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Neutral B meson mixing matrix elements and B meson decay constants are calculated. The static
approximation is used for the b quark and the domain-wall fermion formalism is employed for light quarks.
The calculations are carried out on 2 + 1-flavor dynamical ensembles generated by the RBC and UKQCD
collaborations with lattice spacings of 0.086 fm (a~! ~2.3 GeV) and 0.11 fm (1.7 GeV), and a fixed
physical spatial volume of about (2.7 fm)3. In the static quark action, link smearings are used to improve
the signal-to-noise ratio. We employ two kinds of link smearings, HYP1 and HYP2, and their results are
combined when taking the continuum limit. For the matching between the lattice and the continuum theory,
one-loop perturbative O(a) improvements are made to reduce discretization errors. As the most important
quantity of this work, we obtain the SU(3) breaking ratio £ = 1.208(60), where the error includes both
the statistical and systematic errors. (The uncertainty from an infinite b-quark mass is not included.) We

also find other neutral B meson mixing quantities, f5+\/By = 240(22) MeV, f B, /BBF\ =290(22) MeV,

Bp =1.17(22), Bp =1.22(13), and By /Bp =1.028(74), and the B meson decay constants
fp =219(17) MeV, fp =264(19) MeV, and fp /fp = 1.193(41) in the static limit of the b quark,

which do not include an infinite b-quark mass uncertainty.
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I. INTRODUCTION

The Standard Model (SM) of elementary particles is
consistent with all experimental data thus far. The SM,
however, does not yet satisfy us because it cannot answer
some of our basic questions, such as the reason why the
gauge group, the constituents of particles, and the number
of generations in the model are chosen as they are, the
hierarchical unnaturalness in mass scales between the three
generations of fermions, and so on. While the existence of
the Higgs boson has been experimentally confirmed at the
LHC, expected new particles have not been discovered as
yet. Thus, bottom-up approaches toward physics beyond
the Standard Model (BSM) is becoming more and more
important. In order to address BSM, precision tests for
the SM are highly meaningful. By combining theoretical
predictions with experimental results, it would be possible
to obtain hints for the BSM. In such an attempt, the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix elements [1] play a crucial role in checking the
consistency of the SM.

In the SM, the transition of the neutral B (B;) meson to
its anti-meson occurs via box diagrams involving the
exchange of two W bosons, and this amplitude would
provide a clean determination of the matrix elements V,;
and V; assuming that V;, is known. In the SM framework,
the dominant contribution to the mass difference of the
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neutral B meson mass eigenstates is related to the CKM
matrix elements by

2.2
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where ¢ = {d, s}. In Eq. (1), both the Inami-Lim function
So(x;) (x, = m?/m3,) [2] and the QCD coefficient 575 can
be calculated perturbatively. M B, 18 a renormalization-

group-invariant (RGI) AB =2 four-fermion operator
matrix element in an effective Hamiltonian of the box
diagram at the low-energy scale. The mixing matrix element

M B, is a highly nonperturbative quantity, and thus currently

the only possible method for a precise determination is via
numerical lattice QCD simulations. By taking a ratio [3] of
Eq. (1) between ¢ = d and s, we obtain
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where £ is called the SU(3)-breaking ratio
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The ratio constrains the apex of the CKM unitary triangle,
and new quark-flavor-changing interactions from BSM
would affect this quantity. In the ratio many uncertainties
get canceled and a precise determination of £ would lead to a
tight constraint on the CKM unitary triangle and hints for
BSM physics in the form of an inconsistency of the unitary
triangle in the SM.

Lattice QCD simulations including the b quark are,
however, quite challenging, because of the large scale
difference between light quarks (# and d) and the b quark.
While fine lattice spacings are needed to correctly treat
the b quark, a large volume is required to accommodate
pion dynamics. Such a situation is difficult to achieve with
current computational abilities. Heavy-quark effective
theory (HQET) provides one realistic solution to this
problem. In this formulation, the heavy (b) quark dynamics
is integrated out and we may only treat the dynamics
associated with light quarks. The theory is described by the
systematic expansion of the inverse of the heavy-quark
mass mg. A first attempt in this direction was carried out
by Eichten and Hill [4,5], in which they used the static
approximation (leading order of the heavy-quark mass
expansion) and, for the static quark, they employed a
standard static action. Soon after that attempt, however, it
turned out that this approach leads to a poor signal-to-noise
ratio (S/N) in correlation functions, because the static self-
energy contains a notorious 1/a power divergence. (On
the other hand, in nonrelativistic QCD—another effective
theory approach—the power divergence tends to be can-
celed [6].) This situation has been significantly improved
since the ALPHA Collaboration introduced the link-
smearing technique in the static action, which partly cured
the difficulty [7,8].

In this paper, we calculate B meson decay constants and
neutral B meson mixing matrix elements using the static
approximation. The static approximation always has
O(Agcp/myp) ~ O(10%) uncertainty, since the physical
b-quark mass is not infinite. For SU(3)-breaking ratios
like £ or the ratio of B meson decay constants, however, the
uncertainty coming from the static approximation is down
to around the 2% level. This means that the static limit
could be an especially good approximation compared
with other lattice approaches that take into account the
b-quark mass dependence for such ratios. To reduce the
O(Aqcp/my,) uncertainty in the HQET approach, higher-
order operators in the 1/m expansion need to be included.
Taking into account these contributions requires nonper-
turbative matching with the continuum using, e.g., the
Schrodinger functional scheme with a step-scaling tech-
nique [9], which requires considerable effort. Instead, we
stay in the static limit assuming that the results can be
valuable for an interpolation to the physical b-quark mass
combined with lighter quark mass simulations, for which
high-precision calculation is significantly important. (We
discuss the meaning of calculations in the static limit in
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Sec. II.) This work is a first step toward the precise
determination of B-physics quantities in the static limit.
This paper is organized as follows. In Sec. II, we discuss
the meaning of the calculations in the static limit as an
anchor point in the study of heavy-quark physics. In
Sec. III, we summarize the physical observables in both
full QCD theory and HQET, which we address for the study
of neutral B meson mixing phenomena. In Sec. IV, the
definition of lattice actions and the gluon ensembles that
we use in this study are explained. In Sec. V, we describe
the matching procedure between full QCD theory and
HQET in the continuum, as well as between the continuum
and lattice in HQET. The HQET matching is carried out
by one-loop perturbation including O(a) lattice errors. In
Sec. VI, details of the measurement, correlator fits, and
formulas for constructing physical quantities are shown. In
Sec. VII, the chiral and continuum extrapolation formulas
[SU(2)xPT] are summarized and we show the fit results. In
Sec. VIII, we present the estimation of the systematic
uncertainties and summarize it in Table XII. Finally, we
present our final results, compare them with other works,
and discuss future directions of this project in Sec. IX.

II. STATIC LIMIT AS A STRONG ANCHOR POINT

We employ the static approximation as a b-quark treat-
ment in this study. As discussed earlier, this approximation
suffers from an uncertainty of O(10%) for primary quan-
tities or O(2%) for flavor SU(3)-breaking ratios at the
physical b-quark mass, which is heavy but finite. The
physical value of the approximation will eventually be lost
as one aims for higher and higher precision. However, the
results in the static limit are valuable as an anchor point
when combined with simulations in the lower—quark-mass
region. In this section we clarify the meaning of our
calculations in the static limit.

We consider a heavy-quark expansion of some heavy-
light quantity ®;;, which has a finite asymptotic limit as
mg — 00,

mo

B (1/my) = B (0) exp Li . (Aanﬂ @

where mg is the heavy-quark mass, which is heavier
than the QCD scale Agcp. Equivalently, the expansion is
written as

(Iiﬂ(l/mg) N Agep\?  (Aqep)\?
-attimo) <o [3 o (52)" - ()}
(5)

using some “anchor” point mg, . [In Eq. (4) the static limit
mg — oo is regarded as an anchor point.] Our task is to
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determine the expansion coefficients y, and the overall
factor ®y,(1/mg,) to reach a physical b-quark point. There
are several ways to make this determination.

(i) HQET approach: The anchor point is the static limit
mg — oo. To treat the heavy-quark expansion from
the static limit, HQET is employed. In addition to
terms in the heavy-quark action and operators at the
leading order of the expansion (static approxima-
tion), those at O(1/mg) are included. To keep the
theory renormalizable, the Boltzmann factor for the
heavy quark is expanded in 1/mg, and we make
operator insertions in the expectation value evalu-
ated with the static action. HQET must be matched
with the original full theory. An important point
is that the matching beyond the static approximation
cannot be carried out perturbatively because of
the existence of a 1/a power divergence in HQET
[9,10].

(ii) Relativistic approach: The anchor point sits in a
lower-mass region, typically the c-quark mass re-
gion. The usual relativistic formulations can be
applicable in this region, while relatively finer
lattices are required.

(iii) Combination of (i) and (ii) above: The anchor point
is the static limit, while the y,’s are explored by
using usual relativistic formulations in a lower-quark
mass region, i.e., the c-quark region (see, for
example, Ref. [11]).

Procedure (i) has been used by the ALPHA Collaboration,
in which nonperturbative matching with full QCD theory
can be implemented by the step-scaling strategy with the
Sherddinger functional scheme [9]. (See Ref. [12] for their
recent achievements.) In procedure (ii), relatively finer
lattices with regular volume sizes are required. However,
the lattices to treat the ¢ quark are currently becoming
available and approach (ii) is becoming feasible. A recent
sophisticated implementation in this direction is the “ratio
method” [13] of the ETM Collaboration, which may be a
viable option. In this method, the ratios of physical
quantities at some heavy-quark mass point mg and
mgo/A with a scale parameter 1> 1, are considered to
separate ®y,(1/my,) and the y,’s in the determination:

satmg ~ - ()] @

mo

which enhances the precision of the y,’s. (See Ref. [14]
for their recent achievements.) A combination of the ratio
method and the static limit as an anchor point would also be
beneficial, which belongs to procedure (iii). In this sense,
the static limit is not only of theoretical interest, but it is
also a valuable anchor point to explore physics at the
physical b-quark point. The fact that “the static limit is
close to the physical b-quark mass in terms of 1/mg”
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ensures the usefulness of the static limit as a
anchor point.

“strong”

II1. PHYSICAL OBSERVABLES
A. Observables in full QCD theory

Our main aim in this paper is to calculate the CKM
matrix elements V,, and V/ to give constraints on the CKM
unitary triangle. The current accuracy of the mass differ-
ence (1) from experiment is less than 1%, and thus a precise
determination of the hadronic matrix element Mjp would
give strong constraints on the CKM matrix elements. We
here summarize current world average values related with
neutral B meson mixing, which are quoted from the Particle
Data Group (PDQG) [15]:

my,(MS) = 4.18 +0.03 GeV, (7)
mgo = 5279.58 +0.17 MeV, (8)
mp = 5366.77 + 0.24 MeV, (9)

Amgo = (0.510 £ 0.004) x 10'27s~"!
= (3.337£0.033) x 10-1° MeV,  (10)

Amg = (17.69 £ 0.08) x 10"271s™!
= (1.164 £ 0.005) x 1078 MeV.  (11)

Thus, the ratio of the CKM matrix elements (2) reads

14
' 4l = £ x (0.17071 + 0.00092), (12)

ts

which indicates that the determination of ¢ with high
accuracy would yield a precise value of the ratio.

The AB = 2 mixing matrix element at a scale y,, in the
effective Hamiltonian is represented by

M3q</lb) = <32|[5m(1 —75)4| [l_’?’ﬂ(l - VS)QHBg>fu11
= <32|O%H|Bg>fuu’ (13)

where b and g represent the b-quark and light (d or s) quark
fields, respectively. In Eq. (13), we use a superscript and a
subscript “full” to indicate that the theory considered here
is not HQET, but rather full QCD theory. In this paper,
the standard PDG notation for the quark content of the B

meson is used: B = (bg) and B = (bg). The matrix
element is conventionally parametrized as
8 1 4
Msp, (up) = gmquBqBBq (b)) (14)

so that B B, = 1 when the vacuum saturation approximation
(VSA) exactly holds, where BBq denotes a dimensionless
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hadronic B parameter and f B, denotes the B, meson decay
constant defined by

ifg, Py = (01by,r5q|By(P))ran
= (043" |B,4(P)) s (15)

where p,, is the four-momentum of the B, meson. An RGI
definition of the B parameters fqu is obtained from the B
parameters in some scheme and at some scale p; by

By, = [aswb)rz?—f”o(l —Mzs)wﬂb% (16)

4

at next-to-leading order (NLO), where Zs—in the naive
dimensional regularization (NDR) scheme with the modi-
fied minimal subtraction (MS) scheme—is written as [16]

7O (17)
2y 265
with
2 38
T I S
4
y©0) =4, U =—7 + —ny. (19)

9

In this paper we use a,(u;,) = 0.2265, which is obtained
from the strong coupling at the Z-boson mass scale
ag(my; =91.1876(21) GeV) = 0.1185(6) [15] using RG
evolution (four loop [17,18]) with n; = 5. Equation (16)
thus becomes BB,] = 1.516 x By ().

One of the main points of this paper is the SU(3)-breaking
ratio (3), which should be unity in the SU(3) light flavor-
symmetric case. In this ratio most of the theoretical
uncertainties as well as the statistical fluctuations are largely
canceled out. Using the parametrization of the matrix
element (14), the SU(3)-breaking ratio is represented as

_[5, Bs,
fB BB

¢ (20)

Because the B parameters are based on the VSA by
definition and there is a suppression factor due to SU(3)
light flavor symmetry, the ratio of the B parameters in
Eq. (20) could be close to one and a large fraction of the
SU(3) breaking of ¢ will likely reside in the ratio of the
B meson decay constants.
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B. Observables in the static limit

We regard the b quark as a heavy quark and give it an
on-shell velocity v, = (1,0,0,0), which leads to an on-
shell momentum p, = (m;,0,0,0). The heavy-quark field
h is introduced as a sum of a heavy quark /2, and anti-heavy
quark A_:

h=h,+h_, h=h, +h_=h—ht, (21)

N 1
hy = eFimen—Zp = ¥ —Lp, (22)

where b is a usual relativistic quark field.
In the static limit, the B meson decay constant and the
hadronic matrix element behave like f B, 1/ i and

M B, X Mg, respectively. Therefore it would be useful to
introduce the quantities

M
My, =—"1 (23)
q mB

(I)Bq = «/mB,,qu,

q

so that they behave as constants in the static limit. Hadron
states in the HQET are labeled by v, and a residual
momentum k,, which satisfies v - k = 0. They are defined
in the static limit and differ from those of the full QCD
theory,

1By)tan = \/mBq{|Bq>HQET + O(Agep/myp) ). (24)
so that the HQET state normalization becomes
(By(K)|By(K)uqer = 2(27)°8* (k= K').  (25)
Using the HQET state, B, in Eq. (23) is simply written as
‘I)Bq = <0|EYOYSQ|Bq>HQET
= <O|AgQET|Bq>HQET' (26)

For My , we need two kinds of matrix elements,

M; = <l_32|[f_17,,(1 - 75)‘1] V_l}’ﬂ(l - 75)‘]]|BS>HQET
= <BS|OII:IQET|B2>HQET7 (27)

Mg = (BYI[A(1 = y5)q][A(1 = 75)q]| B uqer
= (B§|05 " B moer. (28)

owing to the lack of a four-dimensional Euclidean rota-
tional symmetry in the static limit, where the AB = 2 four-
quark operator O; is decomposed into spatial and time
components,
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> [hri(1=ys)gllhri(1 = vs)q), (29)
i=1,2,3
V_Wo(l ~75)q] V_l}’o(l —75)ql, (30)

and they are renormalized differently. As a consequence,
the operators (27) and (28) have mixings. In the following,
the B meson states |B,,) and operators represent those in the
static limit of the b quark unless stated otherwise.

IV. LATTICE ACTIONS AND
GLUON ENSEMBLES

A. Lattice action

We perform lattice simulations in HQET, where the
lattice action comprises three pieces:

(31)

where S 1S the static quark action representing the heavy
(b) quark, Spwr is the domain-wall fermion (DWF) action
describing the light (u, d, s) quarks, and Sy, is the gluon
action.

S = Ssaic + Spwr + Sgluonv

1. Standard static heavy-quark action
with link smearing

The standard static quark action [5] is given by

A

Suase = 30 {57 4(x) = U ) - )

(32)

The lattice derivatives used here are not symmetric for each
heavy and anti-heavy quark, and thus fermion doublers do
not arise. The form of the action is technically the same as
the Wilson quark action with a volume reduction to one
dimension (time direction). Therefore it has a Wilson term,
which decouples from any low-energy physics in the
continuum limit and explicitly breaks the chiral symmetry
at finite lattice spacing. This action suffers from huge 1/a
power divergences, which results in tremendous noise in
correlators. The solution to this problem is to introduce link
smearing aimed at a reduction of the power divergences [8].
The modification is simply to replace the link variables
Uy (x) with three-step hypercubic blocked [19] ones V(x),
which are defined by

wmzmmw@—mww

ay ~ ~ AN T ~
S V)V x + DV e+ R) .
+Tu#Eu

(33)
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mmwm%m%—m%m

a Y/ Y/ ANY7ZT A

+ Iz Z V/);wt(x) Vﬂ;py(x + p) V});Dﬂ ()C + /’t):| 4
tpFv.p

(34)

vww—mwwh—@ww

+% 3 Un(x)Uﬂ(x+f1)U;(x+ﬁ)} (35)

tnFp.v.p

where Projgy3) denotes an SU(3) projection and (a;,a,,a3)
are hypercubic blocking parameters [19]. (o, ), 3) =
(0,0,0) corresponds to an unsmeared link (V, = U,).
We use two parameter choices in this work:

(0.75,0.6,0.3),
(1.0,1.0,0.5),

HYP1 [19],

HYP2 [18]. (36)

(a0, a3) = {

2. Domain-wall fermion action
The DWF action [20-22] is described by

Spwe = Z D W () DV (x, y)yr ()

s.8'=1 x,y

=Y ma(x)q(x), (37)
DY (x.y) = D*(x. )8,y + D*(s.5")6,,
+ (MS - 5)5&\"5)@*7 (38)

D*(x,y) = Z%[(l ~ 1)U (X)80 i1y

(14 7)Un(9)8c ], (39)

PL52,s’
PL55+1,5’ + PR(ss—l,s’
PRéLs—l,s’

(s=1),
(I <s<Ly),
(S:Ls)v

D3(s,s') =
(40)

where y,(x) are 4 + 1-dimensional fermion fields. The
fifth dimension extends from 1 to L, and is labeled by the
indices s and s’. The domain-wall height (fifth-dimensional
mass) M5 is a parameter of the theory which can be set
between 0 < M5 < 2. We use a setting of M5 = 1.8. The
physical four-dimensional quark field g(x) is constructed
from the fields y,(x) at s = 1 and L,

q(x) = Pry(x) + Pryy (), (41)
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g(x) =y (x)Pg + vy (x)Py, (42)

where P; and Py are left and right chirality projectors:
P; = (1—=1y5)/2, Pr = (1 +y5)/2. In the infinite L, limit,
the right- and left-handed modes are decoupled and chiral
symmetry is exactly restored. The presence of the chiral
symmetry plays a crucial role in reducing unphysical
operator mixing. Note that the DWF is automatically
O(a) improved [23].

3. Gluon action

We consider a class of RG-improved gluon actions in
this study:

Sauon = = < (1 - 8¢ ZReTr Upl + clzReTr UR]>
0
(43)

where g, denotes the bare lattice coupling, Up and Uy are
the path-ordered product of links along a 1 x 1 plaquette P
and the path-ordered product of links along a 1 x2
rectangle R, respectively. Our choice of the parameter c
is —0.331 (Iwasaki gluon action) [24,25].

B. Gluon ensembles

We use 2 + 1-flavor dynamical DWF gluon configura-
tions generated by the RBC and UKQCD collaborations
[26]. A summary of the ensembles used in this work is
listed in Table 1. Two lattice spacings, a ~0.114 fm and
0.0864 fm, are used to take a continuum limit. We label the
coarser and finer lattices as “24c” and “32c,” respectively,
representing their lattice sizes. The physical box size is set
to be modest, which is around 2.75 fm. The size of the fifth
dimension L; = 16, making the chiral symmetry breaking
quite small with residual masses ., = 0.003 and 0.0007
for 24c and 32c, respectively. Degenerate u and d quark
mass parameters are chosen so that the simulation covers
the pion mass range 290—420 [MeV]. The smallest value of
m,L is 4.06, which implies that the finite-volume (FV)
effect would be small at simulation points. Only one sea s
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quark mass parameter is taken in our lattice ensemble for
both lattice spacings, which is larger than the physical s
quark mass by a small amount. As we will explain in
Sec. VII, we basically use SU(2) chiral perturbation theory
fit functions assuming that the sea s quark mass sits on a
physical point, while the actual sea s quark mass in this
simulation is not a physical one. The uncertainty from this
inconsistency is estimated by the partially quenched SU(3)
chiral perturbation theory as explained in Sec. VIII and
turns out to be less than 1%. For a valence s quark, we make
measurements with two s quark mass parameters that
sandwich the physical s quark mass and make a linear
interpolation.

V. MATCHING

In this work, we adopt a two-step matching: the first step
is a matching between full QCD theory and HQET in the
continuum, while the second is a matching between the
continuum and the lattice in HQET. The matching is carried
out by a one-loop perturbative calculation. Here we
summarize the key points of the matching.

(1) The full theory operators in the continuum are

renormalized in the MS (NDR) scheme at yj, = m,,
i.e., the b-quark mass scale. Fierz transformations in
arbitrary dimensions are specified in the NDR scheme
by Buras and Weisz evanescent operators [27].

(i) The HQET operators in the continuum are also
renormalized in the MS (NDR) scheme at some
scale u.

(iii) Matching operators between the full theory and
HQET in the continuum are carried out by pertur-
batively calculating matrix elements of the operators
in both theories and comparing them.

(iv) The matching above is performed at the scale
u=m, to avoid a large logarithm of u/m,. We
then use renormalization group running in the
HQET to go down to a lower scale.

(v) The HQET operators with the lattice regularization
are calculated using a DWF formalism for light
quarks to maintain good chiral symmetry, which is
important to control the operator mixing.

TABLE I. 2 + 1-flavor dynamical domain-wall fermion ensembles by the RBC and UKQCD collaborations. [26] Physical quark
masses are obtained using SU(2)yPT in the chiral extrapolation, and m%fs = 1,)/]13 * o Mg (m5m
g (m})"™)
Label g L3xTxL, a'[GeV] a [fm] aL [fm] m®D*/mE™ o (mP™)  mye (ms™) m;/m, [MeV]  m,L
24cl 213 24° x 64 x 16 1.729(25) 0.114 274  0.00134(4)  0.003076  0.003152(43) 0.005/0.04 327 4.54
(58)
24c2 /0.0379(11) 0.01/0.04 418 4.79
32cl 2.25 323 x 64 x 16 2.280(28) 0.0864 2.76  0.00100(3)  0.006643 0.0006664  0.004/0.03 289 4.06
(82) (76)
32c2 /0.0280(7) 0.006/0.03 344 4.83

32¢3

0.008/0.03 393 5.52
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(vi) Matching HQET operators between the continuum
and the lattice is perturbatively carried out at a lattice
cutoff scale y = a~', where a denotes a lattice
spacing.

In the perturbative matching, we introduce a ficti-
tious gluon mass to regulate IR divergences. The
structure of the IR divergences should be the same
between the continuum and the lattice theories,
otherwise they cannot be matched to each other.
In the matching of HQET operators between the
continuum and the lattice, O(a) discretization errors
are taken into account. We employ an on-shell O(a)
improvement program, in which we impose the
equation of motion on the external heavy- and
light-quark lines. In the improvement, we include
both O(pa) and O(ma) contributions, where p and
m denote the light-quark momentum and mass,
respectively.

The theory with the static approximation of the
heavy quark is renormalizable and perturbative
renormalization is justified; however, this is impos-
sible once the O(1/mg) correction is included, in
which case a nonperturbative subtraction of the 1/a
power divergence is necessary [9,10]. The inclusion
of the O(a) improvement operators does not alter
the justification of the perturbative treatment: the
O(a) operators just bring O(a**!) uncertainty at
the kth-loop perturbation by mixing with O(a°)
operators, and do not cause destruction when taking
a continuum limit.

In the following, the details are presented.

(vii)

(viii)

(ix)

A. Continuum matching

In the continuum, the full QCD theory and HQET are
renormalized at a scale y, which we specify as a matching
point. The operator relation of the heavy-light quark
bilinear Jr and the AB =2 four-quark operator O
between the two theories is written as

T () = Cr(u)IP % (1) + O(Agep/my).  (44)
O (u) = Z, (1) O (1) + Z, (1) 05 ()
+ O(Agep/my). (45)

The one-loop perturbative matching factor for the heavy-
light axial-vector current is [4]

Cops ) = 1+ (%)Zg [—%m (Z—;) - 2} . (46)

For the four-quark operator, the one-loop perturbative
matching factors are [28,29]
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TABLE II. Numerical values of the one-loop continuum match-
ing factors and RG-running coefficients [30].

24c (1.73 GeV)  32¢ (2.28 GeV)

ay(my, = 4.18 GeV [15]) 0.2261

ag(m. = 1.275 GeV [15]) 0.3908

ay(a™") 0.3204 0.2773

Coors (my) 0.9520

Ny=4

Urf (my.m,) 1.1550

Ulli’/':3(mc, a™) 0.9521 0.9196

Z,(my) 0.7483

U(Ll I)Nf:4(mb’ m,) 1.3345

U(LZI)N/'=4(mb’ m,) —0.0526

U(Lzz)Nf:“(mb’ m.) 1.0921

U(Lll)Nf:3(mc, a) 0.9055 0.8442

U(LZI)NFB(’"C’ a) 0.0141 0.0231
0.9706 0.9500

22)N ;=3 _
U m,a)

Z(u) =1+ (%)2 [—6111(:1—2%) - 14}, (47)

Zy(u) = —8(%)2.

The numerical values of the matching factors at 4 = m,, are
presented in Table II.

(48)

B. RG running in HQET

To avoid a large logarithm of u/m;,, we match the
theories at 4 = m,, in the continuum matching and use RG
running to reach a smaller energy scale u in HQET. The
running is governed by the RG equation:

b Crlp) = 5 Crl (49)
w2z =512z 77
(50)

where the y’s are anomalous dimensions. Solutions of the
RG equations (49) and (50) are generally written as

Cr(u) = Cr(W)Ur (W', 1), (51)

(Zi(w)  Zo(u)] = [Z,()  Zo(W)]UL(W'p). (52)

where
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(
UL p) = 521 (53)
U
L

Note that heavy-quark spin symmetry gives constraints on
the y’s:

712 =0, Y22 = v+ 4721, (54)

which turn into
U () = 0, (55)
U o) = ULV (o) + 402 (). (56)

Each U is expressed as

UG p) = <1 L) —as(ﬂ’)Jr> {as(ﬂ’))rr + o).

471' as(,“
(57)
UM (o) <1+aé(ﬂ)4ﬂav(ﬂ/)h> {(Z((l/f)]d o)
(58)

@) U as ()] Jag(w)]%

U W) 4(&(@] ) -asw)] )w(m)’

(59)
ngz) (') = [(Zs‘((itl’))_ d + O(ay), (60)

where a; = ¢?>/(4r). In the one-loop matching, two-loop
calculations of the anomalous dimensions and a beta
function are required to obtain Jr, dr, Ji, d;, and d, in
Egs. (57)—(60). The two-loop anomalous dimensions were
calculated in Refs. [31,32] for quark bilinears and in
Refs. [29,33,34] for four-quark operators.

Because we include sea quarks only for u, d, and s in our
simulations (Ny =2+ 1) and our lattice cutoff scale is
higher than the c-quark mass, we employ a two-step RG
running to reach a scale u = a~!: we perform the running
from y =m, to the m, scale using N, =4 theory and

running back to the a~! scale using N + = 3 theory, such as

Ur(my,a") = UY " (my, m U " (mea™),  (61)
UL (my,a™) = U (my, m)UY " (me,ah),  (62)
in which
Ne=4_ 6O N=4_ 12 Ne=4_ 4
i’ = 25 1 25" 2 25’ (63)

PHYSICAL REVIEW D 91, 114505 (2015)

Nt =0910, I =1.864, (64)

N,=3 2 =3 4 N =3 4
=2 T =2 T =
r 9 ! 9 2 27
(65)
I =0755, I =1.698. (66)

The RG-running coefficients are summarized in Table II.

C. Static effective theory matching

The matching of the static effective theory between the
continuum and the lattice is carried out at a scale y = a~!
using one-loop perturbation. In the matching, lattice dis-
cretization errors are taken into account up to O(pa)
and O(m,a), where p and m, are the typical light-quark
momentum and light-quark mass, respectively. To include
these discretization errors, higher-dimensional operators
need to be added in the matching. The operator mixing
pattern is constrained by symmetries, which are typically
chiral symmetry, heavy-quark spin symmetry, and discrete
symmetries, such as P, 7, and C.

The operator relation for the quark bilinear is written as

Jeom = 7 jime, (67)
where JI™ is the O(a)-improved lattice bilinear,
T = gt acl? GIp + ac™ Gy, (68)
in which
Jrp = EF(V 'ﬁ)% Jrm = mq]jqu’ (69)

and G is defined by yoI'yy = GI'. For the four-quark

operators,
o =2 OZHP, (70)
o™ =2 Olsmp, (71)
where Oime and Oismp are O(a)-improved lattice operators,
O™ = 0, + ac”” (Oyp +204p)
+acy" Oy +20). (72)
O™ = Og + acP” (Oyp — 204 ,)
+acl (Oyp = 2041). (73)
with
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Onp = 2[hyf (v - D)q)lhrkq). (74)
Op = 2[iPy(y - D)q)[hP,q). (75)
Onm = 2mylhyiqllhyiq), (76)
Oy = 2m,[hPrg][APq). (77)

We note that the coefficients for the quark bilinear operator
do not depend on I', which is a consequence of chiral
and heavy-quark spin symmetry [30,35,36], and this fact
holds nonperturbatively. [For the four-quark operators, it is
claimed that more higher-order operators are required in
Egs. (72) and (73) for the O(a) improvement at higher-loop
or nonperturbative levels [37].]

For the one-loop calculation of the coefficients in
Egs. (67), (70), and (71), we use mean-field (MF) improve-
ment to remove huge the tadpole contribution in the lattice
perturbation [38]. The measured plaquette value P or
uy = P'/* enters the matching for the MF improvement.

We employ DWF as light quarks, and thus the physical
light-quark propagator is written as

Sq(p) = (q(=p)a(p))

1 —w?
:m(1+0(p ,pmg,m3)),  (78)

where wy = 1 — M5. The physical quark propagator sug-
gests that the quark wave function has a domain-wall-
specific factor (1 —w2)!/? and the quark mass should be
identified by m, = (1 — w§)m , which would appear in the
matching coefficients.

The matching coefficients at the one-loop level are

zr_z“/z{1+<4ﬂ> %AMF}+0( Y. (79)

a 1 24 .
oo — L (@) 4 (paur

NS ) 2N Lo, (s0)

ma 1 24 ma
= L (1) 4y

M) AN 0. (81)

524

v

pa) _ 1 (9us)\?
c =— (==
L Ugy 471'

cma) _ 1 (9ws\?
L Up dr

Zs=Z,'+ 0(4%). (85)

(82)

&=

(SN I N
W]

2D

=

oo

H’_/

_|_

2

4;\ ma
SOl (84
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TABLE III. Numerical values of the one-loop static effective
theory matching factors [30].
24c 32¢
HYPI HYP2 HYPI HYP2
P (chiral limit) 0.5883 0.6156
MYF 1.3032 1.3432
Gos/ 4 0.1769 0.1683
Zr—yors 0.9105 0.9383 0.9256 0.9526
(Fpa) 0.0790 0.1374 0.0744 0.1294
=YoYs
(ma) 0.0864 0.1660 0.0739 0.1482
I'=yoys
Zr 0.8260 0.8911 0.8546 0.9187
C(Lpa) 0.1185 0.2061 0.1117 0.1942
C(Lma) 0.1296 0.2489 0.1108 0.2222
Zg 0.9645 1.0040
" = (), (86)
" = 0(a?). (87)
where
1 — (whfF)2 o) 24
Zy=— 0 (14 (M) 2P ) 40 88
= DS )28 ) 40", (88)

and the renormalized coupling in the continuum MS
scheme gy at the scale p = a~! is related to the bare
lattice coupling g, as

gzL:Pz"'d +C +Nfdf, (89)
MS

in which d,, and c,, are dependent on the gluon action and
dy is dependent on the fermion action. Note that the
continuum matching coefficient for Oy is already O(g?);
therefore, only the tree-level static matching coefficient for
this operator is needed in the one-loop matching procedure.
Nevertheless, we partly include the O(¢?) in Eq. (85) to
keep the same form of Z,, as that for Z;, which does not
matter at the one-loop level. The coefficients for this
simulation are summarized in Table IIL

VI. MEASUREMENT AND DATA EXTRACTION
In this section, we present details of measurements on the

gluon configurations introduced in Sec. IV.

A. Correlators

In the static limit, the energies of states do not depend on
their momentum. This fact requires special treatment of the
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correlators, because even with a large separation of the
source and sink positions in time ¢, a unique ground state
cannot be obtained [39,40]. In particular, the Gaussian
source and sink smearing used in this work requires taking
this feature into account. In this subsection, we follow the
discussions in Refs. [39,40] and explicitly show an exten-
sion to any form of source- and sink-smearing function.

We start with defining our state convention. The static
action (32) is invariant under a spatial local phase rotation
of heavy-quark fields,

h(X, 1) — D%, 1), (90)

h(x.t) — e S h(x,1), (91)

which leads to Noether’s current,

Ju(E, 1) = h(Z, )h(%,1), (92)
with the conservation law
80];,(5&, t) - O (93)

indicating the time-independent charge (heavy-quark num-
ber density operator) at each spatial point,

N;(%) = Jy(X. 1), (94)

which commutes with the Hamiltonian. We can define B
meson states in the PDG notation, B = (bq) and B = (bg),
as eigenstates of N, (%),

Ny (G)BE)), = =8| B())... (95)
(B(®)|B()), = ot (96)

where “L” indicates states in the static limit with finite
spatial size L. Using these, the B meson states with spacial
momentum p are defined as

L_\/ize YB3 (97)

where the momentum p takes discrete values:

2w

T (”1, ny, ”3),

= La 0< ny,nyp, ny <L. (98)

St

This state convention gives the normalization

(B(P)|B(d)),, = 2(La)*6}. — 2(22)6(p - §),

9 La—oo

(99)

which leads to a relation between the finite- and infinite-
volume momentum eigenstates,

PHYSICAL REVIEW D 91, 114505 (2015)

B, — |B). (100)
(BR)IB@) =206 (5 -3).  (101)

so that infinite-volume static states |B(p)) give the conven-
tional normalization (101). Thus, what we need to calculate
in the finite volume are

(01A40(0.0)|B(p = 0)), — @5 (102)
(B(p = 0)|04q(0.0)|B(p = 0)), — My, (103)

where Ay (X, 1) and Oyu4(X, 1) are the local heavy-light axial-
vector current (in the time direction) and four-quark
operators defined in Egs. (26), (27), and (28). The state-
ment made earlier in this subsection that the B meson
energy does not depend on its momentum is understand-
able, as the B meson states defined in Eq. (95) are also
energy eigenstates, where the energy does not depend on
spatial coordinates due to the translational invariance of the
system, and as a consequence the energy is independent
of the momentum by Eq. (97). This property requires an
unfamiliar treatment of the correlators. A typical example is
an operator which includes a spatially smeared quark field:

AS(%, 1) (Zf h(x + 3, t)))/oVs
(Zg qg(X +7. t)

where f(y) and ¢(z) are smearing functions, such as
Gaussian- and wall-type functions. We consider the
B meson decay amplitude with the smeared operator and
take the large-¢ limit:

(014 (%. 1)|B(p)).
e Eat (0]AS(0,0)|B(P)),

(104)

e ip-
=0

# 65 E0A3(0.0)|B(5 = 0))..  (105)
where E( represents the energy of the B meson ground
state. Thus we cannot obtain a unique zero-momentum
state even in the large-f limit, because the B meson energy
no longer depends on the spatial momentum p. This fact
causes an unusual derivation of the matrix elements. Let
us demonstrate this here. We consider a three-point (3PT)
function with smeared quark fields,

C3S(17.1,0) = a>> (AS(0.17) 04q(}.)A] (0.0)).  (106)

Using the completeness of the states,
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La32|

p)| + (higher states),  (107)

the 3PT function becomes
Ci:(t7,1,0)

Ze_EO’f <0|A§(6, 0)[B(P))L

p

- (B(P)|044(0.0)|B(p)) . (B(P)IAF (0,0)/0).,

-
>0 4(La)?

:%CSS(U,O)MB, (108)
where
C55(1,0) = (45(0.1)45'(0.0))
= S L3008,
= AP, (109)

and we used

(B()]044(0.0)[B(P)),,
= (B(p = 0)|044(0.0)|B(p = 0)),.  (110)

following Eq. (97). As can be seen in Eq. (108), we
inevitably have to use C55(¢,0), in which the sink position
is not spatially volume summed, which results in large
statistical noise. The matrix element M is then obtained as

SS
C (tf7t0)tf>>_t>>>E)Aq’ (111)
2A
4 (112)

B = ASSg=Eoty

To obtain a zero-momentum state in the two-point (2PT)
functions, we have to use a projection by spatial volume
summation of the sink operator. What we need to measure
for @5 are the 2PT correlation functions,

CES(1,0) = a®> " (A4g(%. A (0.0)),  (113)

eS8t O)—aZ(AS( HASH(0,0)),  (114)

in which the sink operators are volume summed to project
into the zero-momentum state; otherwise, we cannot obtain
a unique state by just taking the large-¢ limit. By using the
completeness of states [Eq. (107)], these 2PT correlation
functions in ¢ > 0 can be easily written as

PHYSICAL REVIEW D 91, 114505 (2015)

CES(1,0)— - <0|Ao(0 0)|B(p =0)),.

x (B(p = 0)|A§(0,0)[0), 75"
_ Aise_Eot, (115)

(s, 0)— —|<0|AS(0 0)[B(p = 0)), e~
= ASSe—Eo'. (116)

®p is then obtained through
LS LS

@B_ﬂf%:ﬁ A (117)

0 /CSS(I, 0)e~For ASS

in which the noisy correlator C55(7,0) is not needed, in
contrast to Mp. In the actual simulation, we use O(a)-
improved operators to remove the O(a) lattice artifact, as
indicated in Egs. (68), (72), and (73) in Sec. V.

B. Source and sink smearing

In an attempt to obtain a better overlap with the ground
state, we use gauge-invariant Gaussian smearing for the
source and sink operators. We follow the smearing pro-
cedure in Refs. [41,42]. We choose a Gaussian function
with width @ as a smearing function in Eq. (104) for both
static and light quarks:

—x%/w?).

To achieve this smearing in a gauge-invariant way, we use
the implementation

f(x) = g(x) = exp( (118)

2 N
) =11 — V2 X, 1), 119
SO +5 = (14477 v, (9)

with the hopping matrix

3
+ f
E Z x+ly + U ( )éx—?,y]’

i=1

(120)

where N is the number of times the smearing kernel acts
on the fermion field y (X, ), which leads to the Gaussian
function (118) in the N; — oo limit. The choices for the
parameters @ and N are summarized in Table IV, which
gives a physical Gaussian width around 0.45 fm.

C. Measurement parameters

The measurement parameters are summarized in
Table I'V. The valence d quark mass parameter is the same
as the degenerate sea u and d quarks. To interpolate to a
physical s quark mass, we take two values of the s valence
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TABLE IV. Measurement parameters. N; and @ are the source and sink Gaussian smearing parameters. At gk
represents the source-sink separation in the three-point functions.

Label m, Measured MD traj. # of data # of src Ng 0] Aty sink
24cl 0.005, 0.034, 0.040 900-8980 every 40 203 4 32 4 20
24c2 0.010, 0.034, 0.040 1460-8540 every 40 178 2

32cl 0.004, 0.027, 0.030 520-6800 every 20 304 1 40 5 24
32c2 0.006, 0.027, 0.030 10007220 every 20 312 1

32c2 0.008, 0.027, 0.030 520-5540 every 20 252 1

quark mass parameters that sandwich the physical point,
and one of them is set to be the same as the sea s quark’s
value. The physical s quark mass is slightly different from
the sea s quark mass, so we estimate the uncertainty from
this inconsistency by using the partially quenched SU(3)
chiral perturbation theory, which we describe later.

D. Autocorrelations

The autocorrelation time of the ensemble is investigated
using the integrated autocorrelation time for both static
heavy-light two-point and three-point functions. The inte-
grated autocorrelation time of the 2PT functions is mea-
sured at r = 12 for CL5(¢,0) and C55(¢,0), but at t = 15 for
C55(1,0) in both the 24c and 32c ensembles. We measure it
at the midpoint between the source and sink locations for
the 3PT functions. Based on this analysis, we choose to
perform blocking, so that the blocking size is 80 MD
trajectories for the 32c1 ensemble (the lightest quark mass
parameter), whereas it is 40 MD trajectories for other
ensembles. Note that in the study of the light hadron
spectrum on these ensembles, the blocking size was 20 MD
trajectories [26].

E. Correlator fits

In the figures in Appendix A, we show the effective
masses of the 2PT functions and the amplitudes of the 3PT
functions. We perform simultaneous fits of three types of
2PT correlators [CE5(t,0), C55(¢,0), and C55(t,0)] assum-
ing that E, is common in these correlators. To take the
periodicity in the lattice box into account, a cosh function is
assumed in the fit:

CZS(I, 0) = Ais<e—Eot +e—E0(T—t))’ (121)
CSS(t, 0) = A§S(6—Eot +e—E0(T—t))’ (122)
CSS(I, 0) — ASS(e-Eol —|—e_E0(T_’)). (123)

For the 3PT correlators Cj*(t7,1,0) and C3°(1,1,0),
constant fits are made:

CiS(tp,1,0) = A3S, (124)

C$(tp,1,0) = A, (125)
where 7, is fixed to be the source-sink separation shown in
Table IV. Fit ranges are shown in the effective mass and
amplitude plots in Appendix A, and the fit results are
presented in Tables V and VI. Note that the O(a)-improved
C35(t4,1,0) is not calculated, as the one-loop level match-
ing does not require it.

For some quark mass parameters, y”/d.o.f. exceeds 2.
We, however, keep fit ranges unaltered throughout all quark
mass parameters, to avoid human bias. Then our correlator
fit results have a non-negligible fit-range dependence. As
we will explain in Sec. VIII I, the fit-range dependencies
are taken into account as an uncertainty of our calculation.

F. Decay constants, matrix elements, and B parameters

The B meson decay constants fp and mixing matrix
elements M are obtained by Eq. (23) through Egs. (117)
and (112). The results obtained are presented in Table VII.
The statistical error at each simulation point is less than 2%
for decay constants, while it sometimes reaches 5% for
matrix elements and B parameters.

VII. CHIRAL/CONTINUUM EXTRAPOLATION

A. NLO SU(2)HMyPT formula

Physical quantities at simulated light (¥ and d) quark
mass points are extrapolated to the physical degenerate
light-quark value. In this work, we use next-to-leading-
order SU(2) heavy-light meson chiral perturbation theory
[NLO SU(2)HMyPT], depicted in Ref. [40]. [See also
Ref. [43] for SU(2)yPT.] In SU(2)yPT, the s quark is
integrated out of the theory; effects from the s quark are
included in low-energy constants (LECs). The SU(2)yPT
formula is obtained from SU(3)yPT assuming that the
u- and d-quark masses are much smaller than the s-quark
mass. The formula does not depend on the s-quark mass
in an explicit way. The convergence of the chiral fit is
improved by using the SU(2)yPT as long as the u- and d-
quark masses are sufficiently small [43]. In Ref. [43], it was
argued that the RBC/UKQCD DWF ensemble does not
show convergence of NLO SU(2)yPT above a pion mass of
420 MeV for the light hadron masses and decay constants.
The ensembles we use in this work stay below this border.
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TABLE V. Correlator fit results [O(a) unimproved].

24cl, m;, = 0.040, m; = 0.005

Smear m, E, ALS ASS ASS y?/d.o.f. A3S y2/d.o.f. ASS y*/d.of.
HYPI 0005 0510728) 0.1291(33)e +5 0.1386(33)e + 10  0.2663(66)c + 7o 0.294(13)e + 2 05  —0.1741(61)e+2 05
0034  0.5440(13) 0.1542(18)e +5  0.1512(16)e + 10 0.2984(40)e + 15 02230(43)e+2 06  —0.135724)e+2 0.5
0.04  0.5510(12) 0.1589(17)e +5 0.1531(15)e + 10  0.3038(38)e + 14 02064037 +2 06  —0.126221)e+2 04
HYP2 0005 04656(22) 0.1124(23)e+5  0.1407(28)e + 10 0.2670(56)e + 7 12 0.509(15)e + 2 04  —03258(89)e+2 02
0.034  0.4998(11)  0.1330(13)e+5  0.1543(14)e+ 10  0.3041(33)e + 7 2.1 0.3789(64)e +2 0.4 —0.2412(40)e + 2 0.6
0.04  05073(10) 0.1370(12)e +5  0.1565(13)e + 10  0.3099(32)e + 21 03487(55)e+2 05  —02221(35)e+2 07
24c2, my, — 0.040, m;, — 0.01
Smear  m, E, ALS ASS ASS x*/d.o.f. AP x7*/d.o.f. AP x?/d.o.f.
HYPL 001 0511736) 0.1291(42)e +5 0.1368(42)e + 10  0.276(10)e + d 1.8 0.299(16)e + 2 10 —0.1850(81)e + 2 1.0
0034  0.5408(22) 0.1493(30)e +5  0.1475(27)e + 10  0.3043(69)e + 18 0.2288(73)e +2 1.1 ~0.1424(39) +2 0.5
0.04  0.5480(20) 0.1540(28)e +5  0.1494(25)e + 10  0.3095(65)e + 18 02115(63)e +2 12 —0.1322(34)e+2 06
HYP2 001  0.464530) 0.1094(30)e +5 0.1351(36)e + 10  02706(83)e +7 0.9 0.547(20)e + 2 12 —0.344(11)e + 2 0.7
0.034  0.4955(17)  0.1269(21)e+5  0.1477(23)e + 10 0.3002(54)e + 7 1.1 0.3986(94)e +2 1.0 —0.2543(62)e + 2 0.7
0.04  05033(16) 0.1309(20)e +5 0.1501(22)e + 10  03062(52)e +7 12  03648(82)e+2 10  —02333(54)e+2 07
32c1, my, — 0.030, m; — 0.004
Smear  m, E, ALS ASS ASS r2/d.o.f. A3S r*/d.o.f. ASS r*/d.o.f.
HYPI 0004 0423129) 0.753(19)e+4  0.1195(30)e + 10 0.1105(32)e + 7 0.4 0.481(44)e + 1 0.5 —0.284(21)e + 1 0.5
0.027  04519(14)  0.925(12)e+4  0.1343(16)e + 10  0.1262(21)e + 0.6 0.379(15)e + 07  —0.2264(83)e + 1 1.0
003  04557(14)  0.945(12)e +4  0.1355(15)e + 10  0.1278(20)e + 0.7 0.363(14)e + 1 07  —02170(77)e + 1 1.1
HYP2 0004 03816(28)  0.674(16)e+4  0.1198(28)e +10  0.1096(28)e + 7 10 01041(73)e+2 20 ~0.661(33)e + 1 0.1
0.027 04118(14)  0.832(10)e+4  0.1365(16)e + 10 0.1280(19)e+7 1.4 0.802(23)c + 1 22 ~0.496(15)e + 1 0.8
003 04157(14)  0.849(10)e+4  0.1379(15)e+ 10  0.1296(19)c + 1.5 0.764(21)e + 1 22 ~0.473(13)e + 1 0.9
32¢2, m;, — 0.030, m; — 0.006
Smear m, E, ALS ASS ASS r*/d.o.f. A3S r*/d.o.f. ASS r2/d.o.f.
HYPI 0006 04293(22) 0809(17)c+4  0.1280(24)e+ 10  0.1168(26)c + Y 0.480(34)c + 1 0.6 ~0297(15)e + 1 0.8
0.027  0.4530(15) 0943(13)e +4  0.1381(17)e + 10 0.1290(18)e + 0.9 0.387(12)e + 09  —02379(71)e+1 04
0.03 0.4557(15) 0.957(13)e + 4 0.1390(17)e + 10 0.1301(18)e + 1.0 0.374(11)e + 1 1.0 —0.2301(67)e + 1 0.4
HYP2 0006 03855(19) 0.708(12)e+4  0.1256(21)e +10 0.1148(22)e+7 08  0.1019(48)e +2 03 ~0.648(26)e + 1 0.2
0.027 04114(14)  0.834(11)e+4  0.1378(17)e + 10 0.1288(17)e+7 1.7 0.792(20) + 1 0.5 ~0.500(12)e + 1 0.3
0.03  04143(14)  0.846(11)e +4  0.1388(16)e + 10  0.1301(16)e + 1.7 0.764(19)e + 1 0.5 ~0.483(12)e + 1 0.3

(Table continued)
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y?/d.of

SS
As

—0.285(18)e + 1

y2/d.of.

SS
Ap

0.491(37)e + 1

y/d.of.

ASS

0.1135(25)e + 7

32¢3, mj, = 0.030, m; = 0.008
0.1258(21)e + 7

ASS

0.1232(24)e + 10

ALS

0.795(17)e + 4

0.924(15

(Continued)
Eq

my
0.008

TABLE V.
Smear

2.6
1.6
1.5
1.6
2.0
1.9

0.7

0.4296(24)
0.4529(17)

HYPI

—0.2261(95)e + 1
—0.2164(88)e + 1
—0.605(31)e + 1

1.8
1.8

0.378(18)e + 1
12

0.8
0.8

0.1337(20)e + 10

Je+ 4
4)e+4

0.027

0.361(16)e + 1

0.1275(21)e + 7

0.1349(19)e + 10

0.4567(17)  0.943(1

0.03
0.008

0.958(51)e + 1

1.8
1.8
1.8

0.1141(24)e + 7
0.1268(19)e + 7
0.1284(18)e + 7

0.1247(22)e + 10

0.717(14)e + 4
0.827(11)e + 4

0.3895(23)
0.4126(16)
0.4164(15)

HYP2

15 —0.465(17)e + 1

1.5

0.739(28)e + 1

0.1351(17)e + 10
0.1363(16)e + 10

0.027

—0.444(16)e + 1

0.704(25)e + 1

0.843(11)e + 4

0.03
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The NLO SU(2)yPT formula for the B, and B quantities
(Qp, and Qp , respectively) with a unitary d quark is
generally written as

SU(2
0, — SUR) (1 1 x Yo+ ZQ(gB*Ig,,))Z
B, — =0 + 49 (47 SU(Z))Z

f(’”%L)

SU(2)

2 SU22), 2 2
+Co miy + Co (M — My phys)

+ csg‘i(2>a2>, (126)

Qp = QY (1 + Comi, + C8) (myyy — miyg )

+ Co (s — My ) + Cond?). (127)
where
m2
£(mj) = mj, In (ﬁ) : (128)
vé
iy =280 g+ ). (129)
SuU(2
m%—IH = 2BO ( )(mh + mres)’ (130)
mg = 2B3° (my + myey). (131)
SuU(2 h
Mt ohgs = 2B} @ (P 4 my), (132)

with m;, m;,, and m, depicting unitary degenerate u and d,
sea s and valence s-quark masses, respectively. Xo, Yo,
and Z, are constants that are specific to each physical

quantity, and are given in Table VIIIL. fSU() B(S)U(z), gzyé?,
SU(2) ~SUR) ~SU2) ~SU(2 s s s s
Q() ( )’ CQ[< )$ CQh( >’ CQa< )9 QE)>’ C(Qgs C(QL’ C(Q?w and

CSL are LECs. Note that these LECs are specific to
SU(2)xPT, in which the effects of the s quark are integrated

out at the physical s-quark mass m?™*. The s-quark mass
dependence needs to be included, unless the s-quark mass
has a physical value. It can be implemented by Taylor
expansion of the LECs around the physical s-quark mass,
as shown in Egs. (126) and (127). In this work, we use two
kinds of link smearing in the static quark action. Only the
coefficients in front of a? are dependent on the smearing.
We mention here that, because the B parameters express
how the VSA holds well, its quark-mass dependence is
expected to be mild. In fact, the logarithm in the yPT
formula for Bp is suppressed for gg-p, = 0.449 [44] used
in this study, which leads to a smaller coefficient of the
logarithm term compared to that of the decay constant and
matrix element. For the SU(3)-breaking ratios, the expres-
sion up to NLO becomes
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TABLE VI. Correlator fit results [O(a) improved].

PHYSICAL REVIEW D 91, 114505 (2015)

24cl, m;, = 0.040, m; = 0.005

Smear  m, E, L ASS ASS 7*/d.o.f. A3S r*/d.of.

HYP1 0.005 0.5107(27) O. 1337(34 e+5 0.1387(32)e+ 10  0.2664(65)e + 7 1.3 0.311(13)e +2 0.4
0.034  0.5440(13) 0.1600(18)e +5  0.1512(15)e + 10  0.2984(40)e + 7 1.4 0.2372(45)e + 2 0.6
0.04  0.5510(12) 0.1650(17)e+5 0.1531(14)e+ 10  0.3037(38)e + 7 1.4 0.2198(38)e +2 0.6

HYP2 0.005 0.4654(22) 0.1183(24)e+5 0.1405(27)e+ 10  0.2668(55)e + 7 1.3 0.559(16)e + 2 0.4
0.034 0.4997(10) 0.1406(13)e +5 0.1542(14)e+ 10 0.3041(33)e +7 2.1 0.4187(68)e + 2 0.3
0.04  0.5072(10) 0.1450(13)e +5 0.1564(13)e + 10  0.3098(31)e + 7 2.2 0.3858(59)e + 2 0.3

24¢2, my, = 0.040, m; = 0.01

Smear  m, E, ALS ASS ASS 7/d.odf. AFS 2?/d.odf.
HYP1 0.01  0.5118(35) 0.1339(43)e+5 0.1371(41)e+ 10  0.276(10)e + 7 1.8 0.318(16)e + 2 0.9
0.034  0.5409(21) 0.1552(30)e +5 0.1477(27)e + 10  0.3046(68)e + 7 1.8 0.2438(76)e + 2 1.1
0.04  0.5481(19) 0.1601(28)e +5  0.1496(25)e + 10  0.3098(64)e + 7 1.8 0.2255(66)e + 2 1.1
HYP2 001 0.4647(29) 0.1155(31)e+5 0.1354(35)e + 10  0.2710(81)e + 7 0.9 0.600(21)e + 2 1.1
0.034  0.4956(17) 0.1344(21)e+5 0.1479(22)e +- 10  0.3003(53)e + 7 1.1 0.439(10)e + 2 0.9
0.04  0.5034(15) 0.1388(21)e+5 0.1503(21)e + 10  0.3063(50)e + 7 1.1 0.4028(90)e + 2 0.9
32¢1, my, — 0.030, m; — 0.004
Smear  m, Ey ALS A5S ASS x*/dodf. AFS x*/dolf.
HYP1I 0.004 0.4232(28) 0.775(19)e + 0.1197(29)e +10  0.1107(31)e +7 0.4 0.505(45)e + 1 0.5
0.027  0.4519(14)  0.953(12)e +4 0.1342(16)e + 10 0.1263(21)e + 7 0.6 0.399(16)e + 1 0.9
0.03  0.4557(14) 0.973(12)e +4  0.1355(15)e +10  0.1279(21)e +7 0.7 0.382(14)e + 1 1.0
HYP2 0.004 0.3818(28) 0.704(17)e+4  0.1200(27)e + 10  0.1098(28)e + 7 1.0 0.1131(76)e + 2 2.0
0.027 0.4116(14)  0.869(10)e +4  0.1363(15)e +10  0.1278(19)e + 7 1.4 0.867(23)e + 1 23
0.03  0.4155(13) 0.887(10)e+4  0.1377(15)e+ 10  0.1295(19)e + 7 1.4 0.826(21)e + 1 23
32¢2, my, — 0.030, m; — 0.006
Smear  m, E, ALS ASS ASS 7*/d.o.f. A3S r*/d.of.
HYPL 0.006 0.4291(21) 0.830(17)e+4  0.1277(24)e + 10  0.1166(26)e + 7 0.8 0.506(35)e + 1 0.7
0.027  0.4528(15) 0.969(14)e +4  0.1379(17)e +10  0.1288(18)e + 7 0.9 0.409(13)e + 1 1.2
0.03  0.4556(14) 0.984(13)e+4  0.1387(16)e + 10  0.1299(17)e + 7 1.0 0.396(12)e + 1 1.3
HYP2 0.006 0.3853(18) 0.737(13)e+4  0.1253(20)e + 10  0.1147(22)e +7 0.8 0.1114(50)e + 2 04
0.027 0.4113(14) 0.871(12)e+4  0.1376(16)e + 10  0.1288(16)e + 7 1.8 0.860(22)e + 1 0.5
0.03  0.4142(14) 0.884(12)e+4  0.1386(16)e + 10  0.1301(16)e + 7 1.8 0.830(20)e + 1 0.5
32¢3, my, — 0.030, m; — 0.008
Smear m, E, ALS ASS ASS 2*/d.of. ASS 2*/d.of
HYPl 0.008 0.4296(23) 0.818(17)e+4  0.1233(24)e + 10  0.1135(25)e + 7 0.7 0.513(37)e + 1 1.9
0.027  0.4529(17)  0.952(15)e +4  0.1338(19)e + 10  0.1259(21)e + 7 0.8 0.399(18)e + 1 1.6
0.03  0.4567(16) 0.972(15)e+4  0.1350(19)e + 10  0.1275(20)e + 7 0.8 0.381(17)e + 1 1.6
HYP2 0.008 0.3895(22) 0.748(14)e+4  0.1247(21)e+ 10  0.1142(23)e +7 1.7 0.1035(53)e 4+ 2 1.3
0.027  0.4127(15)  0.865(12)e +4  0.1351(16)e + 10  0.1269(19)e + 7 1.7 0.804(29)e + 1 1.5
0.03  0.4164(15) 0.882(11)e+4  0.1364(16)e + 10 0.1285(18)e + 7 1.7 0.766(27)e + 1 1.5
0, o (1 Yo+ Zol gzylgz))z b B. Details of the chiral fitting
5 — — z m
s, 0 S (4gfSU@))2 1) For the chiral fit, we use the values of fSU® and BJ""?

~SU(2 ~SU(2
+ ng( Im?, + CQh( N(myy - M phys)

s ~SU(2
+ C<Ql(m§5 - mlz-IH,phys) + CQa( )a2> : (133)

Note that these expressions do not give unity even at
the m; = m; point because SU(3) flavor symmetry is lost,
and the SU(2)yPT formula can be applied only for the
region m; <K my.

from Ref. [26] and that of 93* Y2 from Ref. [44], which are

summarized in Table IX.

We carry out combined fits using HYP1 and HYP2 link-
smearing data assuming that terms unrelated to the lattice
spacing are common among the smearings. Their correla-
tion is taken into account. As mentioned in the previous
subsection, we introduce an s-quark mass dependence up to
the linear term. To fully track the sea s-quark dependence,
however, at least three independent data in the (my,a)
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TABLE VII.

PHYSICAL REVIEW D 91, 114505 (2015)

Decay constants, matrix elements, and B parameters in lattice units at the simulation points. ®p , ®p /Pp, My,

(Mg /Mp)'/?, By , and (B /Bg)!"/? are interpolated to the physical s quark mass. Matching factors are multiplied.

HYPI, O(a) unimproved

Vol m; q)B @B‘ @B\/(I)B MB MB.\- (MB‘/MB)I/Z BB BB\ (BB‘/BB)I/Z
24c  0.005 0.2613(38) 0.2998(21) 1.147(12) 0.1580(86) 0.2098(56)  1.152(22)  0.867(38) 0.875(17)  1.004(15)
24c 0.0l 0.2630(48) 0.2940(33) 1.118(11)  0.158(10) 0.1986(74) 1.118(20)  0.861(42) 0.861(23)  1.000(15)
32¢ 0.004 0.1611(22) 0.1872(15) 1.162(12) 0.568(49) 0.788(29) 1.178(42)  0.820(67) 0.843(28) 1.014(34)
32c 0.006 0.1674(20) 0.1880(16) 1.1230(71) 0.625(44)  0.808(30) 1.136(28)  0.837(56) 0.857(26) 1.012(24)
32¢ 0.008 0.1676(20) 0.1873(17) 1.1179(73) 0.658(49)  0.806(38) 1.107(25)  0.879(59) 0.861(35)  0.990(19)
HYP2, O(a) unimproved
Vol my Dy Dy Dy /Pp My Mp (MB‘\ /MB)I/2 Bp B, (BB,‘ /38)1/2
24c 0.005 0.2327(27) 0.2638(15) 1.134(10) 0.1193(49) 0.1555(34) 1.142(17)  0.825(26) 0.837(14) 1.007(11)
24c  0.01 0.2312(35) 0.2573(23) 1.113(10) 0.1237(57) 0.1521(44) 1.109(14)  0.867(30) 0.861(18)  0.996(10)
32c 0.004 0.1483(20) 0.1718(12) 1.158(11) 0.491(33) 0.670(23) 1.168(32)  0.837(51) 0.851(24)  1.008(25)
32c 0.006 0.1522(15) 0.1713(14) 1.1256(69) 0.505(24)  0.652(20) 1.136(18)  0.817(35) 0.833(20)  1.010(15)
32¢ 0.008 0.1547(18) 0.1716(14) 1.1093(72) 0.525(25) 0.637(21) 1.102(16)  0.822(35) 0.811(23)  0.993(11)
HYPI, O(a) improved
Vol m, ©p 5, ©p,/®p My Mg, (Mg /Mp)'> By Bs,  (By /Bp)'"?
24c 0.005 0.2706(38) 0.3112(21) 1.150(12) 0.1661(89) 0.2217(58) 1.156(22)  0.850(36) 0.858(17)  1.005(15)
24c  0.01 0.2726(49) 0.3053(34) 1.120(11) 0.167(10) 0.2105(77) 1.120(20)  0.846(40) 0.846(22)  1.000(14)
32c 0.004 0.1658(22) 0.1928(15) 1.163(12)  0.593(50)  0.824(30) 1.178(41)  0.809(65) 0.831(28) 1.013(33)
32¢ 0.006 0.1720(20) 0.1935(17) 1.1252(71) 0.654(44) 0.847(31) 1.138(28)  0.829(54) 0.848(25) 1.011(23)
32¢ 0.008 0.1724(21) 0.1930(17) 1.1196(72) 0.686(49)  0.845(39) 1.11024)  0.865(57) 0.850(34)  0.991(18)
HYP2, O(a) improved
Vol my Dy P, Dp /[ Pp My Mp, (Mg /Mp)'/? Bp Bp, (Bg,/Bp)'/?
24c 0.005 0.2450(28) 0.2791(15) 1.139(10) 0.1295(52) 0.1699(37) 1.145(17)  0.809(25) 0.818(13)  1.006(10)
24c  0.01 0.2439(36) 0.2724(24) 1.1166(98) 0.1348(61) 0.1664(47) 1.L111(13)  0.849(28) 0.840(17) 0.9950(96)
32¢ 0.004 0.1547(20) 0.1795(13) 1.160(11)  0.530(34) 0.717(24) 1.163(31)  0.830(48) 0.834(23)  1.002(23)
32¢ 0.006 0.1585(16) 0.1790(15) 1.1292(69) 0.545(25) 0.701(21) 1.134(17)  0.813(33) 0.820(19)  1.004(14)
32¢ 0.008 0.1614(18) 0.1796(15) 1.1124(72) 0.562(27)  0.687(23) 1.106(16)  0.809(34) 0.799(22)  0.994(11)

parameter space are required. Our simulation setting only
has one sea s-quark mass parameter for each lattice spacing
and the parameter is not tuned to the physical one, and
therefore the data cannot be fitted using the formulas (126),
(127), and (133). Nevertheless, we use these formulas
assuming that the sea s-quark mass parameter is on the
physical point, which causes the sea s-quark terms to
vanish. Later on we estimate the uncertainty from this
inconsistency using partially quenched SU(3)yPT. On the
other hand, we have two valence s-quark mass data points.
In our analysis we first linearly interpolate the data to the

physical s quark mass point using the two valence data
points, and then the fit functions are applied by setting

In order to take into account the ambiguity of the chiral
fit function ansatz, we also use a linear fit function form,
G(my.a) = Go(1 + Cimi, + Ca®),  (134)

for B, quantities and SU(3)-breaking ratios, which has the
same form as that for the B, sector in the SU(2)yPT

TABLE IX. Low-energy constants used in this work.

TABLE VIII. Constants Xg, Yo, and Zg in Egs. (126) and

(133). LECs NLO SU(2)yPT  NLO SU(2)yPT(FV)
Q Xo Yo Zo  BYY [Gev] [26] 4.12(7) 4.03(7)

o =3/4 1 3 U [Gev] [20] 0.110(2) 0.112(2)

M -1 2 3 g (44 0.449(47) 410 (19) 555

B ~1/2 1 —3 A, [GeV] 1.0
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TABLE X. Chiral fit results in lattice units using the SU(2)yPT formula. The values show physical-point and continuum-limit results.

Matching factors are multiplied.

HYPI HYP2 Combined
O(a)-unimp O(a)-imp O(a)-unimp O(a)-imp O(a)-unimp O(a)-imp
Value y?/d.o.f. Value y%/do.f. Value y?/do.f. Value y?/do.f. Value y2/do.f. Value y%/d.o.f.
Dy 0.1437(50) 078 0.1460(50) 0.67 0.1400(41) 1.17 0.1436(42) 1.06 0.1392(41) 2.00 0.1428(42) 1.51
Dy, 0.1766(37) 0.77 0.1795(38) 0.75 0.1725(30) 1.27 0.1771(31) 136 0.1726(31) 2.18 0.1772(32) 1.30
Oy /Dy 1.228(23) 0.74 1.229(22) 0.66 1.236(20) 0.33  1.238(20) 0.22  1.233(20) 0.74 1.23520) 0.69
My 0.432091) 037 0.443(93) 034 0.410(50) 0.03 0.435(52) 0.01 0.402(50) 0.36 0.430(54) 0.33
Mg, 0.686(64) 0.68 0.704(67) 0.70  0.653(40) 0.09 0.683(43) 0.04 0.636(39) 1.03 0.669(41) 0.86
My My 1261(62) 007 1261(61) 005 1262(42) 019 125541) 006 1262(43) 008 1255(42) 0.04
By 0.79(11) 020  0.79(11)  0.17 0.753(74) 034 0.763(70) 0.42  0.757(78) 0.57 0.766(75) 0.62
Bg, 0.833(53) 0.20 0.829(52) 0.22 0.807(40) 1.23  0.802(38) 1.09 0.804(41) 1.56 0.802(39) 1.45
/Bp [Bp 1.019(45) 0.19  1.020(44) 0.15 1.025(30) 0.13 1.018(29) 0.05 1.023(31) 0.09 1.016(29) 0.09

framework. We also investigate the uncertainty from chiral
fits by eliminating the heaviest quark mass data in both the
24c and 32c ensembles.

C. Scaling check and O(a) improvement

We present fit results using the SU(2)yPT formula in
Table X. We also show the chiral fit using the SU(2)yPT
formula in Figs. 1 and 2, in which both O(a)-unimproved
and -improved results are presented. The features of the
data are as follows.

(i) The data shows that HYP1 smearing gives larger
scaling violations than HYP2.

HYPI and HYP2 results are almost consistent
with each other in the continuum limit. This con-
sistency is seen even in the O(a)-unimproved case
within large statistical errors. While the O(a)-
improved data shows slightly better consistency
than the unimproved case, we cannot see any clear

(i)

O(a)-unimproved O(a)-improved

O(a)-unimproved

effectiveness of the O(a)-improvement with the
current statistics.

The O(a) improvement slightly pushes data up for
decay constants and matrix elements at each simu-
lation point.

Being a ratio, the scaling violation for § and f /f5
is tiny. HYPl and HYP2 O(a)-improved and
-unimproved results are consistent at each simula-
tion point.

When O(a) improvement is successfully accomplished
2

(iii)

@iv)

and a” scaling is used in the continuum extrapolation
[assuming that the O(a2a) and O(a®) contributions are
small], HYP1 and HYP2 results must give the same value
in the continuum limit, and our data is actually consistent
with this observation. Therefore we use a combined fit of

HYP1 and HYP2 assuming that the chiral fit parameter
for each smearing is different only for the coefficients of
the @’ term.

O(a)-improved

O(a)-improved

O(a)-unimproved

fy MeV]
f5 MeV] o
s, [MeV]

fy, MeV]

— cont, HYP1 [ — cont, HYP1 [ t — cont, HYP1 s — cont, HYP1 4 r — cont, HYP1 [{ r — cont, HYP1 [{
- cont, HYP2 - cont, HYP2 - cont, HYP2 - cont, HYP2 - cont, HYP2 - cont, HYP2
200 ® 24c HYPi1[| 2001~ ® 24c, HYP1 (] L ® 24c, HYP1[] L ® 24c, HYP1 || @ 24c, HYP1 @ 24c, HYP1
W 24c, HYP2 W 24c, HYP2 W 24c, HYP2 W 24c, HYP2 ~ W 24c, HYP2 1 W 24c, HYP2
r O 32c, HYP1[ r O 32c, HYP1[ F O 32¢, HYP1 | = O 32c, HYP1{ O 32¢, HYP1 O  32¢, HYP1
O 32c, HYP2 O 32c, HYP2 O 32c, HYP2 O 32c, HYP2 O 32c, HYP2 O 32c, HYP2
e — —— —— e —— —— ——
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
[MeV] m+m_ . [MeV] m4+m, . [MeV] m+m . [MeV] mqm, . [MeV] mqm, . [MeV]

m\+mres res res

res res res

FIG. 1 (color online). The SU(2)yPT fit of f, f5 , and fp /fp comparing O(a)-unimproved and -improved data. HYP1 and HYP2
data are fit independently. Thick lines with bands represent the continuum limit.

114505-17



AOKI et al. PHYSICAL REVIEW D 91, 114505 (2015)
O(a)-unimproved O(a)-improved O(a)-unimproved O(a)-improved O(a)-unimproved O(a)-improved

\ \ \ \ \ \
6 - e -4 ek -

5 =4 5 4 sk é“(}\@

res

= = *;
Sy B S L ==
[ - 7 [ @
o % o S
= = H 15
s s <
3 = —
- cont, HYP1 — cont, HYP1 |{ b — cont, HYP1 | - — cont, HYP1 | - cont, HYP1 - cont, HYP1
— cont, HYP2 — cont, HYP2 — cont, HYP2 — cont, HYP2 [ — cont, HYP2 [| [ — cont, HYP2 ||
oL ® 24c, HYP1{ ol ® 24c, HYP1{ ol ® 24c, HYP1 ol ® 24c, HYP1 [ ® 24c, HYP1 ® 24c, HYP1
H  24c, HYP2 H  24c, HYP2 H  24c, HYP2 B 24c, HYP2 1= H  24c, HYP2 || 1= H  24c, HYP2 ||
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FIG. 2 (color online). The SU(2)xPT fit of My, Mg ,and \/Mp /My comparing O(a)-unimproved and -improved data. HYP1 and
HYP2 data are fit independently. Thick lines with bands represent the continuum limit.

D. Fit results and criteria for final results Table XI, is taken. We then take half of the full
difference between the SU(2)yPT and linear results
as an uncertainty from the chiral fit function ansatz.

(ii) For B, quantities, the SU(2)yPT fit (linear fit) results
are taken as central values. To investigate the chiral
fit form ambiguity, data in the region m, >
350 MeV are removed and we see its effect on

In this work, O(a)-improved data are taken for the final
results. Hereafter, numerical data and figures indicate the
O(a)-improved case. We present chiral fit results in Figs. 3,
4, and 5. Correlations between the two kinds of link
smearing in the static action is included in the fitting.

x*/d.of’s and p values in the fits are presented in the the extrapolated value. We take the difference
figures. the y?/d.o.f.’s in each fit are all at an acceptable between the full data and cut data—where the
level, and thus it is hard to exclude any of the fit using the heaviest quark mass points at each lattice spacing
ansatz. We thus take the following criteria for the chiral and are removed (“SU(2)yPT cut” in Figs. 3, 4, and 5)—
continuum extrapolations. as a chirgl fit aml?igUitY-

(i) For B, quantities and SU(3)-breaking ratios, an Combined with the ratio of the decay constants, & can be

average of the results from SU(2)yPT and the linear ~ obtained from Eq. (20). While the ratio of the B parameters
fit, whose physical point values are presented in  is well determined, the current data for the decay constants

SU(2)xPT Linear SU(2)xPT SU(2)xPT cut SU(2)xPT Linear
290 J I T I ) I T I 330 J I T I ) I T I 1.3 J I T I ) I T I
I x/d.o.f.=1.51 A c¢/d.o.f.=1.63 T I x/d.o.f.=1.30 1 c¢/d.of.=23 b x /d.o.f. =0.61 c¢/d.o.f.=0.82
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FIG. 3 (color online). ~ Chiral fit of fg, f , and f /fp using the SU(2)yPT and linear formulas. “cut” indicates that the heaviest quark
mass points at each lattice spacing were removed in the fitting.
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FIG. 4 (color online).  Chiral fit of Mp, My, and (Mp /Mp)'/? using the SU(2)yPT and linear formulas. “cut” indicates that the
heaviest quark mass points at each lattice spacing were removed in the fitting.

has a large uncertainty from the chiral extrapolation, which 5 5 m?,
also leads to a poor determination of £ from Eq. (20) and £(mi,) = mi, In —A)z( + 61 (mp L)), (135)

does not provide any gain. We hence simply use Eq. (3) to

calculate £ in this work. K\ (|rlm L)

7]

, (136)
E. Finite-volume effect
Our lattice has a modest physical volume of around

2.75 fm and the lowest m,L is about 4; thus, we may
estimate the FV uncertainty using FV NLOyPT. The FV

where K, are modified Bessel functions of the second
kind. For the numerical implementation of Eq. (136),

correction can be included in the yPT formula by replacing
the chiral logarithms (128) with [45,46]

we use the multiplicities given in Refs. [43,45]. With
SU(2)yPT for the chiral extrapolation, we cannot

SU(2)xPT Linear SU(2)xPT SU(2)xPT cut SU(2)xPT Linear
T — T — — ——
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FIG. 5 (color online). ~ Chiral fit of By, B , and (Bp /B)"/? using the SU(2)PT and linear formulas. “cut” indicates that the heaviest
quark mass points at each lattice spacing were removed in the fitting.
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TABLE XI. Chiral fit results in lattice units using the linear fit function. The values show physical-point and continuum-limit results.
Matching factors are multiplied.
HYPI HYP2 Combined
O(a)-unimp O(a)-imp O(a)-unimp O(a)-imp O(a)-unimp O(a)-imp
Value  y%/d.of. Value y?/d.of. Value y?/d.o.f. Value y?/d.o.f. Value y?/do.f. Value y?/d.o.f.

by 0.1500(53) 1.17  0.1523(54) 1.03  0.1463(44) 1.63  0.1501(46) 1.48 0.1455(44) 2.14 0.1492(45) 1.63
Dy 0.1766(37) 077 0.1795(38) 0.75 0.172530) 127 0.1771(31) 1.36  0.1726(31) 2.18 0.1772(32) 1.30
Oy /Dy 1.164(22) 1.37 1.165(21) 1.27 1.172(20) 1.01 1.174(19) 0.82 1.169(20) 1.00 1.171(19) 0.94
My 0.47(10) 044  048(10) 041  0450(55) 0.03 0477(58) 0.01  0.442(56) 036  0472(60) 032
My, 0.686(64) 0.68 0.704(67)  0.70  0.653(40) 0.09 0.683(43) 0.04  0.636(39) 1.03 0.669(41) 0.86
VMg [Mpg 1.186(58) 0.16 1.187(57) 0.13 1.186(40) 0.29 1.180(38) 0.12 1.187(40) 0.12 1.180(39) 0.06
Bpg 0.80(11) 0.20 0.80(11) 0.17 0.760(75) 0.33 0.769(71) 0.41 0.763(79) 0.57 0.773(75) 0.61
By, 0.833(53) 020  0.829(52) 022  0.807(40) 1.23  0.802(38)  1.09  0.804(41) 156  0.802(39)  1.45

/By /Bp 1.015(45) 0.19 1.015(44) 0.15 1.020(30) 0.13 1.013(28) 0.05 1.019(30) 0.09 1.012(29) 0.09
evaluate the FV effect for the B, sector in this pro- B. gpB:

cedure. The effect is, however, expected to be quite
small in this sector, and we estimate that this uncertainty
is negligible. In the simulated quark-mass region, the
FV correction slightly pushes the data up for By,
quantities, and hence it pushed them down for the
SU(3)-breaking ratios, fp /fp and &.

VIII. SYSTEMATIC ERRORS

In this section we clarify the systematic errors we take
into account. A summary of the systematic errors is shown
in Table XII and also in Fig. 6.

A. Chiral extrapolation

As described in Sec. VII, we use the SU(2)yPT formula
for the chiral and continuum extrapolations. The linear fit
function ansatz cannot be excluded with the current
statistics, and thus we take their average. The method
for estimating the associated systematic errors has been
described in detail in Sec. VII.

In the chiral fit, we use gp-p, = 0.449(47)(19), where
the first uncertainty is statistical and the second is system-
atic [44]. This value was obtained using the 2 4 1-flavor
dynamical DWF configurations, which is the same as that
used in this simulation. The systematic errors were fully
evaluated in Ref. [44], and thus we quote this value as a
reliable one. We use 0.449 as a central value and change it
by £0.051 in the chiral fit for the uncertainty of this
coupling.

C. Discretization

The static heavy- and light-quark system has O(a) lattice
discretization errors even if chiral fermions are employed
for the light quarks, in which case the O(a) discretization
errors start with O(a,a). In this simulation, O(a) improve-
ment is made using one-loop perturbation theory [30].
Thus, the remaining O(a) lattice artifact is supposed to be
O(a2a) at each simulated lattice spacing a. For the lattice
artifact, the coupling should be the lattice one, i.e., defined

TABLE XII. Error budget [%] for final quantities.
B [B, fB.//B fs\/Bg fs /By ¢ By By Bg /Bg

Statistics 2.99 1.81 1.65 6.34 3.12 3.36 9.80 4.93 5.80
Chiral/continuum extrapolation 3.54 1.98 2.66 2.55 2.13 3.08 14.84 7.15 3.66
Finite-volume effect 0.82 0.0 1.00 0.76 0.00 1.07 0.15 0.0 0.16
Discretization 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2
One-loop renormalization 6.0 6.0 0.0 6.0 6.0 1.2 6.0 6.0 1.2
9B Br 0.24 0.00 0.35 0.14 0.00 0.25 0.20 0.00 0.22
Scale 1.82 1.85 0.04 1.84 1.86 0.05 0.04 0.05 0.02
Physical quark mass 0.05 0.01 0.06 0.06 0.19 0.20 0.03 0.00 0.02
Off-physical sea s-quark mass 0.84 0.69 0.79 0.20 0.39 0.91 0.28 0.19 0.42
Fit range 0.44 2.31 0.26 0.10 1.74 0.58 3.14 0.00 1.54
Total systematic error 7.38 7.09 3.00 6.90 6.94 3.66 16.34 9.39 4.18
Total error (incl. statistical) 7.96 7.32 3.42 9.37 7.61 4.97 19.05 10.61 7.15
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FIG. 6 (color online). Error budget for final quantities. The
height of the bars denotes the total error, while the relative size of
the colors is determined by the squared errors.

by Eq. (89), whose actual value is shown in Table III.
Conservatively assuming Agcp ~ 500 MeV, the order of
magnitude for each discretization error is summarized in
Table XIII. While without one-loop perturbative O(a)
improvement the magnitude of the O(a,a) term is more
than half of the O(a?) term, the improvement reduces it
substantially. The uncertainties from O(a2a) are ~0.9%
(24¢) and ~0.6% (32c). The uncertainty from the O(a?)
contribution, which starts at the one-loop level, is even
smaller than that. Thus we take 1% as an uncertainty from
the remaining O(a) and O(a?) contributions in the con-
tinuum. For the SU(3)-breaking ratios, the lattice artifact
comes with a factor of (m; —m,)/Aqcp ~ 0.2, which leads
to a reduced uncertainty down of 0.2%.

D. Renormalization

In this work, renormalization is carried out in the one-
loop perturbation framework. We use power counting to
estimate the higher-order uncertainty of the perturbation.
We use a two-step matching procedure: first, full QCD
theory and HQET are matched in the continuum at a scale
u = my,; second, continuum and lattice HQET are matched
at the scale y = a~'. The values of @, in these matchings
are presented in Table XIII. Assuming that the coefficients
of the power expansion are one, the counting estimation

TABLE XIII. Power counting for perturbation and discretiza-
tion error estimations. We here define & = aAqcp.
a;(my) 0.2261
(ay(my))? 0.0511

24c 32¢c
atAT 0.1769 0.1683
(abAT)? 0.0313 0.0283
a 0.29 0.22
a? 0.084 0.048
a’ 0.024 0.011
AT 0.051 0.037
(a-ATY2a 0.0091 0.0062
abAT 3 0.0042 0.0019
a%: akATa: ot ATa3 1:0.61:0.05 1:0.77:0.04
a%: (odAAT)2a: otATa3 1:0.11:0.05 1:0.13:0.04
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shows a two-loop uncertainty of 5.1% in the first matching
and of 3.1% in the second. We add them in quadrature,
leading to 6%. For the ratio of the decay constants, the
renormalization factor is completely canceled out, and
thus the perturbation ambiguity is negligible. For ¢,
however, the nonvanishing contribution Z,/Z; remains
in the ratio, which causes an uncertainty. Nevertheless,
because this uncertainty is suppressed by a factor of
(mg —my)/Agep ~ 0.2, the one-loop ambiguity is reduced
to 1.2%. We note that the one-loop perturbation ambiguity
also exists in the O(a) improvement coefficients, which is
counted as the discretization error (as discussed the
previous subsection).

E. Scale

As shown in Table I, the lattice scales used in this study
have a 1%-level uncertainty. We investigate the systematic
error from this by varying the value of the lattice spacing
within the uncertainty. While the matching factors and
O(a)-improved coefficients need to be implicitly varied for
this search, the effect is negligible. Thus we only take the
error into account when the lattice units are converted into
physical units and the chiral/continuum extrapolations are
carried out.

F. Light-quark mass

Light-quark masses at the physical point also have a
3%-level uncertainty, as shown in Table IV. This affects
the values of the physical observables. We check the effects
by varying the physical quark-mass values within the
uncertainty.

G. Of-physical sea s-quark mass

Our gluon ensemble has only one dynamical s-quark
mass parameter, which is slightly off from the physical
s-quark mass. In spite of this, we use the SU(2)yPT fit
functions assuming that the sea s quark is at the physical
mass. The uncertainty from this inconsistency must be
investigated. To deal with it, we make an estimation using
SU(3)yPT as a model. We use partially quenched
SU(3)HMyPT [47,48], whose explicit formulas are also
presented in Ref. [40]. The ambiguity from the off-physical
s-quark mass effect is investigated by taking the difference
between the correct treatment of our simulation setup and
the fake treatment where the s-quark mass is assumed to be
at the physical point.

H. Finite volume

The FV effect is estimated using FVyPT, as mentioned in
Sec. VII. The uncertainty from the FV effect is estimated
from the difference between SU(2)yPT and FV SU(2)yPT.
The effect for B, quantities is expected to be significantly
small, and thus it is neglected in our analysis.
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I. Fit-range dependence

As mentioned in Sec. VIE, our correlator fit results
have a non-negligible fit-range dependence. Although
this uncertainty is statistical rather than systematic, we
count it as a systematic error here. To take into account
the uncertainty of the fit range choices, we shift the
minimal value of ¢ in the fit range toward a larger value
by 2 for the 2PT functions and shorten the range by 2
for the 3PT functions. In Appendix B, the physical
quantities with the original and shifted fit ranges for
each simulation parameter are shown in Figs. 16, 17,
and 18. We find that non-negligible fit range depend-
encies remain in some cases; the cases in which the
difference between the fit range choices is beyond lo
statistical error are listed in the caption of each figure.
We define the uncertainty of the fit range dependencies
as follows.

(1) When physical quantities at some quark-mass
parameter move beyond lo statistical error by
changing the fit range, the data at the mass parameter
for both HYP1 and HYP2 are replaced to see the
effect of the move.

(2) Chiral/continuum fits are performed to investigate
the shift caused by the replacement of the data.

(3) We repeat this procedure for each data point that has
a large shift beyond 1o statistical error by changing
the fit range.

(4) The final uncertainty is obtained by adding each
shift of the chiral/continuum extrapolated value in
quadrature.

The resulting uncertainty is taken as a systematic error
in our calculation.

IX. CONCLUSIONS
A. Results of physical quantities

We present the final results for B meson quantities in the
static limit of the b quark:

(/5795 = 218.8(6.5) 4 (16.1), MeV, (137
[£5,]90¢ = 263.5(4.8) 3, (18.7) s MeV,  (138)
o/ Fal = 1193(20),(36)ee  (139)
| static
{ B\/BB} = 240(15)Stm(17)Sys MeV, (140)
static
|:fBl‘ \/ BB.‘:| = 290(09)stat(20)sys MCV, (141)
[é]stalic = 1'208(41)stat(44)sys’ (142)
[BB]s[atic = 1'17(11)stat(19)sys’ (143)
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[BBx]static = 1'22(06)stat(1 1) (144)

sys?

(B, /By = 1.028(60),,,(43) (145)

sys?
where the first errors are statistical and the second are
systematic. Note that the O(1/m,;) uncertainty, which is
mentioned in the next subsection, is not included in the
systematic errors above. We also show final results includ-
ing the O(1/m,) uncertainty in the systematic error:

[ =218.8(6.5),,(30.8),,, MeV, (146)
[, =263.5(4.8),(36.7),,, MeV, (147)
f5./fp = 1.193(20),,(44) . (148)
Fo/Bs = 240(15), (33),,, MeV,  (149)
Fa,\/Bs, = 290(09),(40),y, MeV.  (150)
£ =1.208(41)31, (52) s (151)

Bp = 1.17(11) 3, (24),s. (152)

By, = 1.22(06),,,(19)ys. (153)

By /By = 1.028(60),,(49),s. (154)

We present here the constraint on the ratio of the CKM
matrix element (2) obtained through Eq. (12):

‘ Via

= 0.206(13), (155)

ts

where the statistical and systematic errors including the
O(1/my,) uncertainty are all added in quadrature.

B. Comparison with other approaches
and the 1/m; ambiguity

Since we use the static approximation for the b quark,
there exists an O(Aqcp/my) uncertainty for the physical
quantities. Here, we take the PDG value for the b-quark
mass in the MS scheme, m,, = 4.18(03) GeV [15], and we
assume Agep = 0.5 GeV. The uncertainty from the static
approximation becomes 12%. For the SU(3)-breaking
ratios, however, there would be a suppression factor
coming from the SU(3) light flavor symmetry, which
leads to
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FIG. 7 (color online). Comparison of fg, f5 , and fg /fp with
(ALPHA 2014), [51] (HPQCD 2013), [52] (ETM 2013A), [53,54]

other works. The data is cited from Refs. [50] (ETM 2011), [12]
(HPQCD 2012A, HPQCD 2012B), [55] (FNAL/MILC 2011), [56]

(RBC/UKQCD 2014), [14] (ETM 2013B), and [40] (RBC/UKQCD 2010). The values of fz and f in ETM 2011 are obtained from ®5
and ®p divided by /mjy and |/my_, respectively. Errors for the static-limit results do not contain the 1/m,; uncertainty.

Ms M 590,
Agcp

Aqcp
my

X

(156)

We show comparisons with other works for our obtained
quantities in Figs. 7, 8, and 9. (See also the review of lattice
results by the Flavor Lattice Averaging Group (FLAG)
[49].) Our results have a ~10% larger value for the decay
constants fp and fp compared to other works at the
physical b-quark mass point, which would be plausibly
understood as coming from the static approximation
ambiguity. The ETM Collaboration’s results in the static
limit in Ref. [50] also show this tendency. However, the

ALPHA Collaboration’s results for f and f in the static
limit indicate a much smaller deviation from those at the
physical b-quark mass point [12]. We cannot determine the
reason for this difference compared to our results, because
our current uncertainty is still large. On the other hand,
there is no clear difference from the physical b-quark point

in f3\/Bg, fB, IABBJ, Bp, and BBS, because of the large

error. For the SU(3)-breaking ratios, a significant deviation
from others is not seen since the static approximation
uncertainty is largely reduced by the SU(3) light flavor
symmetry factor, as described in Eq. (156).
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FIG. 8 (color online). Comparison of fz+/ Bp. f B /BB‘_, and & with other works. The data is cited from Refs. [57] (HPQCD 2009),
[58] (ENAL/MILC 2011), [59] (FNAL/MILC 2012), [14] (ETM 2013), and [40] (RBC/UKQCD 2010). The RGI values of f+/ By and

fBSQ/lA%BV in FNAL/MILC 2011 are obtained by converting fg\/Bp and fp \/Bg at u=m, in Ref. [58] with the two-loop
multiplicative factor 1.516. Errors for the static-limit results do not contain the 1/m, uncertainty.
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FIG. 9 (color online). Comparison of B B> B ,» and B /Bp with other works. The data is cited from Refs. [57] (HPQCD 2009), [14]
(ETM 2013), and [59] (FNAL/MILC 2012). Errors for the static-limit results do not contain the 1/m, uncertainty.
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FIG. 10 (color online). Comparison of A =¢&— fp /fp with
other works. The data is cited from Refs. [57] (HPQCD 2009),
[59] (FNAL/MILC 2012), and [14] (ETM 2013). In calculating
A, correlations between & and f / f are not taken into account.

Finally, it would be interesting to see a correspondence
between & and fg /fp. In this study we obtained the
difference

fo
A—E— s
o7

= 0.015(73), (157)

B

where the correlation between & and f /f is omitted. As
mentioned in Sec. Il A, a naive factorization suggests that
¢ is close to fp /fg, and our result supports this observa-
tion in the static limit of the b quark. In Fig. 10 we show A
from other works together with our results. No discrepancy
between & and f /f5 beyond 1o error has yet been seen.

C. Further improvements for the next step

Although the obtained results in this work are encour-
aging, there exist limitations due to insufficient statistics
and various systematic errors. As the current error budget in
Fig. 6 shows, dominant uncertainties are the statistical
error, chiral extrapolation, and the uncertainty from
renormalization. To overcome the current situation, we
present the following possible options.

All-mode averaging (AMA): Currently, our results have a

large statistical error and the chiral extrapolation is

suffering from a lack of statistics. Gluon link smearings
in the static action help to improve signal qualities to
some extent; however, the statistical error is not small
enough. The AMA technique [60] provides a substantial
computational cost reduction, which leads to improved
statistics. In the AMA, a bunch of source points are used

PHYSICAL REVIEW D 91, 114505 (2015)

to increase statistics while keeping the computational
cost small by using a conjugate gradient (CG) solver
with relaxed convergence conditions.
Physical light-quark mass point simulation: The lightest
pion mass in this paper is ~290 [MeV], which leaves a
large uncertainty from the chiral extrapolation. This
error would be significantly reduced by a physical point
simulation, where the simulated pion mass is ~135
[MeV]. The 2 + 1-flavor dynamical ensembles are being
generated by the RBC and UKQCD collaborations using
Mobius DWF [61], which keeps almost the same lattice
spacings as those in this work but with a doubled
physical volume [62]. It would increase the computa-
tional cost by a large amount, and hence the AMA
technique mentioned above is crucial.
Nonperturbative renormalization: While the one-loop
renormalization uncertainty is 0% or quite small for the
SU(3)-breaking ratios, it is estimated to be at the most
6% for non-ratio quantities. Nonperturbative renormal-
ization is, hence, required for the non-ratio quantities in
order to reduce the large uncertainty. The renormaliza-
tion would be accomplished using the momentum-
subtraction (RI/MOM) scheme [63,64], in which an
additional renormalization condition is required to
manage the 1/a power divergence.

These programs are nontrivial but promising directions.
Some of them are currently on-going [65] and we plan to
present more definite results on this project in the near
future.
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APPENDIX A: EFFECTIVE MASS AND CORRELATOR PLOTS

Figures 11-15 show effective mass plots in the two-point function and three-point function plots. The fit ranges and fit

results are included in the figures.
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FIG. 11 (color online). Effective mass (two-point function) and three-point function plot for 24cl. The figures show E.; =
—In(CX(r + 1,0)/C*X(1,0)) with XX = (LS, SS, SS) for 2PT, C§3(t,1,0) for 3PT VV + AA, and C35(1, ,0) for 3PT SS + PP. Fit
ranges and fit results are shown in the figures. For the three-point functions 7, is fixed to be 20.
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FIG. 12 (color online). Effective mass (two-point function) and three-point function plot for 24c2. The figures show E.; =
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FIG. 13 (color online).

Effective mass (two-point function) and three-point function plot for 32cl. The figures show E. 4 =

—In(CX*( +1,0)/CXX(£,0)) with XX = (LS, S8, SS) for 2PT, C33(ty.1,0) for 3PT VV + AA, and C35(t;, 1,0) for 3PT SS + PP. Fit
ranges and fit results are shown in the figures. For the three-point functions 7; is fixed to be 24.
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FIG. 14 (color online). Effective mass (two-point function) and three-point function plot for 32c2. The figures show E. =
—In(C*X(t +1,0)/C*X(z,0)) with XX = (LS, SS, SS) for 2PT, C$3(t7.1,0) for 3PT VV + AA, and C3¥(t;, 1, 0) for 3PT SS + PP. Fit
ranges and fit results are shown in the figures. For the three-point functions ¢, is fixed to be 24.
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FIG. 15 (color online).

ranges and fit results are shown in the figures. For the three-point functions , is fixed to be 24.
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APPENDIX B: FIT-RANGE
DEPENDENCE
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original (24c): ¢t = 10-15 (LS,SS), ¢=13-18(SS),
t=7-13 (VV + AA,SS +PP),

original (32¢): 1 = 10-16 (LS.5S), = 13-19 (SS),
t=9-15 (VV 4+ AA,SS + PP),

fit range 2 (24c): t = 12-15 (LS,SS), ¢=15-18 (SS),
t=28-12 (VV+ AA,SS +PP),

fit range 2 (32¢): t = 12-16 (LS,SS), ¢=15-19 (SS),

t=10-14 (VV + AA,SS + PP).

We show the fit range dependencies of physical
quantities at each simulation point in Figs. 16,17,
and 18. To check the dependencies, we shift the
minimal value of ¢ in the fit range toward a larger
value by 2 for the 2PT functions and shorten the range
by 2 for the 3PT functions, which we name “fit range
2” in the figures. To be more specific, the actual fit
ranges are
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FIG. 16. Fit-range dependencies of ®5, ®5 , and ®5 /@5 at each simulation point. Horizontal labels are suppressed. We find
differences between the fit-range choices beyond 1o statistical error in 24c1(®g, ®p ), 24c2(Pp ), 32¢1 (P, Py /Pp), and 32¢2(Dy ).
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FIG. 17. Fit-range dependencies of My, My , and (Mg /M 5)'/? at each simulation point. Horizontal labels are suppressed. We find
differences between the fit-range choices beyond 1o statistical error in 24c1(Mp, My ), 24c2((Mp /Mp)"/?), and 32c2(M ).
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FIG. 18. Fit-range dependencies of Bg, B , and (Bjp_/ Bjp)'/? at each simulation point. Horizontal labels are suppressed. We find
differences between the fit-range choices beyond 1o statistical error in 24c2(Bg, (Bg /Bp)'/?).

We find disagreements between the choices of the fit ranges beyond lo statistical error for some cases.
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