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SU(2) gauge theory with one Dirac flavor in the adjoint representation is investigated on a lattice. Initial
results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the
anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results
found are not consistent with conventional confining behavior, pointing instead tentatively towards a theory
lying within or very near the onset of the conformal window, with the anomalous dimension of the
fermionic condensate in the range 0.9 ≲ γ� ≲ 0.95. The implications of our work for building a viable
theory of strongly interacting dynamics beyond the standard model are discussed.
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I. INTRODUCTION

Even after the recent experimental identification of the
Higgs particle [1,2], the existence of a new fundamental
interaction of which the Higgs sector is the low-energy
manifestation is still an open problem. Among the proposed
possibilities, novel strong dynamics [3–7] is still a good
candidate for a possible fundamental mechanism of electro-
weak symmetry breaking. It is generally believed that this
new strong interaction is able to explain the observed
electroweak symmetry breaking phenomenology if the
following three conditions are met: (1) the theory must
be near the onset of the conformal window; (2) the
anomalous dimension of the chiral condensate must be
of order one; and (3) a parametrically light scalar (the
would-be Higgs boson) must be in the spectrum. The first
two conditions [8,9] are needed for compatibility with
electroweak precision data [10], while the third condition is
determined by the direct observation of the Higgs boson
and no other previously unknown nearby state. Until very
recently, even the possible existence of a strongly interact-
ing quantum field theory for which any of those conditions
arose was unclear. In the last few years, much progress has
been achieved on these theoretical questions, thanks to a
combination of methods and techniques. A crucial role has
been played by numerical investigations using lattice
techniques, which—among other results—have pinned
down an example of a gauge theory in the conformal
window, namely SU(2) gauge theory with two adjoint
Dirac flavors [11–19] (see [20–23] for earlier simulations
of the model). Although conformal strong dynamics can
still explain electroweak symmetry breaking, an anomalous

dimension around one is required [24]. This condition rules
out a possible phenomenological role played by SU(2) with
two adjoint Dirac flavors in its simplest version: in fact, the
most recent measurements of the anomalous dimension γ⋆
for this model give γ⋆ ¼ 0.38ð2Þ [25], which is well below
the acceptable value. With the possible exception of SU(3)
with eight flavors [26], whose infrared behavior needs to
be better explored, all other candidate near-conformal
theories studied so far have an anomalous dimension that
is too small (see [27,28] for recent overviews of lattice
calculations).
At this stage, it is a fundamental problem to understand

whether large anomalous dimensions can arise in the
context of conformal or near-conformal gauge theories.
Although the anomalous dimension is small at the pertur-
bative zeros of the beta function, large anomalous dimen-
sions might arise near or at the lower end of the conformal
window. Whether these conjectured large anomalous
dimensions arise is a crucial question not only for building
realistic models of electroweak symmetry breaking based
on a novel strong interaction, but also in the more general
context of the physics of non-Abelian gauge theories.
As mentioned above, for SU(2) gauge theories with adjoint
Dirac fermions, lattice studies show that the model with
two flavors is infrared conformal with a small anomalous
dimension. Hence, a remaining potential way to observe
a large anomalous dimension is to consider the case of
a single Dirac flavor or, equivalently, two Majorana
(or Weyl) fermions.
Analytically, this theory could be seen as the large scalar

mass limit of N ¼ 2 super Yang-Mills with gauge group
SU(2), with supersymmetry completely broken by a non-
zero mass term for the scalar. Despite the existence of an
interpolating parameter (in this specific case, the mass of
the scalar) confinement in N ¼ 2 super Yang-Mills theory
does not trivially imply confinement in the limit in
which the scalar decouples. In N ¼ 2 super Yang-Mills,
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confinement is known to arise through the dual super-
conductor mechanism resulting from magnetic monopole
condensation [29]. However, this mechanism does not
immediately generalise to the nonsupersymmetric case,
since nontrivial effects (e.g. the fate of the monopoles when
decoupling the scalar) enter the interpolating theory.
Exploratory lattice studies exist for SUðNÞ gauge theory
with a single adjoint Dirac flavor in the large-N limit
[30–32]. These works, which exploit large-N volume
reduction, do not give yet a clear picture of the infrared
behavior of the theory. In addition, although perturbatively
the N dependence of the β function of theories with adjoint
fermions is mild [33], in principle the results of those
studies might not translate immediately to the model with
two colors.
In this work, we present a first-principles investigation of

the model using numerical Monte Carlo studies of the
theory discretized on a spacetime lattice. The central result
of our work is that the infrared regime of the system is
compatible with a conformal or near-conformal behavior,
but not with a conventional QCD-like scenario in which
chiral symmetry breaking takes place. Furthermore, the
anomalous dimension (measured with two independent
methods) turns out to be 0.925(25).
The rest of the paper is organized as follows. In Sec. II we

present the model and the setup of our numerical inves-
tigations. Numerical results will then be presented in Sec. III.
Section IV discusses the implications of our investigation
and possible directions of future studies. Finally, a summary
will be presented in Sec. V. Some preliminary results were
already presented in [34].

II. THE MODEL

We consider an SU(2) gauge theory with a single Dirac
flavor in the adjoint representation with mass m.
Eventually, we would be interested in understanding the
properties of the theory in the massless limit; however,
numerical simulations require a nonzero fermion mass.
Hence, we deform the theory with a small fermion mass,
and study how the system approaches the massless limit.
We stress from the outset that regardless of the phase of the
theory at zero fermion mass, with a finite mass term chiral
symmetry is always broken, since the mass is a relevant
direction for the renormalization group trajectory. The
expectations are that if chiral symmetry is broken in the
massless limit, the response of the model to a small varying
mass will be described by chiral perturbation theory, while
if the theory is conformal the data will be in accord with
the predictions derived from a mass-deformed conformal
gauge theory. A third possibility is that the system is in
the confined phase, but close to the onset of the conformal
window. In this case, it will show mass-deformed con-
formal behavior in an intermediate energy regime between
a chiral symmetry breaking scale ΛIR and the ultraviolet
perturbative scale ΛUV, while chiral perturbation theory

will correctly describe the theory for energies below
ΛIR. The latter possibility, referred to commonly as
“near-conformality” or “walking behavior,” would be
phenomenologically interesting, since theories near the
onset of the conformal window are relevant for gaining
an understanding of strongly interacting dynamics beyond
the standard model as the mechanism of electroweak
symmetry breaking.
In the following subsections, we describe the field

content of the theory, the chiral symmetry breaking pattern,
and the resulting spectrum.

A. Field content

In Minkowskian space, the Lagrangian of the system is
given by

L ¼ ψ̄ðxÞðiD −mÞψðxÞ − 1

2
TrðGμνðxÞGμνðxÞÞ; ð1Þ

where D ¼ ð∂μ þ igAμðxÞÞγμ, γμ are the Dirac matrices,
AμðxÞ ¼

P
aT

aAa
μðxÞ with a ¼ 1; 2; 3, and the Ta are

the generators of SU(2) in the adjoint representation
(i.e. the generators of SO(3)). Gμν ¼ ∂μAνðxÞ − ∂νAμðxÞþ
ig½AμðxÞ; AνðxÞ�, with g the gauge coupling of the theory, is
the field tensor, and the trace is taken over the gauge group.
Our notations for the Dirac algebra matrices and derived
symmetry operators are reported in Appendix A.
Since the theory contains a single (Dirac) flavor,

described by the spinor ψðxÞ, at first sight the flavor
structure of Eq. (1) would seem trivial. However, since
the adjoint representation is real, it does not mix the
real and the imaginary part of the Dirac spinor. More
explicitly, if C is the Dirac matrix implementing charge
conjugation, we can decompose the Dirac spinor in
Majorana components

ξþ ¼ ψ þ Cψ̄Tffiffiffi
2

p ; ξ− ¼ ψ − Cψ̄Tffiffiffi
2

p
i

; ð2Þ

such that

ψ ¼ 1ffiffiffi
2

p ðξþ þ iξ−Þ; ð3Þ

with both ξþ and ξ− being invariant under charge con-
jugation symmetry by construction. Equation (1) can now
be rewritten as

L ¼ 1

2

X
k

ξ̄kðxÞðiD −mÞξkðxÞ − 1

2
TrðGμνðxÞGμνðxÞÞ;

ð4Þ

where k ¼ þ;−. This flavor structure (in terms of the
Majorana components) gives rise to a nontrivial chiral
symmetry breaking pattern.
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B. Chiral symmetry breaking pattern

In the notation usually applied in considerations of
supersymmetry, the fermion part of the Lagrangian is
written as

X
k

�
ðζ̄kÞ _αðσ̄μÞ _αβDμðζkÞβ þ

m
2
ððζkÞαðζkÞα þ H:c:Þ

�

¼
X
k

�
ζ†kσ̄

μDμζk þ
m
2
ðζTkϵTζk þ H:c:Þ

�
; ð5Þ

with α; β ¼ 1; 2 spin indices,1 Majorana spinors ζk in the
Weyl representation,

ξk ¼
�

ζ

ϵζ�

�
k

¼
�
ζα

ζ̄ _α

�
k

; ð6Þ

and ϵ ¼ iσ2. The lower component of the Majorana spinor
can be derived from the upper one using the above
expression. Therefore, we can ignore the lower components
and form a 4Nf component vector out of the two upper
Weyl components of each Majorana flavor; for Nf ¼ 1
we get

η ¼
�
ζ1

ζ2

�
: ð7Þ

In the zero mass limit the action has a Uð1ÞA ⊗ SUð2NfÞ
symmetry. The SUð2NfÞ part rotates the upper and lower
two components of η into each other. The Uð1ÞA part is
broken by the anomaly down to a discrete Z2Nc

. The
remaining Z2Nc

⊗ SUð2NfÞ is subject to a spontaneous
symmetry breaking if there is a nonzero expectation value
of the fermion condensate. The condensate and the fermion
mass term are invariant under the subgroup Z2 ⊗ SOð2NfÞ.
This is the remaining exact symmetry group if there is a
spontaneous symmetry breaking. Therefore, the chiral
symmetry breaking pattern is

SUð2NfÞ ↦ SOð2NfÞ: ð8Þ

Hence, if chiral symmetry is spontaneously broken, there
are two Goldstone bosons in this model, corresponding to
the two generators of the broken part of the symmetry. In
the present case of Nf ¼ 1 the complete flavor symmetry
SU(2) has generators σi=2. In order to mark the difference
with the σi acting on the two indices of the Weyl spinor, we
call the generators in flavor space τi ¼ σi. The unbroken
SO(2) is generated by τ2=2 ¼ σ2=2 and is equivalent
to U(1).

We want to arrive at a diagonal representation of the
unbroken symmetry. Therefore, we apply the following
unitary transformation on η:

χ ¼ 1ffiffiffi
2

p
�
1 i

i 1

�
η ¼ 1ffiffiffi

2
p ð1þ iτ1Þη ¼

�
χ1

χ2

�
ð9Þ

¼ PLψ þ PRð−iCÞψ� ¼
�

ψL

−σ2ψ�
R

�
: ð10Þ

The PR and PL are the projectors on the left-handed (ψL)
and right-handed (ψR) part of the Dirac spinor. The
advantage of this transformation is that the unbroken
generator is now the diagonal τ3=2 and the unbroken
SO(2) subgroup can be rewritten as

U ¼ cos αþ iτ3 sin α ¼ eiατ3 : ð11Þ

In the Majorana formulation, there is no U(1) symmetry for
each of the two Majorana flavors and hence one would
naturally relate the unbroken symmetry to the isospin in
QCD. In the Dirac notation the unbroken symmetry is,
however, the Uð1ÞV of charge conservation. Therefore in
the following we refer to it as baryon symmetry. Hence, in
addition to parity, the baryon charge related to the unbroken
part of the chiral symmetry can be used to classify the
spectrum of the theory in the broken phase. At this point, it
is worth stressing again that chiral symmetry breaking is
expected to arise as a soft breaking at finite fermion mass,
independently of the phase of the massless theory.
While the residual symmetry is diagonal, in this basis

parity is expressed in terms of a combination of charge
conjugation (σ2) and flavor rotation (τ2). In fact, the action
of parity in the original basis,

ψðt; ~xÞ ↦ γ0ψðt;−~xÞ; ð12Þ

ψ̄ðt; ~xÞ ↦ ψ̄ðt;−~xÞγ0; ð13Þ

determines the transformations,

χðt; ~xÞ ↦ iσ2τ2χ�ðt;−~xÞ; ð14Þ

χ†ðt; ~xÞ ↦ −χTðt;−~xÞiσ2τ2: ð15Þ

In order to clarify the notation, we derive explicitly the
chiral symmetry breaking pattern directly in this basis. The
chiral symmetry group SU(2) commutes with the parity
transformation, since for U ∈ SUð2Þ,

Uðiτ2Þ ¼ ðiτ2ÞU�: ð16Þ

The chiral condensate represented in the different bases
of flavor and Dirac space has the following form:

1We have made use of the dotted-undotted notation commonly
found in supersymmetry, for which we refer to the specialized
literature.
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ψ̄ψ ¼ 1

2

X
k

ðζTkϵTζk þ H:c:Þ ð17Þ

¼ 1

2
ðηTϵTηþ H:c:Þ ð18Þ

¼ ψ†
LψR þ ψ†

RψL ð19Þ
¼ χ†1σ2χ

�
2 þ χT2σχ1 ð20Þ

¼ 1

2
ðχTτ1σ2χ þ χ†τ1σ2χ

�Þ: ð21Þ

From the last line, one can see that when the degrees of
freedom are chosen to be χ and χ†, the chiral condensate is
left invariant under the subgroup of U matrices that satisfy

UTτ1U ¼ τ1; ð22Þ

which is the SO(2) subgroup generated by τ3, Eq. (11).
Note that the symmetry breaking pattern shown here is

used in [35] to derive a partially quenched chiral perturba-
tion theory for supersymmetric Yang-Mills theory.2 The
analysis relies on the small mass of the Goldstone bosons
compared to the other states in the theory. This needs to be
confronted with our results: in a conformal or near-
conformal scenario the theory develops no relevant intrinsic
mass scale and the expected hierarchy of masses is lost.

C. The spectrum

In order to understand the phase of the theory from the
point of view of the chiral symmetry, we focus our attention
onbilinear fermionic operators,which can be seen as creation
and annihilation operators of physical states that play a
crucial role in establishing the chiral properties of the system.
The bilinear fermionic operators considered in this study

are shown in Table I. For convenience, they are represented
in the Dirac notation (“Dirac bilinears”) and in the
Majorana notation (“Majorana bilinears”). For the latter
case, we introduce the naming convention,

OlkðΓÞ ¼ ξ̄lΓξk; ð23Þ
where the ξ are the two Majorana flavors (labeled by
k; l ¼ þ;−) and Γ is a Dirac matrix or a product of Dirac
matrices. Both the Majorana and the Dirac form has some
advantage: the Dirac representation allows us to identify
easily the spin quantum numbers (reported in column
“Spin”) and the parity, while the Majorana notation exposes
the flavor structure and bridges with the terminology often
used in supersymmetry. Straightforward algebra enables one
to obtain the expression in one notation given the expression
in the other. For the sake of simplicity, we have omitted the
Weyl notation, which is particularly suited for the SU(2)
quantumnumbers. TheWeyl notation can be easily obtained
from the Dirac notation. For instance, one finds that

1

2
ðψTCγ5γ0ψ þ ψ†Cγ5γ0ψ�Þ ¼ χ†τ2χ; ð24Þ

TABLE I. Dirac and Majorana bilinears classified according to their SUð2ÞP and Uð1ÞP quantum numbers, together with the
correlators used for the calculations of the corresponding masses.

Spin SUð2ÞP Dirac bilinears Majorana bilinears Uð1ÞP Name Correlators

(pseudo)scalars

1− ψ̄γ0γ5ψ Oþþðγ0γ5Þ þO−−ðγ0γ5Þ 0− Pseudoscalar
meson

Singlet γ5, γ0γ5

3− ψ̄γ5ψ Oþþðγ5Þ þO−−ðγ5Þ

ψTCψ Oþþð1Þ −O−−ð1Þ þ 2iOþ−ð1Þ 2− Pseudoscalar
(anti)baryon

Triplet 1

ψ†Cψ� Oþþð1Þ −O−−ð1Þ − 2iOþ−ð1Þ −2−

3þ ψ̄ψ ; ψ̄γ0ψ Oþþð1Þ þO−−ð1Þ; Oþ−ðγ0Þ 0þ Scalar meson Singlet 1, γ0

ψTCγ5ψ ;
ψTCγ5γ0ψ

Oþþðγ5Þ −O−−ðγ5Þ þ 2iOþ−ðγ5Þ;
Oþþðγ5γ0Þ −O−−ðγ5γ0Þ þ 2iOþ−ðγ5γ0Þ

2þ Scalar
(anti)baryon

Triplet γ5, γ0γ5

ψ†Cγ5ψ�;
ψ†Cγ5γ0ψ�

Oþþðγ5Þ −O−−ðγ5Þ − 2iOþ−ðγ5Þ;
Oþþðγ5γ0Þ −O−−ðγ5γ0Þ − 2iOþ−ðγ5γ0Þ

−2þ

(axial) vectors

1þ ψ̄γ5~γψ ;
ψ̄γ0γ5~γψ

Oþþðγ5~γÞ þO−−ðγ5~γÞ; Oþ−ðγ0γ5~γÞ 0þ Axial vector
meson

Singlet
γ5~γ, γ0γ5~γ

1− ψ̄γ0~γψ Oþ−ðγ0~γÞ 0− Vector meson Singlet ~γ, γ0~γ

3− ψ̄ ~γ ψ Oþ−ð~γÞ
ψTCγ5~γψ Oþþðγ5~γÞ −O−−ðγ5~γÞ þ 2iOþ−ðγ5~γÞ 2− Vector

(anti)baryon
Triplet γ5~γ

ψ†Cγ5~γψ� Oþþðγ5~γÞ −O−−ðγ5~γÞ − 2iOþ−ðγ5~γÞ −2−

2We remark that [35] uses a different convention on parity. See
Appendix B for a brief discussion of the two conventions.
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i.e. the Weyl bilinear χ†τ2χ, transforming under the 3þ
representation of SUð2ÞP, is half the sum of the Dirac
bilinears ψTCγ5γ0ψ and ψ†Cγ5γ0ψ�, both in the irreducible
representation 3þ of the original flavor group, but carrying
baryon charge þ2 and −2, respectively.
As usual, masses are extracted by looking at the large-

distance exponential decay of correlators between operators
with the same quantum numbers. For fermionic bound
states, we are interested in the Uð1ÞP quantum numbers.
When expressing the relevant correlators in the original
Dirac notation, we use the conventional language of Lattice
QCD. In particular, the words singlet and triplet do not refer
to a QCD-like isospin symmetry, which is not defined in
this theory. Here they stand for whether fermion discon-
nected diagrams need to be evaluated (singlet case) or not
(as it happens for the triplet). These contributions might
appear in different cases than what one expects from QCD.
For instance, to obtain a pseudoscalar meson in our theory
it is, as in one flavor QCD, unavoidable to compute
disconnected contributions. The terminology is further
discussed in Appendix C. The correlators with the naming
convention inherited from QCD that are needed to compute
masses in a given channel in terms of the single Dirac flavor
are indicated in the last column of Table I. The naming of
the states (column “Name”), which will be used as a handy
reference in the following, is instead derived from the U(1)
quantum numbers, which characterize the physical states.
In particular, 2 indicates the baryon with charge q ¼ 2, −2
the antibaryon with charge q ¼ −2 and zero the scalar/
vector meson (or pseudoscalar/pseudovector meson,
if the parity is negative)3.
As mentioned above, the SU(2) quantum numbers can be

easily read in the Weyl basis. We have indicated with 1 the
singlet and with 3 the triplet of the SU(2) flavor group. If
chiral symmetry is broken, the Goldstone bosons are the
charged baryons that belong to the positive-parity triplet of
the original flavor group (quantum numbers 3þ). Their
Uð1ÞP quantum numbers are �2þ. In the Dirac notation,
operators carrying the wanted quantum numbers are
ψTCγ5γ0ψ and ψ†Cγ5γ0ψ�. Hence, correlators of those
operators are going to play a central role: if they identify
parametrically light particles as the Lagrangian fermionmass
is sent to zero, there will be a clear support for QCD-like
chiral symmetry breaking, otherwise we will get an indica-
tion that the theory may be in a less familiar phase or regime.

It is worth remarking that when it comes to the definition
of physical states, each choice of the fermion notation
has advantages and disadvantages. In particular, in the
Majorana notation, states with a well-defined baryon
charge can be obtained only by combining correlators
of different bilinears. Calculations of correlators can be
carried out using elementary properties of the Dirac algebra
and will not be discussed any further. For some explicit
examples, we refer to [34].
In addition to purely fermionic operators, one can

consider gluonic operators and mixed gluonic-fermionic
operators. Calculations involving those operators do not
present any relevant difference with respect to similar
calculations performed earlier and reported in the literature,
to which we refer for further technical details (see e.g.
[11,16,36]). Since the physical states contributing to a
correlator in a particular channel are selected solely by their
quantum numbers, in general the large distance exponential
decay of correlators with the same quantum numbers is
dominated by the same mass, which is the mass corre-
sponding to the ground state in that channel.4 This is
particularly relevant for the scalar, which should emerge
both in a calculation involving purely fermionic operators
and in a calculation involving purely gluonic operators with
quantum numbers5 JP ¼ 0þ. This channel is particularly
important for phenomenology, as in models of strongly
interacting dynamics beyond the standard model it is
identified with the Higgs boson of the standard model
itself. For a novel strongly interacting theory to be
compatible with the latest experimental findings, the scalar
must turn out to be lighter than the other particles. One of
the central results of our calculation is a sufficiently precise
measurement of the notoriously noisy scalar channel that
enables us to assess with enough accuracy what is the mass
difference between the scalar and the nearest particle in the
spectrum, as we shall see in the following section.

III. RESULTS

The action of the discretized model used in our numeri-
cal study is given by

S ¼ SG þ SF; ð25Þ

where

SG ¼ β
X
p

Tr½1 −UðpÞ� ð26Þ
3The states that are called “baryons” in this work are more

often referred to as “diquarks” in the literature of studies of
gauge theories based on a (pseudo-)real gauge group (e.g. SU(2),
G(2)). The same nomenclature is sometimes used for a real
representation of a gauge group (e.g. the adjoint representation).
This naming convention is discussed also in Appendix B. We
note that also the spin 1=2 state introduced below has a nontrivial
baryon charge, and hence is classified as a baryon. However, with
the term “(anti-)baryon” we indicate in this work only the states
with q ¼ 2 (q ¼ −2).

4However, there are cases in which either kinematics or
dynamics prevents some states from appearing in certain corre-
lators. A remarkable example in this category is large-N QCD, for
which, for instance, meson correlators do not get contributions
from glueballs and vice versa.

5We have omitted charge conjugation, which for gauge group
SU(2) is always positive.
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and

SF ¼
X
x;y

ψ̄ðxÞDðx; yÞψðyÞ ð27Þ

are, respectively, the pure gauge part (Wilson action)
and the fermionic contribution. Here UðpÞ is the lattice
plaquette and

Dðx; yÞ ¼ δx;y − κ½ð1 − γμÞUμðxÞδy;xþμ

þ ð1þ γμÞU†
μðx − μÞδy;x−μ� ð28Þ

is the massive Dirac operator in the Wilson lattice dis-
cretization of fermion fields. κ ¼ 1=ð8þ 2amÞ is the
hopping parameter, a the lattice spacing and m the bare
fermion mass. For further details about the lattice model,
we refer to [11,15,16], where the Nf ¼ 2 adjoint fermion
case is studied for gauge group SU(2), using similar
notations. The algebra relating the various fermion formal-
isms carries over to the lattice in a straightforward way.
The simulations were done using the HiRep code [21]. The
Monte Carlo trajectories used for sampling observables
were generated using a rational hybrid Monte Carlo
(RHMC) algorithm [37]. Other details on our simulations
are provided in Appendix D.
Correlators among operators can be computed on a

spacetime lattice after Euclidean rotation. In particular, if
~x and t are, respectively, the spatial and temporal compo-
nents of the position vector x, for a bilinear ΨðxÞ we have

lim
t→∞

X
~x

hΨ̄ð~x0; t0ÞΨð~x; t0 þ tÞi ∝ e−mαt; ð29Þ

where mα is the lowest mass with the quantum numbers α
carried by Ψ and the sum is over the whole spatial volume.
In our study, we make use of Wilson fermions, for which

chiral symmetry is explicitly broken. As a consequence, the
fermion mass gets an additive renormalization term that
shifts the chiral point away from zero bare mass. A mass that
is only subject to multiplicative renormalization (and, hence,
is zero at the chiral point) can be defined through the partially
conserved axial current (PCAC). Using the Dirac notation,
the PCAC mass is defined as the large time limit of

amPCACðtÞ ¼
P

~xh∂0A0ð~x; tÞPð~0; 0Þi
2
P

~xhPð~x; tÞPð~0; 0Þi
; ð30Þ

where

A0ð~x; tÞ ¼ ψ̄ð~x; tÞγ0γ5ψð~x; tÞ ð31Þ

Pð~x; tÞ ¼ ψ̄ð~x; tÞγ5ψð~x; tÞ; ð32Þ

and the time derivative is discretized using the backward-
forward symmetrized lattice difference operator (which is

defined as the difference between the values of a function in
two neighbor points divided by the lattice spacing). The
lattice technology used to define correlators and the mPCAC
mass and to compute them on the lattice is by now standard
(see e.g. [38] for a more extended treatment).
In our investigation of fermion correlators, we used the

Nf ¼ 1 Dirac and the Majorana formalism (see e.g. [39,40]
for technical details on lattice computations involving
Majorana fermions), in some cases performing the analysis
in both ways to cross-validate the result. The analysis code
in the Dirac formalism, used for connected contributions to
correlators, is based on HiRep, while a code developed
for studies of super Yang-Mills theories [36] has been
used for cross-validation of results for triplet contributions,
for calculations involving singlets and for spin–gauge
composite states. Gluonic observables (and in particular
glueball states) have been studied using the techniques
exposed in [41]. Our numerical results are reported below.

A. Phase diagram

The lattice action describes the physics of the continuum
model only in the limit β → ∞. The opposite (strong
coupling) limit is generally separated from the continuum
(below referred to as the “physical region”) by a phase
transition. The strong coupling phase, dominated by lattice
artifacts, is called the “bulk phase.” An order parameter for
the transition from the bulk phase to the phase connected to
the continuum theory is the plaquette. Simulations aiming
at studying continuum physics need to make sure that the
parameters are chosen in such a way that the model is in
the region connected to the continuum. A simple scan on a
small lattice allows us to perform a sensible choice of the
parameters.
In the absence of a prior investigation of this theory

on the lattice, a study of the lattice phase diagram was
necessary to identify the physical region. The average
plaquette was considered on a 44 lattice, in the ranges
1.4 ≤ β ≤ 2.8, −1.7 ≤ am ≤ −0.1, in steps of 0.1. Once
the region of the bulk phase transition was identified, points
were added in its neighborhood to increase the resolution to
0.05. The results, shown in Fig. 1, indicate a bulk phase
transition at β ≈ 1.9, am ≈ −1.65.
In order to simulate near the continuum, a large β would

be ideally needed. However, the larger the β the smaller the
lattice spacing. Hence, to obtain a lattice of a physically
meaningful size a large number of sites in each direction is
needed. In practical terms, this will make the simulation
computationally very costly, with the cost increasing
exponentially with β. Likewise, ideally the mass should
be as small as possible. However, at fixed β and lattice size,
strong lattice artifacts and finite size effects appear when
the mass is reduced towards the chiral limit. Hence, the
minimum mass that can be simulated depends on β and on
the lattice volume V. When choosing simulation parame-
ters, a compromise between the ideally suited situation and
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the emergence of practical difficulties needs to be reached,
verifying a posteriori that the choice of parameters is
meaningful for describing the physical system. Based on
the obtained phase diagram and on the above consider-
ations, a single value of the lattice spacing, set by β ¼ 2.05,
was chosen, and bare fermion masses were considered in
the range −1.523 ≤ am ≤ −1.475. For the quantitative
measurements that follow, lattice sizes of NT × N3 between
16 × 83 and 48 × 243 were considered. Lattice volumes and
other parameters are shown in Table II.

B. Center symmetry

At zero temperature and infinite spatial volume, SUðNÞ
gauge theories with adjoint fermions preserve the ðZðNÞÞ4
symmetry related to center transformations in the four
Euclidean directions. When shrinking the volume or
increasing the temperature (the two mechanisms being
connected in an Euclidean setup6), the system can pass
through various phases (or, more precisely, regimes if the
number of degrees of freedom is finite) with different center
symmetry patterns [42].
The order parameter for the center symmetry factor

associated to the direction μ̂ is the vacuum expectation
value hLμi of the traced Polyakov loop in that direction,

Lμ ¼
X
i⊥

Tr

�YNμ

i¼0

Uμðx⊥; xμÞ
�
; ð33Þ

where xμ is the μth coordinate, x⊥ the set of coordinates in
the perpendicular directions to μ̂ and Nμ the number of
lattice points in the μ̂ direction.
The Polyakov loop can be used to detect finite volume

artifacts. On a sufficiently large lattice, the distribution of
the vacuum expectation values of all four Polyakov loops
are symmetric with a peak at zero. A change of regime will
occur when, as reducing the lattice size, N peaks will start
to appear in one of the Polyakov loop distributions. As the
lattice size is further reduced, the Polyakov loops show a
more complicated pattern characterized by the distribution
of one or more of them having N peaks. Finally, in the
zero-volume limit, all the four Polyakov loop distributions
are again peaked at zero [42]. Following the order of the
discussion above, the regime connected with the infinite
volume limit is the first of the two regimes characterized
by a maximum of the Polyakov loop histogram at zero.
In order to disentangle this from the opposite zero-volume
limit, the Polyakov loop average needs to be investigated as
a function of the lattice size.
The regime of our ensembles with respect to the ðZð2ÞÞ4

symmetry was tested by investigation of averages of
Polyakov loops. When finite size effects are absent, we
expect the average of traced Polyakov loops in all direc-
tions to be consistent with zero within errors, with the
histogram of values having a single peak at zero and being
symmetric around that value. Polyakov loop averages with
a doubly-peaked distribution at two nonzero values sym-
metric around the origin signal finite size effects [16].
Representative plots of hLμi showing a distribution peaked
in zero are given in Fig. 2. All the results reported here have
been obtained for choices of parameters for which the

TABLE II. The lattices considered in this study. Here Nconf
indicates the number of thermalized configurations used in the
averages, am is the bare fermion mass in units of the lattice
spacing a and the first column is a reference name for the set.
Also indicated for each set is the lattice volume. Ensembles
marked with * do not meet the condition Lam2þ ≳ 9, which was
found to be a necessary prerequisite in order to have results free
from finite-volume artifacts (see Sec. III D for details), and hence
have not been used in our analysis.

Name Volume −am Nconf Excluded

A1 16 × 83 1.475 1500 *
A2 16 × 83 1.500 1500 *
A3 16 × 83 1.510 1500 *
A4 16 × 83 1.510 4000 *
B1 24 × 123 1.475 1500
B2 24 × 123 1.500 1500
B3 24 × 123 1.510 4000
C1 32 × 163 1.475 1500
C2 32 × 163 1.490 1500
C3 32 × 163 1.510 1500
C4 32 × 163 1.510 4000
C5 32 × 163 1.514 1500
C6 32 × 163 1.519 1500
C7 32 × 163 1.523 1500 *
D1 48 × 243 1.510 1534
D2 48 × 243 1.523 2168
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FIG. 1 (color online). The phase diagram of the theory,
showing the average plaquette on a 44 lattice at 1.4 ≤ β ≤ 2.8,
−1.7 ≤ am ≤ −0.1.

6As in our simulations, we have assumed periodic boundary
conditions for the gauge fields in all directions, periodic boundary
conditions for fermionic fields in spatial directions and antiperi-
odic boundary conditions for fermionic fields in the temporal
direction, the latter being related to the finite temperature setup.
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system is in a regime with all the distributions of Polyakov
loops peaked at zero. In order to check that this is the
regime of the thermodynamic limit, we have observed
that reducing the lattice size below a certain value gives rise
to a two peak structure developing in the Polyakov loop
distributions. This study indicates that our simulations are
free from center-related finite size artifacts.

C. Topological charge

A potential problem of lattice simulations of gauge
theories is the emergence of long autocorrelations among
topological sectors at couplings that are crucial for taking

the continuum limit. In order to understand whether this
also happens in our case, we have monitored the topologi-
cal charge history of our runs.
The topological charge of a lattice configuration can be

defined as

Q ¼ 1

32π2
X
i

ϵμνρσTrðUμνðiÞUρσðiÞÞ; ð34Þ

where the sum extends over the whole lattice, ϵμνρσ is the
fully antisymmetric tensor and UμνðiÞ is the plaquette
starting from point i≡ ð~x; tÞ in direction μ̂ and coming
back to i from iþ ν̂. In the continuum limit,Q is an integer
labeling the topological sector to which the configuration
belongs.
Monte Carlo determinations of Q are hindered by

ultraviolet fluctuations, which hide the underlying topo-
logical structure. These fluctuations can be removed using
smoothing techniques such as cooling [43] or the more
recently introduced Wilson flow [44], which are expected
to provide similar benefits [45].
In an ergodic simulation, the system should efficiently

explore topological sectors. However, long autocorrelations
are shown to appear when the continuum limit is
approached. These autocorrelations determine an increase
of the required number of configurations that are needed to
obtain statistically significant vacuum expectation values of
physical observables. A recent description of the problem
for QCD (and a proposed solution) can be found in [46].
Similar autocorrelations have been observed in investiga-
tions of novel strong dynamics beyond the standard model
(see e.g. [47]).
We have measured the value of the topological charge for

our configurations using equation (34). The ultraviolet
fluctuations were filtered out using the cooling method
described in [43,48,49]. Representative sample histories
of Q are shown in Fig. 3. In general, the results were found
to show good tunneling behavior, confirming that the
Monte Carlo was not trapped in a single topological sector
and supporting the robustness of our error estimates. A
more technical discussion of instanton-related observables
in our simulations (including the topological susceptibility
and the correlation time of the topological charge) is
provided in Appendix D.
Another check of finite size artifacts is provided by a

study of the instanton size distribution [49]. For our choice
of parameters, the instanton size distributions are those
expected in the large volume limit. This investigation
provides another indication that our simulations are free
from the most obvious finite size artifacts.

D. Spectral observables

For the spectroscopic study, we considered masses of
mesonic and baryonic two-fermion states, the 0þ glueball
(the 2þ was also considered, but found to be too noisy to
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FIG. 2 (color online). The histogram of the average Polyakov
loop for all configurations belonging to the set shown in the label
of each subfigure, for all spacetime directions. The single peaks
indicate an unbroken center symmetry.
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provide useful information), and a spin-1
2
state, as well as the

fundamental string tension extracted using correlators of
Polyakov loops (see e.g. [16]). Baryonic observables were
calculated using two codes: one (HiRep) working in the
Dirac basis and using stochastic sources in color space
(the Z2SEMWall method of [50]), and one developed for
lattice studies of super Yang-Mills theories [36]. Mesonic
observables were calculated using the latter code. For the
disconnected contributions the noisy estimator technique
has been applied in combination with the truncated solver
method [51]. This rather time-consuming measurement
has been carried out only on every fourth configuration.

There is a significant difference in the relevance of the
disconnected contribution for the different operators: it is
the dominant part of the scalar meson correlator, but
negligible for the pseudoscalar meson. Gluonic observables
were calculated using the methods described in [16,41].
The spin-1

2
state is constructed in the continuum from the

operator

Ospin-1
2
¼

X
μ;ν

σμνtr½Fμνξ�; ð35Þ

where σμν ¼ 1
2
½γμ; γν�. This state, which can be seen as a

bound state of a fermion and a gluon, has been measured
using a combination of APE and Jacobi smearing, with the
used tools described in [36].
A representative set of effective mass plots are shown in

Fig. 4 for the D2 ensamble. The errors on both the effective
masses and the final fit were calculated using a blocked
bootstrap method. At higher mPCAC the quality of the
plateaux is comparable to those shown in Fig. 4. In the
panes of this figure, the bands show the extracted mass, and
stretches across the data we have used for the fits. As
expected, the highest quality plateaux are obtained for the
PCAC mass and the scalar baryon. The quality is also good
for the axial vector. Mass plateaux for the scalar meson, the
scalar glueball and the spin-1

2
are limited to about four

points. This is usual for those states. An analysis of the
results suggests that the systematics associated with these
latter plateaux should not affect the discussion provided in
this paper. The relative contribution of the connected and
the disconnected part to the scalar meson correlator for the
set D2 is displayed in Fig. 5. The plot shows that the error is
dominated by the disconnected contribution, which is
nevertheless computed with enough accuracy to provide
a meaningful determination of the mass.
To probe the extent of possible finite-size effects, studies

of the pseudoscalar and of the scalar mass (extracted in
the gluonic channel) were made at am ¼ −1.51 at each
of the four lattices considered. As is shown in Fig. 6,
the results on the three largest lattices were all found to
agree, while the results on the smallest lattice (of volume
V ¼ T × L3 ¼ 16 × 83) are inconsistent with the others.
This result can be used to provide an estimate of the
minimal box size needed to be free from finite size effects.
Using the value of the string tension measured on the set of
configurations at am ¼ −1.51, we obtain the requirement
La

ffiffiffi
σ

p
≥ 3.8, or equivalently, in terms of the mass of the 2þ

baryon,Lam2þ ≳ 9. The lattice sizes that do not respect this
bound (and have therefore been excluded from our analy-
sis) are marked with a * in Table II. We also note that this
bound has been obtained in the parameter region in which
physical states are heavier in lattice units. Ideally, one
would like to determine this bound for lower masses. This
investigation is deferred to a future study.
As a cross-check of the determination obtained from

Polyakov loop correlators, the string tension has been
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FIG. 3 (color online). The history of the topological charge
Q for the indicated ensembles; other ensembles had similar
properties.
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computed also using Wilson loops. The technicalities of
this calculation are described in [16]. Some examples of the
static inter-fermion potential from Wilson loops are shown
in Fig. 7. The string tension has been extracted using the
Cornell ansatz for the potential. The results found agree
with the determination obtained using Polyakov loop
correlators, but are, in general, less accurate. For this
reason, in this section we have used the determination
obtained from Polyakov loops.

The spectrum of the theory in lattice units (reported in
Tables III, IV and V) is shown in Fig. 8, with Fig. 9
displaying ratios of masses over the string tension vs
mPCAC. In these plots, we show only results obtained on
the largest available lattice at any simulated bare mass.
Some states have proven to be numerically hard to measure,
giving large error bars; for the sake of clarity, those states
have been omitted from the figures. The size of the
statistical error for the displayed states is affected by the
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FIG. 4 (color online). Effective masses for the given states as a function of t in lattice units on the D2 ensemble. A fit of the plateau is
also displayed, together with the fit range.
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autocorrelation time of the configurations (see
appendix D), the statistics of the simulations and the
quality of the corresponding mass plateau, and as a
consequence presents some expected variation among
states at fixed mPCAC and for the same state across different
values of mPCAC.
In an infrared conformal theory, the behavior of the

mass spectrum as a function of the quark mass is
remarkably different than in a confining theory. In
particular, the spectral signature of infrared conformality
has been investigated in detail in [11,15,16,52–54]. The
conclusion from these works is that, unlike in QCD, in
infrared conformal theories near the massless limit ratios
of spectral masses stay constant as a function of the
fermion mass. This implies that, as expected, there is no
Goldstone boson associated to spontaneous breaking of
chiral symmetry. Hence, considering mass ratios involving
the would-be Goldstone boson of chiral symmetry break-
ing and studying their behavior in the massless limit is a
clear signal that distinguish spontaneous breaking of chiral
symmetry and infrared (near-)conformality. In our case,

from the data one can see that while all masses decrease
monotonically as mPCAC → 0, the ratio of spectral quan-
tities to the string tension remains roughly constant for
most quantities in the range studied,7 with some (particu-
larly the scalar glueball) showing some deviation (albeit
within two standard deviations) at large fermion mass.
Similar behavior is observed for the 0þ meson mass,
which is compatible with the mass of the scalar glueball.
A straightforward interpretation of the degeneracy found
between the lowest-lying states in these two channels is
that the glueball set of operators and the meson operator
with 0þ quantum numbers project onto the same ground
state. This provides support for mixing between the scalar
meson and the scalar glueball.
We also note that this scalar state is the lightest state in

the spectrum. After having been observed in [11] in the
SU(2) gauge theory with two adjoint fermions, the presence
of a light scalar has proved to be a feature that keeps
recurring in gauge theories near the conformal window
(see [26,55,56] for recent lattice investigations and [57] for
an approach based on gauge-string duality). The light
scalar, which might be a signature in this class of models,
is suggestive of a light Higgs appearing in this framework.
This result indicates that strongly interacting dynamics
beyond the standard model is not incompatible with the
experimental constraint that the Higgs must be light in any
extension of the standard model.
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FIG. 5 (color online). The connected correlator and the full
correlator (which includes both connected and disconnected
contributions) in the scalar meson channel for the ensamble D2.

FIG. 6 (color online). The 2þ scalar baryon and 0þ glueball
masses, at am ¼ −1.51, for the four lattice sizes considered.
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FIG. 7 (color online). The static fermion potential of four sel-
ected lattices.

7Although this behavior is by itself a robust indication that the
small mass regime of a near-conformal theory has been reached in
our simulations, precision measurements of masses of bound
states at zero fermion mass still require an extrapolation over a
wide mPCAC region. We remark that after performing a simple
extrapolation to zero mPCAC of our data, most of the quantities
discussed in this section are compatible with zero in the chiral
limit. Establishing if all, some, or none of these spectral quantities
are zero in the zero-mass limit is of crucial importance for a
definite answer to the questions we are addressing. However, this
would require more extensive studies on larger lattices, which are
outside the scope of this work.
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E. Chiral condensate anomalous dimension

The flatness of ratios of spectral quantities in this theory
as the fermion mass is sent to zero are suggestive of the
model being in a conformal or near-conformal phase
[11,15,16]. This indication is reinforced by the fact that
the scalar is the lightest state in the theory. We stress that at
the current stage of our investigations numerical evidence
should be taken only as a hint. With this in mind, a
conventional chirally broken phase seems to be excluded.8

For this reason, for the purpose of understanding quanti-
tatively the character of the theory, we will use a conformal
ansatz and hence disregard chiral perturbation theory as
a possible explanation of our model. This choice is based
on the observation that in chiral perturbation theory the
lightest degree of freedom is to be found in the 2þ baryon
channel. Hence, even if the system exhibited chiral sym-
metry breaking, our data would not be in the asymptotic
regime, with the consequence that chiral perturbation
theory is not applicable in this range of masses. Note that
similar considerations also hold if one would include the
light scalar in the effective lagrangian as done in [58], the
2þ baryon still being the only degree of freedom surving in
the deep infrared.
Near-conformality can be exploited to determine the

value of the anomalous dimension of the chiral condensate
γ�. We may use various techniques to extract γ�. We have
used two methods for this work: finite-size scaling pre-
dictions and scaling of the spectrum of the Wilson Dirac
operator. For the first case, for a conformal theory, as a
function of the mPCAC mass, a spectral quantity mX of the
system follows the scaling relation [15,16,53,54,59–61]

TABLE III. Glueball masses and string tension.

Name a
ffiffiffi
σ

p
am0þ am2þ

A1 0.424(13) 0.8422� 0.0968 1.3148� 0.2305
A2 0.335(10) 0.7320� 0.0885 1.4678� 0.2176
A3 0.299(12) 0.5690� 0.0585 1.6921� 0.3196
A4 — 0.5873� 0.0553 —
B1 0.378(19) 0.9582� 0.1174 1.8059� 0.3643
B2 — 0.7296� 0.1092 —
B3 0.322(10) 0.5284� 0.1494 —
C1 0.436(60) 0.9654� 0.1057 1.7461� 0.3526
C2 0.379(44) 0.8265� 0.0644 1.9130� 0.5004
C3 0.318(11) 0.5985� 0.0573 1.6285� 0.3079
C4 — 0.5901� 0.0438 —
C5 0.322(13) 0.5530� 0.0415 1.5834� 0.2263
C6 0.2859(75) 0.3689� 0.0437 1.9897� 0.2589
C7 0.2368(84) 0.3146� 0.0278 1.0188� 0.0977
D1 — 0.4609� 0.0553 —
D2 0.2354(56) 0.3355� 0.0264 1.3387� 0.1104

TABLE IV. PCAC and baryon masses (triplet channels).

Name amPCAC ampseudoscalar amscalar amvector

A1 0.1486(17) — 0.9704(58) —
A2 0.1108(20) — 0.8432(81) —
A3 0.0906(27) — 0.763(12) —
A4 0.0872(22) — 0.747(10) —
B1 0.1493(29) — 0.9733(23) 2.297(59)
B2 0.1113(8) 1.969(39) 0.8449(31) 2.062(41)
B3 0.0911(7) 1.635(45) 0.7644(30) —
C1 0.1490(3) — 0.9723(12) —
C2 0.1278(3) — 0.9035(16) —
C3 0.0911(3) — 0.7646(15) —
C4 0.0905(5) 1.594(58) 0.7645(17) —
C5 0.0829(6) 1.712(31) 0.7288(29) 1.702(70)
C6 0.0659(9) 1.518(42) 0.6473(44) —
C7 0.0484(5) — 0.5480(36) —
D1 0.0913(2) — 0.7651(11) —
D2 0.0472(3) 1.282(62) 0.5412(25) —

TABLE V. Meson and spin-1
2
state masses (singlet channels).

Name am1=2 amscalar ampseudoscalar amvector amaxial

B1 1.707(20) 0.64(20) 0.9859(91) 1.1605(12) 2.27(67)
B2 1.535(72) 0.91(33) 0.839(45) 1.0504(23) 1.91(10)
B3 1.349(51) 0.53(11) 0.819(22) 0.9792(55) —
C4 1.325(24) 0.602(85) 0.751(19) 0.9757(54) 2.260(47)
C5 1.284(22) 0.434(78) 0.750(17) 0.9433(34) —
C6 1.200(73) 0.339(86) 0.741(38) 0.8635(48) 2.190(52)
D1 — — — 0.9761(53) —
D2 0.949(34) 0.328(49) 0.598(33) 0.737(18) 1.664(76)

FIG. 8 (color online). Selected spectrum of the theory, showing
meson, baryon, glueball, and spin-1

2
states, and σ1=2.

8As we will remark in greater detail in the following section,
the data are also compatible with a walking behavior, i.e. a phase
that at intermediate energies looks infrared conformal, but at
lower energies is in fact chirally breaking.
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LamX ¼ fðLðamPCACÞ
1

1þγ�Þ; ð36Þ

for some function f, where L → ∞ is the finite spatial
extent of the lattice, and the combination Lm1=ð1þγ�Þ

PCAC is kept
constant. If the system is in the scaling region, then this
relation may be used to estimate γ� in the following way.
Firstly, we plot LamX against LðamPCACÞ1=ð1þγ�Þ for all

available lattice volumes on one plot for each of various
values of γ�. We then take the set of plots and find the
region of γ� that allows the sets from different lattices to lie
on a single universal curve. In Fig. 10 we see the 2þ scalar
baryon analyzed in this manner, at three values of γ�; we
see the best fit is observed in 0.9 ≤ γ0 ≤ 1.0, and so we
expect the anomalous dimension to lie in this region.9

A more precise method of determining γ� is to fit the
Dirac mode number ν̄ðΩÞ as a function of the Dirac
eigenvalue Ω [62] (see also [63]). We expect the mode
number to scale as

a−4ν̄ðΩÞ ≈ a−4ν̄0ðMÞ þ A½ðaΩÞ2 − ðaMÞ2� 2
1þγ� ; ð37Þ

where M ¼ ZAmPCAC and ZA is the renormalization con-
stant of the isovector axial current (for further details, see
[62]). The raw output of a set of simulations is plotted
in Fig. 11.
In numerical studies of a mode number distribution that

follows this relation, we have four parameters to fit for:
ν̄0ðMÞ, A, ðaMÞ2, and γ�. Additionally, in the presence of
chiral symmetry, we would expect this relation to hold for
Ω → 0; however, since simulations are performed at finite

fermion mass, scaling is only seen in an intermediate range
of Ω, which is not known a priori. This means that in
addition to fitting for the four variables above, we must also
carefully locate the scaling window of Ω. We choose to
perform this analysis on the D2 lattice only, since the longer
extent will provide the greatest opportunity to observe
the scaling region. The corresponding data are plotted
in Fig. 12.
To do this, we consider each possible window ½ΩLE;ΩUE�

in turn, and perform an initial fit using two algorithms,
Levenberg-Marquadt and simulated annealing, withM ¼ 0
set to allow a convergent fit. To obtain an estimate of the
stability of the fit, these initial values are then fed back into
the same fitting algorithm a large number of times, with
some random “jitter” applied, and bootstrap sampling is
used to estimate the error on the average outputs.
From this, a set of plots can be drawn for each variable

showing the value and error for all possible windows.
Regions of stability in each variable can be seen as
plateaux, and the scaling region is identified as the region
that is most stable on all four plots simultaneously. This
analysis (limited to a subset of ΩLE, ΩUE for the sake of
readability) for the Levenberg-Marquadt results on the
D2 lattice is shown in Fig. 13, where γ� was consistently
found to lie in the range 0.9≲ γ� ≲ 0.95, with a best fit
of γ� ¼ 0.92ð1Þ, in agreement with the analysis based
on the finite size scaling of m0− . The quality of the best
fit is shown in Fig. 12. The simulated annealing results
were found to be in good agreement with these data, and the
best fit is consistent with the range found via the spectral
scaling relations. Similar results have been obtained on
other configuration sets. Putting together the more precise
Dirac operator eigenvalue and the more qualitative
spectral scaling determination, a safe estimate for γ� is

FIG. 9 (color online). Spectrum of the theory, showing meson, glueball, and spin-1
2
states, all normalized by σ1=2.

9While a similar analysis on other states give compatible
results, the 2þ baryon, being the most accurately determined state
in the spectrum, allows us to perform a better determination of γ�.
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γ� ¼ 0.925ð25Þ, with the central value that privileges the
result obtained with the former method and the error
increased to be compatible within one standard deviation
with the estimate coming from the finite-size scaling
method. We note that this is the highest value found for
the anomalous dimension in any lattice study of models
relevant for strongly interacting dynamics beyond the
standard model.

IV. DISCUSSION

Taken at face value, the numerical results of the
previous section would imply infrared conformality of
the theory with an anomalous dimension of order one.
Since both the infrared conformality of the theory and the
large anomalous dimension are somewhat unexpected, in
this section we review arguments that seem to suggest a
different result, discuss their extent of validity (and the
extent of validity of our analysis) and outline where
further simulations will help in pinning down potential
remaining issues.
We have already stressed the large value of the anoma-

lous dimension of the condensate, which makes this theory
unique among those investigated on the lattice to date.
However, we remark that the anomalous dimension has
been obtained at a single lattice spacing, while the
interesting quantity is its value in the continuum limit.
In SU(3) with Nf ¼ 12 fundamental fermion flavors, a
strong lattice spacing dependence of the anomalous dimen-
sion has been observed that can be successfully described
by adding subleading corrections to the dominant scaling
behavior of observables near the infrared fixed point [64].

FIG. 10 (color online). Plots of Lam2þ as a function of

Lam1=ð1þγ�Þ
PCAC for the three lattice volumes 24 × 123, 32 × 163 and

48 × 243 and γ� ¼ 0.9; 1.0; 1.1 (top: γ� ¼ 0.9; middle: γ� ¼ 1.0;
bottom: γ� ¼ 1.1). The results appear to identify a universal curve
for γ� ¼ 0.9–1.0.

FIG. 11 (color online). The behavior of the Dirac mode number
for a subset of the lattices considered.

FIG. 12 (color online). The behavior of the Dirac mode number
on the D2 lattice, compared with the results of the numerical fit,
with γ� ¼ 0.92.
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Hence, in order to determine the continuum value of the
condensate anomalous dimension, a more extended inves-
tigation involving higher β values would be needed.
Such an investigation will enable us to perform a robust
extrapolation that includes scaling violations. In this work,
we have used the standard Wilson action for the gauge
fields and the Wilson discretization of fermions. The
expected discretization errors can be reduced by using
improved actions. In the absence of a more detailed study,
we will make the working assumption that the value of the
anomalous dimension will not change significantly when
extrapolated to the continuum.
At a superficial sight, supporting cases for a noncon-

formal behavior in the theory discussed in this paper seem
to come from arguments based on the two-loop β function
[65] and arguments based on the Seiberg and Witten
solution of N ¼ 2 super Yang-Mills [29], which is related
to our theory by an infinite mass deformation for the scalar.
As noted in the introduction, the behavior we have found
does not generate any tension with the Seiberg and Witten
result for N ¼ 2. In fact, the N ¼ 2 theory undergoes
spontaneous symmetry breaking from gauge group SU(2)

down to U(1) at any value of the Higgs condensate. When a
small mass is given to the Higgs field, this moduli space is
lifted and in the two resulting vacua monopoles condense,
giving rise to Abelian confinement via the dual super-
conductor mechanism (already advocated before for QCD
in [66]). A deformation retaining supersymmetry allows
one to construct a path leading fromN ¼ 2 toN ¼ 1 super
Yang-Mills, with the latter theory confining. However, the
deformation that takes N ¼ 2 super Yang-Mills to the
gauge theory investigated in this work does not retain
supersymmetry, and as such does not allow to argue about
the phase of the theory we are interested in, starting from
the original analytic result. It should also be stressed that
the original N ¼ 2 super Yang-Mills theory lives in the
Coulomb branch (i.e. the infrared limit is Abelian and
conformal) and when deformed with a small mass term for
the Higgs field the resulting theory has Abelian confine-
ment of the electric charge, which is inherently different
from the confinement observed in nonsupersymmetric non-
Abelian gauge theories [67]. In other words, this theory
does not confine in the way a consistent argument would
require. Hence, it can not be used as a starting point

FIG. 13 (color online). Plateaux for the fitted observables for the D2 data at various lengths and positions of the fitting window. The
color represents the position of the lower end of the window, and the x axis the upper end. The plateaux at the top-right of each plot were
taken as the central values of our estimates.
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for arguing about confinement in the Nf ¼ 1 Dirac
adjoint case.
Concerning the β-function argument, the underlying

result is entirely based on perturbation theory, which is
expected to break down when attempting a description
of a strongly coupled infrared fixed point. This has been
observed for SU(2) with two Dirac flavors in the adjoint
representation, which was expected to be confining (albeit
near the onset of the conformal window) perturbatively,
but has been shown to be infrared conformal by lattice
calculations.
Recently, it has been noticed in [68] (see also [69]) that

there is an apparent tension between large-N volume
reduction (which is expected to hold in theories with
adjoint fermions) and presence of a Hagedorn-type density
of states (which characterize confining theories). The
authors advocate a solution based on an emerging fer-
mionic symmetry at large N. However, on the light of our
study, another possibility is that theories with NW Weyl
flavors are not confining when NW > 1, as there are
indications for our case (NW ¼ 2) and for the two adjoint
Dirac flavor theory (NW ¼ 4).
However, even if those arguments in favor of confining

behavior have possible breaches, it is still possible that our
lattice simulations are in an intermediate mass regime and
that at lower masses the model shows confining behavior.10

In order to check whether we can see this change in
behavior, we are performing simulations at larger volumes
and lower masses. If the theory turns out to be confining
in the deep infrared, the implication is that SU(2) with
one adjoint fermion is walking, i.e. near-conformal in an
intermediate energy range before turning confining at some
low-energy scale. This is the wanted behavior for con-
structing a phenomenologically viable model of strongly
interacting dynamics causing electroweak symmetry break-
ing, with the anomalous dimension being in the region of
values compatible with experimental constraints.
Finally, our model only contains two Goldstone bosons

associated with the chiral symmetry breaking, while
phenomenologically at least three would be required to
account for the standard model electroweak symmetry
breaking. Nevertheless, the system studied here can be
thought of as a sector of a richer theory containing also
fermions in the fundamental representation, known as
“ultraminimal technicolor,” whose phenomenology has
been first explored in [70]. Our results suggest that a

model constructed along the lines of ultraminimal techni-
color could be compatible with phenomenology.

V. CONCLUSIONS

In this paper, we have performed a first numerical
exploration of SU(2) gauge theory with one Dirac flavor.
After investigating the phase structure of the theory, we
have performed an extensive study at a value of the
coupling that we have found to be continuously connected
with the continuum limit of the theory. By studying the
scaling of the spectrum and of the eigenvalues of the Dirac
operator as the mass is reduced towards the chiral limit
and the lattice is kept large enough for finite size artifacts
to be under control, we have found indication of a
conformal infrared behavior with an anomalous dimension
0.9≲ γ� ≲ 0.95. If this features are confirmed by more
extended simulations aimed at extrapolations to the con-
tinuum limit, the model will provide the first theory in the
conformal window that has an anomalous dimension
compatible with phenomenological constraints. Another
possibility is that the theory is walking, and we are just
observing its behavior at intermediate energy scales. This
case would also be interesting, as this would result in the
first observation of a near-conformal theory with a large
anomalous dimension. Such an observation would be
again of theoretical relevance towards the construction of
a phenomenologically viable explanation of electroweak
symmetry breaking based on a novel strong dynamics
beyond the standard model. Although the system studied
here does not possess enough Goldstone bosons to provide
a complete description of electroweak symmetry breaking
due to a novel strong interaction, it might appear as a
sector of a theory that could realize such a mechanism of
electroweak symmetry breaking. Finally, we remark that
the finding of a large anomalous dimension is relevant not
only for understanding the viability of electroweak sym-
metry breaking by a new strong force, but also for
advancing our understanding of the phase diagram of
non-Abelian gauge theories.
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APPENDIX A: NOTATIONS AND CONVENTIONS

In this Appendix, we describe for convenience the
notations and conventions on the Dirac algebra we have
used for deriving the results of Sec. II.
In Minkowski space, with the metric tensor

g ¼ diagðþ1;−1;−1;−1Þ, we choose to use a chiral
representation of the Dirac algebra, with

γμ ¼
�

0 σ̄μ

σμ 0

�
; ðA1Þ

where in turn

σμ ¼ ð12; ~σÞ; σ̄μ ¼ ð12;−~σÞ: ðA2Þ

~σ ¼ ðσ1; σ2; σ3Þ is the 3-vector formed from the Pauli
matrices,

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1
�
; ðA3Þ

and 12 is the 2 × 2 identity matrix. As usual, we define

γ5 ¼ iγ0γ1γ2γ3 ¼
�
12 0

0 −12
�
: ðA4Þ

Charge conjugation is defined as

ψC ¼ Cψ̄T; ðA5Þ

where

C ¼ iγ0γ2 ¼ i

�
σ2 0

0 −σ2
�
: ðA6Þ

The properties,

C† ¼ CT ¼ −C; ðA7Þ

CγμC ¼ γTμ ; ðA8Þ

Cγ5C ¼ −γ5; ðA9Þ

easily follow from the definition.

APPENDIX B: A NOTE ON STATES
AND PARITY

Our naming convention for bound states and lattice
operators relevant for this investigation is different from the
one used in lattice simulations of QCD and supersymmetric
Yang-Mills theory. In order to clarify the correspondence,
we discuss in this Appendix the relation between our
classification of the spectrum and others found in the
literature, in particular with connection to the mesonic and
baryonic operators we are using. If one compares the states
studied here to their QCD equivalents, or to other theories
beyond the standard model, it is important to keep in mind
the differences in the conventions we are going to expose.
In this work, fermion bilinears are meson and baryon

operators. This is due to the fact that the gauge group
(in our case, SU(2)) is (pseudo-)real. This is similar to the
notion of baryons or diquarks in other investigations of
SU(2) gauge theories with fermions in the fundamental
representation (see e.g. [71] and references therein). In
the notation in terms of two Majorana fermions, all these
states are referred to as mesons. In supersymmetric
Yang-Mills theory a meson is named after its QCD
equivalent, which is a flavor singlet meson. For instance,
the scalar meson is called adjoint f0 and the pseudoscalar
meson adjoint η0.
In QCD the triplet γ5 meson operator is related to the

pion, the Goldstone boson of chiral symmetry breaking.
This state becomes massless for vanishingmPCAC and is the
lowest state in the spectrum at small enough fermion mass.
In several works related to theories different from QCD one
adopts the convention to call pions the Goldstone bosons
related to chiral symmetry breaking and define parity in
such a way that these states are pseudoscalar. In inves-
tigations of supersymmetric Yang-Mills theory, for exam-
ple, the chiral symmetry breaking pattern is defined in a
partially quenched setup [35] and the light meson is called
adjoint pion. Under the Lorentz group, the corresponding
creation operator can be made to transform as a pseudo-
scalar if one deviates from the definition of the parity (13),
which is the same as in QCD. A consequence of that
definition is that Majorana flavors are mixed by a parity
transformation:

ξþðt; ~xÞ ↦ iγ0ξ−ðt;−~xÞ: ðB1Þ

If one uses instead

ψðt; ~xÞ ↦ iγ0γ5ψðt;−~xÞ; ðB2Þ
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ψ̄ðt; ~xÞ ↦ −iψ̄ðt;−~xÞγ0γ5; ðB3Þ

the two Majorana flavors do not mix. With this choice, the
parity quantum numbers of what, in our conventions, are
the baryonic states are interchanged (pseudoscalar becomes
scalar and vice versa). Hence, what is called in other
investigations a pseudoscalar meson and the (adjoint) pion,
in our study is the scalar baryon. While the convention used
elsewhere might seem more natural from the point of view
of associating states to their QCD equivalent, ours treats
equally the left and right component of the Dirac spinor, as
it happens for the standard definition of the parity in QCD.
Ultimately, were the theory studied in this work to be found
in nature, the interaction of its particles with the standard
model particles would provide a natural way of fixing the
arbitrariness in the definition of the parity.

APPENDIX C: CORRELATION FUNCTIONS OF
FERMION BILINEARS

Our nomenclature for the contraction of correlation
functions borrows from that of QCD for the sake of
familiarity. Consider a correlation function for a theory
with Nf ≠ 1,

ðC1Þ

where a, b are flavor indices, to be contracted with Wick’s
theorem, and Z is the path integral. In the case a ≠ b,
then only the upper contraction gives a nonzero contri-
bution, which then becomes a term of the form
−trΓ̄D−1ðx; yÞΓD−1ðy; xÞ, which we refer to as both the
triplet (this name being inspired by the isospin symmetry of
QCD) and the connected contribution (where the terminol-
ogy refers to the fact that in terms of purely fermionic lines
the corresponding diagram is connected). If a ¼ b, how-
ever, both contractions can give nonzero contributions,
resulting in a linear combination of the previous term
and one of the form trΓ̄D−1ðx; xÞtrΓD−1ðy; yÞ. The latter
term we refer to as the disconnected contribution, while
the linear combination we call the singlet. The reason
why triplet correlation functions may give physically
meaningful states in what is a 1-flavor theory (where one
would naïvely assume a ¼ b, so only singlets are valid) is
discussed in the main body of the text.

APPENDIX D: FURTHER TECHNICAL DETAILS
ON LATTICE SIMULATIONS

In this appendix we give for completeness some “under-
the-hood” details of the lattice simulations performed.
Table VI presents some variables from the RHMC. tlen
is the length of the molecular dynamics trajectory. Different

time substeps are used for the gauge and fermionic actions:
for each (relatively expensive) fermion substep, two
(cheaper) gauge substeps are used. This allows an increase
in precision without significantly increasing the cost of
computation. We show the substep length for the fermionic
part; the gauge counterpart is a factor of two smaller. The
RHMC algorithm makes use of an arbitrary number of
pseudofermions Npf in order to compute the fractional
powers of the fermion matrix necessary to probe noneven
Nf . As a minimum, Npf ¼ Nf ; higher numbers of

TABLE VI. Further details of the RHMC parameters used in
this study. Shown are the molecular dynamics trajectory length
tlen, the length of the fermionic molecular dynamics substeps
nsteps, the number of pseudofermions npf , and the average
plaquette. The number of gauge substeps was fixed at 2nsteps.

Name tlen nsteps npf Plaquette

A1 1.0 10 1 0.57848(27)
A2 1.0 10 1 0.58833(36)
A3 1.0 10 1 0.59263(30)
A4 1.0 10 2 0.59428(14)
B1 1.0 10 1 0.57819(25)
B2 1.0 10 1 0.58787(27)
B3 1.0 10 2 0.59291(11)
C1 1.0 20 1 0.57841(26)
C2 1.0 20 1 0.58336(27)
C3 1.0 20 1 0.59316(28)
C4 4.0 45 2 0.59388(3)
C5 1.0 20 1 0.59554(28)
C6 1.0 20 1 0.60020(3)
C7 1.0 20 1 0.60445(31)
D1 4.0 65 2 0.59358(2)
D2 1.0 40 1 0.60613(2)

TABLE VII. The average topological charge, topological sus-
ceptibility, and integrated autocorrelation time of the topological
charge.

Name hQi χtop τQ

A1 −0.02ð9Þ 2.32ð8Þ × 10−4 4.6
A2 0.04(8) 1.94ð7Þ × 10−4 3.7
A3 0.13(5) 1.68ð7Þ × 10−4 2.3
A4 0.07(6) 1.65ð4Þ × 10−4 6.2
B1 0.11(19) 1.94ð7Þ × 10−4 4.2
B2 −0.01ð16Þ 1.87ð7Þ × 10−4 3.1
B3 0.12(15) 1.58ð3Þ × 10−4 9.1
C1 −0.46ð31Þ 2.65ð9Þ × 10−4 3.3
C2 0.09(36) 2.15ð8Þ × 10−4 5.0
C3 −0.54ð26Þ 1.64ð7Þ × 10−4 3.1
C4 −0.20ð14Þ 1.60ð5Þ × 10−4 1.3
C5 −0.42ð24Þ 1.51ð6Þ × 10−4 3.0
C6 −0.21ð30Þ 1.27ð5Þ × 10−4 5.9
C7 −0.01ð35Þ 1.05ð4Þ × 10−4 9.1
D1 −0.29ð36Þ 1.98ð7Þ × 10−4 1.3
D2 −1.39ð49Þ 1.20ð4Þ × 10−4 6.2
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pseudofermions require more computational effort but
increase the precision of the rational approximations
performed by the algorithm. We made use of a higher
number of pseudofermions in the finite-volume study to
cross-check that using a single pseudofermion did not give
inaccurate results. Finally, the average plaquette (normal-
ized to unity) is quoted. For fuller details of the algorithm
and definitions of all of these quantities, the interested
reader is referred to [21]. The acceptance rate was held
between 75% and 93%, while dt ¼ tlen=nsteps ranges from
0.025 to 0.1.
Table VII shows some topological observables. The

average topological charge hQi is consistent with zero

within 2σ for all but two parameter sets (namely A3 and
D2), indicating good ergodicity. A3 is ruled out from
consideration anyway due to finite-volume effects, while
looking at the time history of Q for D2 shows that
adequate tunneling is taking place for the ensemble to
be considered ergodic. The topological susceptibility
(calculated as ðhQ2i − hQi2Þ=V), and the integrated auto-
correlation time of Q, are also shown. When measured
in terms of the autocorrelation time of Q, in the
worse case we have around 165 independent blocks of
configurations. This should provide enough statistics for
an unbiased estimate of the observables discussed in
this work.
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