the
transformed configuration Ug

hOg½U�i ¼ hO½Ug�i; ð3Þ

where UgðxÞ ¼ UðxgÞ, while translational symmetry of the
observable is expressed as Og½U�ðx; yÞ ¼ O½U�ðxg; ygÞ. If
O½U� is covariant under the symmetry, on each gauge
configuration

Og½U� ¼ O½Ug�; ð4Þ

then there is the trivial identity

X
g∈G

Og½U� ¼
X
g∈G

O½Ug�; ð5Þ

for a set of transformations g ∈ G whose number of
elements is NG. From Eqs. (3), (4), and (5), an average
over a set of symmetry transformations is defined as

OG½U�≡ 1

NG

X
g∈G

Og½U� ¼ 1

NG

X
g∈G

O½Ug�; ð6Þ

and one sees that hOG½U�i is identical to hO½U�i, since any
transformed configuration Ug appears with the same
probability as U in the Monte Carlo simulation with an
action invariant with respect to g. Note the statistical error
ofOG decreases by a factor 1=

ffiffiffiffiffiffiffi
NG

p
times smaller, while its

computational cost increases by a factor NG times more.
In order to reduce the computational cost implied by

Eq. (6), we introduce an approximation for O, which is
called OðappxÞ. Averaging over g ∈ G as in Eq. (6) for
OðappxÞ yields

OðappxÞ
G ¼ 1

NG

X
g∈G

OðappxÞg: ð7Þ

UsingOðappxÞ and the originalO, an improved estimator for
O is defined by

OðimpÞ ¼ O −OðappxÞ þOðappxÞ
G

≡OðrestÞ þOðappxÞ
G ; ð8Þ

OðrestÞ ¼ O −OðappxÞ: ð9Þ

(In the definition of OðrestÞ, we used the unit element of G;
however, any other elements would serve the purpose just

as well.) Since OðappxÞ in OðimpÞ is canceled by OðappxÞ
G after

performing the path integral and using the covariance of
OðappxÞ as in Eq. (4), one easily sees that the expectation
value of the improved estimator agrees with the original,

hOðimpÞi ¼ hOi: ð10Þ

As shown in Appendix A, using the standard deviations
of O, σ, the approximation OðappxÞ, σðappxÞ, and the
transformed approximation OðappxÞg, σðappxÞg, where
σX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔOXÞ2i

p
, and ΔOX ¼ OX − hOXi, and the cor-

relations are defined by

rg ¼
hΔOΔOðappxÞgi

σσðappxÞg

; ð11Þ

rcorrgg0 ¼ hΔOðappxÞgΔOðappxÞg0 i
σðappxÞgσðappxÞg0

; ð12Þ
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the standard deviation of the improved estimator is

σðimpÞ ≃ σ

�
2Δrþ 1

NG
−

2

NG
Δrþ Rcorr

�
1=2

; ð13Þ

Rcorr ¼ 1

N2
G

X
g≠g0

rcorrgg0 ; ð14Þ

with Δr ¼ 1 − r, r≡ rg¼I . Note that, in Eq. (13), we
approximate σ ≃ σðappxÞ, and the correlation betweenO and
OðappxÞg is similar to that forOðappxÞ, i.e., rcorrg≠I ≃ rg≠I (which
assumes that there is a strong correlation between O and
OðappxÞ). In [7,25], we also ignored the third and fourth
terms in (13). In the equation above, Δr and rcorrg indicate
the quality of the approximation and the magnitude of the
correlation among the fOðappxÞggg∈G, respectively. To
achieve a reduction of the statistical error of magnitude
∼1=

ffiffiffiffiffiffiffi
NG

p
, an OðappxÞ with small Δr and small positive rcorrgg0

is necessary. Furthermore, the cost of computing OðappxÞ
should be much cheaper than O.
Taking the consideration above into account, we impose

the following conditions on OðappxÞ and the choice of
transformation, g ∈ G, for OðappxÞg:
CAA-1: OðappxÞ is covariant under G as in Eq. (4).1

CAA-2:OðappxÞ is strongly correlatedwithO, i.e.,Δr ≪ 1.
CAA-3: The computational cost of OðappxÞ is much

smaller than O.
CAA-4: The transformation g ∈ G is chosen to give

small (compared to 1=NG) positive correlations among
fOðappxÞggg∈G, i.e., Rcorr ≪ 1=NG.
Note that the last condition is not necessary if the cost of

constructing OðappxÞ is negligible (so that, in [7], we have
not included the last condition). The tuning of the most
appropriate OðappxÞ for the target observable is important to
maximize the reduction of the statistical error. In the
following, we show two examples of CAA in lattice QCD.

B. Example: Low-mode averaging

In lattice QCD, O is a hadron correlator, given as the
product of inverses of the Dirac operator (S½U�). In LMA,
the approximation defined as OðappxÞ ¼ OðLMAÞ is con-
structed by

OðLMAÞ ¼ O½SðlowÞ�; OðLMAÞ
G ¼ 1

NG

X
g∈G

O½SðlowÞg�;

ð15Þ

SðlowÞðx; yÞ ¼
XNλ

k¼1

λ−1k ψkðxÞψ†
kðyÞ; ð16Þ

with low-lying eigenmodes ψk and eigenvalues λk of the
Hermitian Dirac matrix Hðx; yÞ, P

yHðx; yÞψkðyÞ ¼
λkψkðxÞ. For low-mode dominant observables, like the
pion propagator and related form factors, the eigenmodes
with small jλkj saturate the observable, and thus r in
Eq. (11) may be close to unity (CAA-2).OðLMAÞ is covariant
since H½Ug�ðx;yÞ¼H½U�ðxg;ygÞ; we have Og½SðlowÞ½U�� ¼
O½SðlowÞ½Ug�� (CAA-1). The construction ofOðappxÞ

G requires
an inner product of the low-mode and source (sink) vectors
and a complex times vector multiply. Since the construction

of OðappxÞ
G is cheap, the statistical error of low-mode

dominant observables is significantly reduced (CAA-3)
[10,11] [because the computational cost of Og;ðLMAÞ is
small, condition (CAA-4) is not so important].

C. Example: All-mode averaging

AMA is similarly defined as

OðAMAÞ ¼ O½SðallÞ�; OðAMAÞ
G ¼ 1

NG

X
g∈G

O½SðallÞg�; ð17Þ

SðallÞb ¼
XNλ

k¼1

λ−1k ðψ†
kbÞψk þ fεðHÞb; ð18Þ

fεðHÞb ¼
XNCG

i¼1

ðHÞici; ð19Þ

where fεb is a polynomial of H with vector “coefficients”
ci. In practice this combination is obtained from the CG,
depending on the source vector b and initial guess x0. The
subscript ε indicates the norm of the residual vector after
NCG iterations, or steps, of the CG.
In AMA, the (exact) low-mode contribution to the

propagator within the range ½λ1; λNλ
� is taken into account

by projecting the source vector b onto the orthogonal
subspace,

bproj ≡
�
1 −

XNλ

k¼1

ψkψ
†
k

�
b; ð20Þ

where the low mode is normalized as
P

xψ
†
kðxÞψkðxÞ ¼ 1.

By adopting the above projected source vector into the CG
process (see Algorithm 1), we obtain the solution xCG,

xCG þ
XNλ

k¼1

λ−1k ðψ†
kbÞψk ¼ SðallÞb: ð21Þ

Notice that the CG is deflated at the same time. Further, the
higher mode contribution (λNλ

< λ ≤ λmax) is treated
approximately, fεðλÞ ≈ 1=λ, by using the relaxed stopping
criterion in the CG. Therefore the computational cost of
fεðHÞ is significantly smaller than the usual CG used in O

1As explained in Appendix B, this condition is not necessary to
fulfill Eq. (3) if we introduce a randomly chosen shift of source
location in Appendix C.

COVARIANT APPROXIMATION AVERAGING PHYSICAL REVIEW D 91, 114511 (2015)

114511-3



(CAA-3). Compared to LMA, in which eigenmodes with
λ > λNλ

are ignored, AMA introduces fε to take into
account the contribution of all higher modes, and thus
the quality of the approximation to O is greatly improved
(CAA-2). In Eq. (17) the covariance (CAA-1) is also
fulfilled since fεðHÞ is covariant under the transformation
g; fgεðHðx; yÞÞ ¼ fεðHðxg; ygÞÞ.
Here we consider two choices of the stopping condition

in the CG:
(i) the norm of the residual vector is smaller than some

prescribed value,
(ii) there is a fixed number of CG iterations.

The first condition naturally controls the accuracy of the
CG and thus the approximation OðappxÞ, and in this paper
we have employed it as the stopping condition. However, it
may happen that this criterion introduces a violation of
covariant symmetry as systematic bias due to numerical
round-off error, for example, because of the order of
operations in one’s code.2 As described in detail in
Appendix B, this bias is orders of magnitude smaller than
the statistical error in practice. In the same appendix, we
also present an argument to reduce the bias by fixing the
number of CG iterations instead of fixing the CG stopping
condition for the residual vector norm. Note that fε can also
be computed directly from a polynomial with fixed
coefficients rather than dynamically computed in the CG.
We emphasize, as in [7] and demonstrated in

Appendix B 2, when using AMA it is mandatory to
compute the size of the violation of covariance on a small
number of configurations to ensure that the bias is
negligible. Alternatively, one can completely remove the
bias by using randomly selected source locations as
described in Appendix C.
Figure 1 illustrates the spectral decomposition ofOðLMAÞ

defined in Eq. (16) and OðAMAÞ defined in Eq. (18). In
AMA, because we use the exact low-lying eigenvectors, the
behavior in the low-mode region is consistent with LMA.
The number of intersections with the exact solution
corresponds to the polynomial degree in the approximation
which is equal to the number of CG iterations. The
discrepancy with the exact solution can be controlled by
the number of low modes used in deflation and the degree
of the polynomial [see Eq. (18)].
The correlation among Og will not be significant if we

choose appropriate transformations, g ∈ G, for instance, by
widely separating source points among fOggg∈G, so that
the rcorrgg0 term in Eq. (13) is negligible (CAA-4). Unlike
LMA, AMA entails non-negligible additional cost to
construct SðallÞ (fourth step of the AMA algorithm in
Table I), and hence the judicious tuning of NG and choice
of g ∈ G are important to reduce the computational cost.

III. NUMERICAL RESULTS

In this section we show the numerical comparison
between the standard method and AMA/LMA for the
hadron spectrum and the form factors of the nucleon using
realistic lattice QCD parameters.

A. Setup

We use the Nf ¼ 2þ 1 domain-wall fermion (DWF)
configurations generated by the RBC/UKQCD
Collaboration on a 243 × 64 lattice, with gauge coupling
β ¼ 2.13 for the Iwasaki gauge action [26]. The CG
algorithm with four-dimensional even-odd preconditioning
(see Appendix E) was used to compute quark propagators
at quark mass m ¼ 0.005 and 0.01, corresponding to 0.33
and 0.42 GeV pion masses, respectively, and the fifth
dimension size for DWF is Ls ¼ 16.
To calculate the eigenvectors of the Hermitian even-odd

preconditioned DWF operator, we implement the implicitly
restarted Lanczos algorithm with Chebychev polynomial
acceleration [27–30]. In Appendix D we describe the
detailed implementation. The degree of the Chebychev
polynomial in the Lanczos method is 100, and the
parameters ðα; βÞ ¼ ð0.04; 1.68Þ for m ¼ 0.005 and
ðα; βÞ ¼ ð0.025; 1.68Þ for m ¼ 0.01 are chosen to rapidly
converge the “wanted” part of the spectrum, here the
lowest few hundred modes [see Eqs. (D9) and (D11)].
In the implicitly restarted Lanczos method, we label Nλ

the number of wanted eigenvectors and p ¼ 40 the
number of unwanted vectors (see Appendix D). We
compute the exact low modes of Hermitian four-
dimensional (4D) even-odd preconditioned DWF Dirac
operator, H4Deo, to better than 10−10 numerical accuracy,
∥ðH4Deo − λkÞψk∥=∥ψk∥ < 10−10. In Table II we summa-
rize the parameters in the Lanczos method, the number of

0.60 0.2 0.4 0.8 1 1.2 1.4 1.6 1.8
λ

0

5

10

λ-1

f(x)=1/x
LMA
AMA

FIG. 1 (color online). Approximations for the spectral decom-
position of the quark propagator in LMA (circle-dashed line) and
AMA (cross-solid line). The x axis denotes the eigenvalue of the
Hermitian Dirac matrix. The circle symbol corresponds toOðLMAÞ

and the blue solid line corresponds to OðAMAÞ. The red solid line
shows the exact solution.

2We thank both M. Lüscher and S. Hashimoto who, inde-
pendently, pointed this out.
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gauge configurations Nconf in each ensemble, and the
number of low modes Nλ computed on each configuration.
In AMA/LMA, the set of transformations g ∈ G in

Eq. (7) are taken as translational symmetry. The estimator

OðappxÞ
G is obtained with NG ¼ 32 different source loca-

tions, separated by 12 sites for spatial directions and 16
sites for the temporal direction, starting from the origin, i.e.,
at positions (0, 0, 0, 0), (12, 0, 0, 0), (12, 12, 0, 0), …,
(12, 12, 12, 48) in lattice units. This setup is used for
measurements on configurations separated by 40 Hybrid
Monte Carlo trajectories. In addition, measurements are
made on a second set of configurations, also separated by
40 trajectories, but lying in between configurations of the
first set. On the second set, all source locations are shifted
by the lattice vector (6, 6, 6, 0) with respect to the original
functional O. In the CG, the norm of the residual vector is
defined as ∥H4Deox − b∥=∥b∥ with source vector b and
solution vector xCG (see also Table II). For the stopping
conditions for the exact CG and the relaxed CG we have
ε ¼ 10−8 and ε ¼ 0.003, respectively.3

We use gauge-invariant Gaussian smeared sources with
the same parameters as in Ref. [31] to compare the
performance of LMA and AMA. In [31], the authors
measured three- and two-point functions for four source
locations in the temporal direction to extract the nucleon
isovector form factors and axial charge, and thus 4 × Nconf
samples were accumulated. For m ¼ 0.005, quark sources
set on two time slices separated by 32 sites were used
(double source method) to efficiently double the statistics.
Reference [31] also employed nonrelativistic nucleon
sources (2 quark spins rather than 4) to reduce the
computational cost further, while in our case we use
relativistic sources. Therefore, in the analysis below, we
account for these two factors to ensure a fair comparison of
statistical errors.

B. Computational cost estimate

In order to compare the computational cost between the
standard method and LMA/AMA, we use the number of
applications of H2

4Deo (#Mult in Table III) to estimate total
costs in each case. In the standard method, the cost without
deflation is #MultCGðorgÞ times the number of color and spin
sources used per configuration,

CostðorgÞ ¼ #MultCGðorgÞ × 12 × Nconf : ð22Þ

On the other hand, when deflating the Dirac operator, the
cost is

Costw=deflðorgÞ ¼ ð#MultLanczos þ #MultdeflCGðorgÞ × 12Þ
× Nconf ; ð23Þ

where we add the cost of the Lanczos process to obtain the
low modes. We note that, based on wall-clock timing, the
time for multiplication of the Dirac operator dominates
the Lanczos step, and Gram-Schmidt reorthogonalization is
negligible due to the O(100) degree of the Dirac matrix
polynomial. Therefore, we use the number of multiplica-
tions of the polynomial of the Dirac operator as a good
representative of the computational cost.
In LMA, ignoring the small cost of constructing the

approximationOðLMAÞ andOðLMAÞ
G from the low modes, the

total cost is the same as Costw=deflðorgÞ,

TABLE I. LMA and AMA algorithms.

LMA algorithm AMA algorithm

1: Compute low modes ψk of H 1: If λNλ
≠ 0; Nλ > 0 Compute low modes ψk of H

2: Set source vector b and G-invariant initial guess x0
3: Compute accurate xCG and O½S� precisely [use deflation method in Eqs. (20) and (21) if ψk exits]
4: Compute SðlowÞb in (16) and OðLMAÞ ¼ O½SðlowÞ� 4: Compute SðallÞb in (18) and OðAMAÞ ¼ O½SðlowÞ� using

deflated CG (if λNλ
≠ 0)

5: OðrestÞ ¼ O½S� −O½SðlowÞ� 5: OðrestÞ ¼ O½S� −O½SðallÞ�;
6: Set shifted source bg and G-invariant initial guess xg0
7: Average OðLMAÞ

G ¼ O½SðlowÞ� over g ∈ G to get OðLMAÞ
G 7: Average OðAMAÞ

G ¼ O½SðallÞ� over g ∈ G to get OðAMAÞ
G

8: OðimpÞ ¼ OðrestÞ þOðappxÞ
G

TABLE II. Parameters of LMA/AMA in each ensemble. ðα; βÞ
is the input range of Chebychev polynomial in the Lanczos
method with Nλ wanted and 40 unwanted eigenmodes. We
present the absolute value of the minimum eigenvalue as jλ1j
and Nλth eigenvalue jλNλ

j up to the first significant figure in each
ensemble. “#Restart” column shows the range of numbers of
restarted Lanczos iterations.

m Nconf Nλ ðα; βÞ jλ1j jλNλ
j #Restart

0.005 398 400 (0.04, 1.68) 0.004 0.04 5–6
0.01 348 180 (0.025, 1.68) 0.006 0.02 5–6

3Note that when using an even-odd basis, one needs to choose
the four-dimensional shift vector of the source point to avoid
breaking CAA-3. Shifts that end on an even (odd) point for even
(odd) sites are sufficient.
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CostðLMAÞ ¼ Costw=deflðorgÞ: ð24Þ

In AMA, there are three parts to the total cost, the
eigenvector computation, the exact CG solve, and NG
relaxed CG solves, so the total cost reads

CostðAMAÞ
¼ ð#MultLanczos þ ð#MultdeflCGðorgÞ þ #MultdeflCGðAMAÞ

× NGÞ × 12Þ × Nconf : ð25Þ

In the following section, to compare costs of LMA/AMA
to the standard method, we define the cost ratio multiplied
with the squares of statistical error ratio to obtain a
normalized cost, i.e., one that reflects the cost to achieve
the same error,

rw=odeflCost ¼ CostðLMA=AMAÞ
CostðorgÞ r2Error; ð26Þ

rw=deflCost ¼ CostðLMA=AMAÞ
Costw=deflðorgÞ

r2Error; ð27Þ

rError ¼
ErrorðLMA=AMAÞ

ErrorðorgÞ : ð28Þ

C. Hadron spectrum

First we show results for hadron propagators obtained by
using the standard method and LMA/AMAwith parameters
given in the previous section. Figure 2 shows that the error
reduction achieved with AMA is close to the ideal rate,
1=

ffiffiffiffiffiffiffi
NG

p ≃ 0.18 for nucleon, pion, and vector propagators,
for source-sink separations t ¼ 4, 8, and 12 (nucleon and
vector), and t ¼ 4, 20, and 25 (pion), while LMA does not
work well at short distance (t ¼ 4) except for the pion.
Since low modes dominate the pion propagator, LMA and
AMA show similar error reduction. For AMA we see that

OðimpÞ is close in value to OðappxÞ
G , while in LMA the

difference is much larger, especially for short distances
(except for the pion propagator). It turns out that AMA
provides a good approximation to the original and clearly
shows that AMA can reduce statistical errors for both long
and short distances by approximating the quark propagator
with fεðHÞ obtained with the relaxed CG for the high part
of the Dirac spectrum.
In Fig. 3, we plot rcorrgg0 against the distance between

source locations on a given time slice and Rcorr for zero
momentum nucleon, pion, and vector meson propagators.
These quantities are important for choosing NG and the

TABLE III. The number of multiplications of kernel H2
4Deo.

“#MultLanczos” is its number in 5 restarting Lanczos processes. We
also show the range of #Mult with and without the deflation
method for exact calculation (#MultdeflCGðorgÞ, #MultCGðorgÞ) and
approximation in AMA (#MultdeflCGðAMAÞ) using the low mode of
H2

4Deo.

m #MultLanczos #MultCGðorgÞ #MultdeflCGðorgÞ #MultdeflCGðAMAÞ

0.005 64K 3K 350–360 70–90
0.01 42K 2K 600–630 90–130
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FIG. 2 (color online). The propagator of nucleon (top), pion (middle), and vector meson (bottom) at time separation t ¼ 4, 8, 12 for
nucleon and vector meson, and t ¼ 4, 20, 25 for pion. We show the values of these propagators used in original, LMA, and AMA. The

filled symbols are results of the improved estimator OðimpÞ and open symbols are results of the averaged approximation OðappxÞ
G . The bar

in AMA/LMA shows the ratio of the relative error with the original one. This value corresponds to the right-perpendicular axis. The
horizontal bar shows the ideal ratio of relative error 1=

ffiffiffiffiffi
32

p ≃ 0.18 in the case of no correlation between spatial source locations.
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FIG. 4 (color online). The effective mass plot of nucleon propagator (top) and its parity partner (bottom) with smeared source and
point sink using original (left panel), LMA (middle panel), and AMA (right panel) atm ¼ 0.005. The cross symbols show the magnitude
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transformations g ∈ G to efficiently implement CAA as
explained in Sec. II. One sees that at the smallest separation
from the origin [in which the source location is (12, 0, 0, 0),
(0, 12, 0, 0), and (0, 0, 12, 0)] there is significant correlation
compared to the case of large separation. This behavior
becomes apparent when the hadron propagates far away
from the source location (large t). Comparing the different
masses, especially for the pion propagator, rcorrgg0 is larger for
lighter mass. For the nucleon and vector meson propagators
Rcorr, which is the sum of rcorrgg0 divided by N2

G, is relatively
small compared to 1=NG ≃ 0.031 in Eq. (13), and therefore
in our setting of g ∈ G the reduction of statistical error is
close to the ideal ratio, 1=

ffiffiffiffiffiffiffi
NG

p ≃ 0.18. We notice that for
the pion propagator Rcorr is relatively large since rcorrgg0

increases when the pion propagates a large distance. More
details will be discussed below.
In Figs. 4 and 5, we plot the effective mass of several

hadron channels together with 2Δr and Rcorr defined in
Eqs. (11) and (14). As previously discussed, an approxi-
mation having strong correlation with O has small 2Δr. In
the case of AMA the effective mass for both the nucleon
and vector mesons is improved over LMA, especially for t
less than 15 where 2Δr is less than 0.1%. On the other
hand, Rcorr of AMA within the fitting region is similar to
Rcorr of LMA, and it is less than 20% of 1=NG for the

nucleon (and its parity partner N�, which is given by the
negative parity projection for the nucleon two point
function) and the vector meson. (More detailed discussion
and recent lattice study refers to, for example, [32,33] and
references therein.) Thus the two contributions in Eq. (13),
2Δr and Rcorr, are negligible compared to 1=

ffiffiffiffiffiffiffi
NG

p
, and

therefore the error reduction of these hadron masses is close
to 1=

ffiffiffiffiffiffiffi
NG

p
in AMA (see Table IV). However, for the pion

propagator, we observe that 2Δr in AMA at below t ¼ 5 is
much smaller than LMA; otherwise at t > 5 both cases
become similarly tiny as seen in Fig. 5. On the other hand,
Rcorr of the pion propagator is similar between LMA and
AMA, with magnitude around 40%–90% of 1=NG. As the
consequence the error reduction of AMA for pion propa-
gator and pion mass is similar in magnitude with LMA in a
region where the pion ground state dominates. We note that
the relatively large correlation between different source
locations for the pion propagator may result in a slightly
smaller error reduction of the pion mass (see the “mπ” row
in Table IV).
In Tables IV and V we compare the fit results of hadron

masses and scaled costs of LMA/AMA to achieve the
same statistical error of the standard method. Here we use
the chi-squared fitting with a single exponential function
including the correlation in the temporal direction. χ2=dof
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FIG. 5 (color online). Similar plot to Fig. 4 of the effective mass of pion (top) and vector meson (bottom).
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is between 0.6 and 3 using the fitting range as shown in
Tables IV and V. The quantity rCost defined in Eqs. (27)
and (26) indicates the computational cost compared to the
standard method, with and without deflation, respectively.
Comparing costs for masses of the nucleon,N�, and vector
mesons with LMA and AMA, one sees that error reduc-
tion in AMA is much larger than from LMA at both m ¼
0.005 and m ¼ 0.01. AMA has a cost reduction for those
observables of about 5 to 20 times larger compared to the
standard method and LMA. It can easily be understood by
looking at rError of those hadron masses in AMAwhich is
close to the ideal ratio (1=

ffiffiffiffiffiffiffi
NG

p ≃ 0.18), and the con-
struction cost of OðappxÞ is much cheaper than the original
one. In particular, for the N�, the gain from AMA
compared to LMA is even more dramatic. Actually, in

LMA, the Δr term dominates the total error in Eq. (14),
and it turns out that error reduction by LMA is limited toffiffiffiffiffiffiffiffi
2Δr

p
even if NG is increased to NG ¼ V, as is usually

done. Improvement for heavy mesons and baryons would
also be interesting work.
Considering the multiple-source method with deflation,

statistics are increased by averaging over hadron propa-
gators with Nsrc different source locations. In such a case,
the original cost is given by the CG cost times Nsrc plus the
cost of generating eigenvectors,

Costw=deflðmultisourceÞ
¼ ð#MultdeflCGðorgÞ × 12 × Nsrc þ #MultLanczosÞ × Nconf :

ð29Þ

TABLE IV. The comparison of hadron mass (nucleon with momenta, pion, vector meson, and parity partner of nucleon) in GeV units
obtained by the global fit of the correlator (point sink and gauge-invariant Gaussian smeared source) in the AMA/LMA method with
NG ¼ 32. For reference we show the result with the correlator in a single source location. “Cost” column shows the ratio of the
computational cost of AMA/LMA and the original one after scaling to the same accuracy. We also compare the cost with and without the
deflation method in the original calculation using the number of low mode presented in Table II.

m ¼ 0.005

Org LMA rError rw=o deflCost rw=deflCost
AMA rError rw=o deflCost rw=deflCost

Fit: [7, 12]
mN 1.1322(156) 1.1520(78) 0.50 0.48 0.25 1.1519(27) 0.17 0.08 0.04
ENðn2p ¼ 1Þ 1.2072(172) 1.2349(82) 0.48 0.43 0.23 1.2393(30) 0.18 0.09 0.04
ENðn2p ¼ 2Þ 1.3095(232) 1.3171(96) 0.42 0.33 0.17 1.3229(39) 0.17 0.08 0.04
ENðn2p ¼ 3Þ 1.3723(436) 1.3941(135) 0.31 0.18 0.10 1.4010(55) 0.13 0.05 0.02
ENðn2p ¼ 4Þ 1.5205(627) 1.4638(192) 0.31 0.18 0.09 1.4726(88) 0.14 0.05 0.03
Fit: [5, 8]
mN� 1.757(81) 1.671(61) 0.75 1.07 0.56 1.675(11) 0.15 0.06 0.03
Fit: [16, 27]
mπ 0.3291(12) 0.3290(4) 0.37 0.27 0.14 0.3291(4) 0.36 0.36 0.19
Fit: [8, 15]
mV 0.8621(176) 0.8746(58) 0.33 0.21 0.11 0.8738(34) 0.20 0.11 0.06

TABLE V. Same as shown in Table IV at m ¼ 0.01.

m ¼ 0.01

Org LMA rError rw=o deflCost rw=deflCost
AMA rError rw=o deflCost rw=deflCost

Fit: [7, 12]
mN 1.2279(127) 1.2234(63) 0.50 0.51 0.25 1.2422(24) 0.19 0.14 0.07
ENðn2p ¼ 1Þ 1.2877(156) 1.2992(76) 0.49 0.49 0.24 1.3222(27) 0.17 0.12 0.06
ENðn2p ¼ 2Þ 1.3438(207) 1.3682(97) 0.47 0.46 0.22 1.3981(32) 0.16 0.09 0.05
ENðn2p ¼ 3Þ 1.3695(289) 1.4256(145) 0.50 0.52 0.25 1.4677(45) 0.16 0.09 0.05
ENðn2p ¼ 4Þ 1.4661(437) 1.4944(206) 0.47 0.46 0.22 1.5379(63) 0.15 0.08 0.04
Fit: [5, 8]
mN� 1.800(49) 1.659(69) 1.40 4.02 1.95 1.787(11) 0.23 0.20 0.10
Fit: [15, 26]
mπ 0.4169(10) 0.4195(11) 1.08 2.41 1.17 0.4187(4) 0.47 0.83 0.40
Fit: [8, 15]
mV 0.9185(124) 0.9228(67) 0.55 0.62 0.30 0.9198(29) 0.24 0.22 0.11
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Assuming that there is no correlation between different
source locations, we can set Nsrc ¼ NG, so the reduction of
computational cost is

rCostðmultisourceÞ ¼ CostðAMAÞ
Costw=deflðmultisourceÞ

≃ 0.49ðm ¼ 0.005Þ;
≃ 0.33ðm ¼ 0.01Þ: ð30Þ

The computational cost advantage of AMA is cut in half
compared to the case with no deflation. However, this
relative cost will decrease again if additional propagators
are computed, for instance, for three-point functions (see
next section), or if the lattice size is increased and more
source translations are used.
In the case of the pion, comparing rError in LMA between

m ¼ 0.005 and m ¼ 0.01, we find Δr at m ¼ 0.01 is much
larger than at m ¼ 0.005. This is due to less dominance of
the low modes and the use of fewer low modes in our setup
at m ¼ 0.01: the approximation is worse as seen in Figs. 5
and 6. Using AMA, thanks to the relaxed CG, the
approximation is improved. We also notice that rError for
the pion mass is about 1.5 times larger than for the pion
propagator (see Fig. 2 and Table IV). This is due to the
relatively large value of Rcorr for a pion propagator above
t ¼ 16. This observation is confirmed if we extend the
distance between OðappxÞg and OðappxÞg0 . For example, using
source shifts only in the temporal direction (source

separation in the temporal direction is longer than in the
spatial direction), NG ¼ 4, rError of the pion mass is similar
to the ideal, 1=

ffiffiffiffiffiffiffi
NG

p ¼ 0.5, as shown in Table VI. It turns
out that for the pion the correlation Rcorr is relatively
significant in the error reduction rate.

D. Nucleon form factors

In this section we apply AMA to nucleon three-point
functions which have a more complicated structure in terms
of quark propagators. We carry out the measurement of
three-point functions [(nucleon)-(operator)-(nucleon)]
where the operators are vector (Vμ) or axial-vector (Aμ)
currents, and we evaluate the axial-charge and isovector
form factors defined from the matrix elements,

hN1ðp1; sÞjVa
μjN0ðp0; sÞi

¼ ūN1
ðp1; sÞ

�
γμFa

1ðq2Þ þ
σμνqν
2mN

Fa
2ðq2Þ

�
uN0

ðp0; sÞ;

ð31Þ

hN1ðp1; sÞjAa
μjN0ðp0; sÞi

¼ ūN1
ðp1; sÞ½γμγ5Fa

Aðq2Þ þ iqμγ5Fa
2ðq2Þ�uN0

ðp0; sÞ;
ð32Þ

with momenta ~p0 and ~p1 of on-shell nucleon states N0 and
N1, respectively, with spin s. The superscript “a” is an SU
(2) flavor index referring to either isovector or isoscalar
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FIG. 6 (color online). The effective mass plot of the pion at m ¼ 0.01, and 2Δr and Rcorr of the pion propagator as in Fig. 5.

TABLE VI. Pion and vector meson mass as shown in Table IV at m ¼ 0.005 and NG ¼ 4.

m ¼ 0.005

LMA rError rw=o deflCost rw=deflCost
AMA rError rw=o deflCost rw=deflCost

Fit: [15, 26]
mπ 0.3286(6) 0.52 0.52 0.27 0.3287(6) 0.51 0.53 0.28
Fit: [8, 15]
mV 0.8840(94) 0.54 0.55 0.29 0.8801(83) 0.47 0.45 0.23
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components. Below we study matrix elements of the
isovector currents (a ¼ þ). Fa

1 and Fa
2 are obtained from

the Sachs form factors,

GEðq2Þ ¼ Fa
1ðq2Þ −

q2

4m2
N
Fa
2ðq2Þ;

GMðq2Þ ¼ Fa
1ðq2Þ þ Fa

2ðq2Þ: ð33Þ

The isovector form factor Fþ
A ðq2Þ at zero momentum

transfer is known as the axial charge of the nucleon,
gA ¼ Fþ

A ð0Þ, which is an important quantity governing
neutron β decay.
To obtain the form factors, we construct ratios of three-

point correlation functions, CN
Jμ
, and nucleon two-point

functions, CN
G;L, as

RJμðt1;t;t0jp1;p0Þ

¼K
CN
Jμ
ð~q;tÞ

CN
Gðt1− t0;0Þ

×
�
CN
L ðt1− t; ~qÞCN

Gðt− t0;0ÞCN
L ðt1− t0;0Þ

CN
L ðt1− t;0ÞCN

Gðt− t0; ~qÞCN
L ðt1− t0; ~qÞ

�
1=2

ð34Þ

with K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEN þmNÞ=EN

p
, where CN

L is with the
point-sink and gauge-invariant Gaussian smeared source,
and CN

G is with the gauge-invariant Gaussian smeared
source and sink. t0; t1 denote the temporal location of the
initial and final states of nucleon which are fixed, and t is
the temporal location of the operator which moves
between t0 and t1. The momentum transfer is defined
as q ¼ p0 − p1, and in our setup we use p0 ¼ ðEN; ~pÞ
and p1 ¼ ðmN; 0Þ with ~p ¼ ðpx; py; pzÞ ¼ 2π~np=L,
~n2p ¼ 0;…; 4. In order to extract the form factors of
the ground state nucleon from RJμ we use the spin-
projection matrix P4 ¼ ð1þ γ4Þ=2, and P5z ¼ P4γ5γ3, as
in [31]. For the vector case,

lim
t1−t;t−t0≫1

tr½P5zðRV1
þ RV2

Þ�ðt1; t; t0jp1; p0Þ

¼ −ipx þ ipy

mN
GMðq2Þ; ð35Þ

lim
t1−t;t−t0≫1

tr½P4RV4
�ðt1; t; t0jp1; p0Þ ¼

EN þmN

mN
GEðq2Þ;

ð36Þ

and for the axial vector,

lim
t1−t;t−t0≫1

tr½P5zðRA1
þ RA2

Þ�ðt1; t; t0jp1; p0Þ

¼ −
ðpx þ pyÞpz

mN
FPðq2Þ; ð37Þ

lim
t1−t;t−t0≫1

tr½P5zRA3
�ðt1; t; t0jp1; p0Þ

¼ 1

mN
½mNFAðq2Þ − p2

zFPðq2Þ�; ð38Þ

after taking t1 ≫ t ≫ t0 to project on the nucleon ground
state. In the above derivation we use the normalization
for Dirac spinors,

P
sūNðp; sÞuNðp; sÞ ¼ 2mN . The para-

meters of the gauge-invariant Gaussian smeared source
sink are the same as in [31], and t0 ¼ 0, t1 ¼ 12. In this
calculation we employ the local currents Va

μ ¼ q̄γμτaq
and Aa

μ ¼ q̄γμγ5τaq where τa is flavor SU(2) generator
normalized as trτaτb ¼ δab, and hence we multiply matrix
elements of the currents by the renormalization constant
ZV ¼ 0.7178, determined nonperturbatively [26].
We compare the axial charge and isovector form factor at

each momentum between the standard method and LMA or
AMA. Figure 7 shows gA for two different masses. A
ground state plateau is clearly observed for 4 ≤ t ≤ 8 for
both masses. Comparing the contribution of Δr and Rcorr in
LMA and AMA, one sees thatΔr in AMA is much smaller,
and the quality of the approximation is significantly
enhanced. In cost estimates of the three-point functions,
we compute “polarized” and “unpolarized” matrix ele-
ments for both up-type and down-type contractions which
is an additional cost factor of four quark propagators. As
shown in Tables VII and VIII, AMA achieves error
reductions in GA, F

þ
1 , and Fþ

2 close to 1=
ffiffiffiffiffiffiffi
NG

p
with 5–

20 times smaller computational cost than the standard
method or LMA. Comparing the results for AMA at the
two masses m ¼ 0.005 and m ¼ 0.01, the error reduction
compared to the standard method is significant for both,
despite having fewer eigenvectors for the latter. The cost
ratios, comparing to the multisource method with
Nsrc ¼ NG, are

rCostðmultisourceÞ≃ 0.32ðm ¼ 0.005Þ;
≃ 0.24ðm ¼ 0.01Þ; ð39Þ

in which we have gains greater than factors of 3 and 4 for
AMA. We also note that not only have the statistical errors
decreased dramatically, but the plateaus are much more
readily observed for AMA.

IV. FUTURE EXTENSION

This paper has shown numerical tests of AMA using the
relaxed CG as the approximation, but there are many other
examples of OðappxÞ. One idea is to employ improved DWF
actions, e.g., Möbius-type [34] or Borici-type [35,36],
which are extensions of DWF allowing smaller Ls without
enhancing chiral symmetry breaking, in addition to the
relaxed CG solver. Such improvements have other benefits
like the reduction of memory or disk-storage size of
eigenvector data stored on the disk.
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We test the above strategy on another DWF ensemble
generated by the RBC/UKQCD Collaboration [37], with
larger lattice size (323 × 64) and Ls ¼ 32, and smaller pion
mass, mπ ≈ 170 MeV. For the approximation we take a
Möbius-type DWF Dirac operator with Ls ¼ 16. We use
1000 low modes, computed with a 200 degree Chebychev
polynomial, and then only 2 restarts of the Lanczos
procedure are needed. In this case, the computational cost
ratio reads

CostðAMAÞ ¼ ð#MultLanczos × 0.6þ ð#MultdeflCGðorgÞ

þ #MultdeflCGðAMAÞ × 0.6NGÞ× 12Þ×Nconf ;

ð40Þ

where the factor 0.6 arises from the fact that there is an
additional 20% cost for the multiplication with the Möbius-
type Dirac operator compared to a DWF operator with the
same Ls length together with the having of the cost due to
using Ls=2 for the Möbius-type Dirac operator, i.e.,
1.2=2 ¼ 0.6. The axial charge is shown in Fig. 8. One
sees that there is a clear plateau between 3 and 6, where we
set the source and sink operator at time slice 0 and 9,
respectively, and around the plateau the correlation Δr has
a similar order as for them ¼ 0.01, 243 × 64 case discussed
in the last section. In Tables IX and X we summarize
hadron masses and the axial charge for both the standard
method and AMA. From those tables, the ratio of errors is
close to the ideal one, 1=

ffiffiffiffiffiffiffiffi
112

p ≃ 0.094, and thus OðappxÞ is
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FIG. 7 (color online). Time-slice dependence of axial-charge GA in m ¼ 0.005 (top) and m ¼ 0.01 (bottom) with standard method
(left), LMA (middle) and AMA (right). The cross symbols and star symbols denote 2Δr and Rcorr for the three-point function in Eq. (34).
The colored band is the constant fitting result in this range.

TABLE VII. Axial charge GA with standard method, LMA, and AMA in m ¼ 0.005 and m ¼ 0.01.

GA Org LMA rError rw=o deflCost rw=deflCost
AMA rError rw=o deflCost rw=deflCost

Fit: [4, 8]
m ¼ 0.005 1.235(124) 1.263(60) 0.48 0.11 0.23 1.188(22) 0.18 0.04 0.09
m ¼ 0.01 1.259(80) 1.197(58) 0.73 0.35 0.53 1.170(17) 0.21 0.11 0.17
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still a good approximation to the original even though we
use Möbius-type DWF. AMA reduces the computational
cost by 10 to 30 times in this case.
Still other approximations are possible. For instance, the

inexactly deflated CG, using the EigCG algorithm [38]
with low precision, is adopted as OðappxÞ. This uses low-
precision eigenmodes as well as deflation, and will be
beneficial for long-distance observables corresponding to
pion and kaon physics. Especially for large lattice sizes,
since there are many available source locations, it is
possible to reduce the size of gauge ensembles while still
maintaining statistical precision. Furthermore we also note
that in [19] the hopping parameter expansion for the inverse
of the Dirac matrix is used as the approximation OðappxÞ.
These are a few of the new directions to pursue high
precision calculations without additional computational
cost in a Monte Carlo simulation (however, a careful
analysis of autocorrelation times is necessary).

V. DISCUSSION AND SUMMARY

As shown in the previous section, AMA is a powerful
tool for the precise measurement of observables obtained
from correlation functions in Monte Carlo simulations.

Defining the improved estimator OðimpÞ using the approxi-
mationOðappxÞ, which has the same covariance properties as
the original O but a much smaller construction cost, OðimpÞ

has smaller statistical errors without additional computa-
tional cost. In this paper we employ the relaxed CG with
deflation to produce the approximation. Since the computa-
tional cost of the approximation using the relaxed CG is
much less than the original one, the observables needing
many quark propagators with the CG solve of the Dirac
matrix benefit accordingly from the AMA method.
Figures 9, 10, and 11 show the ratio of computational
costs for AMA. One sees that, compared to the propagator,
the cost of the CG solves for the nucleon form factor
dominates the total cost. This is because 4 extra CG solves
are necessary to construct the three-point functions.
Figure 12 shows the summary of the reduction rate of
computational cost for LMA and AMA as in Tables IV, V,
VII, IX, and X. The computational cost of GA in AMA is
reduced more than the two-point function, and also AMA
has an advantage of more than 7 times speed-up for
computation of two- and three-point functions compared
to the traditional method. We also notice that, for 323 × 64

lattice size and DSDR gauge action (“32cID”), there is

TABLE VIII. Fþ
1 and Fþ

2 with standard method, LMA, and AMA in m ¼ 0.01.

Org LMA rError rw=o deflCost rw=deflCost
AMA rError rw=o deflCost rw=deflCost

Fit: [4, 8]
Fþ
1 ðn2p ¼ 1Þ 0.849(53) 0.860(52) 0.99 0.64 0.97 0.799(10) 0.20 0.10 0.15

Fþ
1 ðn2p ¼ 2Þ 0.695(50) 0.730(47) 0.95 0.60 0.91 0.678(10) 0.20 0.10 0.15

Fþ
1 ðn2p ¼ 3Þ 0.493(57) 0.618(47) 0.82 0.45 0.68 0.583(11) 0.21 0.10 0.16

Fþ
1 ðn2p ¼ 4Þ 0.406(50) 0.524(49) 0.97 0.62 0.94 0.555(17) 0.35 0.30 0.45

Fþ
2 ðn2p ¼ 1Þ 2.61(26) 2.35(17) 0.66 0.28 0.43 2.37(5) 0.19 0.09 0.13

Fþ
2 ðn2p ¼ 2Þ 1.88(22) 1.91(14) 0.66 0.29 0.44 1.85(4) 0.19 0.09 0.13

Fþ
2 ðn2p ¼ 3Þ 1.52(16) 1.62(13) 0.82 0.44 0.67 1.52(4) 0.25 0.15 0.23

Fþ
2 ðn2p ¼ 4Þ 1.12(15) 1.17(13) 0.86 0.49 0.74 1.32(5) 0.35 0.29 0.44
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FIG. 8 (color online). The nucleon effective mass plot and the axial charge, as shown in Fig. 7, at m ¼ 0.001 with Iwasakiþ DSDR
action in 323 × 64 lattice.
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more than 10 times reduction of rw=o deflCost . by employing the
Möbius operator in the approximation. There are also
realistic DWF simulations at the physical quark mass point
with 5.5 fm volume with two lattice spacings, which
employed AMA [39]. It turns out that AMA also works
well for an approximation which is made from a different
action than the original one. As shown in Fig. 11, the
computational cost of a precise CG solve with DWF is still
large, in fact, 29% for the propagator and 46% for the form
factor, since we did not use the deflation method in the
original one. Further cost reduction by applying the
modified deflation method in CG with Möbius DWF
eigenmodes is currently under way [40].

We comment on the relation of the approximation with
the low-mode distribution of the Dirac operator. As in
Eqs. (18) and (19), the deflation with low modes increases
the quality of the approximation since these are treated
exactly in the inverse of the Dirac operator. However, in this
case there appears the additional computational cost of the
eigenvectors. So in AMA we need to find the appropriate

TABLE X. Result of GA in DSDR lattice in m ¼ 0.001.

Org AMA rError rw=o deflCost

Fit: [3, 6]
GA 1.401(275) 1.135(42) 0.15 0.05

TABLE IX. Result of hadron mass in the DSDR lattice in
m ¼ 0.001.

Org AMA rError rw=o deflCost

Fit: [6, 9]
mN 0.9625(538) 0.9822(57) 0.11 0.04
ENðn2p ¼ 1Þ 0.9759(524) 1.0201(59) 0.11 0.04
ENðn2p ¼ 2Þ 1.0090(515) 1.0568(65) 0.13 0.06
ENðn2p ¼ 3Þ 1.0466(509) 1.0900(74) 0.15 0.08
ENðn2p ¼ 4Þ 1.0035(544) 1.1268(84) 0.16 0.08
Fit: [4, 7]
mN 1.445(258) 1.430(24) 0.09 0.03
Fit: [8, 21]
mπ 0.1694(21) 0.1712(3) 0.18 0.11
Fit: [6, 10]
mV 0.8502(821) 0.7414(77) 0.09 0.03
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FIG. 9 (color online). The rate of computational cost of AMA
for the hadron propagator (left) and three-point function of the
form factor (right) at m ¼ 0.005. This is in the case of 400
eigenmodes computation and the use of 32 source locations for
relaxed CG (ε ¼ 0.003) in AMA.
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FIG. 10 (color online). Same as Fig. 9 at m ¼ 0.01. This is in
the case of 180 eigenmodes computation and the use of 32 source
locations for relaxed CG (ε ¼ 0.003) in AMA.
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FIG. 11 (color online). Same as Fig. 9 for the 323 × 64 × 32
DSDR lattice. This is in the case of 1000 eigenmodes compu-
tation and the use of 112 source locations for relaxed CG with
Möbius DWF kernel in AMA.
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value of Nλ by considering a balance between additional
eigenmode cost and benefit for deflation. In the DWF case,
the benefit of deflation in a strange quark mass regime is
much less than in a light quark mass regime. As shown in
Fig. 13, one sees that the lowest eigenvalue of the strange
quark Dirac operator has a similar magnitude as in the
Nλ ¼ 180 point in both m ¼ 0.005 and m ¼ 0.01. It turns
out that the approximation for the strange quark without
deflation has a similar gain as in the light quark mass with
Nλ ¼ 180. We know that AMAwithNλ ¼ 180 inm ¼ 0.01
has a certain cost reduction for two- and three-point
functions, and thus, at the strange quark mass, AMA
without low-mode deflation also has an advantage.
AMA is an example of a new class of CAA which

reduces the statistical error on correlation functions in
Monte Carlo simulations in an efficient way. Although
AMA is similar to LMA, we have shown that it works not
only for low-mode dominated observables (associated with
the pion) but also for a broad range of observables
involving baryons and other mesons by taking account
of contributions from all modes of the Dirac operator. In
AMAwe have used the CG inverter with a relaxed stopping
criterion as the approximation, and we numerically tested
this method in lattice QCD with Nf ¼ 2þ 1 dynamical
DWF on lattice sizes of 243 × 64 and Ls ¼ 16 and inverse
spacing a−1 ¼ 1.73 GeV. Our tests correspond to pions
with masses in the range 300 to 500 MeV. Using AMA, we
have shown reductions of computational cost of more than
5 times compared to the standard method for nucleon and
vector meson masses, the axial charge and isovector form
factors of the nucleon. These results suggest interesting
applications to observables having long-standing hurdles of
large statistical noise to precise measurements, e.g., the
neutron electric dipole moment, muon anomalous magnetic
moment, and proton decay matrix elements [41]. The
application of AMA to all of these is now under way.
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APPENDIX A: STANDARD DEVIATION
OF THE IMPROVED ESTIMATOR

The standard deviation of the improved estimator in (8)
is given as

σðimpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔOðimpÞÞ2i

q
: ðA1Þ

Here we express the correlation between O, OðappxÞ, and
OðappxÞg as

rg ¼
hΔOΔOðappxÞgi

σσðappxÞg

; ðA2Þ

rcorrg ¼ hΔOðappxÞΔOðappxÞgi
σðappxÞσðappxÞg

; ðA3Þ

rcorrgg0 ¼ hΔOðappxÞgΔOðappxÞg0 i
σðappxÞg σðappxÞg0

; ðA4Þ

where, if g is the unit transformation I, we have rI ¼ r and
rcorrIg0 ¼ rcorrg0 . Substituting (A2), (A3), and (A4) into (7) and
(8), we have

σðimpÞ ¼
�
σ2 − 2rσðappxÞσ þ σðappxÞ2

þ 2

NG

X
g

σðappxÞg ðrgσ − rcorrg σðappxÞÞ

þ 1

N2
G

�X
g

σappx2g þ
X
g≠g0

σðappxÞg σðappxÞg0 rcorrgg0

��
1=2

:

ðA5Þ
Assuming that the standard deviation of O is equivalent
with OðappxÞ,
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FIG. 13 (color online). Distribution of positive low-lying
eigenvalue at the light quark mass m ¼ 0.005, 0.01 and the
strange quark mass m ¼ ms ¼ 0.04. The dashed line shows the
lowest eigenvalue for the strange quark mass.
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σðappxÞ ≃ σðappxÞg ≃ σ; ðA6Þ

we have

σðimpÞ ≃ σ

�
2ð1 − rÞ þ 2

NG

X
g

ðrg − rcorrg Þ

þ 1

N2
G

�
NG þ

X
g≠g0

rcorrgg0

��
1=2

: ðA7Þ

Furthermore if the correlation between OðappxÞ and OðappxÞg
is negligibly small,

rcorrg ≃ 0; rcorrgg0 ≃ 0; rg ≃ 0 ðA8Þ

(the last one assumes the correlation between OðappxÞg and
O is small), we have

σðimpÞ ≃ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − rÞ þ 2r − 1

NG

s
: ðA9Þ

APPENDIX B: NOTE ON POSSIBLE BIAS DUE
TO ROUND-OFF ERROR

In this section, we address the possible appearance of
bias due to the round-off error for finite machine precision.
Although the AMA estimator does not have any bias if the
exact arithmetic is carried out, it is important to notice
whether a significant breaking of covariant symmetry by
round-off error appears. We strongly advise that, in
practice, one should explicitly check that the size of the
bias is negligible on a few configurations as is done below
(Fig. 16), or follow the method in Appendix C to remove
the bias completely.
There are two possible sources. One is, only when a

fixed norm of the residual vector in the CG is used as the
stopping condition in the approximation part of the
improved estimator, the difference of CG iteration rarely
occurring in a verge of stopping condition because of
inexact arithmetic of residual vector-norm computation.
Second is round-off error accumulating in the iterative
solver algorithm at the arithmetic step of multiplication of
vector-vector and vector-matrix. In our numerical study,
however, we show it does not appear even in sub-%
precision.
Here the bias is defined as the violation of the

equivalence Eq. (3),

hOg½U�i ¼ hO½Ug�i þ δO; ðB1Þ

where δO ≠ 0 indicates the amount of systematic error. This
is a consequence of the breaking of covariance in Eq. (4),

Og½U� ≠ O½Ug�: ðB2Þ

This breaking may not be negligible when a very crude
approximation is employed, or accumulation of machine
epsilon is somehow enhanced under weak circumstances
for the round-off effect.

1. Threshold error in fixed stopping condition
for residual vector

In the following, we show the first example of bias effect
and numerical check. This is only the most obvious place
where small differences due to the finite precision matters.
When we use the CG for the construction of fε in the
second term of Eq. (18), the accuracy of f is measured by
using the residual vector r defined as the difference
between the source vector and matrix H times the approxi-
mation vector f, r ¼ b −Hf. Its norm corresponds to the
accuracy of f, fε, and it is given as the sum over lattice
sites,

∥rjj2 ¼
X
x

r†ðxÞrðxÞ ¼ r†ðx1Þrðx1Þ þ r†ðx2Þrðx2Þ þ � � �

þ r†ðxVÞrðxVÞ: ðB3Þ

We notice that the above norm is slightly different from the
one resulting if the right-hand side of Eq. (B2) is computed
instead, due to the order of arithmetic,

∥rgjj2 ¼
X
x¼xg

r†ðxÞrðxÞ

¼ r†ðx1 þ δÞrðx1 þ δÞ þ r†ðx2 þ δÞrðx2 þ δÞ þ � � �
þ r†ðxV þ δÞrðxV þ δÞ

≠ jjrjj2; ðB4Þ

where g denotes the transformation for xg ¼ xþ δ with
constant shift vector δ. When the stopping condition ε used
in AMA falls between ∥rg∥ and ∥r∥, the number of CG
iterations is different,

NCGð∥r∥Þ ≠ NCGð∥rg∥Þ; ðB5Þ

which leads to the breaking of Eq. (B2). This discrepancy
affects Eq. (19),

fεðH½U�ðx; yÞÞ ¼
XNCGð∥r∥Þ

k¼1

ck½U�ðH½U�Þkðx; yÞ; ðB6Þ

where NCGð∥r∥Þ, the number of CG iterations when the
fixed stopping condition of the norm of the residual vector
is used. ck½U� is a coefficient implicitly determined by the
CG procedure. Because of Eq. (B5), the discrepancy of the
CG part under the transformation g arises as
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fεðH½U�ðxg; ygÞÞ ¼
XNCGð∥r∥Þ

k¼1

ck½U�Hk½U�ðxg; ygÞ

¼
XNCGð∥rg∥Þ

k¼1

ck½Ug�Hk½Ug�ðx; yÞ

þ Δf ¼ fεðH½Ug�ðx; yÞÞ þ Δf ðB7Þ

[here we assume that ck½U�Hk½U�ðxg; ygÞ ¼ ck½Ug�×
Hk½Ug�ðx; yÞwithin machine precision].Δf does not vanish
when a different number of iteration by round-off error
accidentally appears as in Eq. (B5). Therefore there is no
guarantee of cancellation between hOAMAi and hOAMA

G i.
This breaking may be significant if a very low precision for
the stopping condition is chosen, where fε rapidly changes
for the initial CG iterations. For example, as seen from
Fig. 14, when the CG iteration number is changed from
NCG ¼ 20 to 21, the accuracy of solution vector changes by
the order ∥rðxÞ∥≃ 10−3. On the other hand, in the region of
NCG ¼ 1200, even if NCG is changed from 1200 to 1201,
the accuracy of the solution vector is still less than
∥rðxÞ∥≃ 10−9, and it turns out that the effect of different
NCG of relaxed CG in OðappxÞ is more significant than NCG

of exact CG in O (and also such bias is totally suppressed
within machine precision for O). Obviously this kind of
bias does not appear when fε is constructed by a fixed CG
iteration number instead of a fixed norm of residual vector
as the stopping condition.
In Fig. 15 we numerically compare the result of the

vacuum polarization function (VPF) with two procedures
of AMA used in the 3 × 10−3 and 10−4 stopping condition
for the norm of residual vector and 180 CG iterations. The
VPF is extracted from the conserved vector and local
vector current correlator following [42–44]. One sees that
the resulting values of the VPF from two different
stopping conditions are consistent within statistical error
whose accuracy is at the sub-percent level. This result
supports that the systematic error of arithmetic bias
addressed in this section is not visible in the practical
calculations. Note that the mechanism that enhances the
size of the bias due to the threshold effect of the residual
vector norm mentioned above is avoided when using the
fixed CG iteration number.

2. Accumulated round-off error

The round-off error due to inexact arithmetic in an
iterative solver could potentially destroy the covariance
that is crucial for AMA and introduce bias. Below we show
in a realistic case that the round-off error is innocuous.
CAA conceptually relies on preserving the covariant
symmetry in each iteration, e.g., from step 6 to step 9 in
Algorithm 1. After many vector-vector and matrix-vector
multiplies to determine the residual and search vectors, the
accumulation of round-off error due to the different orders
of arithmetic may spoil the exact covariant symmetry.
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FIG. 14 (color online). The relation between the squared norm
of the residual vector and CG iteration number.
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FIG. 15 (color online). The vacuum polarization function of
vector type using the same gauge configurations at m ¼ 0.005.
The number of configurations are 51. “Org” denotes the results
without AMA; “1e-4,” “3e-3,” and “180 iter” denote the AMA
results using 10−4, 3 × 10−3 stopping criteria of the norm of
residual vector and 180 CG iteration, respectively. The different
symbols are results in different −q2 points of vacuum polarization
function.

Algorithm 1. CG algorithm for solving AxCG ¼ b with
positive Hermite matrix A.

1: if k ≔ 0 then
2: x0 ≔ 0
3: r0 ≔ b − Ax0, p0 ≔ r0
4: end if
5: while ∥rk∥ > ϵ do
6: αk ≔

ðrk;rkÞ
ðpk;ApkÞ

7: xkþ1 ≔ xk þ αkpk, rkþ1 ≔ rk − αkApk
8: βk ≔

ðrkþ1;rkþ1Þ
ðrk;rkÞ

9: pkþ1 ≔ rkþ1 þ βkpk
10: k ≔ kþ 1
11: end while

COVARIANT APPROXIMATION AVERAGING PHYSICAL REVIEW D 91, 114511 (2015)

114511-17



The extent to which the symmetry is violated, of course,
depends too on the details of the algorithm.4

To check the preservation of covariance in the AMA
approximation, we compare nucleon two-point correlation
functions with those computed after translating the position
of both the nucleon source and the gauge links. If the
floating point arithmetic were exact, the nucleon correlation
functions would have to be identical, which means the bias
in AMA is zero. The bias caused by the finite precision
arithmetic is quantified as

δc ¼ OðappxÞg½Uḡ� −OðappxÞ½U�; ðB8Þ

where g denotes the transformation, and ḡ denotes the
inverse transformation of g. In our test the source position
and link variables are shifted using 16 different translations,
(12, 0, 0, 0), (0, 12, 0, 0), …, (12, 12, 12, 32) on one
configuration. The only difference with the original
unshifted calculation is the order of arithmetic in the
Lanczos and CG algorithm according to the shift of the
gauge configuration and fermion source point. In Fig. 16,
one sees that the effect of round-off error on the covariant
symmetry, when using the low-mode deflation with 400
low-lying eigenmodes as used in the present work, is
Oð10−9Þ (and much smaller in the part of the correlation
function that is statistically well resolved) and does not
depend on smeared or local source type. Thus the approxi-
mation with sloppy CG using the 0.003 residual stopping
condition is not significantly affected by accumulative

round-off errors, and hence systematic bias. In fact, even
if such a round-off error did introduce a bias due to the
relative order of arithmetic, it can be removed by the
technique explained in the next section which does not rely
on covariance.

APPENDIX C: ERROR REDUCTION TECHNIQUE
WITHOUT COVARIANT SYMMETRY

In this section we introduce another estimator in which
the random transformation gr ∈ Gr is adopted for OðappxÞ
instead of covariance. Employing gr, which is assumed as
the element of group Gr, into Eq. (8), the improved
estimator is defined as

OðimpÞgr ¼ Ogr −OðappxÞgr þOðappxÞgr
G ; ðC1Þ

OðappxÞgr
G ¼ 1

NG

X
g∈G

OðappxÞg∘gr : ðC2Þ

The second equation has the multitransformation g ∘ gr
with g and gr for OðappxÞ. Here we also assume G as the
subset of Gr.
We prove that this estimator does not have any bias

provided the numerical procedure of OðappxÞ is determin-
istic and reproducible; these calculations are bit-by-bit the
same for the same input parameters (gauge configuration,
source location, stopping criteria, etc.). We note that our
program is always checked to reproduce bit-by-bit the same
results for the same input. Since the biasless estimator
should satisfy the equivalence of the expectation value as

hOi ¼ hOgri ¼ hOðimpÞgri ðC3Þ

(here we consider O is covariant under gr), thus, from
Eq. (C1) and by using the transformation of the link
variable with gr, we show

hOðappxÞgri ¼ hOðappxÞgr
G i; ðC4Þ

even if OðappxÞ does not follow from a covariant symmetry.
In the above, the expectation value is defined as the group
integral of link variables and the summation over gr ∈ Gr.
The left-hand side of Eq. (C4) is described as

hOðappxÞgri ¼ 1

Z

X
gr∈Gr

PðgrÞ
Z

dUe−S½U�OðappxÞgr ½U�; ðC5Þ

where S½U� denotes the QCD action, and PðgrÞ denotes the
distribution function of gr ∈ Gr normalized to unity. Z is
the partition function. On the other hand, the right-hand
side of Eq. (C4) can be written as
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FIG. 16 (color online). Relative error of δc for nucleon
propagator with Gaussian-source and point sink (cross) and
Gaussian-source and Gaussian-sink (star) as a function of time
slice. This is averaged once using 16 source locations on one
reference configuration with low-mode deflation using 400 low
modes at m ¼ 0.005 in the 243 × 64 lattice.

4For example, the BiCG-type algorithm which is much less
stable than CG may be more susceptible to accumulated effects of
round-off. We thank T. Doi for pointing this out to us after
making a test with Wilson-clover fermions.
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hOðappxÞgr
G i ¼ 1

Z

X
gr∈Gr

PðgrÞ
1

NG

X
g∈G

Z
dUe−S½U�OðappxÞg∘gr ½U�:

ðC6Þ

Here we consider that the multiplication of gr ∈ Gr with
g ∈ G is also an element of Gr, i.e., g ∘ gr ∈ Gr, and the
distribution function of g ∘ gr is the same function of
gr ∈ Gr, i.e., Pðg ∘ grÞ ¼ PðgrÞ, when G ⊆ Gr. In this
case, Eq. (C6) can be expressed as a single sum over
gr ∈ Gr, and so its equation is equivalent to Eq. (C5). We
notice that in this derivation it is unnecessary to use the
covariance of OðappxÞ. Practically gr is chosen randomly in
each configuration, for instance, a random shift of source
location for O and OðappxÞ. Hence, to avoid any bias due to
the arithmetic error explained in Appendix B, OðimpÞgr
instead of OðimpÞ is appropriate when the CG stopping
condition is chosen as the fixed norm of the residual vector.
Note that, in Eq. (C1), gr is only performed for each
functional; the link variables are not transformed. When the
link variable is transformed instead of OðappxÞ, the biasless
of OðimpÞgr is only guaranteed for OðappxÞ by the covariance
under G and Gr.

APPENDIX D: IMPLICITLY RESTARTED
LANCZOS ALGORITHM WITH POLYNOMIAL

ACCELERATION

Suppose that A ∈ CN×N is the Hermitian, positive
definite, matrix. Introducing the tridiagonal matrix T ∈
Cm×m whose diagonal and off-diagonal components are
αi¼1;…;m and βi¼1;…;m−1, respectively, the relation

AV ¼ VT þ rme
†
m ðD1Þ

provides T and the orthogonal matrix V ∈ CN×m recur-
sively as shown in Algorithm 3. In the above equation em
denotes the unit vector with a nonzero value in the mth
component. If V†rm ≃ 0, the kð≤mÞth eigenvector ψk and
eigenvalue (λk) of matrix A are given by the multiplication
of the unitary matrix obtained by the diagonalization
for tridiagonal matrix, T ¼ U†ΛU, as UV ¼ fψkg;Λ ¼
diagðλkÞ.
The restarted Lanczos algorithm is based on the concept

to recycle the final vector vm in the Lanczos iteration as the
new initial vector vnew in order to avoid the storage
constraints. Suppose that m is divided into k wanted
eigenvectors fv1;…; vkg which is the desired region of
the eigenvalue distribution, and p unwanted vectors
fvkþ1;…; vkþpg which are recomputed in every step of
the Lanczos iteration after restarting. After running m≡
kþ p Lanczos steps, we restart the Lanczos process with
initial vector and β value,

vnewkþ1 ¼ vm; β0k ¼ βm; ðD2Þ

and thus the orthogonal matrix V is constructed by

V ¼ fv1;…; vkg ∪ fvnewkþ1;…; vnewm g ⊂ fv1;…; vmþpg:
ðD3Þ

Effectively after the restarted Lanczos step we obtain
vectors vi spanning the Krylov space KmþpðA; v1Þ. The
last equation in (D3) may be broken due to round-off errors,
leading to loss of orthogonality in the restarted process,
since it does not take account of reorthogonalization with
previous unwanted vectors fvkþ1;…; vmg. Such an effect,
however, depends on the choice of p, and in the actual
lattice QCD simulation, the less than 5 times restarted
Lanczos process has no matter of orthogonality loss.
Usually we implement the filtering technique using QR

factorization and shifting the resulting tridiagonal matrix.
In this algorithm we employ the approximate unwanted
eigenvalues as shift parameters μi ¼ ~λi¼kþ1;…;m and obtain
the orthogonal matrix Q ¼ Qp

i¼1Qi from the QR factori-
zation process (see Algorithm 2).
Vþ ¼ VQ and Tp are also satisfied with the Lanczos

recursion relation

ðAVþÞij ¼ ðVþTpÞij þ ðrmÞiQmj; Vþ ¼ VQ; ðD4Þ

and thus the new initial vector vnewkþ1 alternative to Eq. (D2)
consists of

rnewkþ1 ¼ vþkþ1 þQmkrm; βnewkþ1 ¼ ∥rnewkþ1∥;

vnewkþ1 ¼ rnewkþ1=β
new
kþ1; ðD5Þ

with rotated vector vþi ¼ P
m
l¼1Qlivl ½i ¼ 1;…; kþ 1�. In

the abovewe use the relation of Tiþ1¼Q†
i TiQi andQm;i¼0

½i ¼ 1;…; k − 1�. Therefore we can restart the Lanczos step
from kþ 1 to kþ p following Algorithm 3, and we
generate the new orthogonal matrix

Vnew ¼ fvþ1 ;…; vþk g ∪ fvnewkþ1;…; vnewm g; ðD6Þ

which also spans the Krylov space KmþpðA; v1Þ. Note that
via QR factorization the new wanted vector vþ1;…;k is
automatically multiplied by the filtering polynomial
function

Algorithm 2. QR factorization process.

1: Let set T1 ¼ T and i ¼ 1
2: while i ¼ p do
3: Ti − μi ¼ QiRi
4: RiQi þ μi ¼ Tiþ1

5: i ¼ iþ 1
6: end while
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fpðAÞ ¼
Ym

i¼kþ1

ðA − ~λiÞ; ðD7Þ

and thus

vþi ∝ fpðAÞvi; ðD8Þ

which is known from the relation of Vþe1 ¼
VQe1 ∝ fpðAÞv1. The filtering polynomial function may
suppress the unwanted vectors. Fulfilling the unwanted
eigenvalue constraints on jfðλi¼kþ1;…;mÞj < jfðλkÞj, the
polynomial function of Eq. (D8) works as a filter of
unwanted eigenmodes from the spectrum of A [28,29].
The restarted Lanczos algorithm combined with poly-

nomial acceleration [27] emphasizes the low-lying wanted
eigenvectors in the Krylov space and suppresses the
unwanted vector via the filtering function. Let us consider
the computation of the low modes of Hermitian matrix H
whose maximum absolute eigenvalue is already known as
λmax. The Chebychev polynomial function Tchev can be
used to easily control the eigenvalue distribution of H by
enhancing the wanted small eigenvalue region ðλ < αÞ and
suppressing the unwanted region. By applying Tchev with
the following argument function:

qðHÞ ¼ 2H2 − α2 − β2

β2 − α2
; ðD9Þ

we have that

jTn
chevðqðλÞÞj ≫ 1; λ2 ∉ ½α2; β2�;

Tn
chevðqðλÞÞ ∈ ½−1; 1�; λ2 ∈ ½α2; β2�; ðD10Þ

where we set α slightly larger than the maximum
wanted eigenvalue, and β2 ≥ λ2max (see Fig. 17).
Tn
chevðqðHÞÞ, constructed by a recursion relation,

Tn
chevðxÞ ¼ 2xTn−1

chevðxÞ − Tn−2
chevðxÞ, has the same eigenvec-

tors as H, and the highest eigenvalue of Tn
chevðqðHÞÞ

corresponds to the lowest eigenvalue of H. The degree n
of Tn

chev, which is also the number of its zeros in ½−1; 1�,
depends on the magnitude of the highest eigenvalue and the
hierarchy of magnitudes for the wanted eigenvalues.
Recalling the restarted Lanczos process, if we set α close
to the lowest point in the eigenvalue region λi¼kþ1;…;m, the
filtering function in Eq. (D8) strongly suppresses the
unwanted eigenvalue region.
We easily extend the polynomial acceleration techniques

to focus on an arbitrary range of wanted eigenvalues by
introducing the shift parameter μ into Eq. (D9),

qðH; μÞ ¼ 2ðH − μÞ2 − α2 − ðβ þ jμjÞ2
ðβ þ jμjÞ2 − α2

; ðD11Þ

in which this argument function enhances the spectrum in
the range λ ¼ ðμ − α; μþ αÞ.

APPENDIX E: 4D EVEN-ODD
PRECONDITIONING IN DOMAIN-WALL

FERMIONS

In this appendix we explicitly present the definition of
DWF 4D even-odd preconditioning (see [45] and [34] and
references therein) which is used not only in the precondi-
tioning of the CG solver but also in the computation of
eigenvectors and eigenvalues in the Lanczos algorithm.
Instead of DWF five-dimensional (5D) even-odd precon-
ditioning as has been used in [26], the DWF operator can be
expressed as the even-odd hopping matrix in 4D space-time
in which the Wilson-fermion kernel of DWF is in the off-
diagonal blocks and the 5D hopping term is in diagonal
blocks of the following matrix:

DDWððx; sÞ; ðy; tÞÞ ¼ ð5 −M5Þ½δx;yW5ðs; tÞ
− KW4ðx; yÞδs;t�

¼ ð2KÞ−1
�

IeeW5 −KW4eo

−KW4oe IooW5

�

ðE1Þ

Algorithm 3. Lanczos algorithm.

1: Set v1 to the unit vector, β0 ¼ 0 and k ¼ 0;
2: while k ¼ m do
3: αk ¼ ðvk; AvkÞ;
4: rk ¼ ðA − αkÞvk − βk−1vk−1;
5: βk ¼ ∥rk∥;
6: vkþ1 ¼ rk=βk;
7: Gram-Schmidt reorthogonalization for v1;…; vkþ1 if we
needed;

8: k ¼ kþ 1;
9: end while

α=0.017
α=0.025
α=0.03

λ=0.017 λ=0.025 λ=0.03
eigenvalue

-1
1

T
n ch

ev
(q

)

FIG. 17 (color online). The sketch of Chebychev polynomial
Tn
chevðqÞ as a function of eigenvalue. Different symbols illustrate

the Tn
chevðqÞ with several α.
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in which we use

K ¼ 1

2ð5 −M5Þ
; ðE2Þ

W4ðx; yÞ ¼
X
μ

½ð1þ γμÞU†ðx − μ̂Þδx−μ̂;y þ ð1 − γμÞUðxÞδxþμ̂;y�; ðE3Þ

W5ðs; tÞ ¼ 1 − 2KðPRδs;tþ1 þ PLδsþ1;t −mPRδs;1δt;Ls
−mPLδs;Ls

δt;1Þ; ðE4Þ

with SU(3) link variableUμðxÞ and Dirac γ-matrix. Here we suppress color and spin indices in the DWF operator. Evenness
or oddness of a site of Euclidean space-time is given as modðP4

μ¼1 xμ; 2Þ ¼ 0 or 1.M5 is the so-called domain wall height.
The inverse of the DWF operator in even-odd representation is expressed through the Schur decomposition as

D−1
DW ¼ ð2KÞ−1

�
Iee 0

KW−1
5 W4eo IooW−1

5

��
D−1

ee 0

0 Ioo

��
Iee KW4eoW−1

5

0 Ioo

�
; ðE5Þ

Dee ¼ IeeW5 − K2W4eoW−1
5 W4oe; ðE6Þ

in which the inverse of W5 can be represented explicitly,

W−1
5 ðs; tÞ ¼ Aðs; tÞPR þ Bðs; tÞPL; ðE7Þ

Aðs; tÞ ¼ δst −
1

1þmκLs

0
BBBBBB@

mκLs mκLs−1 mκLs−2 � � � mκ

−κ mκLs mκLs−1 � � � mκ2

−κ2 −κ mκLs � � � mκ3

..

. ..
. ..

. ..
.

−κLs−1 −κLs−2 −κLs−3 � � � mκLs

1
CCCCCCA

st

; ðE8Þ

Bðs; tÞ ¼ Aðt; sÞ; ðE9Þ

with κ ¼ ð5 −M5Þ−1.
In a practical implementation of W−1

5 , it is convenient to use the LU decomposition. Using the left and right
representations of W5,

W5ðs; tÞ ¼ PR½I − κðΔþ ΔmÞ�st þ PL½I − κðΔT þ ΔT
mÞ�st ðE10Þ

with

Δ ¼

0
BBBBBBBBB@

0 0

1 0

1 0

. .
. . .

.

1 0

0 1 0

1
CCCCCCCCCA
; Δm ¼

0
B@

0 −m
. .
.

0 0

1
CA: ðE11Þ

We also know that the matrix without PR is represented as

½I − κðΔþ ΔmÞ� ¼ ð1 − κΔmðI − κΔÞ−1ÞðI − κΔÞ; ðE12Þ

and
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ðI − κΔÞ−1 ¼

0
BBBBBB@

1

k 1

..

. . .
.

κLs−2 κLs−3 � � � κ 1

κLs−1 κLs−2 � � � κ2 κ 1

1
CCCCCCA
: ðE13Þ

Thus we have

½I − κðΔþ ΔmÞ� ¼ ðÞ

0
BBBBBB@

1þmκLs mκLs−1 mκLs−2 � � � mκ

0 1 0 � � � 0

..

. . .
.

1 0

0 � � � 0 1

1
CCCCCCA

0
BBBBBB@

1 0

−κ 1 0

. .
. . .

. . .
.

−κ 1 0

−κ 1

1
CCCCCCA
: ðE14Þ

Finally we obtain

Aðs; tÞ ¼

0
BBBBBB@

1

κ 1

..

. . .
.

κLs−2 κLs−3 � � � κ 1

κLs−1 κLs−2 � � � κ2 κ 1

1
CCCCCCA

0
BBBBBB@

1
1þmκLs

−mκLs−1

1þmκLs
−mκLs−2

1þmκLs
� � � −mκ

1þmκLs

0 1 0 � � � 0

..

. . .
.

1 0

0 � � � 0 1

1
CCCCCCA
: ðE15Þ

Now the number of floating-point operations in the multiplication of Aðs; tÞ with a vector is reduced to ðL2
s − 1Þ=2 from L2

s ,
i.e., a gain of ðL2

s þ 1Þ=2.
γ5-Hermiticity of the DWF operator is given by

D†
DWðs; tÞ ¼

X
s1;t1

Γ5ðs; s1ÞDDWðs1; t1ÞΓ5ðt1; tÞ; ðE16Þ

with Γ5ðs; tÞ ¼ γ5δs;Ls−tþ1; hence the Hermiticity of the even-odd preconditioned Domain-wall operator

Hee ¼ Γ5Dee ðE17Þ

follows from Dee, D
†
ee ¼ Γ5DeeΓ5, since Γ5 is a diagonal matrix at each 4D even-odd site. The difference from DWF

5D even-odd preconditioning is that Hee can be represented as a single multiplication of Γ5 without a flip of the even-
odd site. Equation (E17) can be used in the Lanczos algorithm with H ¼ Hee in Eqs. (D9) and (D11).
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