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We look into the signatures of the effective Y-bosonic strings in the gluonic profile due to a system of
three static quarks on the lattice. The color field is calculated in pure SU(3) Yang-Mills lattice gauge theory
at finite temperature with Polyakov loop operators. The analysis of the action density unveils a filled-Δ
distribution. However, we found that these Δ-shaped action density profiles are structured from three
Y-shaped Gaussian-like flux tubes. The geometry of the Y-shaped Gaussian flux tubes changes according
to the quark configuration and temperature. The lattice data for the mean-square width of the gluonic action
density have been compared to the corresponding width calculated based on the string model at finite
temperature. We assume Y-string configuration with minimal length. The growth pattern of the action
density of the gluonic field fits to junction fluctuations of the Y-baryonic string model for large quark
separation at the considered temperatures.
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I. INTRODUCTION

The confinement of quarks into mesons and hadrons is
an outstanding feature of quantum chromodynamics
(QCD). Computer simulations have revealed that quark
confinement is a property of the gluonic sector and is
common for non-Abelian gauge models [1–4]. The static
quark-antiquark potential is linearly rising [5] with inter-
quark separation. The origin of the linearly rising confining
potential has been conjectured, in a stringlike flux tube
model, to be due to the formation of a stringlike flux tube
[6–12] between the two quark color sources.
The IR dynamics of the gluonic sector in the meson have

shown gross features to be described in a string picture
[7–12]. The squeezed flux tube, by virtue of the surround-
ing superconductiong medium [2,3,13], is conjectured to
vibrate, after roughening, like a massless string. The profile
of the vibrating flux tube can be unraveled in numerical
lattice simulations by correlating the field strength of the
QCD vacuum to the constructed quark states [14–17].
The large distance properties of the energy distribution in
the meson have been a subject of many lattice simulations
targeting the properties of the flux tubes at both zero and
finite temperatures. The string picture’s main measurable
universal consequences of the Lüscher subleading correc-
tion to the QQ̄ potential [12] and flux tube logarithmic
growth property [18] have been verified with the lattice data
at large distances [4,9,14,19–22].
Nevertheless, the study of the stringlike behavior of flux

tubes in multiquark systems seems to be less visited on the
lattice. The calculations are prone to practical difficulties
associated with both systematic and statistical uncertainties.

The signal in the baryon is noisy [23], and the form of field
distribution of the physically interesting ground state seems
less obvious [23,24] than the mesonic case. There have been
systematic difficulties to unravel an unbiased form of the
action density distribution within the framework of the
overlap formalism, i.e., employing Wilson loops as a quark
source operator [23–25]. The gluonic wave function is
reflected in the form of the field distribution [23–25].
This has presented hitherto a challenge to directly scrutinize
unambiguously the baryonic strings on the lattice [26].
Our recent lattice Monte Carlo simulations, however,

have unraveled the distribution of the gluonic gauge field
inside a static baryon at finite temperature [27]. The action
density correlation with three Polyakov loops, representing
an infinitely heavy quark state in pure SU(3) Yang-Mills
theory, has displayed a filledΔ-shaped profile [27,28]. This
filled Δ-shaped arrangement interestingly persists to large
interquark separations [27]. This varies the action density
profile obtained using Wilson loops as a quark operator
[23–25]. Wilson’s loop operator displays three distinctive
Y-shaped flux tube forms in the interquark space at large
distances [25]. The returned gluonic pattern of the baryon
with three Polyakov loops displayed a system rich with
features [27,28] taking into account the role played by the
temperature as well. The associated signatures of the string
configuration relevant to this quark system [29,30] is indeed
an interesting topic that remains to be addressed in detail.
Static color charges corresponding to a multiquark system

may induce an intricate stringy system in the QCD vacuum
including the formation of multijunction systems [31–34].
In tetraquark and pentaquark systems, the analysis of color
fields show evidence on the formation of a multi-Y-type
shaped flux tube [31,32]. The flux tube junction points are
compatible with Fermat-Steiner points minimizing the total*abakry@impcas.ac.cn
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flux tube length [31,32]. In the baryon, the picture would
simplify to the Y-string configuration which is expected to be
a staple configuration in the IR region of the baryon [34].
This system accounts for three strings originating from a
node to the three quarks [35]. The modeling of this system
would entail utilizing collective coordinates referring to the
junction location. Now we have a theoretical development
relevant to the effective string effects in this model
[29,30,36]. The calculations of the Casimir energy have
indicated a Lüscher-like subleading term for the Y (3Q)
potential [29,37]. There is also a discussion from a gauge-
string perspective in Ref. [38].
In fact, a look at the signatures of the baryonic strings in

lattice data simultaneously scrutinizes the subleading prop-
erties of the quark potential as well as the configuration of
the strings that join the constituent quarks; or in other
words, the leading term of the 3Q potential. The leading
properties of the 3Q potential have been extensively studied
on the lattice [39–42] employing various techniques.
Recent lattice QCD findings regarding the three quark
potential have shown that the confining potential admits
two possible models depending on the interquark separa-
tion distances [39–43]. The so-called Δ parametrization for
small quark separation distances of R < 0.7 fm and the Y
ansatz for 0.7 < R < 1.5 fm [41]. In fact, the distances
over which the Δ and Yansatz parametrization interpolates
has been controversial for a long period of time [39–42] due
to the small value in the difference between both ansatz (of
the order of 15%) and the degree of accuracy of the data.
A direct test of the baryonic subleading string signatures

in the lattice data for the potential of three static quarks
at zero temperature has been reported in Ref. [37]. The
numerical measurements of a three-state Potts gauge model
is consistent with the predicted Lüscher-like corrections
and the formation of a system of three flux tubes that meet
at a junction when the separation between any two quarks is
large [37].
In general, the lattice data are in favor of the expected

Y-string configuration as the most relevant picture in the IR
region of the baryon [44–47]. The quantum delocalization
of this string system from its classical configuration results
in a mean-square width of the flux distribution. Recently,
the study of the dynamics of the junction of the three
Y-shaped baryonic flux tubes has shown that the asymp-
totic behavior of the effective width of the junction grows
logarithmically [30] with the distance between the sources.
This result [30] is evaluated for equilateral triangular quark
configurations at zero temperature. The result resembles the
logarithmic growth property of the mesonic flux tubes
[4,9,14,19–22] on the lattice.
The feasibility of reproducing lattice data corresponding

to the gluonic pattern in a three-quark system at two
temperatures below the deconfinement point presents a
tempting opportunity to directly look into the baryonic
strings in the properties of the QCD vacuum on a first

principle basis. In addition to this, one would like to
ascertain the interesting long distance Δ-shaped flux
arrangement as a consequences of the stringy aspects of
gluonic configurations of a static baryon. Since the bosonic
string predictions are expected to be more relevant to pure
Yang-Mills theories with static color sources (rather than
QCD with dynamical sea quarks where string breaking [48]
occurs), the lattice simulations are performed on the SU(3)
gauge group in the quenched approximation.
In this work, we study the width profile of the junction

due to a Y-string model [29,30,37] at finite temperature.
The width pattern of the gluonic action density resulting
from three different sets of 3Q configurations is inves-
tigated versus a variety of Y-shaped three string configu-
rations obtained by varying the position of the junction.
The fit analysis is performed at two temperatures corre-
sponding to T=Tc ¼ 0.8 and T=Tc ¼ 0.9which correspond
to a temperature close to the end of the QCD plateau and to
the deconfinement point, respectively.
The present paper is sectioned as follows: In Sec. II we

describe the details of the simulations and noise reduction
techniques. The baryonic string model at finite temperature
is discussed in Sec. III. In Sec. IV, we show the properties of
the density distribution and compare the profile of the mean
width of the junction fluctuations for various string con-
figurations to the width of the gluonic action density of the
corresponding quark configurations at two temperatures.
In Sec. V, the conclusion is provided.

II. MEASUREMENTS AND ULTRAVIOLET
FILTERING

A. Color field measurements

The heavy baryonic state is constructed by means of
Polyakov loop correlators,

P3Q ¼ hPð~r1ÞPð~r2ÞPð~r3Þi;
where the color-averaged Polyakov loop is given by

Pð~riÞ ¼
1

3
Tr
�YNt

nt¼1

Uμ¼4ð~ri; ntÞ
�
;

and the vectors ~ri define the positions of the quarks.
The measurements that characterize the color field are

taken by a gauge-invariant action density operator Sð~ρ; tÞ at
spatial coordinate ~ρ of the three-dimensional torus corre-
sponding to an Euclidean time t. The measurements are
repeated for each time slice and then averaged,

Sð~ρÞ ¼ 1

Nt

XNt

nt¼1

Sð~ρ; tÞ: ð1Þ

A dimensionless scalar field that characterizes the
gluonic field can be defined as
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Cð~ρ; ~r1; ~r2; ~r3Þ ¼
hP3Qð~r1; ~r2; ~r3ÞSð~ρÞi
hP3Qð~r1; ~r2; ~r3ÞihSð~ρÞi

; ð2Þ

where h…i denotes averaging over configurations and
lattice symmetries, and the vector ~ρ refers to the spatial
position of the flux probe with respect to some origin.
Due to cluster decomposition of the operators, C should
approach a value C≃ 1 away from the interquark space.
For noise reduction, we make use of translational invari-
ance by computing the correlation on every node of the
lattice, averaging the results over the volume of the three-
dimensional torus, in addition to the averaging of the action
measurements taken at each time slice in Eq. (1).
The gauge configurations were generated using the

standard Wilson gauge action. The two lattices employed
in this investigation are of a typical spatial size of
3.63 fm3. Performing the simulations on large enough
lattice sizes would be beneficial to gain high statistics in a
gauge-independent manner and also minimizing the
mirror effects and correlations across the boundaries as
a by-product [25,49].
The SU(3) gluonic gauge configurations has been gen-

erated employing a pseudo-heat-bath algorithm [50,51]
updating the corresponding three SU(2) subgroup elements
[52]. Each update step consists of one heat bath and five
microcanonical reflections. We chose to perform our analy-
sis with lattices as fine as a ¼ 0.1 fm by adopting a coupling
of value β ¼ 6.00, with temporal extents of Nt ¼ 8 and
Nt ¼ 10 slices, which correspond to temperatures T ≃
0.9Tc and T ≃ 0.8Tc, respectively.
We perform a set of measurements nsub ¼ 20 separated

by 70 sweeps of updates. Each set of measurements is taken
following 2000 updating sweeps. These submeasurements
are binned together in evaluating Eq. (2). The total
measurements taken on 500 bins. In this investigation,
we have taken 10,000 measurements at each temperature.
The measurements are taken on hierarchically generated
configurations.

B. Ultraviolet filtering

An ultraviolet filtering (UV) step precedes our measure-
ments of the action density distribution throughout the
lattice. The UV filtering of the gauge configurations
suppresses the short distance quantum fluctuations of the
vacuum and is beneficial in attaining a good signal to noise
ratio in the correlations equation (2). This involves a local
action reduction by smearing the gauge links of the whole
four-dimensional lattice.
Smoothing the gauge fields complements our use of

lattice symmetries to gain noise reduction in our measure-
ment setup. We have shown previously [53] through a
systematic study of the effects of smearing on the flux tube
width profile that the effective string physics in the heavy
meson is independent of the UV fluctuations at large source
separations.

In addition to this, we have found the lattice data
compares favorably with the predictions of the free string
model with increasing the levels of gauge field smoothing
at the intermediate source separation distance at high
temperatures where the free string picture is known to
poorly describe the flux tube width profile (see also a
detailed discussion on the effects of smearing in [28]).
Variant to [16] where the Cabbibo-Marinari cooling has

been employed, we have chosen to smooth the gauge field
by an overimproved stout-link smearing algorithm [54].
In standard stout-link smearing [55], all the links are
simultaneously updated. Each sweep of the update consists
of a replacement of all the links by the smeared links

~UμðxÞ ¼ expðiQμðxÞÞUμðxÞ; ð3Þ

with

QμðxÞ ¼
i
2
ðΩ†

μðxÞ −ΩμðxÞÞ −
i
6
trðΩ†

μðxÞ −ΩμðxÞÞ;

and

ΩμðxÞ ¼
�X

ν≠μ
ρμνΣ

†
μνðxÞ

�
U†

μðxÞ;

where ΣμνðxÞ denotes the sum of the two staples touching
UμðxÞ which reside in the μ − ν plane.
The scheme of overimprovement requires ΣμνðxÞ to be

replaced by a combination of plaquette and rectangular
staples. This ratio is tuned by the parameter ϵ [54]. In the
following we use a value of ϵ ¼ −0.25, with ρμ ¼
ρ ¼ 0.06. We note that for a value of ρ ¼ 0.06 in the
overimproved stout-link algorithm is roughly equivalent
in terms of UV filtering to the standard stout-link smearing
algorithm with the same ρ ¼ 0.06. We have considered a
typical number of four-dimensional smearing sweeps
corresponding to nsw ¼ 80 of stout-link smearing.

III. BARYONIC STRING MODEL

In the dual superconductor model of the QCD vacuum,
the QCD vacuum squeezes the color fields into a confining
string dual to the Abrikosov line by the dual Meissner effect
[2,3]. With this intuitive picture, an idealized stringlike
system of flux tubes [12] transmitting the strongly inter-
acting forces between the color sources was proposed
previously [6,12]. The formation of stringlike defects is
not a peculiar property of the QCD flux tubes, and is
realized in many physical phenomena such as vortices in
superfluids [56], flux tubes in superconductors [57],
vortices in Bose Einstein condensates [58], Nielsen-
Olesen vortices of field theory [59], and cosmic strings
[60]. The physical parameters of each of these models fix
the properties of this stringlike object.
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However, quantum mechanical effects become relevant
in certain phases of the model, giving rise to interesting
measurable effects. To find a consistent quantum descrip-
tion within the quantization scheme used in bosonic string
theories, we encounter the difficulty that this is only
possible in 26 dimensions.
An effective description with strings [61] in four dimen-

sions predicts logarithmic growth and a long non-Coulombic
term to the quark-antiquark potential well known as the
Lüscher term. These predictions have been verified in
confining gauge theories on distance scales larger than
the intrinsic thickness of the flux tube 1=Tc [20] at zero
temperature in the so-called rough phase of lattice gauge
theories (LGTs) [4,9,14,20,62].
The roughening transition signifies the substantial

change in the behavior of the profile of the flux tube
between a quark-antiquark pair from the constant width
into logarithmic increase [18] by virtue of the strongly
fluctuating underlying string. The transition proceeds with
the decrease of the coupling constants and, in this phase,
the flux tube admits a collective coordinate description.
At sufficiently high temperature, the equations of motion

of a Nambu-Goto type bosonic strings are indicating a
linear growth in the tube’s width if solved [63] for the width
of the action density at the middle plane between two
quarks. This prediction has been also verified in LGTs
by studying configurations with a static quark and antiquark
pair [21,53,63–66] at large separations and near the decon-
finement point. The string model assumptions of the
effective description of the tube with a collective coordinate
referring to the underlying thin string are working at high
temperature.
The above discussion concerning the validity of the

model assumption at high temperatures and near the
deconfinement point is of particular relevance especially
when discussing a Y-shaped baryonic string model
[29,30,37] to scrutinize the large distance Δ baryonic flux
arrangement [27,28].
It is widely accepted that the Y-shaped string is the

relevant picture of the baryonic flux tubes to the IR region
of the non-Abelian gauge and amounts to three squeezed
flux tubes that meet at a junction. Indeed, it can be derived
from the strong coupling approximation and is consistent
with the dual superconducting picture of QCD [67–69].
The Y ansatz describes the leading string effect and can be
successful for parametrizing the large distance lattice data
of the confining potential [29,37] at zero temperature.
We summarize the motivation to discuss an effective

Y-string model versus the lattice data at high temperature
in the following main points: The linear growth property of
the confining flux tube at high temperature has been
verified on the lattice [21,53,63–66], no substantial changes
[70] in the nature of the confining thin tubes between a
quark-antiquark pair on large distance scales, and the Y
model seems consistent with lattice data corresponding to

the confining potential at T ¼ 0 [37]. The expectations are
that the observed features of the gluonic distribution may
arise as a result of the vibration of this underlying Y-shaped
string system.
In the Y-baryonic string model, the quarks are connected

by three strings that meet at a junction (Fig. 1). The
classical configuration corresponds to the minimal area of
the string world sheets. Each string’s world sheet (blade)
consists of a static quark line and the worldline of the
fluctuating [29,30] junction (Fig. 2).
The parameter s and t (time) label the position on string

world sheet (blade) i. The position of the junction is given
by s ¼ Li þ ηi:ϕðtÞ. The transverse fluctuations ξiðt; sÞ
vanish at the location of the quarks (s ¼ 0), and are
periodic in the time t, with period 1=LT (see Fig. 2) and
is the temporal extent governing the inverse temperature.
The simplest choice for the string action S is the Nambu-

Goto (NG) action which is proportional to the surface area

S½X� ¼ σ

Z
dζ1

Z
dζ2

ffiffiffi
g

p
; ð4Þ

where gαβ is the two-dimensional induced metric on the
blade world sheet embedded in the background R4,

gαβ ¼
∂X
∂ζα ·

∂X
∂ζβ ; ðα; β ¼ 1; 2Þ; g ¼ detðgαβÞ:

FIG. 1 (color online). Fluctuating Y-shaped flux tube arrange-
ment of three static color sources Q. The junction position is
described by the collective coordinate ϕ.

FIG. 2 (color online). World sheet traced by one of the strings
up to the junction position.
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The vector Xμðζ1; ζ2Þ maps the region C ⊂ R2 into R4.
Gauge fixing is required for the path integrals involving the
string partition functions to be well defined with respect to
Weyl and reparametrization invariance. The physical gauge
X1 ¼ ζ1; X4 ¼ ζ2 would restrict the string fluctuations to
transverse directions to C. On the quantum level, Weyl
invariance is broken in four dimensions, however, the
anomaly is known to vanish at large distances [7]. The
transverse fluctuations X⊥ ¼ ξμðt; sÞ vanish at the location
of the quarks (s ¼ 0), and are periodic in the time t, with
period LT , that is, the Dirichlet boundary condition in
addition to the boundary condition from the continuity of
the transverse fluctuations ξiðt; sÞ,

ξiðt; Li þ ηi · ϕðtÞÞ ¼ ϕ⊥iðtÞ; ð5Þ

where ηi are spatial unit vectors in the direction of the
strings such that Σiηi ¼ 0. The NG action after gauge fixing
and expanding around the equilibrium configuration yields

SFluct ¼ σLYLT þ σ

2

X
i;j

Z
Θi

d2ζ
∂ξi
∂ζj ·

∂ξi
∂ζj ; ð6Þ

where LY ¼ P
iLi above denotes the total string length.

In this model [29,30], the junction is assumed to acquire a
self-energy term m. This results in an additional boundary
term to NG action,

S ¼ SFluct þ SBoundary;

with a static energy and a kinetic energy terms of junction
defined as

SBoundary ¼
�
mLT þm

2

Z
LT

0

dtj _ϕj2
�
;

respectively.
The system’s partition function then reads

Z ¼ e−ðσLYþmÞLT

Z
Dϕ exp

�
−
m
2

Z
dtj _ϕj2

�Y3
i¼1

ZiðϕÞ;

ð7Þ
where ZiðϕÞ denotes the partition function for the fluctua-
tions of a given blade that is bounded by the junction
worldline ϕðtÞ:

ZiðϕÞ ¼
Z
ϕ
Dξi exp

�
−
σ

2

Z
j∂ξij2

�
: ð8Þ

The string partition functions ZiðϕÞ are Gaussian func-
tional integrals and can be calculated according to

ZiðϕÞ ¼ e−
σ
2

R
j∂ξmin;ij2 jdetð−△Θi

Þj−ðD−2Þ=2 ð9Þ

where ξmin;i is the minimal-area solution for given ϕðtÞ.ΔΘi

denotes the Laplacian acting on the domain (blade) Θi.
ξmin;iðt; sÞ is harmonic and satisfies the boundary condi-
tions equation (5) [29].
Jahn and de Forcrand [29] calculated the baryonic

potential, Vqqq, by evaluating the determinant of the
Laplacian in Eq. (9) based on conformally mapping gener-
alized domains of the blade [29].
Pfeuffer, Bali, and Panero [30] extended the calculations

of the above model to the thickness of the fluctuating
baryonic junction

hϕ2i ¼
R
Dϕϕ2e−SR
Dϕe−S

: ð10Þ

The integral over ϕ has been decomposed in Eq. (10)
using parallel and perpendicular components jϕw;zij2 ¼
jϕwj2 − jϕw · ηij2 to the plane of the quarks (see Fig. 1).
This has resulted in an expression for the mean-square
value of the perpendicular fluctuations [30] given by

hϕ2
zi ¼

2

LT

X
w>0

1

mw2 þ σw
P

i cothðwLiÞ
; ð11Þ

with w ¼ 2πn=LT .
The above equation is consistent with the mesonic string

fluctuations in the limit LT → ∞. This can be shown by
dividing the string connecting a quark and an antiquark
into two parts of equal length connected in the middle by a
junction, see Fig. 3. In the limit LT → ∞, for a three string
system of identical lengths L ¼ Li, the perpendicular
contribution in four dimensions would then read

hϕ2
zi ¼

1

πσ

Z
∞

0

dw
1

mw2 þ nσw cothðwLÞ : ð12Þ

To a leading order, the integral simplifies to

hϕ2
zi ¼

1

πσ
ln

L
L0

: ð13Þ

FIG. 3. Schematic shows the world sheets of the strings in a
baryon and a meson. The solutions obtained for a single mesonic
string [18,63] must be consistent with the general n-string
baryonic solution [29,30] in the limit of strings number n ¼ 2.
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The arbitrary constant is contained in L0, which gen-
erally will depend on the dimension and the number of
strings and the ultraviolet properties of the corresponding
gauge model [53]. This indicates that the width of the
junction, orthogonal to the plane swept by the quarks,
grows logarithmically with the distance.
One can relate Eq. (14) to the mean-square width, W2

0,
determined at the symmetry point of the string world
sheet [18]

W2
0 ¼

1

πσ
ln

R
R0

: ð14Þ

These equations coincide provided that the constants
are identified as L0 ¼ 2R0. The parameter m which has
been absorbed into L0, therefore, scales linearly with the
parameter R0.
The calculations performed in Refs. [29,30] is based on

first order conformal mapping from the fluctuating side of
the general domains Θi to a rectangle, then solving for the
determinant of the Laplacian in Eq. (9) using the standard
procedure [18]. For our further purpose, the approximation
in Eq. (11) can be improved further by including the high
temperature effects using a simple convolution with the
first order fluctuations ϕ →

R
∞
−∞ ϕðτÞψðt − τÞdτ, that is, the

fluctuating side of the general domains Θi describing
the world sheet of each blade can be smoothed with a
scalar function ψ such that the conformal mapping [29]
would read

fiðzÞ ¼ zþ 1ffiffiffiffiffiffi
LT

p
X
ω¼0

ηk:ϕωψðω; LiÞ
sinhðωLiÞ

eωz: ð15Þ

Following the same procedure as Ref. [30] for the
calculation of the thickness of the junction (see

Appendix A), the perpendicular fluctuations of Eq. (11)
become

hϕ2
zi ¼

2

LT

X
w>0

1

kw2 þ σw
P

i cothðwLiÞψðw; LiÞ
: ð16Þ

The form of this convolution scalar ψ in the above
equation can be derived from the mesonic limit. The width
of the mesonic string derived in Ref. [63] at high temper-
ature would read,

W2ðξ1; τÞ ¼
1

πσ
log

�
R
R0

�
þ 1

πσ
log jχðτÞj; ð17Þ

where χðτÞ ¼ θ2ð0;τÞ
θ0
1
ð0;τÞ, θ1 and θ2 are Jacobi theta functions,

and τ ¼ LT=R is the modular parameter of the cylinder.
Equating both expressions of Eqs. (16) and (17), with
R ¼ 2Li, expanding the logarithm in the right-hand side
and solving for ψðw;LiÞ yields for the smoothing ψ the
following expression:

ψðwn; LiÞ ¼
−kwn

2σ cothðwnLiÞ
−

ð1 − 1=2nÞ
2 cothðwnLiÞ

×

�
2LiχðτiÞ þ 1

2LiχðτiÞ − 1

�
2n−1

: ð18Þ

As indicated above, the parameter m shifts the mean-
square width of the fluctuations by a constant. The
parameter m can be tuned to the value k, such that R0

cancels out from both sides of Eqs. (16) and (17).
After plugging the smoothing scalar ψ into the mean-

square width of the in-plane fluctuations and orthogonaliz-
ing the corresponding path integral (Appendix A), we have

hϕ2
xi ¼

2

LT

X
w>0

1

Qx;w þQy;w − ðQ2
xy;w þ ðQx;w −Qy;wÞ2Þ1=2

;

hϕ2
yi ¼

2

LT

X
w>0

1

Qx;w þQy;w þ ðQ2
xy;w þ ðQx;w −Qy;wÞ2Þ1=2

; ð19Þ

where Qx;Qy, and Qxy are defined [30] as

Qx ¼
�
kw2 þ σw

X
i

cothðwLiÞψðw;LiÞ
�
þ
�
σ

2
wþ w3

12π

��X
i

η2i;x cothðwLiÞψðw; LiÞ
�
;

Qy ¼
�
kw2 þ σw

X
i

cothðwLiÞψðw;LiÞ
�
þ
�
σ

2
wþ w3

12π

��X
i

η2i;y cothðwLiÞψðw; LiÞ
�
;

Qxy ¼
�
σ

2
wþ w3

12π

��X
i

ηi;xηi;y cothðwLiÞψðw;LiÞ
�
: ð20Þ
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It is more convenient for our further discussion of the in-
plane fluctuations on the lattice to consider the above
rotated decoupled form.

IV. THE GLUONIC PROFILE AND
BARYONIC STRINGS

In this section we show an analysis of the lattice data from
two points of view. In the first subsection, we give a
qualitative description of the rendered action density profile.
We show how the aspects of the distribution are consistent
with the stringlike behavior. We directly compare the width
profile of the action density with the string model fluctua-
tions, Eqs. (16), (18), and (19), in the following subsection.

A. Qualitative features

The simulation setup was described in Sec. II. The lattice
operator which characterizes the gluonic field C is usually
taken as the correlation between the vacuum lattice action
density Sð~ρ; tÞ operator, and a gauge-invariant operator
representing the heavy baryon state, that is, three Polyakov
lines [Eq. (2)]. We take our measurements with a three-loop
field-strength tensor according to

FImp
μν ¼

X3
i¼1

wiC
ði;iÞ
μν ; ð21Þ

where Cði;iÞ is a combination of Wilson loop terms corre-
sponding to loops with lattice extent i used to construct the
clover term and wi are the corresponding weights [71].
Different possible components of the field-strength tensor

in Eq. (21) can separately measure the chromoelectric
and -magnetic components of the flux. The action density,
however, is related to the chromoelectromagnetic fields via
1
2
ðE2 − B2Þ and is the quantity of direct relevance to the

comparison with the string fluctuations, Eqs. (16) and (19).
The reconstructed action density

Sð~ρÞ ¼ β
X
μ>ν

1

2
TrðFImp

μν Þ2 ð22Þ

is accordingly measured on 80 sweeps of stout-link
smearing. The action density operator is calculated through
an Oða4Þ improved lattice version of the continuum field-
strength tensor, Eq. (21). For convenience, we consider
the complementary distribution C0 ¼ 1 − C in the follow-
ing. The correlation function Eq. (2) is found C0ð~ρÞ ¼ 0
away from the quark position.
The surface plot of the scaled flux distribution in the

quark plane, ρðx; y; z ¼ 0Þ, together with contour lines is
plotted in Fig. 4. The contour lines are projected onto the
surface plot. The density of the contour lines increases near
the edges in accord with the gradient of the scalar field C0
along the x axis. The flux contours corresponding to the

highest values of C0, however, are the innermost lines inside
the triangle.
In general, the action density distribution is nonuni-

formly distributed. The distribution C0ð~ρðx; y; z ¼ 0ÞÞ has
an action density maximal curve along the middle line
~ρðx; y ¼ 0; z ¼ 0Þ between the two quarks Q1;2. With the
increase of source Q3 separation, the peak point along the
maximal curve C0ð~ρðx; y ¼ 0; z ¼ 0ÞÞ shows only subtle
movement [27,28].
At large distances, the topology of these density plots

does not indicate an action density pattern resembling the
shape of tubes that would form around the perimeter of
the three quarks. The distribution displays a peak close to
the geometrical center of the triangle at large source
separation distance. This is consistent with what we expect
from the vibrations of three stringlike flux tubes that meet at
a junction. The thin Y-shaped flux tube may delocalize
away from its classical configuration and span the whole
region throughout the bulk of the triangular 3Q arrange-
ment, tracing out a filled-Δ shape of a nonuniform action
density distribution with a maximal inside the triangle.
The nature of the forces that binds the nucleon is usually

explored directly in lattice simulations via the fit behavior
of a prescribed ansatz to the 3Q potential. The Δ ansatz
amounts for a two-body force between the quarks propor-
tional to the perimeter of the 3Q triangle with a string
tension half that of the corresponding qq̄ system. In the Y
ansatz the string tension is, however, the same as the qq̄
system. The force is a three-body force and is proportional
to the minimal length of the three strings.

FIG. 4 (color online). Surface plot of the flux density surface in
the quark plane, ρðx; y; z ¼ 0Þ, together with contour lines. These
measurements are taken for an isosceles quark geometry of base
A ¼ 0.8 fm, height R ¼ 1.2 fm and temperature T=Tc ¼ 0.9.
The projected contour lines appear denser at the edges due to the
fast gradient of the scalar field near the edges.
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At zero temperature, the results seem to indicate a range
for Δ-ansatz parametrization for small quark separation
distances R < 0.7 fm, and the Yansatz for 0.7<R<1.5 fm
[41,43]. In perturbation theory [72,73], the breakdown of
the two-particle (Coulombic) interaction picture in the short
range happens at two-loop order when the first genuine
three-body force manifest.
It can be a point of subtlety, nevertheless, if the para-

metrization which provides the best possible fits of the data
corresponding to the 3Q system potentials and the profile
of the flux tubes are thought to be necessarily the same.
Our lattice results for the profile of the flux tube [27,28]
indicates a Δ-shaped flux profile at larger distances. In the
following we shall show how the Δ-shaped flux configu-
ration consists of three overlapping Y-shaped Gaussian flux
tube “strings.”
The analysis of the fit behavior of the action density

profile can directly unravel the relevant stringlike configu-
ration amongst certain quark configuration. The best choice
of the fitting functions should be based on our experience
of what the good fit of the action density profile for a single
string would look like. For simplicity, we adopt the
approximation where the action density distribution due
to a delocalization of a single string can fit to a Gaussian
form [20]. This is compatible with the accuracy of our
lattice data shown also previously in the case of the
mesonic flux tubes [53], for example.
To unravel the configuration of the strings, we explore

the structure of the gluonic distribution with a general
ansatz consisting of two Gaussians,

GðyÞ ¼ H=2 expð−ðy − uÞ2=W2Þ
þH=2 expð−ðyþ uÞ2=W2Þ: ð23Þ

The form assumes a region consisting of a system of two
overlapping strings of the same strength H=2, and mean-
square widthW2. The center of the two strings is separated
by distance j2uðxÞj. This form make use of the symmetry of
the flux tube arrangement and seems suitable to unveil the
underlying string configuration. We scan the gluonic
domain with the above fit function for all the distances
x from the base A connecting the quarksQ1 andQ2. That is,
the Gaussian fits to the action density data are performed
for xi transverse planes between two sources separated by a
distance of R from the base up to the third quark Q3.
The returned values of χ2 to the fit of the form in Eq. (23)

at some selected planes and quark configuration are
summarized in Tables I and II for the temperature T=Tc ¼
0.8 and T=Tc ¼ 0.9, respectively. Figures 5 and 7 illustrate
the resultant fits to the sum of two Gaussians. The fit
parameter uðxÞ returns a nonzero value for fits of the first
few planes from the base of the 3Q quark’s triangle. The
distance between the two Gaussians decreases as we move
away towards the third quark position. The interesting
behavior of the returned fit parameter uðxÞ would be at the

locus x0 where the separation between the two strings
vanishes, uðx0Þ ¼ 0. We refer to this point as the mean
location of the junction which, as we shall see, can be
delocated with at most two lattice spacings from the
position of the Fermat point of the configuration for the
temperatures near the deconfinement point.
The values of the returned fit parameter uðxiÞ are plotted

in Figs. 8 and 9 for temperatures T=Tc ¼ 0.8 and
T=Tc ¼ 0.9, respectively. The coordinates (Lattice units)
are measured from the quark position x ¼ 0.
On the other hand, the perpendicular action density

C0ð~ρðxi; 0; zÞÞ when fitted to Eq. (23) shows no string
splitting, that is, uðxÞ ¼ 0 for all x ∈ ½0; R�. Figure 10
illustrates fits to a single Gaussian form at various planes x
in the plane perpendicular to the three quarks at
T=Tc ¼ 0.8. The values of χ2dof for the fits of the
perpendicular action density C0ð~ρðxi; 0; zÞÞ are of the same
order as that shown in Tables I and II. At higher

TABLE I. The returned values of the χ2dof from the fits of the
formula in Eq. (23) to the in-plane action density C0ð~ρðxi; y; 0ÞÞ at
each xi, at temperature T=Tc ¼ 0.8.

(a) R ¼ 6a

A=x x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5

A ¼ 6a 1.7 1.6 1.9 4.8 6.7
A ¼ 8a 0.4 0.3 0.2 0.5 0.8
A ¼ 10a 0.3 0.2 0.3 0.1 0.6

(b) R ¼ 9a
A=x x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 5 x ¼ 8

A ¼ 6a 1.0 0.8 0.8 1.5 1.2
A ¼ 8a 0.8 0.2 0.3 0.5 0.2
A ¼ 10a 0.6 0.4 0.3 0.2 0.2

TABLE II. Similar to Table I; however the returned values of
χ2dof are for the temperature T=Tc ¼ 0.9.

(a) R ¼ 6a
A=x x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5

A ¼ 6a 5.4 3.4 7.1 13.6 19.9
A ¼ 8a 3.3 1.9 1.2 3.8 15.4
A ¼ 10a 1.8 1.6 0.9 2.3 9.11

(b) R ¼ 9a
A=x x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 5 x ¼ 8

A ¼ 6a 3.7 2.1 2.3 4.1 14.2
A ¼ 8a 2.2 1.7 0.84 2.9 12.2
A ¼ 10a 0.48 0.46 0.4 0.66 7.4

(c) R ¼ 11a
A=x x ¼ 1 x ¼ 3 x ¼ 5 x ¼ 7 x ¼ 9

A ¼ 6a 1.0 1.1 2.1 3.7 9.5
A ¼ 8a 1.3 0.4 0.5 2.4 6.29
A ¼ 10a 0.28 0.18 0.1 1.2 3.8
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temperatures and smaller quark separation the signal is
stronger and this leads to higher values of χ2dof . The first row
in Tables I and II shows higher values of χ2dof for the
shortest triangular base A ¼ 6a, especially for planes close
to the third quark Q3 position. This is also the case for the
perpendicular fluctuations (higher χ2dof for A ¼ 0.6 and
T=Tc ¼ 0.9).
In Ref. [74] a fit convoluting a Gaussian with an

exponential given by

GðzÞ ¼ He2κ=λeð−2
ffiffiffiffiffiffiffiffiffiffiffiffi
ðz2þκ2Þ

p
=λÞ; ð24Þ

to measure both the string fluctuation and the screening
effects, was used. With the employment of this ansatz, the
flux tube damping is measured by means of the so-called
penetration length λ and the central curvature radius

−2H=ðλκÞ [74], the additional parameter κ is an effective
distance. The ansatz equation (24) accounts for screening
effects pronounced at the tail of the flux tube profile and
can lead to better χ2dof values. We fit the above convolution
form Eq. (24) to the perpendicular action density
C0ð~ρðxi; 0; zÞÞ. The resultant values of χ2dof are summarized
in the second row of Table III.
The values in Table III show a remarkable reduction in

χ2dof for the above mentioned quark configuration and thus
signaling possible screening effects to be observed in the
present analysis. However, for other quark configurations
and lower temperatures, the signal strength characterized by
the size of the error bars on the measured action density may
not be sufficient to further isolate the screening from the
quantum widening [74]. We expect screening effects to be
more feasible to scrutinize for the profile of a single mesonic
string as well as the string due to the diquark quark, since the
signal is relatively easier to improve and the flux tube system
is simpler. We report this in detail elsewhere.
At T=Tc ¼ 0.8, the two strings show an obvious splitting

behavior, as can be seen in Fig. 8. The position of the point
of intersection uðx0Þ ¼ 0 is the closest plane to the Fermat
point of this quark configuration. The point of intersection
relocates at most one lattice spacing x0 þ 1 for large
triangle height R and bases A ¼ 8a; 10a, respectively.
The positions of the centers of the two Gaussians of
Eq. (23) have been superimposed on the contour density
plot of Fig. 6.
The separation between the centers of the two strings is

larger at the other temperature nearer to the deconfinement
point T=Tc ¼ 0.9. The point of intersection appears to be
delocated two lattice spacings off the Fermat point of the
configuration and still shows a subtle movement x0 þ 1 as
the third quark is pulled away from the base.
Figure 11 plots the action isolines in the 3Q plane for the

temperature closer to deconfinement point T=Tc ¼ 0.9.

FIG. 5 (color online). The density distribution C0ð~ρÞ for the
isosceles configuration with the base, A ¼ 1.0 fm, and height
R ¼ 0.7 fm at T=Tc ¼ 0.8. Data are plotted for the transverse
planes x ¼ 1 to x ¼ 3. The lines correspond to fits of the two
Gaussians form Eq. (23) to the density in each plane ~ρðxi; y; 0Þ.
The distance between the two Gaussians gets closer, and they
ultimately coincide at uðxÞ ¼ 0 as we move into farther planes
from the base of the triangle.

FIG. 6. The contour map of the action density at T=Tc ¼ 0.8.
The distance between Q1 and Q2 at the base of the triangle is
denoted A, and R is the distance between the third quark Q3 and
the base. The dots denote the locus of the center of the two
Gaussians, Eq. (23).
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The lines superimposed on the density plot refer to the best
fits to the position of the center of each of the two
overlapping Gaussians in Eq. (23) based on the returned
values of the separation parameter uðxÞ, see Figs. 5 and 7,
for example. At small separation the positions of the junction
are very close to the third quark position. The mean position

of the strings seems to trace a circumferencewhich looks like
a Δ shape.
A shot of the profiles of the strings for the temperature

nearer the deconfinement point and the other temperature
at the end of the QCD plateau region is shown in Fig. 12.
For the latter, the junction position is the closer to the
Fermat point of the configuration. This indicates that
the Y-Gaussian-like system has a maximal length near
the deconfinement point before the strings ultimately break
in the deconfinement phase. At all considered planes, the
separation between the two strings, uðxiÞ, increases with
the increase of the temperature, indicating that the profile of
the centers of the two Gaussians describes a mean location
which is consistent with the spread of the gluonic energy
with the increase of the temperature and source separation
as well. Indeed, the measurements of the string tension at
both temperatures show significant change [75].
The point of intersection at T=Tc ¼ 0.9 does not

coincide with the center of the contour circles in
Fig. 12. Figure 13 shows that the position of the maximum
of the action density does not also correspond to the

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

C
′(y

)

y

T=0.9Tc
x=4

FIG. 7 (color online). Same as Fig. 5, the density distribution
C0ð~ρÞ for the isosceles configuration with the base, A ¼ 1.0 fm,
and height R ¼ 0.7 fm at T=Tc ¼ 0.9, respectively. Data are
plotted for the transverse planes x ¼ 1 to x ¼ 4.

FIG. 8 (color online). The separation uðxÞ between two
Gaussians as in Figs. 5 and 7 used to fit the action density to
Eq. (23). Each curve corresponds to uðxÞ for each third quark Q3

position of the isosceles with the base A ¼ 6a, A ¼ 8a, and A ¼
10a at temperature T=Tc ¼ 0.8. The legend (in the upper right
corner) signifies the third quark position. The vertical dashed line
denotes the position of the Fermat point of the configuration.
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intersection position uðx0Þ ¼ 0, at the temperature
T=Tc ¼ 0.9. At this temperature, the energy density
assumes a more flat profile in the inner region close to
the base. This is not the case at the other temperature,
T=Tc ¼ 0.8, where a sharper maximum of the action is
closer to both the intersection and Fermat points.
In Figs. 11 and 12, there is a very interesting trend for the

three fundamental strings to join at 120° ¼ 2=3 angles,
even when the static charges are at different angles.
Figure 12 shows that these tendencies to preserve equal
angles at the node position exists at both temperatures.
Together with the observation of the above indicated flatter
action density profile near the deconfinement point, this
could suggest a repulsion between the three fundamental
strings to conform with equi-angles at the node position.
We remark also on the simulations of the flip-flop model in
Refs. [31,32], where the strings connect the color charges
such that the total length of the strings is minimal with three
elementary flux tubes meeting in a Fermat-Steiner point at
an angle of 120°.
The transverse profile of the action density fits to a

double humped function indicating a system of overlapping
stringlike flux tubes. The revealed configurations of
these Gaussian flux tubes show dynamical aspects and
reconfigures with respect to the quark configuration and
temperature.
Let us point out a third qualitative aspect related to the

width of the gluonic action profile of the 3Q system that can
have a stringy character. The gluonic flux in the 3Q system
does not exhibit a symmetry between the width measured in
the quark plane and that in the perpendicular direction. The
flux strength distribution revealed with the action density
using the Wilson loop does not appear to produce an
asymmetric gluonic pattern. In Ref. [25] the radius of the
tube is calculated with cylindrical coordinates assuming a
cylindrical symmetry of the tube.
The second moment, W2

yðxÞ, is measured by means of
the fits to Eq. (23):

W2
yðxiÞ ¼

R
dyy2C0ð~ρðxi; y; 0ÞÞR
dyC0ð~ρðxi; y; 0ÞÞ

: ð25Þ

Tables VIII and IX in Appendix C list our measurement
of the width of the flux tube for the in-plane action density,

FIG. 9 (color online). Similar to Fig. 8, however for temper-
ature T=Tc ¼ 0.9. Each curve corresponds to uðxÞ for each third
quark Q3 position of the isosceles with the base A ¼ 6a, A ¼ 8a,
and A ¼ 10a. The legend (in the upper right corner) signifies the
third quark position.
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FIG. 10 (color online). The density distribution C0ð~ρðx; 0; zÞÞ in
the plane perpendicular to the 3Q plane for an isosceles configu-
ration with the base, A ¼ 8.0 fm, and height R ¼ 0.8 fm at
T=Tc ¼ 0.8. The lines show the best fit to a Gaussian form.

TABLE III. Compares the returned values of χ2dof for a fit of the
perpendicular action density C0ð~ρðxi; 0; zÞÞ at the temperature
T=Tc ¼ 0.9 to the Gaussian ansatz of Eq. (23) and the ansatz
equation (24) Gaussian combined with an exponential [74].

(a) R ¼ 9a

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 5 x ¼ 7

Eq. (23) 6.4 5.2 4.4 3.9 4.45
Eq. (24) 0.3 0.3 0.3 0.2 0.2
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for the isosceles configurations with base A ¼ 0.6 fm,
A ¼ 0.8 fm, and A ¼ 1.0 fm at two temperatures, T=Tc ¼
0.8 and T=Tc ¼ 0.9, respectively. In Ref. [28] we have
taken our width measurements using a single Gaussian

form. Tables XI and XIII show the percentage difference
between both width measurements. We note that the
difference in width measurements is more pronounced
for large quark separations at the higher temperature near

FIG. 11 (color online). The action density isolines in the (3Q) plane together with the lines connecting the center position of each
Gaussian in the fit in Eq. (23). Each sphere denotes the quark position.

FIG. 12 (color online). This plot shows that the notable change on the profile of the baryonic flux arrangement, with the temperature
increase, is the movement of the junction to the inner region of the quark configuration.
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FIG. 13 (color online). The profile of the amplitude of the action densityHðxiÞ ¼ C0ðx; y ¼ 0Þ along the y ¼ 0 axis (scaled by a factor
of 10) for each temperature of the quark configuration shown in Fig. 12.
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the deconfinement point and for the closest planes to the
base of the triangles Q1 and Q2.
The string picture indicates an asymmetry in the mean

square width between the two planes [30]. We compute this
ratio of the action density in the two perpendicular planes
based on fits to the form in Eq. (23). The width of the
tube in the perpendicular direction is measured through
Gaussian fits as

W2
zðxiÞ ¼

R
dzz2C0ð~ρðxi; 0; zÞÞR
dzC0ð~ρðxi; 0; zÞÞ

: ð26Þ

Tables X and XII included in Appendix C list our
measurement of the width of the flux tube for the
perpendicular plane action density, for the isosceles con-
figurations with base A ¼ 0.6 fm, A ¼ 0.8 fm, and A ¼
1.0 fm at two temperatures, T=Tc¼0.8 and T=Tc¼0.9,
respectively.
We measure the aspect ratio between the width in the

quark plane and that in the perpendicular plane to the
quarks according to

αðxÞ≡W2
yðxÞ

W2
zðxÞ

: ð27Þ

We plot in Fig. 14 the aspect ratio at the temperature
T=Tc ¼ 0.8 for the indicated quark configurations.
Generally, the aspect ratio is greater than 1 for planes
x ∈ ½0; 8�, indicating that in-plane fluctuations are greater
than the perpendicular fluctuations. This result is consistent
with a greater restoring forces in the quark planes for the
Y-stringlike gluonic distribution.
The aspect ratio increases with the base length and

decreases, however, as we move up through the planes to
the third quark position. With the increase of the base length
parameter of the 3Q triangle, the split between the two strings
is larger, giving rise to a larger width of the fluctuations. For
the perpendicular direction, on the other hand, values in
Table XII show smaller growth in the mean-square width
with the base compared to the parallel width. The aspect ratio
tends to assume closer values to 1 at those planes x larger than
8 lattice units from the base. This can be a consequence of the
reduction in the effects of the junction’s system as we move
the third quark source farther from the base.

B. Broadening aspects

In the following the broadening of the flux tube is
compared to the corresponding string model predictions.
Formulas in Eqs. (16) and (19) shown in the last section
account for the tube’s mean-square width for both the in-
plane and the perpendicular direction to the 3Q plane,
respectively. A study of the fit behavior of each separate
component can provide an indication on the compatibility
of the baryonic string model with the measured LGT
junction profile.
The Y string’s configuration has to be fixed before

proceeding to fits with the lattice data. Figure 15 demon-
strates the proposed string configuration with respect to
the quark positions. We focus our analysis on the flux
tube’s action density due to the 3Q planar configuration
corresponding to isosceles triangles with bases of length
A ¼ 6a, A ¼ 8a, and A ¼ 10a. The locus of the junction xf
is fixed at the Fermat point of the isosceles triangle, i.e., a
point such that the total distance from the three vertices of
the triangle to this point is the minimum possible. The
isosceles triangular configurations have the property of
having the same locus of the Fermat point. The position of
the Fermat point does not depend on the height R of the
triangle, and is given by R ¼ A=ð2 ffiffiffi

3
p Þ. This planar quark

setup is convenient to simplify the study of a baryonic
junction on a lattice structure.
The measured values in Table VIII for the in-plane width

profile are indicating a growth in the tube’s mean-square
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FIG. 14 (color online). Comparison of the ratio, α, of the mean squared width of the flux parallel and perpendicular to the quarks’
plane for three isosceles bases A ¼ 0.6 fm, A ¼ 0.8 fm, and A ¼ 1.0 fm at T=Tc ¼ 0.9.

FIG. 15 (color online). Schematic diagram shows the position
of the quarks and the configuration of the Y tring. The junction’s
position, xf , is fixed at the Fermat point [29,30].
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width at the first four transverse planes x ¼ 1 to x ¼ 4 as
the third color source Q3 is pulled apart. The growth in the
flux tube width could be compared to the corresponding
growth in the junction fluctuation in Eq. (16) and also
Eq. (19) for the perpendicular fluctuations. Since the
junction’s fluctuations are nonlocal, this comparison can
be performed by fitting the formula of Eqs. (16) and (19) at
each selected transverse plane to the tube’s measured
widths. Here, we focus our analysis on the first four planes
from the base of the quark triangle.
Let us first fit the measured lattice data for the in-plane

width profileW2
x at the temperature T=Tc ¼ 0.8 to Eq. (19).

Table IV summarizes the returned values of χ2dofðxÞ from
resultant fits to the indicated separation range R at four
consecutive transverse planes x ¼ 1 to x ¼ 4.
In general, the fits show strong dependency on the fit

range, especially with the inclusion of the points at small
Q3 source separations. Also high values of χ2dof are returned
when fits include the entire considered range of sources’
separations, i.e., R ¼ 5a to R ¼ 12a. However, the values
of χ2dof rapidly decrease when excluding those points at
short distance separations. The fit reaches acceptable values
starting with χ2dof ¼ 1.4 for widths measured at the plane
x ¼ 1 for isosceles triangles’ quark configuration with

bases of length A ¼ 6a at third source Q3 separations
R ¼ 6 fm. However, the triangular configuration of base
lengths A ¼ 8a and A ¼ 10a returns good values of χ2dof ¼
1.3 and 1.6 for planes x ¼ 1 and x ¼ 2, respectively. The
best fits for the triangle configuration with base lengths
A ¼ 8a are obtained forQ3 separations R > 6a at the plane
x1. It is apparent that best fits shift one lattice spacing, that
is x ¼ 2, when the length of the triangle base parameter is
increased to A ¼ 10a, and the best fit is returned with Q3

source separation R > 7a.
The existence of particular planes at which the above

indicated best matches with the formulas of Eq. (19)
suggests that some planes may receive a larger contribution
of the junction’s fluctuations than others. Figure 16 plots
χ2dof for selected fit regions at planes x ¼ 1 to x ¼ 4. As
mentioned above, the plane at which we obtain the minimal
in χ2dof depends on the length of the base of the triangular
isosceles quark configuration.
The positions of the Fermat point of the three isosceles of

bases A ¼ 6a, A ¼ 8a, and A ¼ 10a would be xf ¼ 1.7a,
xf ¼ 2.3a, and xf ¼ 2.9a, respectively. Recall that the Y-
string configuration which we fit to the lattice data is such
that the position of the junction is fixed at the Fermat point
at both considered temperatures. One may expect, accord-
ingly, that those planes closer in position to the string’s
junction (see Fig. 15, the configuration to which we fit the
width profile) can provide better fits to the lattice data. We
observe, however, that the planes of the best fits manifest in
accord with the profile of the two Gaussians shown in
Figs. 8 and 9 rather than junction’s classical position at the
Fermat point. For the in-plane fluctuations of Eq. (19), the

TABLE IV. The returned values of the χ2dofðxÞ corresponding to
fits of the in-plane widthW2

yðxÞ of the action density at each plane
x to the string model formula in Eq. (19), the fits are for the
isosceles triangle quark configuration of base A ¼ 6a, A ¼ 8a,
and A ¼ 10a at T=Tc ¼ 0.8.

(a) A ¼ 6a

Fit range 4–10 4–13 5–13 6–13 7–13 8–13 9–13

χ2dofð1Þ 31.8 21.5 4.9 1.38 1.03 1.2 1.1

χ2dofð2Þ 5.6 5.2 3.9 4.9 5.4 5.6 5.2

χ2dofð3Þ 64.1 44.9 7.8 4.3 5.1 5.1 4.5

χ2dofð4Þ 3.8 3.9 4.1 4.0 3.5

(b) A ¼ 8a
Fit range 5–9 06–10 5–12 6–12 7–12 8–12 9–12

χ2dofð1Þ 5.7 5.7 12.11 4.5 1.3 1.15 0.3

χ2dofð2Þ 25.0 25.0 64.4 19.9 5.3 1.1 0.2

χ2dofð3Þ 18.1 18.1 49.2 15.5 4.9 3.2 3.4

χ2dofð4Þ 10.6 10.6 35.5 10.6 7.3 4.1 2.5

(c) A ¼ 10a
Fit range 5–9 5–11 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 30 41.8 22.3 8.5 2.4 0.7 0.3

χ2dofð2Þ 47.9 21.9 15.7 1.6 0.7 0.11 0.07

χ2dofð3Þ 600 487 152 37 11 2.5 0.2

χ2dofð4Þ 159.9 128.9 48.3 22.1 11.05 3.7 2.1
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FIG. 16 (color online). Plots χ2dof of selected planes and ranges
from Table IV for the isosceles base A ¼ 0.6a, A ¼ 0.8a, and
A ¼ 1.0a. The values for the same base length parameter are
joined with dashed lines for illustration. The plotted χ2dof values
are plane x ¼ 1 corresponding to the base parameters A ¼ 0.6a,
and x ¼ 2 for A ¼ 8a and A ¼ 10a. The smooth line connects
values of χ2dof belonging to the triangular configuration of the
same position of the Fermat point.
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greatest contribution of the junction appears to be in one
lattice spacing immediately before the plane at which the
profile of the two Gaussians intersect uðx0Þ ¼ 0, i.e, x0 − 1.
We shall see in what follows a more clear manifestation
of this observation for the analysis at the other temper-
ature, T=Tc ¼ 0.9.
Table V summarizes the returned χ2dof from the fits of the

perpendicular fluctuations of Eq. (16) to the perpendicular
mean-square width profile W2

z listed in Table X. Figure 18
plots the corresponding best fits to the string model at the
depicted selected planes for each triangle base parameter.
The perpendicular fluctuations return good χ2dof’ s for

widths measured at the plane x ¼ 1 and third source Q3

separations commencing from R > 6 fm for A ¼ 6a. Also
similar to the in-plane fluctuations discussed above, good
χ2dof’ s are obtained for both the plane x ¼ 1 and the plane
x ¼ 2 for the triangular configuration of base lengths A ¼
8a and A ¼ 10a. Figure 18 demonstrates that for the largest

triangle bases the deviations from the string behavior
manifest clearly for the width corresponding to third quark
separations R < 6. In the case of the small base the two
strings of the Y shape are more close in space and self-
interactions can cause larger deviations to be observed.
At the highest temperature T=Tc ¼ 0.9, inspection of

Table VI shows in general a similar behavior with respect
to the points at smallQ3 source separationswith a high value
of the returned χ2dof if the entire range, i.e., R ¼ 5a to
R ¼ 12a, is considered. χ2dof ¼ 1.1 is returned for a third
source Q3 separation R ¼ 6 fm for the isosceles configura-
tion corresponding to base length A ¼ 6a. This manifests at
the plane x ¼ 2 which is one plane immediately before the
plane x0 ¼ 3 at which uðx0Þ ¼ 0, i.e, where the two
Gaussianscoincide asdepicted inFig. 9.This is alsomanifest
for both of the other two triangular configurations of base
lengthparametersA ¼ 8aandA ¼ 10awhere thebestvalues
of χ2dof (around 1) are obtained at the plane x ¼ 3 and x ¼ 4,
respectively. In comparison with the fit behavior at the other
temperature T=Tc ¼ 0.8, this shows that the best fits change
in accord with the change in the position of the intersection
point uðx0Þ ¼ 0 at which the two Gaussians coincide.
Figure. 19 shows the behaviour of χ2dof at the corresponding
planes for the highest temperature T=Tc ¼ 0.9. In Figs. 20
and 21we plot the corresponding best fits of the stringmodel
with the in-plane and perpendicular action density,
respectively.
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FIG. 17 (color online). The in-plane width W2
y of the action

density at temperatureT=Tc ¼ 0.8 for the depicted transverse plane
and the indicated isosceles baseA. The lines correspond to thewidth
according to the best fits to the string picture formula of Eq. (19).

TABLE V. Same as Table IV; however the values of the χ2dof are
returned from the fits of the formula in Eq. (16) to the
perpendicular width of the action density W2

z.

(a) A ¼ 6a

Fit range 5–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 1.6 1.8 1.7 1.5 1.3 0.5

χ2dofð2Þ 3.2 3.3 3.1 2.6 2.1 0.8

χ2dofð3Þ 6.2 6.4 5.8 5.0 4.0 1.5

χ2dofð4Þ 10.5 10.7 9.7 8.4 6.8 2.7

(b) A ¼ 8a
Fit range 05–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 9.7 1.6 0.7 0.9 1.1 0.8

χ2dofð2Þ 5.0 1.5 1.4 1.7 1.8 1.43

χ2dofð3Þ 9.2 5.6 6.6 9.7 8.5 6.1

χ2dofð4Þ 11.6 10.1 12.1 13.6 14.0 9.0

(c) A ¼ 10a
Fit range 5–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 85.1 22 3.6 1.6 1.0 0.4

χ2dofð2Þ 77.2 15.4 2.3 0.3 0.3 0.4

χ2dofð3Þ 74.2 16.0 3.0 1.0 1.4 1.4

χ2dofð4Þ 74.2 16.5 3.7 1.1 1.4 1.6
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The fits to the two-Gaussian profile and fits to the width
of the string fluctuations are two independent sets of profile
functions, even though both seem to behave in accord with
each other in regard to the change in the position of the
plane returning the best fits, x0 − 1, and that at which the
two Gaussians coincide, x0. This suggests the physical
realization that the two-Gaussian profiles (Figs. 8 and 9) are
a manifestation of the average position due to the fluctua-
tions of the underlying string structure and this point can be
conceived as in favor of the Y-string picture.
For completeness, values of χ2dof in Table VII have been

listed to show the returned fit parameters for the
perpendicular fluctuations in Eq. (16). Figure VII shows
the pattern of width increase at some of the planes returning
best fits. These are in general less than its counterpart listed
in Table VI for the in-plane width, even though we still
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FIG. 20 (color online). Similar to Fig. 17 for the width of the in-
plane action density W2

y at temperature T=Tc ¼ 0.9 for the
depicted transverse planes, x.
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FIG. 19 (color online). The returned values of the χ2dof for the
isosceles base A ¼ 0.6a, A ¼ 0.8a, and A ¼ 1.0a. The plotted
values correspond to the fits of the in-plane width of the action
density to string model formula equation (19) at T=Tc ¼ 0.9.
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FIG. 18 (color online). The perpendicular width W2
z at temper-

ature T=Tc ¼ 0.8 for the depicted transverse planes, x, and the
isosceles base of the corresponding triangular quark arrangement.
The lines correspond to the best fits of the string model formula
in Eq. (16).
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obtain the best fits at the same planes obtained for the in-
plane action density width.
A general theme of fits discussed above is that, with the

points at short distances excluded from the fit, the returned

χ2dof is smaller. The Y-string picture at finite temperature
poorly describes the lattice data at short distances. The plots
depict that the fluctuations of the junction of the Y-free
string have a more suppressed profile than the flux tube
observed in lattice gauge theory at short distances.
Inspection of Fig. 11 shows that the Gaussian-like flux
tubes describe a configuration that resembles a Δ shape or
in more precise terms the junction either coincides or is
very close to the third quark at short distances R ¼ 3a; 4a;
5a. On the other hand, the growth of the flux tube diameter,
which matches with the predictions of the string model,
seems to manifest at large source separation where the
length of the third string is large enough to reduce the
effects of the self-interaction of the third quark Q3 with
the junction. This also is consistent with the fact that the
effective string is a working picture at large source
distances [4,9,14,19–22,53,63,64].
From the above discussion, we conclude that the Y-string

picture with a minimal length of the string entails a mean-
square width of its quantum fluctuations which is consistent
with the lattice gauge data at large color-source separation.
The Y-string configurations provide good fits for planar
triangular quark configurations with minimal height length
0.7 ≤ R ≤ 1.3 fm and bases 0.6 ≤ A ≤ 1.0 fm for both the
in-plane and off-plane width profile. This result shows that
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FIG. 21 (color online). Similar to Fig. 18 for the width of the
perpendicular component of the action densityW2

z at temperature
T=Tc ¼ 0.9.

TABLE VI. The returned values of the χ2dofðxÞ corresponding to
fits of the in-plane widthW2

yðxÞ of the action density at each plane
x to the string model formula equation (16). The fits are for
isosceles triangle quark configurations of base A ¼ 6a, A ¼ 8a,
and A ¼ 10a at T=Tc ¼ 0.9.

(a) A ¼ 6a

Fit range 5–9 5–10 5–11 5–12 6–12 7–12 8–12

χ2dofð1Þ 31.76 43.24 46.2 7.79 7.97 3.42 0.42

χ2dofð2Þ 1.37 1.29 1.12 0.96 1.12 0.17 0.12

χ2dofð3Þ 10.6 9.72 8.6 8.02 5.06 4.4 1.02

χ2dofð4Þ 50 43.5 38.16 34.4 36.3 7.8 2.6

(b) A ¼ 8a
Fit range 5–9 5–10 7–11 5–12 6–12 7–12 8–12

χ2dofð1Þ 49.9 26.5 3.4 67.8 19.8 4.0 1.4
χ2dofð2Þ 18.6 23.3 1.7 56.2 7.8 1.8 0.4

χ2dofð3Þ 5.13 22.6 1.0 52.3 21 1.2 0.6

χ2dofð4Þ 89 111 25.2 128 60 30 16

(c) A ¼ 10a
Fit range 5–9 7–9 7–11 6–12 7–12 8–12 9–12

χ2dofð1Þ 167 34.7 40.3 94.8 51 12.67 6.18

χ2dofð2Þ 286.2 38 31.5 74.7 29 11 3.96

χ2dofð3Þ 116.5 80 51.9 73 43.2 9.6 1.02

χ2dofð4Þ 63.5 7.7 5.4 38.5 3.5 1.3 0.2

χ2dofð5Þ 10.5 7.2 5.6 6.3 3.1 0.9

Y-STRINGLIKE BEHAVIOR OF A STATIC BARYON AT … PHYSICAL REVIEW D 91, 114506 (2015)

114506-17



the stringlike behavior manifests in the baryonic configu-
rations at large quark separations.

V. SUMMARY AND PROSPECTIVE

In this paper we have discussed the baryonic stringlike
behavior in the profile of the gluonic flux of a three-quark
system in pure SU(3) Yang-Mills vacuum at finite temper-
ature. The gluon flux is measured as a correlation between
the action density operator and three traced (gauge-
invariant) Polyakov lines. Measurements of the mean-
square width have been taken near the end of QCD phase
diagram T=Tc ¼ 0.8 and just before the deconfinement
point T=Tc ¼ 0.9.
For noise reduction, an average over the configuration

space has been calculated for over 500 independent bins.
In each bin an average of over 20 measurements has been
calculated in addition to an average over space-time
symmetries. The two lattices analyzed here are cooled
with a stout-link smoothing algorithm with a number of
sweeps such that the physics of focus is preserved in a
systematic and controlled manner [53,76].
The Y-baryonic string model has been discussed at

high temperature for the width profile of the junction.
The leading order solution presented in Ref. [30] has been
considered here. The thermal effects, however, have been

incorporated into the formulas accounting for the mean-
square width of the string’s junction.
We have shown a qualitative description of the rendered

action density profile in the context of the consistency with
the stringlike behavior. The qualitative feature of these
density plots at large source separation does not seem to
indicate an action density pattern resembling the shape of
tubes that would form around the perimeter of the three
quarks. The distribution is a “filled” Δ and displays a peak
close to the geometrical center of the triangle. In addition, the
transverse profile of the action density fits to a double
Gaussian function. The profile of the double Gaussian
describes a clear Y-shaped system of Gaussian flux tubes.
The revealed configurations of these Gaussian flux tubes is
dynamic and reconfigures in accord with the quark configu-
ration and temperature. The total length of the three Gaussian
flux tubes is maximal for the temperature just before the
deconfinement point. However, the length approaches the
geometrical minimal length at the temperature near the end
of the QCD plateau T=Tc ¼ 0.8. The flux density shows an
asymmetric width profile between that in the plane of the
three quark and that in the perpendicular direction which
indicates a greater restoring force in the quarks’ plane.
The lattice data for the mean-square width of the gluonic

action density has been compared to the corresponding
width based on string model at finite temperature. We have
revealed the characteristics of the growth pattern of the
gluonic action density for three sets of geometrical three-
quark configurations with respect to fits to the Y-string
model. The planes close to the junction in the profile of the
double Gaussian return good fits to the width of the junction
fluctuations in baryonic string model only for large quark
separation for both the considered temperatures.
The analysis presented here is of particular relevance to

the confining string models, since reports on effects of
bosonic strings are usually discussed on the level of the
mesonic flux tubes. Apart from the simulations first
presented on the Y-string effects of the 3-Potts model
[29,37], it is our first examination of the effects of the
Y-bosonic strings in the action density of the quenched
QCD, to the best of our knowledge.
The stringlike behavior of the confining flux tubes at the

two temperature scales enabled increased insight into the
dynamics of the profile with the temperature changes. It
would be insightful as well to examine the parametrization
ansatz [42,43,77] of the confining potential, where the
effects of the junction could give rise to different behavior
at both temperatures. We report this separately elsewhere.
In addition, we study the limiting case of the diquark-
quark systems [78] and set out the relevant distance scale
where the properties of the mesonic string unambiguously
manifest.
In light of the present discussion which focused on

revealing the Y-string aspects of the Δ-shaped action
density manifesting in the baryon at finite temperature

TABLE VII. Similar to Table VI: the returned values of the χ2dof
corresponds to the width in the perpendicular plane W2

z . Fits of
the action density to string model formula in Eq. (16) at each
depicted plane.

(a) A ¼ 6a

Fit range 5–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 1.4 1.6 1.5 1.3 1.1 0.8

χ2dofð2Þ 2.5 2.6 1.8 1.3 1.0 0.6

χ2dofð3Þ 5.7 5.6 4.6 3.4 2.3 1.4

χ2dofð4Þ 9.3 9.2 7.5 5.3 3.4 1.9

(b) A ¼ 8a
Fit range 5–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 2.1 1.2 1.4 1.4 1.5 1.3

χ2dofð2Þ 1.4 1.2 1.4 1.3 1.0 0.9

χ2dofð3Þ 1.6 1.7 1.8 1.5 1.1 0.7

χ2dofð4Þ 3.7 4.4 4.0 3.0 1.9 1.0

(c) A ¼ 10a
Fit range 5–12 6–12 7–12 8–12 9–12 10–12

χ2dofð1Þ 14.3 2.2 1.5 1.9 2.3 2.4

χ2dofð2Þ 5.7 1.4 0.9 1.2 1.4 1.5

χ2dofð3Þ 4.5 1.0 0.94 1.14 1.2 1.1

χ2dofð4Þ 2.7 1.1 1.3 1.2 1.0 0.7
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[27,28], in addition to the recent observation that the string
tension is indicating a quite flat QCD plateau [79] near the
lowest temperature T=Tc ¼ 0.8 considered here. These
strongly pose that the revealed color map in baryons at
the temperatures considered here could be a potential form
for the exact geometry of the flux tube arrangements in the
baryon, if the analysis with Polyakov loops is extended to
the low temperature regime of pure SU(3) Yang-Mills
theory. In addition, it would be interesting to extend the
above analysis to reveal the Y-string effects at low
temperatures.
We suggest a consistent inclusion of an UV-filtering

step into the updating cycles of the Lüscher-Weiss (LW)
multilevel algorithm to probe the energy distribution of
static baryons in the low temperature regimes of the
quenched theory [80]. This technique is expected to
contribute to the efficiency of the LW algorithm and to
reduce the computational time to extend the present
analysis to lower temperatures, which is the goal of our
next project.
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APPENDIX A: STRING PARTITION
FUNCTION

We calculate the string’s thickness at the junction
position. In the following, we follow the same procedures
of the calculations presented in Refs. [29,30] however,
taking into account a convoluted fluctuations ϕ →R
∞
−∞ ϕðτÞψðt − τÞdτ to incorporate thermal effects with
the fluctuations as discussed in Sec. II.
The calculation of the corresponding partition function

in Eq. (9) requires evaluating the integral over the minimal
area swept due to perpendicular fluctuations ϕ, and the
determinant of the Laplacian.
Conformally mapping the string’s blade a to a rectangle

[29], see Fig. 22,

fiðzÞ ¼ zþ 1ffiffiffiffi
T

p
X
w≠0

ηi · ϕwψðwLiÞ
sinhðwLiÞ

ewz: ðA1Þ

The minimal-area solution for a fixed junction configuration

ξmin;i ¼
1ffiffiffiffi
T

p
X
w

ϕw;ziψw
sinhðwsÞ
sinhðwLiÞ

eiwt; ðA2Þ

taking into account that the minimal-area solution for a fixed
position of the junction, ξmin;iðt; sÞ, is harmonic and satisfies
the boundary conditions

Δξmin;i ¼ 0; ξmin;iðt; Li þ ηi · ϕðtÞÞ ¼ ϕziðtÞ: ðA3Þ
The integral in Eq. (9) would then readZ

Θi

d2ζ
X
i

∂ξmin;i

∂ ζi ·
∂ξmin;i

∂ ζi

¼
X
w

w cothðwLiÞjϕw;zij2ψ2
w: ðA4Þ

The determinant in Eq. (9) is obtained by mapping the
domain Θi conformally to a rectangle L0

i × LT , taking into
account the change in the Laplacian [12,30]. Using the
above conformal map equation (A1), we obtain to leading
order

ln
detð−ΔΘÞ
detð−Δ ~ΘÞ

¼ 1

12π

X
w

w3jηi ·ϕwj2cothðwLiÞψðwÞ: ðA5Þ

Further conformally mapping the above into a circle and
making use of (A5), the determinant of the Laplacian with
respect to the blade a would then read

detð−ΔΘi
Þ¼ η2

�
iLT

2L0
i

�

×exp

�
−

1

12π

X
w

w3 cothðwLiÞjηi ·ϕwj2ψ2
w

�
;

ðA6Þ
where ηðτÞ is the Dedekind function.

APPENDIX B: THE JUNCTION’S WIDTH

The thickness of the string at the junction can be
calculated [30] taking the expectation value of ϕ2,

FIG. 22 (color online). The domain Θi is conformally mapped
onto a rectangle L0

i × LT , the first order fluctuations are con-
voluted with a smoothing scalar ψ.
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hϕ2i ¼
R
Dϕϕ2ψ2

we−SR
Dϕe−S

: ðB1Þ

The above second moment of the junction can be
decomposed into perpendicular z and parallel (in-plane)
xy fluctuations,

hϕ2i ¼ hϕz
2i þ hϕxy

2i ¼ Iz;2
Iz;0

þ Ixy;2
Ixy;0

; ðB2Þ

where

Iz;2 ¼
Z

Dϕzϕ
2
z exp

�
−
1

2

X
w

�
mw2 þ σw

X
a

cothðwLaÞ
�

× jϕw;zj2
�
; ðB3Þ

Ixy;2¼
Z

Dϕϕ2 exp

�X
w

�
−
1

2

�
mw2þσw

X
i

cothðwLiÞ
�

× jϕwj2þjϕw;xj2Qxþjϕw;yj2Qyþjϕw;yj2Qy

þ2ððϕw;x:ϕw;yÞÞQxy

��
; ðB4Þ

withQx,Qy, andQxy defined as in Eq. (21). Orthogonalizing
the fluctuations for parallel fluctuations the above moments
would then read

Ix;2 ¼
Z

Dϕxϕ
2
x exp

�X
w

�
−
1

2
ðFðwÞ þ GxðwÞÞ

�
jϕw;xj2

�
;

Iy;2 ¼
Z

Dϕyϕ
2
y exp

�X
w

�
−
1

2
ðFðwÞ þ GyðwÞÞ

�
jϕw;yj2

�
;

Iz;2 ¼
Z

Dϕzϕ
2
z exp

�
−
1

2

X
w

RðwÞjϕw;zj2
�
:

FðwÞ, GðwÞ and RðwÞ are defined as

FðwÞ ¼ Qx;w þQy;w;

GðwÞ ¼ ðQ2
xy;w þ ðQx;w −Qy;wÞ2Þ1=2;

RðwÞ ¼ mw2 þ σw
X
i

cothðwLiÞψðw; LiÞ: ðB5Þ

Solving for the above Gaussian integrals,

hϕ2
xi ¼

Ix;2
Ix;0

¼ 2

LT

X
w>0

1

FðwÞ − GðwÞ ;

hϕ2
yi ¼

Iy;2
Iy;0

¼ 2

LT

X
w>0

1

FðwÞ þ GðwÞ ;

hϕ2
zi ¼

Iz;2
Iz;0

¼ 2

LT

X
w>0

1

RðwÞ ; ðB6Þ

with w ¼ 2πn=LT .

APPENDIX C

TABLE VIII. The width of the flux tube W2
yðxÞ at each consecutive transverse plane xi from the quarks forming the base, A, of the

isosceles triangle. The measurements for base source separation distance A ¼ 6a for the temperature T=Tc ¼ 0.8 are indicated as a
function of the third quark position, Q3.

Plane Q3 ¼ R=a x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12

A ¼ 0.6 fm
7 9.7(1) 9.6(0) 9.3(0) 9.0(1) 8.6(1) 8.2(1)
8 10.0(1) 9.9(1) 9.7(1) 9.5(1) 9.2(1) 8.7(1) 8.2(1)
9 10.2(1) 10.3(1) 10.2(1) 10.0(1) 9.7(2) 9.3(2) 8.8(2) 8.2(1)
10 10.6(1) 10.8(2) 10.6(2) 10.5(2) 10.3(2) 9.9(2) 9.4(2) 8.8(2) 8.0(1)
11 10.9(2) 11.5(3) 11.2(3) 11.1(3) 10.9(3) 10.6(3) 10.2(2) 9.5(2) 8.6(1) 7.8(1)
12 11.3(2) 12.5(5) 12.1(4) 11.8(4) 11.6(4) 11.3(4) 11.0(3) 10.3(2) 9.4(2) 8.4(2) 7.7(1)
13 11.7(3) 13.9(7) 13.2(6) 12.7(6) 12.4(6) 12.3(6) 12.1(5) 11.5(3) 10.4(2) 9.2(2) 8.3(2)
A ¼ 0.8 fm
7 11.3(4) 11.2(4) 11.3(1) 10.8(1) 10.2(1) 9.5(2)
8 11.5(4) 11.4(4) 11.7(1) 11.2(1) 10.6(1) 10.0(2) 9.2(2)
9 11.9(4) 11.6(4) 11.7(4) 11.6(1) 11.1(2) 10.5(2) 9.7(2) 8.8(2)
10 12.4(5) 12.1(4) 11.8(2) 11.9(2) 11.4(2) 10.9(2) 10.2(2) 9.3(2) 8.2(2)
11 13.1(5) 12.5(5) 12.1(2) 12.1(2) 11.5(2) 11.0(2) 10.4(1) 9.6(2) 8.5(3) 7.5(3)
12 13.8(5) 13.0(5) 12.4(2) 12.1(2) 11.3(2) 10.8(2) 10.3(1) 9.6(2) 8.6(4) 7.6(4) 6.8(4)
A ¼ 1.0 fm
7 13.4(2) 12.7(2) 13.7(1) 12.9(0) 12.2(1) 11.4(2)
8 13.6(2) 12.9(2) 13.8(2) 13.0(1) 12.3(0) 11.5(1) 10.6(2)
9 14.0(3) 13.3(2) 13.7(3) 12.9(2) 12.1(1) 11.5(1) 10.6(2) 9.5(2)
10 14.5(4) 13.8(4) 13.3(4) 11.7(2) 11.0(2) 10.4(2) 9.4(3) 8.1(4)
11 15.0(5) 14.5(6) 13.9(3) 10.9(4) 10.2(4) 9.6(5) 9.0(6) 7.9(6) 6.6(6)
12 15.5(7) 15.4(8) 14.8(6) 9.7(7) 8.9(7) 8.3(8) 7.8(9) 7(1) 6(1) 5(1) 5(1)
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TABLE IX. Same as Table VIII; however the width measurements are taken at the temperature T=Tc ¼ 0.9.

Plane Q3 ¼ R=a x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 12

A ¼ 0.6 fm
7 12.9(2) 12.4(2) 12.5(0) 12.0(1) 11.4(2) 10.9(3)
8 13.5(1) 12.9(3) 12.9(0) 12.6(1) 12.1(1) 11.4(2) 10.7(3)
9 13.6(6) 13.3(2) 13.2(0) 13.0(0) 12.7(1) 12.1(2) 11.4(2) 10.6(3)
10 13.9(3) 13.6(1) 13.4(1) 13.4(0) 13.2(0) 12.8(1) 12.2(2) 11.3(2) 10.5(3)
11 14.1(2) 14.1(2) 14.2(6) 13.6(1) 13.6(1) 13.4(1) 13.0(1) 12.2(2) 11.2(2) 10.2(3)
12 14.3(2) 14.5(6) 14.7(2) 13.7(2) 13.9(2) 13.9(1) 13.7(1) 13.1(1) 12.1(2) 10.9(2) 9.8(2)
A ¼ 0.8 fm
7 13.2(1) 13.3(2) 13.6(1) 13.5(3) 13.3(2) 12.4(3)
8 13.5(1) 13.7(2) 13.9(3) 14.5(0) 14.0(1) 13.0(2) 12.0(3)
9 13.9(1) 14.1(2) 14.4(3) 15.4(1) 14.7(0) 13.8(1) 12.7(2) 11.7(3)
10 14.1(2) 14.5(3) 15.0(4) 15.8(2) 15.4(1) 14.7(1) 13.7(2) 12.5(2) 11.3(3)
11 14.4(2) 14.9(4) 15.6(4) 16.2(3) 15.9(2) 15.5(1) 14.7(1) 13.5(2) 12.2(3) 10.9(3)
12 14.6(2) 15.3(5) 16.2(7) (5) 16.5(3) 16.2(2) 15.7(2) 14.7(2) 13.4(2) 11.8(2) 10.5(4)
A ¼ 1.0 fm
7 17.1(2) 16.7(2) 16.3 (1) 16.4(5) 15.9(1) 14.5(3)
8 17.6(3) 17.2(2) 16.7 (1) 16.6(2) 16.7(0) 15.2(2) 13.8(3)
9 18.0(3) 17.7(2) 17.4 (2) 17.1(3) 17.5(1) 16.1(1) 14.5(2) 13.0(3)
10 18.5(4) 18.3(3) 18.1 (4) 17.9(5) 18.3(2) 17.1(1) 15.6(1) 13.9(2) 12.4(3)
11 19.0(4) 19.0(5) 19.0 (6) 19.1(5) 19.1(4) 18.1(2) 16.8(1) 15.1(2) 13.4(3) 11.7(3)
12 19.3(5) 19.7(6) 20 (6) 20.6(7) 20.1(5) 19.2(4) 18.1(3) 16.5(2) 14.7(2) 12.8(3) 11.2(4)

TABLE X. The width of the perpendicular width of the flux tube to the 3Q plane at each consecutive transverse plane xi from the
quarks forming the base, A, of the isosceles triangle. The measurements are taken at the temperature T=Tc ¼ 0.8.

Plane Q3 ¼ R=a x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 11

A ¼ 0.6 fm
4 6.7(1) 6.7(1) 6.7(1)
5 6.9(1) 6.9(1) 6.9(1) 6.8(1)
6 7.1(1) 7.1(1) 7.1(1) 7.1(1) 7.0(1)
7 7.3(1) 7.3(1) 7.4(0) 7.4(1) 7.3(1) 7.2(1)
8 7.5(1) 7.6(1) 7.7(1) 7.7(0) 7.6(1) 7.5(1) 7.4(1)
9 7.7(1) 7.8(1) 7.9(1) 8.0(1) 8.0(1) 7.9(1) 7.8(1) 7.8(2)
10 7.9(1) 8.0(1) 8.3(1) 8.4(1) 8.5(1) 8.5(1) 8.4(1) 8.4(2) 8.5(2)
11 8.1(1) 8.4(1) 8.7(1) 9.0(1) 9.1(1) 9.1(1) 9.1(2) 9.2(2) 9.3(2) 9.5(4)
12 8.5(2) 8.9(2) 9.3(2) 9.7(2) 10.0(2) 10.1(2) 10.1(2) 10.2(2) 10.4(4) 10.6(4) 10.7(5)
A ¼ 0.8 fm
4 7.3(1) 7.2(1) 7.2(1)
5 7.5(1) 7.4(1) 7.3(1) 7.3(1)
6 7.6(1) 7.5(1) 7.5(1) 7.4(1) 7.3(1)
7 7.7(1) 7.7(1) 7.6(1) 7.6(1) 7.5(1) 7.4(1)
8 7.9(1) 7.8(1) 7.8(1) 7.8(1) 7.8(1) 7.7(2) 7.6(2)
9 8.0(1) 8.0(1) 8.0(1) 8.0(1) 8.0(2) 8.0(2) 8.0(2) 8.1(4)
10 8.1(2) 8.2(2) 8.2(2) 8.3(2) 8.3(2) 8.4(2) 8.5(2) 8.7(5) 9.1(5)
11 8.3(2) 8.4(2) 8.6(2) 8.7(2) 8.8(2) 8.9(2) 9.2(5) 9.6(5) 10.0(8) 10.3(7)
12 8.6(4) 8.9(4) 9.2(2) 9.4(2) 9.6(2) 9.8(5) 10.1(6) 10.7(9) 11.3(7) 11.6(9) 11.4(9)
A ¼ 1.0 fm
4 7.8(1) 7.6(1) 7.5(1)
5 8.0(1) 7.8(1) 7.6(1) 7.6(1)
6 8.1(1) 7.9(1) 7.7(1) 7.6(1) 7.5(2)
7 8.1(2) 7.9(1) 7.7(1) 7.7(1) 7.6(2) 7.5(2)
8 8.2(2) 8.0(2) 7.7(2) 7.6(2) 7.6(2) 7.5(2) 7.5(4)
9 8.3(2) 8.0(2) 7.8(2) 7.7(2) 7.6(2) 7.6(4) 7.6(4) 7.8(5)
10 8.3(2) 8.2(2) 8.0(4) 7.8(4) 7.7(4) 7.7(5) 7.9(5) 8.3(6) 8.7(5)
11 8.2(5) 8.4(5) 8.2(5) 8.0(5) 7.9(5) 7.9(5) 8.3(8) 8.9(9) 9.5(6) 9.7(4)
12 8.2(8) 8.6(6) 8.7(5) 8.5(5) 8.3(5) 8.4(8) 8.8(8) 9.6(9) 10.5(7) 10.7(4) 10.3(4)
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TABLE XI. The percentage difference e between the in-plane width measurements ðWð1Þ
y ðxÞÞ2 with a single Gaussian form [28] relative

to the width measured using a two-Gaussian form ðWð2Þ
y ðxÞÞ2 calculated as e ¼ jððWð1Þ

y ðxÞÞ2 − ðWð2Þ
y ðxÞÞ2Þ=ðWð2Þ

y ðxÞÞ2j, at temperature
T=Tc ¼ 0.8, and for the selected quark configurations.

Plane Q3 ¼ R=a R ¼ 5 R ¼ 7 R ¼ 9 R ¼ 11

A ¼ 0.8 fm
x ¼ 1 8% 7% 7% 4%
x ¼ 2 5% 6% 9% 9%
A ¼ 1.0 fm
x ¼ 1 15.0% 10% 8.2% 13.2%
x ¼ 2 15.0% 9% 2.7% 13.2%

TABLE XII. Same as Table X; however the perpendicular width of the action density W2
zðxÞ has been measured at the temperature

T=Tc ¼ 0.9.

Plane Q3 ¼ R=a x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6 x ¼ 7 x ¼ 8 x ¼ 9 x ¼ 10 x ¼ 11

A ¼ 0.6 fm
4 9.5(2) 9.5(2) 9.5(2)
5 9.7(2) 9.7(2) 9.7(2) 9.7(2)
6 10.0(2) 10.1(2) 10.2(2) 10.1(2) 9.9(2)
7 10.3(2) 10.5(2) 10.7(2) 10.6(2) 10.4(2) 10.2(2)
8 10.7(2) 10.9(2) 11.2(2) 11.3(2) 11.2(2) 10.9(2) 10.6(4)
9 11.0(2) 11.4(2) 11.7(2) 11.9(2) 11.9(2) 11.7(2) 11.3(4) 11.0(4)
10 11.4(2) 11.8(2) 12.2(2) 12.5(2) 12.6(2) 12.6(2) 12.2(2) 11.8(4) 11.3(4)
11 11.8(4) 12.2(2) 12.7(2) 13.1(2) 13.3(2) 13.4(2) 13.2(4) 12.8(4) 12.3(4) 11.8(5)
12 12.3(4) 12.7(4) 13.1(2) 13.6(2) 14.0(2) 14.2(4) 14.3(4) 14.0(4) 13.5(5) 12.9(5) 12.5(5)
A ¼ 0.8 fm
4 10.1(2) 10.0(2) 9.9(2)
5 10.5(2) 10.4(2) 10.2(2) 10.1(2)
6 10.8(2) 10.8(2) 10.8(2) 10.6(2) 10.4(2)
7 11.2(2) 11.3(2) 11.3(2) 11.2(2) 11.0(2) 10.7(4)
8 11.5(2) 11.7(2) 11.9(2) 11.9(2) 11.7(2) 11.4(4) 11.1(4)
9 11.9(2) 12.1(2) 12.4(2) 12.5(2) 12.5(2) 12.2(2) 11.8(4) 11.4(4)
10 12.3(2) 12.6(2) 12.9(2) 13.1(2) 13.2(2) 13.1(2) 12.7(4) 12.2(4) 11.8(5)
11 12.8(4) 13.0(2) 13.3(2) 13.6(2) 13.9(2) 13.9(2) 13.7(4) 13.2(4) 12.7(5) 12.3(5)
12 13.4(4) 13.6(4) 13.8(2) 14.2(2) 14.5(2) 14.7(4) 14.7(4) 14.3(5) 13.8(5) 13.3(5) 13.1(5)
A ¼ 1.0 fm
4 11.0(2) 10.7(2) 10.5(2)
5 11.4(2) 11.2(2) 11.0(2) 10.7(2)
6 11.8(2) 11.7(2) 11.5(2) 11.3(2) 11.0(4)
7 12.2(2) 12.2(2) 12.1(2) 11.9(2) 11.6(4) 11.3(4)
8 12.6(2) 12.6(2) 12.7(2) 12.6(2) 12.4(4) 12.0(4) 11.7(5)
9 13.0(2) 13.1(2) 13.2(2) 13.2(2) 13.1(2) 12.8(4) 12.4(4) 12.0(5)
10 13.4(2) 13.5(2) 13.7(2) 13.8(2) 13.9(2) 13.7(4) 13.3(4) 12.8(5) 12.4(5)
11 14.1(2) 14.1(2) 14.2(2) 14.4(2) 14.6(2) 14.6(4) 14.3(4) 13.8(5) 13.2(5) 13.0(5)
12 15.0(4) 14.9(2) 14.9(2) 15.0(2) 15.2(2) 15.4(4) 15.3(5) 14.8(5) 14.3(5) 13.9(6) 13.9(8)
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