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We present a precise nonperturbative determination of the renormalization constants in the mass
independent RI’-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four
degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM
Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well
as the quark propagator renormalization, are computed at three different values of the lattice spacing, two
volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check
of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2
operator O44 are also presented.
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I. INTRODUCTION

Lattice QCD (LQCD) has proven to be a very powerful
approach to study QCD and has become a precision
technique for the ab initio computation of many QCD
observables. In particular, the possibility to perform a
rigorous nonperturbative renormalization is an essential
feature of lattice calculations. QCD discretization on a
space-time lattice provides indeed a well-defined regu-
larization of the theory, by introducing the lattice spacing
as a natural cutoff. However, any comparison with
physical results requires a precise control of the con-
tinuum limit. Renormalization allows us, from bare
quantities computed at finite lattice spacing, to obtain
meaningful physical observables with the accuracy sought
(typically of the percent level). Controlling as much as
possible all statistical and systematic effects in the
determination of the renormalization constants is crucial
since the accuracy of the renormalization procedure
directly affects the precision of the computed observables.
For instance, the calculation of nucleon matrix elements,
which remains an open challenge, involves a careful
estimate of the corresponding renormalization constants,
essential to compare lattice results to values deduced from
experiments. A proper comparison of these matrix ele-
ments with experimental values represents both a chal-
lenge and an opportunity for lattice QCD.

The goal of this work is to present the computation of
renormalization constants (RCs) for local and twist-2
fermionic bilinear operators using twisted-mass fermion
configurations with four dynamical quarks in the sea.
We use a modified version of the regularization invari-

ant RI-MOM scheme known as RI’-MOM [1]. The
renormalization conditions of an operator are imposed
nonperturbatively on conveniently defined amputated
projected Green functions computed between off-shell
quark states, evaluated at a given momentum and in a
fixed gauge. This scheme is mass independent and
renormalization constants are defined at zero quark mass.
To carry out this renormalization study, the European
Twisted Mass Collaboration (ETMC) has performed
dedicated Nf ¼ 4 simulations with four degenerate light
quark masses. RCs for Nf ¼ 2þ 1þ 1 ensembles are
evaluated by extrapolating to the chiral limit the RCs
computed with the Nf ¼ 4 ensembles.
By using the lattice formalism, one is obliged to break

some symmetries which are only recovered in the continuum
limit, among which is the continuum rotation symmetry. In
discrete Euclidean space, the Oð4Þ rotation symmetry is
broken down to Hð4Þ or Hð3Þ hypercubic symmetry
depending on whether the lattice setup is the same on
spatial and temporal directions. As a consequence, there are
lattice artifacts which are only invariant under Hð4Þ but not
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under Oð4Þ. This is particularly an issue for the computation
of quantities like the renormalization constants since the
associated statistical errors are often quite small, and the
uncertainties from lattice artifacts become visible, thus
deserving a careful treatment. A popular solution is to use
the “democratic cuts” to select data points with relatively
small Hð4Þ lattice artifacts. Another approach, which is
usually called theHð4Þ-extrapolation [2–4], is to include the
lattice artifacts explicitly in the data analysis. This approach,
applied in the present work, allows one to use a much wider
range of data points and to extract information from the
lattice simulations more efficiently.
A particularly interesting point of theHð4Þ-extrapolation

procedure applied to the determination of renormalization
constants, is to allow a precise study of their running. This
key advantage provides the possibility to compare the
evolution of the RCs obtained on the lattice with perturba-
tive formulas and to perform an interesting estimate of the
nonperturbative contributions.
This paper is organized as follows. After a brief

description of the lattice setup in Sec. II, basic RI’-
MOM formulas and our notation are defined in Sec. III.
The analysis procedure is explained in Sec. IV, where
Goldstone pole subtraction,mPCAC average and hypercubic
corrections are detailed. A precise study of the running is
presented in Sec. V, both for local and twist-2 operators,
with a special focus on lattice artifacts and higher order
corrections. A comment is in order at this point. In the
jargon of the renormalization community there is an abuse
of the meaning of the word “local.” All operators consid-
ered in this analysis such as densities, currents as well as
twist-2 operators are of course local from the field
theoretical viewpoint. However, it has prevailed within
the renormalization community to refer to local operators in
particular for the densities and the currents. Chiral extrap-
olations are performed in Sec. VI and Sec. VII presents in
detail the way we convert our results to the MS scheme. In
the penultimate section, Sec. VIII, we estimate the sys-
tematic errors and the final section contains our conclu-
sions. It is noteworthy that our methods allow for the
extraction of the hA2i, the Landau gauge dimension-2
gluon condensate [5] that has rich phenomenological
implications [6].

II. LATTICE SETUP

The results presented here are based on the gauge field
configurations generated by the ETMC using the Iwasaki
gauge action and the twisted-mass fermionic action. Since
the RI’-MOM is a mass-independent scheme, where the
renormalization conditions are imposed on the chiral limit,
the ETMC has generated dedicatedNf ¼ 4 ensembles with
four light degenerate quarks [7,8], which would eventually
allow for a more trustworthy chiral extrapolation. This is
the reason we employ these configurations in our analysis,
since the physical configurations with two light degenerate

u and d quarks and two heavier nondegenerate s and c
quarks would introduce an extra source of rather uncon-
trolled systematic uncertainty. Of course the results
obtained with our configurations are intended to renorm-
alize bare matrix elements which are computed with the
physical configurations. To achieve automatic OðaÞ
improvement, the twisted mass action is usually tuned to
maximal twist, by tuning mPCAC quark mass to zero.
However, in the case of four degenerate quarks, reaching
the maximal twist is far from being a trivial task and an
alternative option has been chosen. Ensembles are simu-
lated in pairs, with opposite values of mPCAC, and OðaÞ
artifacts are removed by averaging the quantities obtained
from these two ensembles. Previous studies have indeed
shown the feasibility of this approach [7,9,10]. We refer to
Refs. [7,8] for more explicit details and for the original
discussion of the computational setup. However, for the
sake of completion we will remind the reader all the
essential aspects of the algorithmic details as well as
the parameter tuning of the ensemble generation. More
specifically, the full action reads

SðNf¼4Þ ¼ Sg½U� þ Ssea
TM½χseaf ; U� þ Sval

TM½χf;ϕf; U�; ð1Þ

where by χ we denote the usual “fermionic” quarks both in
the sea and the valence sector and by ϕ the “bosonic”
quarks used in the partial quenching. The fermionic action
for the sea quarks takes the form

Sseatm ¼ a4
X
x;f

χ̄seaf ½γ · ~∇þWcr þ ðmsea
0f −mcrÞ

þ irseaf μseaf γ5�χseaf ; ð2Þ

with γ · ~∇ ¼ γμ
2
ð∇μ þ∇�

μÞ, Wcr ¼ − a
2
∇�

μ∇μ þmcr and
rsead ¼ −rseau , rseac ¼ −rseas . For the twisted-mass parameter
the following choice has been made:

μseau ¼ μsead ¼ μseas ¼ μseac ≡ μsea: ð3Þ

Accordingly, the fermionic action for the valence quarks
takes the form

Sval ¼ a4
X
x;f

χ̄valf ½γ · ~∇ −
a
2
∇�

μ∇μ þmval
0;f þ irvalf μvalf γ5�χvalf :

ð4Þ

The parameters rval=seaf take the values�1, while the twisted

masses aμval;seaf are assumed to be non-negative. Two
volumes, three values of the lattice spacing, and several
values of the twisted mass have been considered in the
analysis. The run parameters are summarized in Table I
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and, for illustrative purposes, Table II shows the pion
masses directly obtained from the appropriate ratio of two-
point correlators computed for the same ensembles here
analyzed.
The lattice spacing values are respectively a ¼

0.062ð2Þ fm for β ¼ 2.10, a ¼ 0.078ð3Þ fm for β ¼ 1.95
and a ¼ 0.086ð4Þ fm for β ¼ 1.90 [7,8]. Strictly speaking
setting the scale in the Nf ¼ 4 theory is not plainly well

defined. Physical units such as fm or MeVare by definition
linked to a physical theory. In practice, as no world
containing four light degenerate quarks exists and can
produce an experimental observation to compare a lattice
result with, the value of a for our setup, as would happen
for any other nonphysical one, should result from a
convention or assumption. Thus, guided by the assumption
that a pion built out of 2 valence quarks of mass μval ¼ μsea

TABLE II. Nf ¼ 4 Pseudoscalar masses for the ensembles used in our analysis. The values correspond to the same twisted masses, aμ,
of Table I and appear displayed in the same order.

Ensemble amπ

β ¼ 2.10 & V=a4 ¼ 323 × 64
3p 0.1268(13), 0.1417(11), 0.1755(8), 0.2198(7), 0.2516(7), 0.2805(7), 0.3077(7)
3m 0.1122(22), 0.1332(16), 0.1710(13), 0.2161(10), 0.2476(9), 0.2761(8), 0.3028(7)
4p 0.1462(12), 0.1623(11), 0.1958(9), 0.2431(8), 0.2768(8), 0.3078(8)
4m 0.1304(16), 0.1532(11), 0.1910(9), 0.2396(8), 0.2734(7), 0.3042(7)
5p 0.1606(14), 0.1786(12), 0.2051(11), 0.2496(9), 0.2803(9), 0.3088(8)
5m 0.1424(13), 0.1666(10), 0.1967(8), 0.2435(8), 0.2746(7), 0.3032(7)

β ¼ 1.95 & V=a4 ¼ 243 × 48
2p 0.2795(16), 0.3107(12), 0.3391(10), 0.3659(9), 0.3909(8)
2m 0.2630(16), 0.2987(12), 0.3287(11), 0.3562(10), 0.3815(9)
3p 0.2566(18), 0.2678(16),0.2851(14), 0.3016(13), 0.3188(12), 0.3318(12), 0.3599(10), 0.3858(9)
3m 0.1933(12), 0.2196(12), 0.2503(10), 0.2738(9), 0.2956(9), 0.3113(9), 0.3434(8), 0.3717(7)
8p 0.3645(16), 0.3723(14), 0.3881(11), 0.4052(10), 0.4232(9), 0.4413(8)
8m 0.3253(16), 0.3364(14), 0.3569(12), 0.3776(11), 0.3985(10), 0.4188(10)

β ¼ 1.90 & V=a4 ¼ 243 × 48
1p 0.3308(13), 0.3362(12), 0.3494(12), 0.3698(11),0.3886(10), 0.4132(9)
1m 0.2912(12), 0.2998(11), 0.3183(10), 0.3431(9), 0.3640(8), 0.3902(8)
4p 0.4032(13), 0.4061(12), 0.4138(12), 0.4284(11), 0.4412(11), 0.4598(10)
4m 0.3492(12), 0.3541(11), 0.3653(10), 0.3840(10), 0.4002(9), 0.4218(8)

TABLE I. Nf ¼ 4 ensembles used in our analysis.

Ensemble κ amPCAC aμ (aμsea in bold) Configurations

β ¼ 2.10 & V=a4 ¼ 323 × 64
3p 0.156017 þ0.00559ð14Þ 0.0025, 0.0046, 0.0090, 0.0152, 0.0201, 0.0249, 0.0297 250
3m 0.156209 −0.00585ð08Þ 0.0025, 0.0046, 0.0090, 0.0152, 0.0201, 0.0249, 0.0297 250
4p 0.155983 þ0.00685ð12Þ 0.0039, 0.0064, 0.0112, 0.0184, 0.0240, 0.0295 210
4m 0.156250 −0.00682ð13Þ 0.0039, 0.0064, 0.0112, 0.0184, 0.0240, 0.0295 210
5p 0.155949 þ0.00823ð08Þ 0.0048, 0.0078, 0.0119, 0.0190, 0.0242, 0.0293 220
5m 0.156291 −0.00821ð11Þ 0.0048, 0.0078, 0.0119, 0.0190, 0.0242, 0.0293 220

β ¼ 1.95 & V=a4 ¼ 243 × 48
2p 0.160826 þ0.01906ð24Þ 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 290
2m 0.161229 −0.02091ð16Þ 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 290
3p 0.160826 þ0.01632ð21Þ 0.0060, 0.0085, 0.0120, 0.0150, 0.0180, 0.0203, 0.0252, 0.0298 310
3m 0.161229 −0.01602ð20Þ 0.0060, 0.0085, 0.0120, 0.0150, 0.0180, 0.0203, 0.0252, 0.0298 310
8p 0.160524 þ0.03634ð14Þ 0.0020, 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 310
8m 0.161585 −0.03627ð11Þ 0.0020, 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 310

β ¼ 1.90 & V=a4 ¼ 243 × 48
1p 0.162876 þ0.0275ð04Þ 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 450
1m 0.163206 −0.0273ð02Þ 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 450
4p 0.162689 þ0.0398ð01Þ 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 370
4m 0.163476 −0.0390ð01Þ 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 370
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living in either the Nf ¼ 4 or Nf ¼ 2þ 1þ 1 theory
acquires the same coupling constant in both cases, the
ETMC takes the values of a to be the same for both
theories. Corrections to this assumption, which ChPT can
in principle account for, should surely exist although they
are not expected to be very large. Therefore, as the
nonperturbative renormalization of Nf ¼ 2þ 1þ 1 lattice
QCD in the massless quark limit needs the scale setting for
theNf ¼ 4 theory, it is natural to take for the lattice spacing
of the latter the one of the Nf ¼ 2þ 1þ 1 physical theory
(that one is of course also not truly physical, as there is
some minor correction from the bottom sea quark, which is
however maybe 3 orders of magnitude smaller than the
errors of the computation).
Furthermore, in Ref. [11] a novel procedure for the

lattice scale setting is proposed and claimed to be particu-
larly in order for relative “calibrations” (ratios of lattice
spacings) and for nonphysical cases such as Nf ¼ 4
simulations. The very point of the procedure is the scale
setting via the intercomparison of a purely gluonic quantity,
as the strong coupling in Taylor scheme, which is first
assumed and a posteriori numerically shown not to depend
on the quark masses, at least far away from the flavor
thresholds. Applied to the Nf ¼ 4 theory [11], the resulting
lattice spacings are proven to be compatible with those
obtained for ETMC for Nf ¼ 2þ 1þ 1 [7,8].
The fixing of the Landau gauge is achieved by the

iterative minimization of a functional of the SU(3) links
with a combination of stochastic over-relaxation and
Fourier acceleration.

III. RENORMALIZATION CONSTANTS
IN THE RI’-MOM SCHEME

In this section we define the notation that we utilize, recall
briefly the RI’-MOM scheme [1] and the explicit formulas
that will be used in the computation. We refer the reader to
Ref. [12] for a complete and pedagogical introduction to the
RI’-MOM scheme. The RI’-MOM scheme is very widely
used by many lattice collaborations [8,13–17].

A. Basics of RI’-MOM

We consider a generic bilinear fermion operator OΓ ¼
q̄1Γq2 where Γ is any Dirac structure, possibly multiplying
a covariant derivative operator, and q1; q2 two fermionic
fields. In the case of scalar, pseudoscalar, vector and axial
renormalization constants, Γ ¼ 1; γ5; γμ; γ5γμ respectively.
To avoid contributions from disconnected diagrams, we
focus mainly on the nonsinglet quark operators, unless
stated differently. The corresponding renormalized operator
is defined as OR ¼ ZOOΓ, ZO is found in the RI’ variant of
the RI-MOM scheme by imposing at a scale μ large enough
(typically μ ≫ ΛQCD) that the amputated Green function in
a fixed gauge (the Landau gauge in our case) equals its tree
value, i.e. requiring that

ZOðμÞZ−1
q ðμÞΓOðpÞjp2¼μ2 ¼ 1; ð5Þ

Zq is the fermion field renormalization constant, deter-
mined through

Zqðμ2 ¼ p2Þ ¼ −
i

12p2
Tr½S−1bareðpÞp�; ð6Þ

where SbareðpÞ is the bare quark propagator. At finite lattice
spacing, the four-vector p can be either the continuum
momentum, or the lattice momentum apμ ¼ sinðapμÞ.
Both definitions differ only by Oða2Þ terms. Since RCs
obtained using the continuum momentum already exhibit
lattice spacing artifacts at tree level, the lattice momentum
definition is favored. ΓO is defined in terms of the
amputated Green function, or vertex, ΛO, by

ΓOðpÞ ¼
1

12
TrðΛOðpÞP̂OÞ with

ΛOðpÞ ¼ S−1q1 ðpÞGOðpÞS−1q2 ðpÞ; ð7Þ

where P̂O is a suitable projector (see section below) and the
Green function is defined in coordinate space by

GOðx; yÞ ¼ hq1ðxÞOΓq̄2ðyÞi: ð8Þ

On the lattice and in Fourier space, the Green function
becomes

GOðpÞ ¼
Z

d4xd4ye−ipðx−yÞGOðx; yÞ

¼ 1

N

X
i

Sq1;iðpjzÞΓγ5S†q1;iðpjzÞγ5; ð9Þ

where the sum runs over N configurations, SiðpjzÞ ¼R
d4ySiðy; zÞe−ipy and ΛOðpÞ in definition equation (7)

reads

ΛOðpÞ ¼ S−1q1 ðpÞGOðpÞγ5S−1†q1 ðpÞγ5: ð10Þ

It involves only one type of quark propagator since we have
taken into account the properties of the twisted-mass
formulation relating mass degenerate quarks.
We will study in particular in this work the twist-2

operatorO44. Twist-2 operators are of particular importance
since they provide the leading contribution to the operator
product expansion (OPE) analysis of the deep inelastic
scattering and this particular one is associated with the
hxiq ¼

R
1
0 dxxðqðxÞ þ q̄ðxÞÞ of the hadrons [18], where x is

the momentum fraction carried by the quark and qðxÞ the
associated longitudinal distribution.
For a general twist-2 operator, OΓðz; z0Þ ¼ q̄1ðzÞ×

Γðz; z0Þq2ðz0Þ, we take Γ ¼ ΓμD
↔

ν with D
↔

ν¼ 1
2
ð∇νþ∇�

νÞ,
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where ∇ and ∇� are respectively the gauge covariant
forward and backward derivatives, defined by

∇νðx; yÞ ¼ a−1ðδy;xþνUνðxÞ − δx;yÞ; ð11Þ

∇�
νðx; yÞ ¼ a−1ðδx;y − δy;x−νU

†
νðx − νÞÞ; ð12Þ

whereU are the gauge links. Inserting these definitions into
the Green function and performing the Wick contractions
lead to

GOðx; yÞ ¼ −
1

2
fSq1ðx; zÞγ5S†NLðy; zÞγ5

þ SNLðx; zÞγ5S†q1ðy; zÞγ5g; ð13Þ

where we have defined

SNLðx; zÞ ¼ Sq1ðx; zþ νÞU†
νðzÞΓμ

− Sq1ðx; z − νÞUνðz − νÞΓμ: ð14Þ

This “nonlocal propagator” SNL, combining the neighbor-
ing propagators, is the solution of a Dirac equation with a
modified source

X
y

Dðx; yÞSNLðy; zÞ ¼ δx;zþνU
†
νðzÞΓμ − δx;z−νUνðz − νÞΓμ;

ð15Þ

where Dðx; yÞ is the Dirac operator. Using these nonlocal
propagators, from which we can construct all Γ structures,
we decrease the number of propagators to be computed,
from nine to five (1 with a “local” source and 4—one in each
direction—with a nonlocal one). The advantage of our
method is thus the reduced computational cost, since with
only 5 inversions per configuration, we are able to extract all
local and twist-2 renormalization constants for all momenta.
Finally, the Green function in momentum space becomes

GOðpÞ ¼ −
1

2
:
1

N

X
i

fSq1i ðpjzÞγ5Sq1†i;NLðpjzÞγ5

þ Sq1i;NLðpjzÞγ5Sq1†i ðpjzÞγ5g: ð16Þ

B. Projectors

For scalar and pseudoscalar operators, the projector P̂O
in (7) is simply γ0 and γ5γ0 respectively. For vector and
axial vertex functions however, “naïve projectors” γμ and
γ5γμ do not project vertices onto different Lorentz struc-
tures. Indeed, the vertex function decomposes over the
Dirac structures as

ΓV
μ ¼ ΣV

1 γμ þ ΣV
2

pμ

p2
p; ð17Þ

ΓA
μ ¼ ΣA

1 γ5γμ þ ΣA
2 γ5

pμ

p2
p; ð18Þ

with ΣV
1;2 and ΣA

1;2 being scalars multiplied by 3 × 3 identity
matrices which we omit to simplify the notation. The
correct projectors are actually given by

PV
μ ¼ γμ −

pμ

p2
p;

PA
μ ¼ γ5γμ − γ5

pμ

p2
p; ð19Þ

and the corresponding form factors are then

ΣA=V
1 ¼ 1

12

p2

p2 − p2
μ
Tr½PA=V

μ ΓA=V
μ �: ð20Þ

We have checked that the effect of using or not using
these correct projectors has a rather small influence on ZV
and ZA. However, since statistical errors will turn out to be
also small, we will use in what follows the correct
projectors of Eq. (19).
In a similar way, twist-2 operators should be projected

such that Lorentz structures are decoupled. Following the
convention used in Ref. [19], we define a general sym-
metric and traceless twist-2 operator as

Oμν ¼ γμDν þ γνDμ −
1

2
δμνγρDρ: ð21Þ

The corresponding Green function can be decomposed as

GO ¼ −
1

2
Σ1ðpÞ

�
γμpν þ γνpμ −

1

2
δμνp

�

− Σ2ðpÞp
�
pμpν −

1

4
p2δμν

�
: ð22Þ

To project out the first form factor Σ1ðpÞwe use (correcting
minor typos in Ref. [19])

PO ¼ −p2
ðpμpνp

p2 − ðγμpνþγνpμÞ
2

Þ
ð4p2

μp2
ν − p2ðp2

μ þ p2
νÞ − 2pμpνp2δμνÞ

: ð23Þ

In particular, in the case of O44 operator, we obtain

PO ¼ p2
ðp2

4
p

p2 − γ4p4Þ
4p2

4ð~p2Þ : ð24Þ

IV. ANALYSIS PROCEDURE

For each value of the sea quark mass, two sets of gauge
fields are produced, with opposite mPCAC values, corre-
sponding to opposite values of the angle θ, the latter being
defined as the complementary to the twisted angle, see
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Ref. [7]. The first step consists in removing the Goldstone
pole from vertex functions, for each ensemble, and in
performing the valence quark mass extrapolation. The θ
average is then done, before correcting for Hð4Þ artifacts.
The different steps of the analysis are detailed below using
a given set of ensembles, namely 3p=3m ensembles on a
323 × 64 lattice. The results presented in the next two
sections concern charged currents and densities: O ¼ ūΓd
or O ¼ d̄Γu. All plots in this section represent average of
jackknife bins and statistical errors appear also estimated
by the jackknife method. A sensible full-correlated-matrix
analysis would require much higher statistics than the one
from the available data. This is why we proceed otherwise
and apply the jackknife approach for the error analysis
also followed in a series of papers [2,3,5,16,20,21],
devoted in the last few years to the study of the non-
perturbative running of renormalization constants, and that
revealed itself as very useful for dealing with the fits of
correlated parameters. Although the meaning for the
χ2=d:o:f: estimates are purely indicative and only useful
for comparative purposes, the estimated errors from the
jackknife bins for the fitted parameters appear to be
meaningful.

A. Pion mass and Goldstone pole subtraction

For each ensemble, the first step of the RCs analysis
consists in subtracting the Goldstone pole contribution
on vertex functions. This requires us to compute the pion
mass for each configurations’ set. Pion masses are deter-
mined before performing the θ average. The results are
illustrated in Fig. 1, showing the pion mass as a function of

the renormalized quark mass M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZAmPCACÞ2 þm2

q

q
where an estimate of ZA ¼ 0.78ð0.73Þ has been taken for
β ¼ 2.10 from Ref. [7] (and β ¼ 1.95 from Ref. [22]).
After the jackknife bins of vertex functions (or Zq, for the

quark wave function renormalization constant) have been

computed, an average over Hð3Þ invariants is performed.
Then the Goldstone pole subtraction is done, bin by bin and
before the θ average. The pole is taken as the charged pion
mass squared at nonmaximal twist

Γðp2; μseaÞ ¼ Aðp2Þ þ Bðp2Þm2
π þ

Cðp2Þ
m2

π
; ð25Þ

where Cðp2Þ is the nonperturbative Goldstone pole con-
tribution [23]. The value of the subtracted vertex functions
ūΓd and d̄Γu extrapolated to zero mass are very similar.
This justifies the average over nonsinglet operators that will
be performed later in the analysis. As we only consider
charged vertices, there is to our knowledge no coupling to
any neutral Goldstone pole. The extrapolation to the chiral
limit of RCs, instead of being performed in term of the
quark masses, is done in function of the pion mass. There is
strong corroborative evidence, based on the vacuum sat-
uration approximation in support of the fact that the
charged pion mass is much less affected by Oða2Þ effects
than the neutral pion mass [24]. The important statement is
that the dominant contamination of the charged vertices
in question comes from the charged pion. This is also
shown explicitly in [12]. Of course, there are neutral pions
in the sea, but whatever contribution they give must be
subdominant.
Only the pseudoscalar vertex is expected to exhibit a

Goldstone pole. We have however also inspected other
vertices to check possible contamination or lattice artifacts.
On Fig. 2 for the 3p ensemble, the scalar vertex functions
for the u quark are plotted (filled symbols) versus the pion
mass squared and compared with the subtracted values
(empty circles). The extrapolated value is also indicated
(star symbol). The difference between subtracted and
nonsubtracted values lies at the fourth digit for all valence
quark masses for a2 ~p2 ≥ ∼0.5, and it is not visible on the
plot. For lower a2 ~p2 values however, the subtraction effect
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FIG. 1 (color online). Pion mass for each β ¼ 2.10 (lhs) and β ¼ 1.95 (rhs) ensemble, before θ average. The x-axis is the renormalized

quark mass M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZAmPCACÞ2 þm2

q

q
and the y-axis is the pion mass squared, both in lattice units. The difference between m/p

ensembles illustrates the consequence of nonmaximal twist and OðaÞ effects. The result of the straight line fit using pion mass values
computed after θ average is shown in dashed blue curve.
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is visible. Since no Goldstone pole contamination is
expected for ZS [12], those effects are likely to be lattice
artifacts. A similar conclusion holds for the quark renorm-
alization constant and for the vector current. The axial
vector current also has a coupling to the pion and this could
be potentially a source of a problem but since this coupling
is proportional to the momentum transfer of the process,
which actually vanishes for our kinematical setup, it poses
no problem either [25,26].
We stress that, since the low values of a2 ~p2 will be

excluded from the fit range considered when compensating

for Hð4Þ artifacts (see next section), these lattice effects
will not influence the final results.
Contrary to ΓS, the pseudoscalar vertex function shows,

as expected, a strong pion mass dependence. Vertex
functions for ensembles 3p are displayed in the rhs of
Fig. 2, with the same legend conventions as for the plots of
the scalar vertex. The Goldstone pole appears clearly and is
thus subtracted according to Eq. (25).
The p2 dependence of the chiral extrapolation coeffi-

cients are displayed in Fig. 3. The 1=m2
π coefficient of the

chiral extrapolation is, as expected, varying as 1=p2 for
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FIG. 2 (color online). d̄Γu scalar (lhs) and pseudoscalar (rhs) vertex functions versus pion mass squared (in lattice units) for ensemble
3p (β ¼ 2.10) for several values of a2 ~p2 (ap0 ¼ π

T for all curves except the magenta one, for which ap0 ¼ 21π
T ).
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pseudoscalar vertex, at large p2. Over the large range of
a2p2 values considered (typically for a2p2 > 0.1), this
coefficient varies as c1=p2 þ ðc2=p2Þ2. This is consistent
with the expectation that the Goldstone pole can only
appear in power suppressed nonperturbative contributions.
For other vertices, it is globally compatible with zero.

B. mPCAC average and hypercubic corrections

The mPCAC average is performed on the vertex function
jackknife bins. Since they differ only by (small) lattice
artifacts, nonsinglet operators (ūOd and d̄Ou) are also
averaged at this stage, with an average weighted by
jackknife errors. The scalar (rhs) and quark wave function
(lhs) renormalization constants are represented for the
representative pair ensembles 3m=3p (see Table I) in
Fig. 4 as a function of p2 ¼ pμpμ, in lattice units. Zq

exhibits the usual strong half “fishbone” structure, typical
of hypercubic artifacts, while other renormalization con-
stants are also affected, although to a lesser extent.
The three vector components γμ (and similarly for the

three axial ones γμγ5) being very similar (not shown on
these figures) and degenerate in the continuum limit,
they are also averaged before hypercubic artifacts are
removed.
The next step consists in correcting one of the two

types of Oða2Þ artifacts, namely the hypercubic artifacts
which respect the Hð4Þ symmetry group but not the Oð4Þ
one [the second type, i.e. Oða2p2Þ artifacts, respecting
the continuum Oð4Þ rotation symmetry, will be treated
nonperturbatively by introducing corrections in the run-
ning of the RCs, see Sec. V]. A very powerful method
has been developed [2,4], which does not rely on the

selection of a small subset of momenta, thus keeping
the maximum amount of information. A byproduct of
this procedure is the fact that, unlike other methods, it
allows us to test the running of the renormalization
constants. This method has already been extensively
and fruitfully exploited in studying the QCD running
coupling [20,21,27–30] or the gauge fields propagators
[2,31,32], while its applications to renormalization have
been presented in detail in [3,16,33]. It will only be
recalled here briefly for the sake of consistency. We
define the following Hð4Þ invariants:

p½2� ¼
X4
μ¼1

p2
μ; p½4� ¼

X4
μ¼1

p4
μ;

p½6� ¼
X4
μ¼1

p6
μ; p½8� ¼

X4
μ¼1

p8
μ; ð26Þ

and denote the quantity ZðapμÞ (representing any
renormalization constant) averaged over the cubic orbits
as Zlattða2p2; a4p½4�; a6p½6�; ap4; a2Λ2

QCDÞ. We then
assume (and will check) that Zlatt can be Taylor expanded
around p½4� ¼ 0 up to values of ϵ ¼ a2p½4�=p2 signifi-
cantly larger than 1 as

Zlattða2p2; a4p½4�; a6p½6�; ap4; a2Λ2
QCDÞ

¼ Zhypcorrectedða2p2; ap4; a2Λ2
QCDÞ

þ Rða2p2; a2Λ2
QCDÞ

a2p½4�

p2
þ…; ð27Þ

with
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FIG. 4 (color online). Quark renormalization constant (lhs) and scalar renormalization constant (rhs) as a function of p2 in lattice units.
Both exhibit the typical fishbone structure induced by the breaking of the Oð4Þ rotational symmetry of the Euclidian space-time by the
lattice discretization, into the hypercubic group Hð4Þ.
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Rða2p2; a2ΛQCDÞ

¼ dZlattða2p2; a4p½4�; a6p½6�; ap4; a2Λ2
QCDÞ

dϵ

����
ϵ¼0

; ð28Þ

Rða2p2; a2ΛQCDÞ being reasonably well approximated by
Rða2p2; a2Λ2

QCDÞ ¼ ca2p4 þ ca4p4a2p2. We use the one
window fit technique, described in detail in [16]. The
fitting range in a2p2 is chosen to be [0.5–3]. For values
of a2p2 larger than ≈3, some orbits start indeed to be
missing because the Fourier transform equation (9) has
been limited to ½− π

2
;þ π

2
�. The effect of the hypercubic

correction is clearly seen for Zq, on the lhs of Fig. 5. The
same procedure is applied to all renormalization con-
stants, leading to the results of Fig. 5 (rhs), which
summarizes the results of all local RCs as a function
of a2p2. The hypercubic correction can be applied either
at the vertex level, or, as we did, directly on the
renormalization constants. We checked that there is no
significant difference between these two choices.
The analysis for twist-2 operators is similar (except for

the valence quark mass extrapolation) and applied here to
O44. Figure 6 displays the renormalization constant for Z44

before and after the hypercubic corrections. The fishbone
structure is about twice more pronounced than for Zq for
instance.
Finally, we note that there are ultraviolet artifacts which

are functions of a2p2 and are thus insensitive to hypercubic
biases and not corrected by the above-mentioned method.
They will be corrected simply by assuming a2p2 terms in
the final running fit.
As a summary, our analysis procedure to extract renorm-

alization constants consists in the following steps:

(i) the Hð3Þ average of the vertex functions over ~p2

orbits,
(ii) the 1=m2

π term subtraction and valence chiral
extrapolation, also done at the level of the vertex
function, for each four-momentum,

(iii) the θ average, performed on Zq or at the vertex level
for other renormalization constants,

(iv) the average over nonsinglet ūOd and d̄Ou operators,
weighted by jackknife errors,

(v) the average over equivalent μ (¼ 1; 2; 3) directions
for vector and axial operators,
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FIG. 5 (color online). lhs: Effect of hypercubic corrections on quark renormalization constant, as a function of a2p2, for ensemble
3mp (β ¼ 2.10, μsea ¼ 0.0046, 323 × 64 lattice). rhs: Renormalization constants as a function of a2p2, after removing Hð4Þ artifacts,
still for ensemble 3mp (β ¼ 2.10, μsea ¼ 0.0046, 323 × 64 lattice).
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(vi) the correction of hypercubic artifacts using an
efficient and well-defined procedure.

The running of the RCs will be described in details in the
next section.

V. RUNNING AND Oða2p2Þ ARTIFACTS
The possibility to check the running of renormalization

constants is an important feature of our analysis. This
allows us to study remaining lattice artifacts and non-
perturbative contributions and to finally extract reliable
values of the RCs.

A. Renormalization constants for quark
and local operators

We consider the following expression for the running of
the quark wave function RC:

Zhyp−corr
q ða2p2Þ

¼ ZpertRI0
q ðμ2ÞcRI00Zq

�
p2

μ2
; αðμÞ

�

×

�
1þ hA2iμ2

32p2

cM̄S
2Zq

ðp2

μ2
; αðμÞÞ

cRI
0

0Zq
ðp2

μ2
; αðμÞÞ

cRI
0

2Zq
ðp2

μ2
; αðμÞÞ

cM̄S
2Zq

ðp2

μ2
; αðμÞÞ

�

þ ca2p2a2p2 þ ca4p4ða2p2Þ2; ð29Þ

which was derived in Ref. [16] using an OPE analysis. The
coefficients cRI

0
0Zq

and cM̄S
2Zq

are known from perturbation
theory and the running formula contains lattice artifact
terms ∝ a2p2 and ∝ ða2p2Þ2, not yet removed. These
additional terms are discussed below. We are left with
four parameters to determine, namely the value of the

RC ZpertRI0
q ðμ2Þ at a given renormalization scale μ, the

dimension-2 Landau gauge gluon condensate hA2iμ2 and
the coefficients ca2p2 and ca4p4. The expression (29)
includes, apart from the corrections accounting for the
not-yet-removed artifacts, the nonperturbative power cor-
rection, 1=p2, generated by the nonvanishing gluon con-
densate [5,6]. The same nonperturbative contributions have
been previously proven to be mandatory when describing
the running of gluon, ghost and quark propagators renorm-
alization constants [5,30,31,33]. We find here, as will be
illustrated below, that Eq. (29), nothing less but nothing
more, perfectly describes the quark wave function. For the
other renormalization constants we also deal with, the same
nonvanishing gluon condensate must contribute, via their
corresponding OPE expansion, to generate the same non-
perturbative power corrections, unless the Wilson coeffi-
cient is proven to be zero. However, even for the latter case,
other possible nonperturbative corrections as the pion pole
for ZP, hadron contributions or lattice artifacts may also
contribute and be hardly disentangled from the OPE ones,
with the present level of precision. Then, as will be seen in

the following, for renormalization constants other than the
quark wave function, we will apply a power correction in
lattice units, 1=p2

latt ¼ 1=a2p2, and will not distinguish the
different possible sources for its origin. The coefficient of
this correction is a dependent and is such that cancels the
naive divergence. Unfortunately, due to the fact that we
only have three different values of the lattice spacing in
the available ensembles we cannot perform an accurate
fit in order to determine the functional behavior of this
coefficient.
We illustrate below the results for Zq with the ensemble

3mp, which is representative of the results we obtained
with all other ensembles. We take ΛQCD ¼ 316 MeV from
Ref. [28] and aβ¼2.10 ¼ 0.062 fm from Ref. [7]. The results
for local renormalization constants are not sensitive to these
values and changing a and ΛQCD over a wide range induces
only a change in the local RC’s values on the last digit. This
however is not the case for twist-2 operators (see Sec. V B).
Figure 7 displays the running of Zq for the ensemble

3mp, fitted by different formulas, depending on whether or
not lattice artifacts are included in the running. It can be
shown that the standard OPE expression without any
artifact correction (dot-dashed green curve) fails com-
pletely to describe the data. Adding only an a2p2 term
decreases the χ2=d:o:f: down to 2.85 but the running is still
not correctly reproduced. The χ2=d:o:f: can be, even more,
diminished if the fitting window is restricted down to lower
momenta. However, as the Hð4Þ-extrapolation has been
proved to deal properly with hypercubic artifacts for Zq up
to higher momenta, a2p2 ∼ ðπ=2Þ2 ∼ 2.5 [16,33], we prefer
to add only one more parameter to be fitted, including both
a2p2 and ða2p2Þ2 terms accounting for Oð4Þ-invariant
artifacts, to obtain a good fit over the whole range of
momenta. The running is then very well described
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FIG. 7 (color online). Running of Zq for ensemble 3mp
(β ¼ 2.10, μ ¼ 0.0046, volume 323 × 64) using different fitting
formulas.

Blossier Benoît et al. PHYSICAL REVIEW D 91, 114507 (2015)

114507-10



(χ2=d:o:f: ¼ 0.26) and we get at 10 GeV Zqðμ ¼
10 GeVÞ ¼ 0.815ð10Þ. Errors quoted are at the moment
only statistical. Precise estimations of the systematic errors
will be performed in Sec. VIII.
The same study is performed for scalar and pseudo-

scalar RCs. ZS and ZP have the same running formula,
namely

ZP=SðμÞ ¼ ZP=Sðμ0Þ
cRI

0MOMðμÞ
cRI

0MOMðμ0Þ
þ ca2p2a2p2 þ cp2m1

a2p2
;

ð30Þ

where we have added 1=ða2p2Þ and a2p2 lattice artifact
terms. We have [34]

cRI
0MOMðμÞ ¼ xγ̄0

�
1þ ðγ̄1 − β̄1γ̄0Þxþ

1

2
½ðγ̄1 − β̄1γ̄0Þ2 þ γ̄2 þ β̄21γ̄0 − β̄1γ̄1 − β̄2γ̄0�x2

þ
�
1

6
ðγ̄1 − β̄1γ̄0Þ3 þ

1

2
ðγ̄1 − β̄1γ̄0Þðγ̄2 þ β̄21γ̄0 − β̄1γ̄1 − β̄2γ̄0Þ

þ 1

3
ðγ̄3 − β̄31γ̄0 þ 2β̄1β̄2γ̄0 − β̄3γ̄0 þ β̄21γ̄1 − β̄2γ̄1 − β̄1γ̄2Þ

�
x3 þOðx4Þ

	
; ð31Þ

where x ¼ α, γ̄i ¼ γi=β0 and β̄i ¼ βi=β0. βi are the
coefficients of the QCD beta function and they are given
at four-loop in [34]. Their expressions for scalar, pseudo-
scalar operators and quark propagator can be written
[13,35]

β0 ¼ 11 −
2

3
Nf; β1 ¼ 102 −

38

3
Nf;

β2 ¼
2857

2
−
5033

18
Nf þ

325

54
N2

f ;

and the anomalous dimensions γi are given below

γS=P0 ¼ −3CF; γS=P1 ¼ 1

2

�
−
404

3
þ 40

9
Nf

�
;

γS=P2 ¼ 1

2

�
−2498þ

�
4432

27
þ 320

3
ζð3Þ

�
Nf þ

280

81
N2

f

�
:

As for the quark renormalization constant, the standard
running formula, i.e. Eq. (30) without 1=p2

latt and p2
latt

terms, fails to describe the running of both ZS and ZP, as
illustrated in Fig. 8 (solid blue curves), though to a lesser
extent than for Zq. Additional terms are needed to take
into account Oða2p2Þ artifacts. The evolution of scalar
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FIG. 8 (color online). lhs: Running of ZS for ensemble 3mp (β ¼ 2.10, μ ¼ 0.0046, volume 323 × 64). The standard running formula
is represented in solid blue line, the dashed cyan curve includes an 1=p2 and an p2 term (in lattice units). This latter fit leads to
ZSð10 GeVÞ ¼ 0.869ð4Þ. rhs: Running of ZP with the standard running expression from (30) (solid blue curve), and adding a 1=p2 and
a p2 terms (in lattice units, dashed cyan curve). The modified running gives ZPð10 GeVÞ ¼ 0.623ð2Þ.
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and pseudoscalar RCs can be perfectly reproduced with
1=p2

latt and p2
latt terms added to the standard running by

fitting coefficients ca2p2 and cp2m1, leading to the
dashed cyan curves in Fig. 8 (χ2=d:o:f: ¼ 1.14 and
χ2=d:o:f: ¼ 0.74 for respectively ZS and ZP). The scalar
and pseudoscalar RCs values obtained at 10 GeV for
this ensemble are ZSðμ ¼ 10 GeVÞ ¼ 0.869ð4Þ and
ZPðμ ¼ 10 GeVÞ ¼ 0.623ð2Þ.
Scalar and pseudoscalar RCs having the same anoma-

lous dimension, are expected to have similar running and
their ratio should be constant. If ZP=ZS is computed
without properly taking into account lattice artifacts, the
ratio varies by more than 20% on the momentum range
considered (see Fig. 9, black circles). However, once
Oða2p2Þ artifacts have been separately removed from ZS
and ZP, the ratio becomes compatible with a constant
with very good accuracy, over the whole range of p2

latt
values (see Fig. 9, red stars). This is an additional
indication that lattice artifacts have been efficiently
removed but also that the Goldstone pole has been
correctly addressed.
Axial and vector renormalization constants do not run

but it turns out that they exhibit a small p2
latt depend-

ence, which is not surprising since all other local RCs
also show this feature. Their variation does not reach
more than 4% in total on the momentum range con-
sidered, but to extract reliable values of ZV and ZA, we
remove these artifacts by fitting this dependence, which
turns out to be well described by a combination of
1=p2

latt and ðp2
lattÞ2 terms. The results of the fit are

shown in Fig. 10, and lead to values ZV ¼ 0.688ð5Þ
and ZA ¼ 0.761ð4Þ.
Table III summarizes the values obtained for local RCs,

for all Nf ¼ 4 ensembles considered.
In order to estimate the uncertainties on the RCs, coming

from the lattice spacing determination, we vary a by 5%,
which corresponds to the difference between the lattice
spacing determined using either pion data or nucleon data
[8,17]. We check the influence of this variation on Zq, ZS,
ZP and ZP=ZS for a given ensemble, namely 2mp,
β ¼ 1.95. Results are summarized in Table IV. Scalar
and pseudoscalar Z factors are the most sensitive to the
lattice spacing, whereas Zq varies less than one percent and
as expected the ratio ZP=ZS is remarkably constant.

B. Twist-2 operators

The running expression used for Z44 is the same than for
ZS [cf. Ref. [34], Eq. (70)]

Z44ðμÞ ¼ Z44ðμ0Þ
cRI

0MOMðμÞ
cRI

0MOMðμ0Þ
þ ca2p2a2p2 þ cp2m1

a2p2
;

ð32Þ

and with [34]

cRI
0MOMðμÞ ¼ exp

�Z
x
dx0

γðx0Þ
βðx0Þ

	

¼ xγ̄0
�
1þ ðγ̄1 − β̄1γ̄0Þxþ

1

2
½ðγ̄1 − β̄1γ̄0Þ2 þ γ̄2

þ β̄21γ̄0 − β̄1γ̄1 − β̄2γ̄0�x2 þOðx3Þ
	
: ð33Þ
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FIG. 10 (color online). Fits of the residual p2
latt dependence of

ZV and ZA for ensemble 3mp (β ¼ 2.10, μ ¼ 0.0046, volume
323 × 64).
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FIG. 9 (color online). ZP=ZS for ensemble 3mp (β ¼ 2.10,
μ ¼ 0.0046, volume 323 × 64). Lattice artifacts have been
removed separately from ZS and ZP. The ratio of these two
RCs is compatible with a constant over the whole p2 interval
considered and ZP=ZS ¼ 0.717ð3Þ.
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As for the local RCs, we have added artifacts to the
standard running formula, and we fit the coefficients
ca2p2 and cp2m1. The anomalous dimension for O44 is
taken from Ref. [36] and reminded here for completeness

γO44
¼ 32

9
a −

4

243
½378Nf − 6005�a2

þ 8

6561
½10998N2

f − 6318ζð3ÞNf − 467148Nf

− 524313ζð3Þ þ 3691019�a3 þOða4Þ; ð34Þ
with a ¼ g2

16π2
.

As can be seen in Fig. 11, only small lattice artifacts are
affecting Z44, compared to the case of local RCs. When
adding a2p2 and 1=ða2p2Þ artifacts to the standard running
expression Eq. (32), the χ2 of the fit is decreased and the
Z44 value changed by 3%–5%.
The results are sensitive to the values of the lattice

spacing a and of ΛQCD at the percent level and the
uncertainties on both a and ΛQCD will be taken into
account in the analysis of systematic errors (see
Sec. VIII).

VI. CHIRAL EXTRAPOLATION
AND LATTICE SPACING

DEPENDENCE

To get the final values of RCs at each β value, we need
to perform the chiral extrapolation. The pion masses are
way above the domain of validity of chiral perturbation
theory (see Table II). This could not be avoided for
technical reasons, namely simulation instabilities at low
quark masses for Nf ¼ 4 twisted-mass fermions. No
theory tells us the expected behavior in terms of mπ .
Notwithstanding this, some extended prejudice exists
about the fact that the mπ dependence is small.
Indeed, left-hand side of Fig. 12 displays the pion mass
dependence of local RCs for the three β values under
study and, as can be seen, all renormalization constants
only depend very weakly on the pion mass, at least
within the range where our pion masses lie. We thus
perform a constant fit to get the chiral limit (dashed
lines), in the assumption that the weak dependence we
find still works for low pion masses. Though supported
by the data of the local RCs shown here, this however
remains an assumption and the systematic errors from our
extrapolation at zero quark mass are poorly controlled.
Further results closer to that limit would be helpful to
clarify the situation.
Also visible on Fig. 12 is the fact that, if RCs are

constant with respect to the pion mass, they are, to
various extent and with the noticeable exception of ZS,
dependent on β. This is particularly striking on ZP; ZV
and ZA, and to a lesser extent on Zq. To analyze further
this variation, we plot in Fig. 12 (rhs), RCs in the chiral
limit versus the lattice spacing squared in logarithmic

TABLE IV. Dependence of local RCs on a lattice spacing
variation, for the ensemble 2mp.

a½fm� 0.072 0.078 0.084

Zpert
q (μR ¼ 10 GeV) 0.785(2) 0.786(2) 0.788(3)

g2hA2i½GeV�2 2.42(10) 2.54(10) 2.67(10)
ZS (μR ¼ 10 GeV) 0.840(5) 0.859(5) 0.879(5)
ZP (μR ¼ 10 GeV) 0.542(3) 0.554(3) 0.567(3)
ZPðI ¼ 1Þ=ZSðI ¼ 1Þ 0.645(5) 0.645(5) 0.645(5)
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Z
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Z
44

 after hypercubic corrections 

Standard running

Running with p2 and 1/p2 terms

FIG. 11 (color online). Running of Z44 for ensemble 3mp,
β ¼ 2.10, μ ¼ 0.0046, L ¼ 32, T ¼ 64. The black points are the
data after hypercubic artifacts removal. The dashed blue curve is
the standard running expression Eq. (32), and the solid red line
includes 1=ðp2

lattÞ and p2
latt artifacts.

TABLE III. Values of Zq, ZS, ZP, ZV , ZA and ZP=ZS for all Nf ¼ 4 ensembles analyzed.

β ¼ 2.10–323 × 64 β ¼ 1.95–243 × 48 β ¼ 1.90–243 × 48
3mp 4mp 5mp 2mp 3mp 8mp 1mp 4mp

Zpert
q (μR ¼ a−1) 0.797(3) 0.785(3) 0.787(3) 0.763(2) 0.762(3) 0.772(7) 0.752(3) 0.751(3)

ZS (μR ¼ a−1) 0.658(3) 0.653(3) 0.657(3) 0.598(3) 0.603(3) 0.601(4) 0.582(3) 0.570(3)
ZP (μR ¼ a−1) 0.472(2) 0.472(2) 0.473(2) 0.386(2) 0.383(3) 0.380(3) 0.347(4) 0.343(2)
ZV 0.688(5) 0.685(2) 0.688(1) 0.641(2) 0.636(2) 0.644(7) 0.625(3) 0.619(3)
ZA 0.761(4) 0.753(2) 0.756(1) 0.727(2) 0.725(2) 0.733(6) 0.721(2) 0.713(2)
ZPðI ¼ 1Þ=ZSðI ¼ 1Þ 0.717(3) 0.724(3) 0.720(3) 0.645(5) 0.634(5) 0.632(5) 0.597(7) 0.602(5)
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scale. All RCs follow with a very high accuracy a
logða2Þ variation. Although, since RCs are used in
practice to renormalize matrix elements computed at a
fixed β value, it is not crucial to take this dependence
into account in the analysis, and it is still interesting to
notice that the remaining lattice spacing dependence is
in logða2Þ.

Unlike local RCs, Z44 exhibits a non-negligible
pion mass dependence, as shown on Fig. 13. The
values of Z44 change by several percents (3%–4%) in
the pion mass range considered (440–870 MeV), yet
this change is mainly observed at β ¼ 1.95. For this
reason we perform the chiral extrapolation by a
constant fit.
The pion mass dependence of Z44 will be taken into

account in evaluation of the systematics.

VII. CONVERSION TO THE MS
SCHEME AND EVOLUTION TO

A REFERENCE SCALE

In order to make the connection with phenomeno-
logical calculations and experiments, which almost
exclusively refer to the MS scheme, we convert our
renormalization factors from RI’-MOM to MS using
3-loop perturbative conversion factors obtained from

Ref. [19]. These latter are defined as ZMS
q ¼

C−1
q ZRI0−MOM

q and ZMS
O ¼ C−1

O ZRI0−MOM
O . In terms of

the M̄S coupling constant αMS ¼ g2

16π2
, and in the

Landau gauge, these functions read1
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FIG. 12 (color online). lhs: Nf ¼ 4 local RCs dependence with the pion mass. All RCs are given in the RI’-MOM scheme at 10 GeV.
The straight dashed lines are constant fits for each β values. The red points correspond to β ¼ 2.10, the black ones to β ¼ 1.95, and the
blue ones to β ¼ 1.90. rhs: local RCs after chiral extrapolation, versus log a2. All RCs follow a linear dependence with log a2 to a very
high accuracy.
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FIG. 13 (color online). lhs: Nf ¼ 4Z44 dependence with the
pion mass. Z44 is given in the RI’-MOM scheme at 2 GeV. The
straight dashed lines are constant fits for each β values. The red
points correspond to β ¼ 2.10, the black ones to β ¼ 1.95, and
the blue ones to β ¼ 1.90.

1Setting the covariant gauge parameter λRI0 to zero leads to
λMS ¼ 0 and since in addition αRI0 ¼ αMS þOðα5

MS
Þ [19], these

conversion functions have the same expression in the Landau
gauge whether they are expressed in terms of MS or RI’-MOM
variables.
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Cq ¼ 1þ ½5CF − ð82 − 24ζð3ÞÞCA þ 28TFNf�
CFα

2

8

þ ½ð678024ζð3Þ þ 22356ζð4Þ − 213840ζð5Þ − 1274056ÞC2
A

− ð228096ζð3Þ þ 31104ζð4Þ − 103680ζð5Þ − 215352ÞCACF þ 31536C2
F

− ð89856ζð3Þ − 760768ÞCATFNf þ ð68256 − 82944ζð3ÞÞCFTFNf − 100480T2
FN

2
f�
CFα

3

5184
þOðα4Þ; ð35Þ

CS;P ¼ 1 − 4CFαþ ½ð57 − 288ζð3ÞÞCF þ 332TFNf þ ð432ζð3Þ − 1285ÞCA�
CFα

2

24

þ ½ð−2493504ζð3Þ þ 155520ζð5Þ þ 2028348ÞCACF − ð−3368844ζð3Þ þ 466560ζð5Þ þ 6720046ÞC2
A

þ ð−532224ζð3Þ þ 186624ζð4Þ þ 3052384ÞCATFNf þ ð−331776ζð3Þ − 186624ζð4Þ þ 958176ÞCFTFNf

− ð−451008ζð3Þ − 933120ζð5Þ þ 2091096ÞC2
F − ð27648ζð3Þ þ 240448ÞT2

FN
2
f�
CFα

3

7776
; ð36Þ

CA;V ¼ 1þOðα4Þ; ð37Þ

C44 ¼ 1þ 31
CFα

9
þ ½ð−1782ζð3Þ þ 6404ÞCA þ ð1296ζð3Þ − 228ÞCF − 2668TFNf�

CFα
2

162

þ ½ð−11944044ζð3Þ þ 746496ζð4Þ þ 524880ζð5Þ þ 38226589ÞC2
A

þ ð−4914432ζð3Þ − 2239488ζð4Þ þ 8864640ζð5Þ þ 3993332ÞCACF

þ ð369792ζð3Þ − 1492992ζð4Þ − 24752896ÞCATFNf

þ ð10737792ζð3Þ þ 1492992ζð4Þ − 9331200ζð5Þ − 3848760ÞC2
F

− ð−3234816ζð3Þ − 1492992ζð4Þ þ 9980032ÞCFTFNf

þ ð221184ζð3Þ þ 3391744ÞT2
FN

2
f�

CFα
3

69984
þOða4Þ; ð38Þ

where ζðnÞ is the Riemann zeta function and for the SU(3)
color group, TF ¼ 1

2
, CF ¼ 4

3
, CA ¼ 3.

Using these expressions to convert our RI’-MOM results
at a reference scale of 2 GeV to MS values also at 2 GeV
leads to the final RCs listed in Table V.
To estimate the effect of the truncation in the perturbative

series, we have also converted our results to MS at 2 GeV,
but starting from RI’-MOM results at 10 GeV, converting
them to MS scheme at 10 GeV, and then evolving the MS
RCs from 10 to 2 GeV using the scale dependence
predicted by the renormalization group equation [13]

ROðμ;μ0Þ ≔
ZOðμÞ
ZOðμ0Þ

¼ exp

�
−
Z

ḡðμ2Þ

ḡðμ2
0
Þ
dg

γðgÞ
βðgÞ

	
: ð39Þ

The effect is negligible on Zq (affecting only the last
digit); it is of the order of 3.5% for ZS, 4% for ZP and 2%
for Z44. For a perturbative series, the effect of truncation is
relatively small, but compared with the systematic errors, it
is far from being negligible.

VIII. ESTIMATION OF THE SYSTEMATICS

The statistical uncertainties affecting the final results are
rather small. Typically of the order of 1% for Z44, and down
to 2–5 per mille for local RCs. However, the analysis
procedure leading to the final values of these RCs is quite
complex and involves many nontrivial steps and systematic
errors turn out to be dominant compared to the tiny
statistical ones. A very careful study of systematics is thus

TABLE V. Local Nf ¼ 4 RCs in the MS scheme at 2 GeV.

β Zq ZS ZP ZV ZA ZP=ZS Z44

1.90 0.761(3) 0.723(3) 0.434(3) 0.622(2) 0.717(1) 0.600(4) 0.973(9)
1.95 0.772(2) 0.724(4) 0.462(2) 0.640(2) 0.728(2) 0.637(4) 0.977(12)
2.10 0.789(2) 0.727(2) 0.523(1) 0.687(1) 0.757(1) 0.720(4) 1.019(8)
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unavoidable to produce in fine reliable and meaningful
results.
Sources of systematic uncertainties are manifold. They

arise from the removal of hypercubic corrections, from the
running fit, from the chiral extrapolation, and from the
uncertainties on the lattice spacing and on ΛQCD. We have
carefully estimated each source of uncertainties and final
results are given in Table VI. The first parenthesis gives the
statistical uncertainty. The second one comes from the
systematics due to the hypercubic removal procedure,
combined with the running fit range. We have varied both
the range of p2 used in the hypercubic removal procedure
and in the running fit, separately, to estimate the maximal
variation on the final RCs value. This leads to the systematics
indicated in the second parenthesis. Finally, the last number
indicates the systematics due to the chiral extrapolation.
The uncertainties on the lattice spacing a and on the

value of ΛQCD have also been propagated to the RCs and
included in the errors quoted in Table VI. We have varied a
by �5% from its central value and taken ΛQCD ¼ 316ð13Þ
MeV from Ref. [28].
Systematics are estimated separately on local and on

twist-2 renormalization constants. They indeed behave
quite differently, whether it concerns their pion mass
dependence, or their sensitivity to lattice spacing and
ΛQCD. The hypercubic corrections and the running lead
to an uncertainty which does not exceed 1%. The pion mass
dependence of all local RCs is weak and the uncertainties
associated with the chiral extrapolation small.
The uncertainty on the lattice spacing and on ΛQCD,

propagated to the local RCs, gives a very small sensitivity
for Zq and ZP

ZS
, and an effect of about 2% for ZS; ZP (see

Table IV for example). In particular, the very effect of the
uncertainty in the lattice spacing is ∼0.001 for Zq, ZS and
ZP, and can be neglected for ZV, ZA or ZP=ZS that do not
run with momenta in perturbation.
The situation is a bit different for Z44. Uncertainties due

to the Hð4Þ corrections and the running fit are of the order
of the statistical errors, the dominant source of uncertainties
comes clearly from the chiral extrapolation, which induces
errors of the order of 3%. In addition, the errors on a and
ΛQCD produce an additional uncertainty on Z44 of the order
of 3%.
Finally we have compared our results with the values for

local RCs given in Ref. [8]. These latter have been obtained

using the “democratic” selection of momenta. Restricting
our fitting interval to the one used in this reference
(“method M1”) we find close results, a precise comparison
being however difficult since only statistical errors are
reported in [8]. In addition, taking into account statistical
and systematic errors, our results are also compatible with
those from [17] for Z44.

IX. CONCLUSION

We have presented an original analysis of quark propa-
gator, vertex functions and twist-2 operators renormaliza-
tion constants for Nf ¼ 4 twisted-mass fermions. We have
implemented a systematic and rigorous procedure to correct
for hypercubic lattice artifacts. This nonperturbative
method, avoiding the selection of momenta usually done
in this kind of analysis and the use of perturbative formulas,
allows us to take advantage of all the data and to check the
running over a wide range of momenta. We have applied
our analysis procedure not only to local operators, but also
to the twist-2 operator O44. Oða2Þ lattice artifacts have also
been efficiently subtracted. In order to compare with
experimental values obtained for the corresponding matrix
elements, all our results, obtained in the RI’-MOM scheme,
have been converted to the MS scheme at 2 GeV. A precise
estimate of systematic errors have also been performed and
these latter are shown to be dominant in the case of twist-2
operator O44. Concerns could be raised because of the fact
that the RI-MOM scheme requires gauge fixing. There
could in principle be fluctuations arising from the Gribov
ambiguity. However, several studies explored this idea in
the 1990s [37–40] as well as later on with Ginsparg-Wilson
fermions [26] and have shown that this effect is less than
1% and thus the dependence on gauge fixing is negligible.
Of course one has to mention that all this previous work
was in the quenched approximation.
The method developed here will be applied in the near

future to the new gauge configurations, at the physical pion
mass, generated by the ETM Collaboration.
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