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Neutral B meson mixing matrix elements and B meson decay constants are calculated. The static
approximation is used for the b quark and the domain-wall fermion formalism is employed for light quarks.
The calculations are carried out on 2þ 1-flavor dynamical ensembles generated by the RBC and UKQCD
collaborations with lattice spacings of 0.086 fm (a−1 ∼ 2.3 GeV) and 0.11 fm (1.7 GeV), and a fixed
physical spatial volume of about ð2.7 fmÞ3. In the static quark action, link smearings are used to improve
the signal-to-noise ratio. We employ two kinds of link smearings, HYP1 and HYP2, and their results are
combined when taking the continuum limit. For the matching between the lattice and the continuum theory,
one-loop perturbative OðaÞ improvements are made to reduce discretization errors. As the most important
quantity of this work, we obtain the SU(3) breaking ratio ξ ¼ 1.208ð60Þ, where the error includes both
the statistical and systematic errors. (The uncertainty from an infinite b-quark mass is not included.) We

also find other neutral B meson mixing quantities, fB
ffiffiffiffiffiffi
B̂B

p
¼ 240ð22Þ MeV, fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼ 290ð22Þ MeV,

B̂B ¼ 1.17ð22Þ, B̂Bs
¼ 1.22ð13Þ, and BBs

=BB ¼ 1.028ð74Þ, and the B meson decay constants
fB ¼ 219ð17Þ MeV, fBs

¼ 264ð19Þ MeV, and fBs
=fB ¼ 1.193ð41Þ in the static limit of the b quark,

which do not include an infinite b-quark mass uncertainty.
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I. INTRODUCTION

The Standard Model (SM) of elementary particles is
consistent with all experimental data thus far. The SM,
however, does not yet satisfy us because it cannot answer
some of our basic questions, such as the reason why the
gauge group, the constituents of particles, and the number
of generations in the model are chosen as they are, the
hierarchical unnaturalness in mass scales between the three
generations of fermions, and so on. While the existence of
the Higgs boson has been experimentally confirmed at the
LHC, expected new particles have not been discovered as
yet. Thus, bottom-up approaches toward physics beyond
the Standard Model (BSM) is becoming more and more
important. In order to address BSM, precision tests for
the SM are highly meaningful. By combining theoretical
predictions with experimental results, it would be possible
to obtain hints for the BSM. In such an attempt, the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix elements [1] play a crucial role in checking the
consistency of the SM.
In the SM, the transition of the neutral B (Bs) meson to

its anti-meson occurs via box diagrams involving the
exchange of two W bosons, and this amplitude would
provide a clean determination of the matrix elements Vtd
and Vts assuming that Vtb is known. In the SM framework,
the dominant contribution to the mass difference of the

neutral B meson mass eigenstates is related to the CKM
matrix elements by

ΔmBq
¼ G2

Fm
2
W

16π2mBq

jV�
tqVtbj2S0ðxtÞηBM̂Bq

; ð1Þ

where q ¼ fd; sg. In Eq. (1), both the Inami-Lim function
S0ðxtÞ (xt ¼ m2

t =m2
W) [2] and the QCD coefficient ηB can

be calculated perturbatively. M̂Bq
is a renormalization-

group-invariant (RGI) ΔB ¼ 2 four-fermion operator
matrix element in an effective Hamiltonian of the box
diagram at the low-energy scale. The mixing matrix element
M̂Bq

is a highly nonperturbative quantity, and thus currently
the only possible method for a precise determination is via
numerical lattice QCD simulations. By taking a ratio [3] of
Eq. (1) between q ¼ d and s, we obtain

����Vtd

Vts

���� ¼ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔmB

ΔmBs

mBs

mB

s
; ð2Þ

where ξ is called the SU(3)-breaking ratio

ξ ¼ mB

mBs

ffiffiffiffiffiffiffiffiffiffi
MBs

MB

s
: ð3Þ
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The ratio constrains the apex of the CKM unitary triangle,
and new quark-flavor-changing interactions from BSM
would affect this quantity. In the ratio many uncertainties
get canceled and a precise determination of ξ would lead to a
tight constraint on the CKM unitary triangle and hints for
BSM physics in the form of an inconsistency of the unitary
triangle in the SM.
Lattice QCD simulations including the b quark are,

however, quite challenging, because of the large scale
difference between light quarks (u and d) and the b quark.
While fine lattice spacings are needed to correctly treat
the b quark, a large volume is required to accommodate
pion dynamics. Such a situation is difficult to achieve with
current computational abilities. Heavy-quark effective
theory (HQET) provides one realistic solution to this
problem. In this formulation, the heavy (b) quark dynamics
is integrated out and we may only treat the dynamics
associated with light quarks. The theory is described by the
systematic expansion of the inverse of the heavy-quark
mass mQ. A first attempt in this direction was carried out
by Eichten and Hill [4,5], in which they used the static
approximation (leading order of the heavy-quark mass
expansion) and, for the static quark, they employed a
standard static action. Soon after that attempt, however, it
turned out that this approach leads to a poor signal-to-noise
ratio (S=N) in correlation functions, because the static self-
energy contains a notorious 1=a power divergence. (On
the other hand, in nonrelativistic QCD—another effective
theory approach—the power divergence tends to be can-
celed [6].) This situation has been significantly improved
since the ALPHA Collaboration introduced the link-
smearing technique in the static action, which partly cured
the difficulty [7,8].
In this paper, we calculate B meson decay constants and

neutral B meson mixing matrix elements using the static
approximation. The static approximation always has
OðΛQCD=mbÞ ∼Oð10%Þ uncertainty, since the physical
b-quark mass is not infinite. For SU(3)-breaking ratios
like ξ or the ratio of Bmeson decay constants, however, the
uncertainty coming from the static approximation is down
to around the 2% level. This means that the static limit
could be an especially good approximation compared
with other lattice approaches that take into account the
b-quark mass dependence for such ratios. To reduce the
OðΛQCD=mbÞ uncertainty in the HQET approach, higher-
order operators in the 1=mQ expansion need to be included.
Taking into account these contributions requires nonper-
turbative matching with the continuum using, e.g., the
Schrödinger functional scheme with a step-scaling tech-
nique [9], which requires considerable effort. Instead, we
stay in the static limit assuming that the results can be
valuable for an interpolation to the physical b-quark mass
combined with lighter quark mass simulations, for which
high-precision calculation is significantly important. (We
discuss the meaning of calculations in the static limit in

Sec. II.) This work is a first step toward the precise
determination of B-physics quantities in the static limit.
This paper is organized as follows. In Sec. II, we discuss

the meaning of the calculations in the static limit as an
anchor point in the study of heavy-quark physics. In
Sec. III, we summarize the physical observables in both
full QCD theory and HQET, which we address for the study
of neutral B meson mixing phenomena. In Sec. IV, the
definition of lattice actions and the gluon ensembles that
we use in this study are explained. In Sec. V, we describe
the matching procedure between full QCD theory and
HQET in the continuum, as well as between the continuum
and lattice in HQET. The HQET matching is carried out
by one-loop perturbation including OðaÞ lattice errors. In
Sec. VI, details of the measurement, correlator fits, and
formulas for constructing physical quantities are shown. In
Sec. VII, the chiral and continuum extrapolation formulas
[SUð2ÞχPT] are summarized and we show the fit results. In
Sec. VIII, we present the estimation of the systematic
uncertainties and summarize it in Table XII. Finally, we
present our final results, compare them with other works,
and discuss future directions of this project in Sec. IX.

II. STATIC LIMIT AS A STRONG ANCHOR POINT

We employ the static approximation as a b-quark treat-
ment in this study. As discussed earlier, this approximation
suffers from an uncertainty of Oð10%Þ for primary quan-
tities or Oð2%Þ for flavor SU(3)-breaking ratios at the
physical b-quark mass, which is heavy but finite. The
physical value of the approximation will eventually be lost
as one aims for higher and higher precision. However, the
results in the static limit are valuable as an anchor point
when combined with simulations in the lower–quark-mass
region. In this section we clarify the meaning of our
calculations in the static limit.
We consider a heavy-quark expansion of some heavy-

light quantity Φhl, which has a finite asymptotic limit as
mQ → ∞,

Φhlð1=mQÞ ¼ Φhlð0Þ exp
�X∞
p¼1

γp

�
ΛQCD

mQ

�
p
�
; ð4Þ

where mQ is the heavy-quark mass, which is heavier
than the QCD scale ΛQCD. Equivalently, the expansion is
written as

Φhlð1=mQÞ

¼ Φhlð1=mQA
Þ × exp

�X∞
p¼1

γp

��
ΛQCD

mQ

�
p
−
�
ΛQCD

mQA

�
p
	�

;

ð5Þ
using some “anchor” point mQA

. [In Eq. (4) the static limit
mQ → ∞ is regarded as an anchor point.] Our task is to
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determine the expansion coefficients γp and the overall
factor Φhlð1=mQA

Þ to reach a physical b-quark point. There
are several ways to make this determination.

(i) HQET approach: The anchor point is the static limit
mQ → ∞. To treat the heavy-quark expansion from
the static limit, HQET is employed. In addition to
terms in the heavy-quark action and operators at the
leading order of the expansion (static approxima-
tion), those at Oð1=mQÞ are included. To keep the
theory renormalizable, the Boltzmann factor for the
heavy quark is expanded in 1=mQ, and we make
operator insertions in the expectation value evalu-
ated with the static action. HQET must be matched
with the original full theory. An important point
is that the matching beyond the static approximation
cannot be carried out perturbatively because of
the existence of a 1=a power divergence in HQET
[9,10].

(ii) Relativistic approach: The anchor point sits in a
lower-mass region, typically the c-quark mass re-
gion. The usual relativistic formulations can be
applicable in this region, while relatively finer
lattices are required.

(iii) Combination of (i) and (ii) above: The anchor point
is the static limit, while the γp’s are explored by
using usual relativistic formulations in a lower-quark
mass region, i.e., the c-quark region (see, for
example, Ref. [11]).

Procedure (i) has been used by the ALPHA Collaboration,
in which nonperturbative matching with full QCD theory
can be implemented by the step-scaling strategy with the
Shcrödinger functional scheme [9]. (See Ref. [12] for their
recent achievements.) In procedure (ii), relatively finer
lattices with regular volume sizes are required. However,
the lattices to treat the c quark are currently becoming
available and approach (ii) is becoming feasible. A recent
sophisticated implementation in this direction is the “ratio
method” [13] of the ETM Collaboration, which may be a
viable option. In this method, the ratios of physical
quantities at some heavy-quark mass point mQ and
mQ=λ with a scale parameter λ > 1, are considered to
separate Φhlð1=mQA

Þ and the γp’s in the determination:

Φhlð1=mQÞ
Φhlðλ=mQÞ

¼ exp
�X∞
p¼1

γpð1 − λpÞ
�
ΛQCD

mQ

�
p
�
; ð6Þ

which enhances the precision of the γp’s. (See Ref. [14]
for their recent achievements.) A combination of the ratio
method and the static limit as an anchor point would also be
beneficial, which belongs to procedure (iii). In this sense,
the static limit is not only of theoretical interest, but it is
also a valuable anchor point to explore physics at the
physical b-quark point. The fact that “the static limit is
close to the physical b-quark mass in terms of 1=mQ”

ensures the usefulness of the static limit as a “strong”
anchor point.

III. PHYSICAL OBSERVABLES

A. Observables in full QCD theory

Our main aim in this paper is to calculate the CKM
matrix elements Vtd and Vts to give constraints on the CKM
unitary triangle. The current accuracy of the mass differ-
ence (1) from experiment is less than 1%, and thus a precise
determination of the hadronic matrix element MBq

would
give strong constraints on the CKM matrix elements. We
here summarize current world average values related with
neutral Bmeson mixing, which are quoted from the Particle
Data Group (PDG) [15]:

mbðMSÞ ¼ 4.18� 0.03 GeV; ð7Þ

mB0 ¼ 5279.58� 0.17 MeV; ð8Þ

mB0
s
¼ 5366.77� 0.24 MeV; ð9Þ

ΔmB0 ¼ ð0.510� 0.004Þ × 1012ℏs−1

¼ ð3.337� 0.033Þ × 10−10 MeV; ð10Þ

ΔmB0
s
¼ ð17.69� 0.08Þ × 1012ℏs−1

¼ ð1.164� 0.005Þ × 10−8 MeV: ð11Þ

Thus, the ratio of the CKM matrix elements (2) reads����Vtd

Vts

���� ¼ ξ × ð0.17071� 0.00092Þ; ð12Þ

which indicates that the determination of ξ with high
accuracy would yield a precise value of the ratio.
The ΔB ¼ 2 mixing matrix element at a scale μb in the

effective Hamiltonian is represented by

MBq
ðμbÞ ¼ hB̄0

qj½b̄γμð1 − γ5Þq�½b̄γμð1 − γ5Þq�jB0
qifull

≡ hB̄0
qjOfull

L jB0
qifull; ð13Þ

where b and q represent the b-quark and light (d or s) quark
fields, respectively. In Eq. (13), we use a superscript and a
subscript “full” to indicate that the theory considered here
is not HQET, but rather full QCD theory. In this paper,
the standard PDG notation for the quark content of the B
meson is used: B ¼ ðb̄qÞ and B̄ ¼ ðbq̄Þ. The matrix
element is conventionally parametrized as

MBq
ðμbÞ ¼

8

3
m2

Bq
f2Bq

BBq
ðμbÞ; ð14Þ

so that BBq
¼ 1 when the vacuum saturation approximation

(VSA) exactly holds, where BBq
denotes a dimensionless
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hadronic B parameter and fBq
denotes the Bq meson decay

constant defined by

ifBq
pμ ¼ h0jb̄γμγ5qjBqðpÞifull

≡ h0jAfull
μ jBqðpÞifull; ð15Þ

where pμ is the four-momentum of the Bq meson. An RGI
definition of the B parameters B̂Bq

is obtained from the B
parameters in some scheme and at some scale μb by

B̂Bq
¼ ½αsðμbÞ�−

γ0
2β0

�
1 −

αsðμbÞ
4π

Z5

�
BBq

ðμbÞ; ð16Þ

at next-to-leading order (NLO), where Z5—in the naive
dimensional regularization (NDR) scheme with the modi-
fied minimal subtraction (MS) scheme—is written as [16]

Znf ¼
γð1Þ

2β0
−
γð0Þβ1
2β20

; ð17Þ

with

β0 ¼ 11 −
2

3
nf; β1 ¼ 102 −

38

3
nf; ð18Þ

γð0Þ ¼ 4; γð1Þ ¼ −7þ 4

9
nf: ð19Þ

In this paper we use αsðμbÞ ¼ 0.2265, which is obtained
from the strong coupling at the Z-boson mass scale
αsðmZ ¼ 91.1876ð21Þ GeVÞ ¼ 0.1185ð6Þ [15] using RG
evolution (four loop [17,18]) with nf ¼ 5. Equation (16)
thus becomes B̂Bq

¼ 1.516 × BBq
ðμbÞ.

One of the main points of this paper is the SU(3)-breaking
ratio (3), which should be unity in the SU(3) light flavor-
symmetric case. In this ratio most of the theoretical
uncertainties as well as the statistical fluctuations are largely
canceled out. Using the parametrization of the matrix
element (14), the SU(3)-breaking ratio is represented as

ξ ¼ fBs

fB

ffiffiffiffiffiffiffi
BBs

BB

s
: ð20Þ

Because the B parameters are based on the VSA by
definition and there is a suppression factor due to SU(3)
light flavor symmetry, the ratio of the B parameters in
Eq. (20) could be close to one and a large fraction of the
SU(3) breaking of ξ will likely reside in the ratio of the
B meson decay constants.

B. Observables in the static limit

We regard the b quark as a heavy quark and give it an
on-shell velocity vμ ¼ ð1; 0; 0; 0Þ, which leads to an on-
shell momentum pμ ¼ ðmb; 0; 0; 0Þ. The heavy-quark field
h is introduced as a sum of a heavy quark hþ and anti-heavy
quark h−:

h ¼ hþ þ h−; h̄ ¼ h̄þ þ h̄− ¼ h†þ − h†−; ð21Þ

through

h� ¼ e∓imbv·x
1� v
2

b ¼ e∓imbt
1� γ0

2
b; ð22Þ

where b is a usual relativistic quark field.
In the static limit, the B meson decay constant and the

hadronic matrix element behave like fBq
∝ 1= ffiffiffiffiffiffiffiffimBq

p and
MBq

∝ mBq
, respectively. Therefore it would be useful to

introduce the quantities

ΦBq
¼ ffiffiffiffiffiffiffiffi

mBq

p
fBq

; MBq
¼ MBq

mBq

; ð23Þ

so that they behave as constants in the static limit. Hadron
states in the HQET are labeled by vμ and a residual
momentum kμ, which satisfies v · k ¼ 0. They are defined
in the static limit and differ from those of the full QCD
theory,

jBqifull ¼
ffiffiffiffiffiffiffiffi
mBq

p fjBqiHQET þOðΛQCD=mbÞg; ð24Þ

so that the HQET state normalization becomes

hBqð~kÞjBqð ~k0ÞiHQET ¼ 2ð2πÞ3δ3ð~k − ~k0Þ: ð25Þ

Using the HQET state, ΦBq
in Eq. (23) is simply written as

ΦBq
¼ h0jh̄γ0γ5qjBqiHQET
≡ h0jAHQET

0 jBqiHQET: ð26Þ

For MBq
, we need two kinds of matrix elements,

ML ¼ hB̄0
qj½h̄γμð1 − γ5Þq�½h̄γμð1 − γ5Þq�jB0

qiHQET
≡ hB̄0

qjOHQET
L jB0

qiHQET; ð27Þ

MS ¼ hB̄0
qj½h̄ð1 − γ5Þq�½h̄ð1 − γ5Þq�jB0

qiHQET
≡ hB̄0

qjOHQET
S jB0

qiHQET; ð28Þ

owing to the lack of a four-dimensional Euclidean rota-
tional symmetry in the static limit, where the ΔB ¼ 2 four-
quark operator OL is decomposed into spatial and time
components,
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X
i¼1;2;3

½h̄γið1 − γ5Þq�½h̄γið1 − γ5Þq�; ð29Þ

½h̄γ0ð1 − γ5Þq�½h̄γ0ð1 − γ5Þq�; ð30Þ

and they are renormalized differently. As a consequence,
the operators (27) and (28) have mixings. In the following,
the Bmeson states jBqi and operators represent those in the
static limit of the b quark unless stated otherwise.

IV. LATTICE ACTIONS AND
GLUON ENSEMBLES

A. Lattice action

We perform lattice simulations in HQET, where the
lattice action comprises three pieces:

S ¼ Sstatic þ SDWF þ Sgluon; ð31Þ

where Sstatic is the static quark action representing the heavy
(b) quark, SDWF is the domain-wall fermion (DWF) action
describing the light (u, d, s) quarks, and Sgluon is the gluon
action.

1. Standard static heavy-quark action
with link smearing

The standard static quark action [5] is given by

Sstatic ¼
X
x

h̄ðxÞ
�
1þ γ0

2
½hðxÞ −U†

0ðx − 0̂Þhðx − 0̂Þ�

−
1 − γ0
2

½U0ðxÞhðxþ 0̂Þ − hðxÞ�
	
: ð32Þ

The lattice derivatives used here are not symmetric for each
heavy and anti-heavy quark, and thus fermion doublers do
not arise. The form of the action is technically the same as
the Wilson quark action with a volume reduction to one
dimension (time direction). Therefore it has a Wilson term,
which decouples from any low-energy physics in the
continuum limit and explicitly breaks the chiral symmetry
at finite lattice spacing. This action suffers from huge 1=a
power divergences, which results in tremendous noise in
correlators. The solution to this problem is to introduce link
smearing aimed at a reduction of the power divergences [8].
The modification is simply to replace the link variables
U0ðxÞ with three-step hypercubic blocked [19] ones V0ðxÞ,
which are defined by

VμðxÞ ¼ ProjSUð3Þ

�
ð1 − α1ÞUμðxÞ

þ α1
6

X
�ν≠μ

~Vν;μðxÞ ~Vμ;νðxþ ν̂Þ ~V†
ν;μðxþ μ̂Þ

�
; ð33Þ

~Vμ;νðxÞ ¼ ProjSUð3Þ

�
ð1 − α2ÞUμðxÞ

þ α2
4

X
�ρ≠ν;μ

V̄ρ;νμðxÞV̄μ;ρνðxþ ρ̂ÞV̄†
ρ;νμðxþ μ̂Þ

�
;

ð34Þ

V̄μ;νρðxÞ ¼ ProjSUð3Þ

�
ð1 − α3ÞUμðxÞ

þ α3
2

X
�η≠ρ;ν;μ

UηðxÞUμðxþ η̂ÞU†
ηðxþ μ̂Þ

�
; ð35Þ

where ProjSUð3Þ denotes an SU(3) projection and ðα1;α2;α3Þ
are hypercubic blocking parameters [19]. ðα1; α2; α3Þ ¼
ð0; 0; 0Þ corresponds to an unsmeared link (Vμ ¼ Uμ).
We use two parameter choices in this work:

ðα1; α2;α3Þ ¼
� ð0.75; 0.6; 0.3Þ; HYP1 ½19�;
ð1.0; 1.0; 0.5Þ; HYP2 ½18�: ð36Þ

2. Domain-wall fermion action

The DWF action [20–22] is described by

SDWF ¼
XLs

s;s0¼1

X
x;y

ψ̄ sðxÞDDWF
ss0 ðx; yÞψ s0 ðyÞ

−
X
x

mfq̄ðxÞqðxÞ; ð37Þ

DDWF
ss0 ðx; yÞ ¼ D4ðx; yÞδss0 þD5ðs; s0Þδxy

þ ðM5 − 5Þδss0δxy; ð38Þ

D4ðx; yÞ ¼
X
μ

1

2
½ð1 − γμÞUμðxÞδxþμ̂;y

þð1þ γμÞU†
μðyÞδx−μ̂;y�; ð39Þ

D5ðs; s0Þ ¼
8<
:

PLδ2;s0 ðs ¼ 1Þ;
PLδsþ1;s0 þ PRδs−1;s0 ð1 < s < LsÞ;
PRδLs−1;s0 ðs ¼ LsÞ; ð40Þ

where ψsðxÞ are 4þ 1-dimensional fermion fields. The
fifth dimension extends from 1 to Ls and is labeled by the
indices s and s0. The domain-wall height (fifth-dimensional
mass) M5 is a parameter of the theory which can be set
between 0 < M5 < 2. We use a setting of M5 ¼ 1.8. The
physical four-dimensional quark field qðxÞ is constructed
from the fields ψ sðxÞ at s ¼ 1 and Ls,

qðxÞ ¼ PLψ1ðxÞ þ PRψLs
ðxÞ; ð41Þ
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q̄ðxÞ ¼ ψ̄1ðxÞPR þ ψ̄Ls
ðxÞPL; ð42Þ

where PL and PR are left and right chirality projectors:
PL ¼ ð1 − γ5Þ=2, PR ¼ ð1þ γ5Þ=2. In the infinite Ls limit,
the right- and left-handed modes are decoupled and chiral
symmetry is exactly restored. The presence of the chiral
symmetry plays a crucial role in reducing unphysical
operator mixing. Note that the DWF is automatically
OðaÞ improved [23].

3. Gluon action

We consider a class of RG-improved gluon actions in
this study:

Sgluon ¼ −
2

g20

�
ð1 − 8c1Þ

X
P

ReTr½UP� þ c1
X
R

ReTr½UR�
�
;

ð43Þ
where g0 denotes the bare lattice coupling, UP and UR are
the path-ordered product of links along a 1 × 1 plaquette P
and the path-ordered product of links along a 1 × 2
rectangle R, respectively. Our choice of the parameter c1
is −0.331 (Iwasaki gluon action) [24,25].

B. Gluon ensembles

We use 2þ 1-flavor dynamical DWF gluon configura-
tions generated by the RBC and UKQCD collaborations
[26]. A summary of the ensembles used in this work is
listed in Table I. Two lattice spacings, a ∼ 0.114 fm and
0.0864 fm, are used to take a continuum limit. We label the
coarser and finer lattices as “24c” and “32c,” respectively,
representing their lattice sizes. The physical box size is set
to be modest, which is around 2.75 fm. The size of the fifth
dimension Ls ¼ 16, making the chiral symmetry breaking
quite small with residual masses mres ≃ 0.003 and 0.0007
for 24c and 32c, respectively. Degenerate u and d quark
mass parameters are chosen so that the simulation covers
the pion mass range 290–420 [MeV]. The smallest value of
mπL is 4.06, which implies that the finite-volume (FV)
effect would be small at simulation points. Only one sea s

quark mass parameter is taken in our lattice ensemble for
both lattice spacings, which is larger than the physical s
quark mass by a small amount. As we will explain in
Sec. VII, we basically use SU(2) chiral perturbation theory
fit functions assuming that the sea s quark mass sits on a
physical point, while the actual sea s quark mass in this
simulation is not a physical one. The uncertainty from this
inconsistency is estimated by the partially quenched SU(3)
chiral perturbation theory as explained in Sec. VIII and
turns out to be less than 1%. For a valence s quark, we make
measurements with two s quark mass parameters that
sandwich the physical s quark mass and make a linear
interpolation.

V. MATCHING

In this work, we adopt a two-step matching: the first step
is a matching between full QCD theory and HQET in the
continuum, while the second is a matching between the
continuum and the lattice in HQET. The matching is carried
out by a one-loop perturbative calculation. Here we
summarize the key points of the matching.

(i) The full theory operators in the continuum are
renormalized in the MS (NDR) scheme at μb¼mb,
i.e., the b-quark mass scale. Fierz transformations in
arbitrary dimensions are specified in the NDR scheme
by Buras and Weisz evanescent operators [27].

(ii) The HQET operators in the continuum are also
renormalized in the MS (NDR) scheme at some
scale μ.

(iii) Matching operators between the full theory and
HQET in the continuum are carried out by pertur-
batively calculating matrix elements of the operators
in both theories and comparing them.

(iv) The matching above is performed at the scale
μ ¼ mb to avoid a large logarithm of μ=mb. We
then use renormalization group running in the
HQET to go down to a lower scale.

(v) The HQET operators with the lattice regularization
are calculated using a DWF formalism for light
quarks to maintain good chiral symmetry, which is
important to control the operator mixing.

TABLE I. 2þ 1-flavor dynamical domain-wall fermion ensembles by the RBC and UKQCD collaborations. [26] Physical quark
masses are obtained using SUð2ÞχPT in the chiral extrapolation, and mphys

ud=s ¼ mphys
l=h þmresðmsim

h Þ.

Label β L3 × T × Ls a−1 [GeV] a [fm] aL [fm] mphys
ud =mphys

s mresðmphys
h Þ mresðmsim

h Þ ml=mh

mπðmphys
h Þ

[MeV] mπL

24c1 2.13 243 × 64 × 16 1.729(25) 0.114 2.74 0.00134(4) 0.003076
(58)

0.003152(43) 0.005=0.04 327 4.54

24c2 =0.0379ð11Þ 0.01=0.04 418 4.79
32c1 2.25 323 × 64 × 16 2.280(28) 0.0864 2.76 0.00100(3) 0.006643

(82)
0.0006664

(76)
0.004=0.03 289 4.06

32c2 =0.0280ð7Þ 0.006=0.03 344 4.83
32c3 0.008=0.03 393 5.52
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(vi) Matching HQET operators between the continuum
and the lattice is perturbatively carried out at a lattice
cutoff scale μ ¼ a−1, where a denotes a lattice
spacing.

(vii) In the perturbative matching, we introduce a ficti-
tious gluon mass to regulate IR divergences. The
structure of the IR divergences should be the same
between the continuum and the lattice theories,
otherwise they cannot be matched to each other.

(viii) In the matching of HQET operators between the
continuum and the lattice, OðaÞ discretization errors
are taken into account. We employ an on-shell OðaÞ
improvement program, in which we impose the
equation of motion on the external heavy- and
light-quark lines. In the improvement, we include
both OðpaÞ and OðmaÞ contributions, where p and
m denote the light-quark momentum and mass,
respectively.

(ix) The theory with the static approximation of the
heavy quark is renormalizable and perturbative
renormalization is justified; however, this is impos-
sible once the Oð1=mQÞ correction is included, in
which case a nonperturbative subtraction of the 1=a
power divergence is necessary [9,10]. The inclusion
of the OðaÞ improvement operators does not alter
the justification of the perturbative treatment: the
OðaÞ operators just bring Oðαkþ1

s Þ uncertainty at
the kth-loop perturbation by mixing with Oða0Þ
operators, and do not cause destruction when taking
a continuum limit.

In the following, the details are presented.

A. Continuum matching

In the continuum, the full QCD theory and HQET are
renormalized at a scale μ, which we specify as a matching
point. The operator relation of the heavy-light quark
bilinear JΓ and the ΔB ¼ 2 four-quark operator OL
between the two theories is written as

JfullΓ ðμÞ ¼ CΓðμÞJHQETΓ ðμÞ þOðΛQCD=mbÞ; ð44Þ

Ofull
L ðμÞ ¼ Z1ðμÞOHQET

L ðμÞ þ Z2ðμÞOHQET
S ðμÞ

þOðΛQCD=mbÞ: ð45Þ

The one-loop perturbative matching factor for the heavy-
light axial-vector current is [4]

Cγ0γ5ðμÞ ¼ 1þ
�

g
4π

�
2 4

3

�
−
3

2
ln

�
μ2

m2
b

�
− 2

�
: ð46Þ

For the four-quark operator, the one-loop perturbative
matching factors are [28,29]

Z1ðμÞ ¼ 1þ
�

g
4π

�
2
�
−6 ln

�
μ2

m2
b

�
− 14

�
; ð47Þ

Z2ðμÞ ¼ −8
�

g
4π

�
2

: ð48Þ

The numerical values of the matching factors at μ ¼ mb are
presented in Table II.

B. RG running in HQET

To avoid a large logarithm of μ=mb, we match the
theories at μ ¼ mb in the continuum matching and use RG
running to reach a smaller energy scale μ in HQET. The
running is governed by the RG equation:

μ2
d
dμ2

CΓðμÞ ¼
1

2
CΓðμÞγΓ; ð49Þ

μ2
d
dμ2

½Z1ðμÞ Z2ðμÞ� ¼
1

2
½Z1ðμÞ Z2ðμÞ�

�
γ11 γ12

γ21 γ22

�
;

ð50Þ

where the γ’s are anomalous dimensions. Solutions of the
RG equations (49) and (50) are generally written as

CΓðμÞ ¼ CΓðμ0ÞUΓðμ0; μÞ; ð51Þ

½Z1ðμÞ Z2ðμÞ� ¼ ½Z1ðμ0Þ Z2ðμ0Þ�ULðμ0; μÞ; ð52Þ

where

TABLE II. Numerical values of the one-loop continuum match-
ing factors and RG-running coefficients [30].

24c (1.73 GeV) 32c (2.28 GeV)

αsðmb ¼ 4.18 GeV ½15�Þ 0.2261
αsðmc ¼ 1.275 GeV ½15�Þ 0.3908

αsða−1Þ 0.3204 0.2773

Cγ0γ5ðmbÞ 0.9520

U
Nf¼4

Γ ðmb;mcÞ 1.1550

U
Nf¼3

Γ ðmc; a−1Þ 0.9521 0.9196

Z1ðmbÞ 0.7483
Z2ðmbÞ −0.1439

U
ð11ÞNf¼4

L ðmb;mcÞ 1.3345

U
ð21ÞNf¼4

L ðmb;mcÞ −0.0526

U
ð22ÞNf¼4

L ðmb;mcÞ 1.0921

U
ð11ÞNf¼3

L ðmc; a−1Þ 0.9055 0.8442

U
ð21ÞNf¼3

L ðmc; a−1Þ 0.0141 0.0231

U
ð22ÞNf¼3

L ðmc; a−1Þ 0.9706 0.9500
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ULðμ0; μÞ ¼
"
Uð11Þ

L ðμ0; μÞ Uð12Þ
L ðμ0; μÞ

Uð21Þ
L ðμ0; μÞ Uð22Þ

L ðμ0; μÞ

#
: ð53Þ

Note that heavy-quark spin symmetry gives constraints on
the γ’s:

γ12 ¼ 0; γ22 ¼ γ11 þ 4γ21; ð54Þ

which turn into

Uð12Þ
L ðμ0; μÞ ¼ 0; ð55Þ

Uð22Þ
L ðμ0; μÞ ¼ Uð11Þ

L ðμ0; μÞ þ 4Uð21Þ
L ðμ0; μÞ: ð56Þ

Each U is expressed as

UΓðμ0; μÞ ¼
�
1þ αsðμÞ − αsðμ0Þ

4π
JΓ

��
αsðμ0Þ
αsðμÞ

�
dΓ þOðα2sÞ;

ð57Þ

Uð11Þ
L ðμ0;μÞ ¼

�
1þ αsðμÞ− αsðμ0Þ

4π
J1

��
αsðμ0Þ
αsðμÞ

�
d1 þOðα2sÞ;

ð58Þ

Uð21Þ
L ðμ0; μÞ ¼ −

1

4

��
αsðμ0Þ
αsðμÞ

�
d1
−
�
αsðμ0Þ
αsðμÞ

�
d2
�
þOðαsÞ;

ð59Þ

Uð22Þ
L ðμ0; μÞ ¼

�
αsðμ0Þ
αsðμÞ

�
d2 þOðαsÞ; ð60Þ

where αs ¼ g2=ð4πÞ. In the one-loop matching, two-loop
calculations of the anomalous dimensions and a beta
function are required to obtain JΓ, dΓ, J1, d1, and d2 in
Eqs. (57)–(60). The two-loop anomalous dimensions were
calculated in Refs. [31,32] for quark bilinears and in
Refs. [29,33,34] for four-quark operators.
Because we include sea quarks only for u, d, and s in our

simulations (Nf ¼ 2þ 1) and our lattice cutoff scale is
higher than the c-quark mass, we employ a two-step RG
running to reach a scale μ ¼ a−1: we perform the running
from μ ¼ mb to the mc scale using Nf ¼ 4 theory and
running back to the a−1 scale using Nf ¼ 3 theory, such as

UΓðmb; a−1Þ ¼ U
Nf¼4

Γ ðmb;mcÞUNf¼3

Γ ðmc; a−1Þ; ð61Þ

ULðmb; a−1Þ ¼ U
Nf¼4

L ðmb;mcÞUNf¼3

L ðmc; a−1Þ; ð62Þ

in which

d
Nf¼4

Γ ¼−
6

25
; d

Nf¼4

1 ¼−
12

25
; d

Nf¼4

2 ¼−
4

25
; ð63Þ

J
Nf¼4

Γ ¼ 0.910; J
Nf¼4

1 ¼ 1.864; ð64Þ

d
Nf¼3

Γ ¼ −
2

9
; d

Nf¼3

1 ¼ −
4

9
; d

Nf¼3

2 ¼ −
4

27
;

ð65Þ

J
Nf¼3

Γ ¼ 0.755; J
Nf¼3

1 ¼ 1.698: ð66Þ

The RG-running coefficients are summarized in Table II.

C. Static effective theory matching

The matching of the static effective theory between the
continuum and the lattice is carried out at a scale μ ¼ a−1

using one-loop perturbation. In the matching, lattice dis-
cretization errors are taken into account up to OðpaÞ
and OðmqaÞ, where p and mq are the typical light-quark
momentum and light-quark mass, respectively. To include
these discretization errors, higher-dimensional operators
need to be added in the matching. The operator mixing
pattern is constrained by symmetries, which are typically
chiral symmetry, heavy-quark spin symmetry, and discrete
symmetries, such as P, T , and C.
The operator relation for the quark bilinear is written as

JcontΓ ¼ ZΓJ
imp
Γ ; ð67Þ

where Jimp
Γ is the OðaÞ-improved lattice bilinear,

Jimp
Γ ¼ JΓ þ acðpaÞΓ GJΓD þ acðmaÞ

Γ GJΓM; ð68Þ

in which

JΓD ¼ h̄Γðγ · ~DÞq; JΓM ¼ mqh̄Γq; ð69Þ

and G is defined by γ0Γγ0 ¼ GΓ. For the four-quark
operators,

Ocont
L ¼ ZLO

imp
L ; ð70Þ

Ocont
S ¼ ZSO

imp
S ; ð71Þ

where Oimp
L and Oimp

S are OðaÞ-improved lattice operators,

Oimp
L ¼ OL þ acðpaÞL ðOND þ 2O0

NDÞ
þ acðmaÞ

L ðONM þ 2O0
NMÞ; ð72Þ

Oimp
S ¼ OS þ acðpaÞS ðOND − 2O0

NDÞ
þ acðmaÞ

S ðONM − 2O0
NMÞ; ð73Þ

with
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OND ¼ 2½h̄γRμ ðγ · ~DÞq�½h̄γLμq�; ð74Þ

O0
ND ¼ 2½h̄PRðγ · ~DÞq�½h̄PLq�; ð75Þ

ONM ¼ 2mq½h̄γRμq�½h̄γLμq�; ð76Þ

O0
NM ¼ 2mq½h̄PRq�½h̄PLq�: ð77Þ

We note that the coefficients for the quark bilinear operator
do not depend on Γ, which is a consequence of chiral
and heavy-quark spin symmetry [30,35,36], and this fact
holds nonperturbatively. [For the four-quark operators, it is
claimed that more higher-order operators are required in
Eqs. (72) and (73) for theOðaÞ improvement at higher-loop
or nonperturbative levels [37].]
For the one-loop calculation of the coefficients in

Eqs. (67), (70), and (71), we use mean-field (MF) improve-
ment to remove huge the tadpole contribution in the lattice
perturbation [38]. The measured plaquette value P or
u0 ¼ P1=4 enters the matching for the MF improvement.
We employ DWF as light quarks, and thus the physical

light-quark propagator is written as

SqðpÞ ¼ hqð−pÞq̄ðpÞi

¼ 1 − w2
0

ipþ ð1 − w2
0Þmf

ð1þOðp2; pmf;m2
fÞÞ; ð78Þ

where w0 ¼ 1 −M5. The physical quark propagator sug-
gests that the quark wave function has a domain-wall-
specific factor ð1 − w2

0Þ1=2 and the quark mass should be
identified by mq ¼ ð1 − w2

0Þmf, which would appear in the
matching coefficients.
The matching coefficients at the one-loop level are

ZΓ ¼ Z−1=2
w

�
1þ

�
gMS

4π

�
2 4

3
ẑMF
Γ

	
þOðg4Þ; ð79Þ

cðpaÞΓ ¼ 1

u0

�
gMS

4π

�
2 4

3
ẑðpaÞMF
Γ þOðg4Þ; ð80Þ

cðmaÞ
Γ ¼ 1

u0

�
gMS

4π

�
2 4

3
ẑðmaÞMF
Γ þOðg4Þ; ð81Þ

ZL ¼ Z−1
w

�
1þ

�
gMS

4π

�
2 4

3
ẑMF
L

	
þOðg4Þ; ð82Þ

cðpaÞL ¼ 1

u0

�
gMS

4π

�
2 4

3
ẑðpaÞMF
L þOðg4Þ; ð83Þ

cðmaÞ
L ¼ 1

u0

�
gMS

4π

�
2 4

3
ẑðmaÞMF
L þOðg4Þ; ð84Þ

ZS ¼ Z−1
w þOðg2Þ; ð85Þ

cðpaÞS ¼ Oðg2Þ; ð86Þ

cðmaÞ
S ¼ Oðg2Þ; ð87Þ

where

Zw ¼ 1 − ðwMF
0 Þ2

u0

�
1þ

�
gMS

4π

�
2 4

3
ẑMF
w

�
þOðg4Þ; ð88Þ

and the renormalized coupling in the continuum MS
scheme gMS at the scale μ ¼ a−1 is related to the bare
lattice coupling g0 as

1

g2
MS

¼ P
g20

þ dg þ cp þ Nfdf; ð89Þ

in which dg and cp are dependent on the gluon action and
df is dependent on the fermion action. Note that the
continuum matching coefficient for OS is already Oðg2Þ;
therefore, only the tree-level static matching coefficient for
this operator is needed in the one-loop matching procedure.
Nevertheless, we partly include the Oðg2Þ in Eq. (85) to
keep the same form of Zw as that for ZL, which does not
matter at the one-loop level. The coefficients for this
simulation are summarized in Table III.

VI. MEASUREMENT AND DATA EXTRACTION

In this section, we present details of measurements on the
gluon configurations introduced in Sec. IV.

A. Correlators

In the static limit, the energies of states do not depend on
their momentum. This fact requires special treatment of the

TABLE III. Numerical values of the one-loop static effective
theory matching factors [30].

24c 32c

HYP1 HYP2 HYP1 HYP2

P (chiral limit) 0.5883 0.6156

MMF
5

1.3032 1.3432

g2MS=4π 0.1769 0.1683

ZΓ¼γ0γ5 0.9105 0.9383 0.9256 0.9526

cðpaÞΓ¼γ0γ5
0.0790 0.1374 0.0744 0.1294

cðmaÞ
Γ¼γ0γ5

0.0864 0.1660 0.0739 0.1482

ZL 0.8260 0.8911 0.8546 0.9187

cðpaÞL
0.1185 0.2061 0.1117 0.1942

cðmaÞ
L

0.1296 0.2489 0.1108 0.2222

ZS 0.9645 1.0040
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correlators, because even with a large separation of the
source and sink positions in time t, a unique ground state
cannot be obtained [39,40]. In particular, the Gaussian
source and sink smearing used in this work requires taking
this feature into account. In this subsection, we follow the
discussions in Refs. [39,40] and explicitly show an exten-
sion to any form of source- and sink-smearing function.
We start with defining our state convention. The static

action (32) is invariant under a spatial local phase rotation
of heavy-quark fields,

hð~x; tÞ ⟶ eiθð~xÞhð~x; tÞ; ð90Þ

h̄ð~x; tÞ ⟶ e−iθð~xÞh̄ð~x; tÞ; ð91Þ

which leads to Noether’s current,

Jhð~x; tÞ ¼ h̄ð~x; tÞhð~x; tÞ; ð92Þ

with the conservation law

∂0Jhð~x; tÞ ¼ 0 ð93Þ

indicating the time-independent charge (heavy-quark num-
ber density operator) at each spatial point,

Nhð~xÞ ¼ Jhð~x; tÞ; ð94Þ

which commutes with the Hamiltonian. We can define B
meson states in the PDG notation, B ¼ ðb̄qÞ and B̄ ¼ ðbq̄Þ,
as eigenstates of Nhð~xÞ,

Nhð~yÞj ~Bð~xÞiL ¼ −δð3Þ~x;~yj ~Bð~xÞiL; ð95Þ

h ~Bð~xÞj ~Bð~yÞiL ¼ δð3Þ~x;~y; ð96Þ

where “L” indicates states in the static limit with finite
spatial size L. Using these, the B meson states with spacial
momentum ~p are defined as

jBð~pÞiL ¼
ffiffiffiffiffiffiffi
2a3

p X
~x

e−i~p·~xj ~Bð~xÞiL; ð97Þ

where the momentum ~p takes discrete values:

~p ¼ 2π

La
ðn1; n2; n3Þ; 0 < n1; n2; n3 ≤ L: ð98Þ

This state convention gives the normalization

hBð~pÞjBð~qÞiL ¼ 2ðLaÞ3δð3Þ~p;~q �!
La→∞

2ð2πÞ3δð3Þð~p − ~qÞ;
ð99Þ

which leads to a relation between the finite- and infinite-
volume momentum eigenstates,

jBð~pÞiL �!
La→∞

jBð~pÞi; ð100Þ

hBð~pÞjBð~qÞi ¼ 2ð2πÞ3δð3Þð~p − ~qÞ; ð101Þ

so that infinite-volume static states jBð~pÞi give the conven-
tional normalization (101). Thus, what we need to calculate
in the finite volume are

h0jA0ð~0; 0ÞjBð~p ¼ 0ÞiL �!
La→∞

ΦB; ð102Þ

hBð~p ¼ 0ÞjO4qð~0; 0ÞjBð~p ¼ 0ÞiL �!
La→∞

MB; ð103Þ

where A0ð~x; tÞ and O4qð~x; tÞ are the local heavy-light axial-
vector current (in the time direction) and four-quark
operators defined in Eqs. (26), (27), and (28). The state-
ment made earlier in this subsection that the B meson
energy does not depend on its momentum is understand-
able, as the B meson states defined in Eq. (95) are also
energy eigenstates, where the energy does not depend on
spatial coordinates due to the translational invariance of the
system, and as a consequence the energy is independent
of the momentum by Eq. (97). This property requires an
unfamiliar treatment of the correlators. A typical example is
an operator which includes a spatially smeared quark field:

AS
0ð~x; tÞ ¼

�X
~y

fð~yÞh̄ð~xþ ~y; tÞ
�
γ0γ5

·

�X
~z

gð~zÞqð~xþ ~z; tÞ
�
; ð104Þ

where fð~yÞ and gð~zÞ are smearing functions, such as
Gaussian- and wall-type functions. We consider the
B meson decay amplitude with the smeared operator and
take the large-t limit:

h0jAS
0ð~x; tÞjBð~pÞiL

�!
t≫0

ei~p·~xe−E0th0jAS
0ð~0; 0ÞjBð~pÞiL

≠ δð3Þ
~p;~0
e−E0th0jAS

0ð~0; 0ÞjBð~p ¼ 0ÞiL; ð105Þ

where E0 represents the energy of the B meson ground
state. Thus we cannot obtain a unique zero-momentum
state even in the large-t limit, because the B meson energy
no longer depends on the spatial momentum ~p. This fact
causes an unusual derivation of the matrix elements. Let
us demonstrate this here. We consider a three-point (3PT)
function with smeared quark fields,

CSS4qðtf; t; 0Þ ¼ a3
X
~x

hAS
0ð~0; tfÞO4qð~x; tÞAS†

0 ð~0; 0Þi: ð106Þ

Using the completeness of the states,
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1 ¼ 1

2ðLaÞ3
X
~p

jBð~pÞiLhBð~pÞj þ ðhigher statesÞ; ð107Þ

the 3PT function becomes

CSS4qðtf; t; 0Þ

⟶
tf≫t≫0

1

4ðLaÞ3
X
~p

e−E0tfh0jAS
0ð~0; 0ÞjBð~pÞiL

· hBð~pÞjO4qð~0; 0ÞjBð~pÞiLhBð~pÞjAS†
0 ð~0; 0Þj0iL

¼ 1

2
CSSðtf; 0ÞMB; ð108Þ

where

CSSðt; 0Þ ¼ hAS
0ð~0; tÞAS†

0 ð~0; 0Þi

�!
t≫0

1

2ðLaÞ3 e
−E0t

X
~p

jh0jAS
0ð~0; 0ÞjBð~pÞiLj2

¼ ASSe−E0t; ð109Þ

and we used

hBð~pÞjO4qð~0; 0ÞjBð~pÞiL
¼ hBð~p ¼ 0ÞjO4qð~0; 0ÞjBð~p ¼ 0ÞiL; ð110Þ

following Eq. (97). As can be seen in Eq. (108), we
inevitably have to use CSSðt; 0Þ, in which the sink position
is not spatially volume summed, which results in large
statistical noise. The matrix elementMB is then obtained as

CSS4qðtf; t; 0Þ⟶tf≫t≫0
A4q; ð111Þ

MB ¼ 2A4q

ASSe−E0tf
: ð112Þ

To obtain a zero-momentum state in the two-point (2PT)
functions, we have to use a projection by spatial volume
summation of the sink operator. What we need to measure
for ΦB are the 2PT correlation functions,

C ~LSðt; 0Þ ¼ a3
X
~x

hA0ð~x; tÞAS†
0 ð~0; 0Þi; ð113Þ

C ~SSðt; 0Þ ¼ a3
X
~x

hAS
0ð~x; tÞAS†

0 ð~0; 0Þi; ð114Þ

in which the sink operators are volume summed to project
into the zero-momentum state; otherwise, we cannot obtain
a unique state by just taking the large-t limit. By using the
completeness of states [Eq. (107)], these 2PT correlation
functions in t ≫ 0 can be easily written as

C ~LSðt; 0Þ�!
t≫0

1

2
h0jA0ð~0; 0ÞjBð~p ¼ 0ÞiL

× hBð~p ¼ 0ÞjAS
0ð~0; 0Þj0iLe−E0t

¼ A ~LSe−E0t; ð115Þ

C ~SSðt; 0Þ�!
t≫0

1

2
jh0jAS

0ð~0; 0ÞjBð~p ¼ 0ÞiLj2e−E0t

¼ A ~SSe−E0t: ð116Þ

ΦB is then obtained through

ΦB�!
t≫0

ffiffiffi
2

p C ~LSðt; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C ~SSðt; 0Þe−E0t

q ¼
ffiffiffi
2

p A ~LSffiffiffiffiffiffiffiffi
A ~SS

p ; ð117Þ

in which the noisy correlator CSSðt; 0Þ is not needed, in
contrast to MB. In the actual simulation, we use OðaÞ-
improved operators to remove the OðaÞ lattice artifact, as
indicated in Eqs. (68), (72), and (73) in Sec. V.

B. Source and sink smearing

In an attempt to obtain a better overlap with the ground
state, we use gauge-invariant Gaussian smearing for the
source and sink operators. We follow the smearing pro-
cedure in Refs. [41,42]. We choose a Gaussian function
with width ω as a smearing function in Eq. (104) for both
static and light quarks:

fð~xÞ ¼ gð~xÞ ¼ expð−x2=ω2Þ: ð118Þ

To achieve this smearing in a gauge-invariant way, we use
the implementation

X
~y

fð~yÞψð~xþ ~y; tÞ ¼
�
1þ ω2

4NG
∇2

�
NG

ψð~x; tÞ; ð119Þ

with the hopping matrix

½∇2�xy ≡
X3
i¼1

½Uiðxþ îÞδxþî;y þ U†
i ðx − îÞδx−î;y�; ð120Þ

where NG is the number of times the smearing kernel acts
on the fermion field ψð~x; tÞ, which leads to the Gaussian
function (118) in the NG → ∞ limit. The choices for the
parameters ω and NG are summarized in Table IV, which
gives a physical Gaussian width around 0.45 fm.

C. Measurement parameters

The measurement parameters are summarized in
Table IV. The valence d quark mass parameter is the same
as the degenerate sea u and d quarks. To interpolate to a
physical s quark mass, we take two values of the s valence
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quark mass parameters that sandwich the physical point,
and one of them is set to be the same as the sea s quark’s
value. The physical s quark mass is slightly different from
the sea s quark mass, so we estimate the uncertainty from
this inconsistency by using the partially quenched SU(3)
chiral perturbation theory, which we describe later.

D. Autocorrelations

The autocorrelation time of the ensemble is investigated
using the integrated autocorrelation time for both static
heavy-light two-point and three-point functions. The inte-
grated autocorrelation time of the 2PT functions is mea-

sured at t ¼ 12 for C ~LSðt; 0Þ and C ~SSðt; 0Þ, but at t ¼ 15 for
CSSðt; 0Þ in both the 24c and 32c ensembles. We measure it
at the midpoint between the source and sink locations for
the 3PT functions. Based on this analysis, we choose to
perform blocking, so that the blocking size is 80 MD
trajectories for the 32c1 ensemble (the lightest quark mass
parameter), whereas it is 40 MD trajectories for other
ensembles. Note that in the study of the light hadron
spectrum on these ensembles, the blocking size was 20 MD
trajectories [26].

E. Correlator fits

In the figures in Appendix A, we show the effective
masses of the 2PT functions and the amplitudes of the 3PT
functions. We perform simultaneous fits of three types of

2PT correlators [C ~LSðt; 0Þ, C ~SSðt; 0Þ, and CSSðt; 0Þ] assum-
ing that E0 is common in these correlators. To take the
periodicity in the lattice box into account, a cosh function is
assumed in the fit:

C ~LSðt; 0Þ ¼ A ~LSðe−E0t þ e−E0ðT−tÞÞ; ð121Þ

C ~SSðt; 0Þ ¼ A ~SSðe−E0t þ e−E0ðT−tÞÞ; ð122Þ

CSSðt; 0Þ ¼ ASSðe−E0t þ e−E0ðT−tÞÞ: ð123Þ

For the 3PT correlators CSSL ðtf; t; 0Þ and CSSS ðtf; t; 0Þ,
constant fits are made:

CSSL ðtf; t; 0Þ ¼ ASS
L ; ð124Þ

CSSS ðtf; t; 0Þ ¼ ASS
S ; ð125Þ

where tf is fixed to be the source-sink separation shown in
Table IV. Fit ranges are shown in the effective mass and
amplitude plots in Appendix A, and the fit results are
presented in Tables Vand VI. Note that the OðaÞ-improved
CSSS ðtf; t; 0Þ is not calculated, as the one-loop level match-
ing does not require it.
For some quark mass parameters, χ2=d:o:f: exceeds 2.

We, however, keep fit ranges unaltered throughout all quark
mass parameters, to avoid human bias. Then our correlator
fit results have a non-negligible fit-range dependence. As
we will explain in Sec. VIII I, the fit-range dependencies
are taken into account as an uncertainty of our calculation.

F. Decay constants, matrix elements, and B parameters

The B meson decay constants fB and mixing matrix
elements MB are obtained by Eq. (23) through Eqs. (117)
and (112). The results obtained are presented in Table VII.
The statistical error at each simulation point is less than 2%
for decay constants, while it sometimes reaches 5% for
matrix elements and B parameters.

VII. CHIRAL/CONTINUUM EXTRAPOLATION

A. NLO SUð2ÞHMχPT formula

Physical quantities at simulated light (u and d) quark
mass points are extrapolated to the physical degenerate
light-quark value. In this work, we use next-to-leading-
order SU(2) heavy-light meson chiral perturbation theory
[NLO SUð2ÞHMχPT], depicted in Ref. [40]. [See also
Ref. [43] for SUð2ÞχPT.] In SUð2ÞχPT, the s quark is
integrated out of the theory; effects from the s quark are
included in low-energy constants (LECs). The SUð2ÞχPT
formula is obtained from SUð3ÞχPT assuming that the
u- and d-quark masses are much smaller than the s-quark
mass. The formula does not depend on the s-quark mass
in an explicit way. The convergence of the chiral fit is
improved by using the SUð2ÞχPT as long as the u- and d-
quark masses are sufficiently small [43]. In Ref. [43], it was
argued that the RBC/UKQCD DWF ensemble does not
show convergence of NLO SUð2ÞχPT above a pion mass of
420 MeV for the light hadron masses and decay constants.
The ensembles we use in this work stay below this border.

TABLE IV. Measurement parameters. NG and ω are the source and sink Gaussian smearing parameters. Δtsrc-sink
represents the source-sink separation in the three-point functions.

Label mq Measured MD traj. # of data # of src NG ω Δtsrc-sink
24c1 0.005, 0.034, 0.040 900–8980 every 40 203 4 32 4 20
24c2 0.010, 0.034, 0.040 1460–8540 every 40 178 2
32c1 0.004, 0.027, 0.030 520–6800 every 20 304 1 40 5 24
32c2 0.006, 0.027, 0.030 1000–7220 every 20 312 1
32c2 0.008, 0.027, 0.030 520–5540 every 20 252 1
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TABLE V. Correlator fit results [OðaÞ unimproved].

24c1, mh ¼ 0.040, ml ¼ 0.005

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f: ASS

S χ2=d:o:f:

HYP1 0.005 0.5107(28) 0.1291ð33Þeþ 5 0.1386ð33Þeþ 10 0.2663ð66Þeþ 7 1.3 0.294ð13Þeþ 2 0.5 −0.1741ð61Þeþ 2 0.5
0.034 0.5440(13) 0.1542ð18Þeþ 5 0.1512ð16Þeþ 10 0.2984ð40Þeþ 7 1.5 0.2230ð43Þeþ 2 0.6 −0.1357ð24Þeþ 2 0.5
0.04 0.5510(12) 0.1589ð17Þeþ 5 0.1531ð15Þeþ 10 0.3038ð38Þeþ 7 1.4 0.2064ð37Þeþ 2 0.6 −0.1262ð21Þeþ 2 0.4

HYP2 0.005 0.4656(22) 0.1124ð23Þeþ 5 0.1407ð28Þeþ 10 0.2670ð56Þeþ 7 1.2 0.509ð15Þeþ 2 0.4 −0.3258ð89Þeþ 2 0.2
0.034 0.4998(11) 0.1330ð13Þeþ 5 0.1543ð14Þeþ 10 0.3041ð33Þeþ 7 2.1 0.3789ð64Þeþ 2 0.4 −0.2412ð40Þeþ 2 0.6
0.04 0.5073(10) 0.1370ð12Þeþ 5 0.1565ð13Þeþ 10 0.3099ð32Þeþ 7 2.1 0.3487ð55Þeþ 2 0.5 −0.2221ð35Þeþ 2 0.7

24c2, mh ¼ 0.040, ml ¼ 0.01

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f: ASS

S χ2=d:o:f:

HYP1 0.01 0.5117(36) 0.1291ð42Þeþ 5 0.1368ð42Þeþ 10 0.276ð10Þeþ 7 1.8 0.299ð16Þeþ 2 1.0 −0.1850ð81Þeþ 2 1.0
0.034 0.5408(22) 0.1493ð30Þeþ 5 0.1475ð27Þeþ 10 0.3043ð69Þeþ 7 1.8 0.2288ð73Þeþ 2 1.1 −0.1424ð39Þeþ 2 0.5
0.04 0.5480(20) 0.1540ð28Þeþ 5 0.1494ð25Þeþ 10 0.3095ð65Þeþ 7 1.8 0.2115ð63Þeþ 2 1.2 −0.1322ð34Þeþ 2 0.6

HYP2 0.01 0.4645(30) 0.1094ð30Þeþ 5 0.1351ð36Þeþ 10 0.2706ð83Þeþ 7 0.9 0.547ð20Þeþ 2 1.2 −0.344ð11Þeþ 2 0.7
0.034 0.4955(17) 0.1269ð21Þeþ 5 0.1477ð23Þeþ 10 0.3002ð54Þeþ 7 1.1 0.3986ð94Þeþ 2 1.0 −0.2543ð62Þeþ 2 0.7
0.04 0.5033(16) 0.1309ð20Þeþ 5 0.1501ð22Þeþ 10 0.3062ð52Þeþ 7 1.2 0.3648ð82Þeþ 2 1.0 −0.2333ð54Þeþ 2 0.7

32c1, mh ¼ 0.030, ml ¼ 0.004

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f: ASS

S χ2=d:o:f:

HYP1 0.004 0.4231(29) 0.753ð19Þeþ 4 0.1195ð30Þeþ 10 0.1105ð32Þeþ 7 0.4 0.481ð44Þeþ 1 0.5 −0.284ð21Þeþ 1 0.5
0.027 0.4519(14) 0.925ð12Þeþ 4 0.1343ð16Þeþ 10 0.1262ð21Þeþ 7 0.6 0.379ð15Þeþ 1 0.7 −0.2264ð83Þeþ 1 1.0
0.03 0.4557(14) 0.945ð12Þeþ 4 0.1355ð15Þeþ 10 0.1278ð20Þeþ 7 0.7 0.363ð14Þeþ 1 0.7 −0.2170ð77Þeþ 1 1.1

HYP2 0.004 0.3816(28) 0.674ð16Þeþ 4 0.1198ð28Þeþ 10 0.1096ð28Þeþ 7 1.0 0.1041ð73Þeþ 2 2.0 −0.661ð33Þeþ 1 0.1
0.027 0.4118(14) 0.832ð10Þeþ 4 0.1365ð16Þeþ 10 0.1280ð19Þeþ 7 1.4 0.802ð23Þeþ 1 2.2 −0.496ð15Þeþ 1 0.8
0.03 0.4157(14) 0.849ð10Þeþ 4 0.1379ð15Þeþ 10 0.1296ð19Þeþ 7 1.5 0.764ð21Þeþ 1 2.2 −0.473ð13Þeþ 1 0.9

32c2, mh ¼ 0.030, ml ¼ 0.006

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f: ASS

S χ2=d:o:f:

HYP1 0.006 0.4293(22) 0.809ð17Þeþ 4 0.1280ð24Þeþ 10 0.1168ð26Þeþ 7 0.8 0.480ð34Þeþ 1 0.6 −0.297ð15Þeþ 1 0.8
0.027 0.4530(15) 0.943ð13Þeþ 4 0.1381ð17Þeþ 10 0.1290ð18Þeþ 7 0.9 0.387ð12Þeþ 1 0.9 −0.2379ð71Þeþ 1 0.4
0.03 0.4557(15) 0.957ð13Þeþ 4 0.1390ð17Þeþ 10 0.1301ð18Þeþ 7 1.0 0.374ð11Þeþ 1 1.0 −0.2301ð67Þeþ 1 0.4

HYP2 0.006 0.3855(19) 0.708ð12Þeþ 4 0.1256ð21Þeþ 10 0.1148ð22Þeþ 7 0.8 0.1019ð48Þeþ 2 0.3 −0.648ð26Þeþ 1 0.2
0.027 0.4114(14) 0.834ð11Þeþ 4 0.1378ð17Þeþ 10 0.1288ð17Þeþ 7 1.7 0.792ð20Þeþ 1 0.5 −0.500ð12Þeþ 1 0.3
0.03 0.4143(14) 0.846ð11Þeþ 4 0.1388ð16Þeþ 10 0.1301ð16Þeþ 7 1.7 0.764ð19Þeþ 1 0.5 −0.483ð12Þeþ 1 0.3

(Table continued)
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The NLO SUð2ÞχPT formula for the Bd and Bs quantities
(QBd

and QBs
, respectively) with a unitary d quark is

generally written as

QBd
¼ QSUð2Þ

0

�
1þ XQ

YQ þ ZQðgSUð2ÞB�Bπ
Þ2

ð4πfSUð2ÞÞ2 lðm2
LLÞ

þ CSUð2Þ
Ql m2

LL þ CSUð2Þ
Qh ðm2

HH −m2
HH;physÞ

þ CSUð2Þ
Qa a2

�
; ð126Þ

QBs
¼ QðsÞ

0 ð1þ CðsÞ
Qlm

2
LL þ CðsÞ

Qhðm2
HH −m2

HH;physÞ
þCðsÞ

Qsðm2
SS −m2

HH;physÞ þ CðsÞ
Qaa

2Þ; ð127Þ

where

lðm2
LLÞ ¼ m2

LL ln

�
m2

LL

Λ2
χ

�
; ð128Þ

m2
LL ¼ 2BSUð2Þ

0 ðml þmresÞ; ð129Þ

m2
HH ¼ 2BSUð2Þ

0 ðmh þmresÞ; ð130Þ

m2
SS ¼ 2BSUð2Þ

0 ðms þmresÞ; ð131Þ

m2
HH;phys ¼ 2BSUð2Þ

0 ðmphys
h þmresÞ; ð132Þ

with ml, mh, and ms depicting unitary degenerate u and d,
sea s and valence s-quark masses, respectively. XQ, YQ,
and ZQ are constants that are specific to each physical

quantity, and are given in Table VIII. fSUð2Þ, BSUð2Þ
0 , gSUð2ÞB�Bπ

,

QSUð2Þ
0 , CSUð2Þ

Ql , CSUð2Þ
Qh , CSUð2Þ

Qa , QðsÞ
0 , CðsÞ

Ql, C
ðsÞ
Qh, C

ðsÞ
Qs, and

CðsÞ
Qa are LECs. Note that these LECs are specific to

SUð2ÞχPT, in which the effects of the s quark are integrated
out at the physical s-quark mass mphys

h . The s-quark mass
dependence needs to be included, unless the s-quark mass
has a physical value. It can be implemented by Taylor
expansion of the LECs around the physical s-quark mass,
as shown in Eqs. (126) and (127). In this work, we use two
kinds of link smearing in the static quark action. Only the
coefficients in front of a2 are dependent on the smearing.
We mention here that, because the B parameters express
how the VSA holds well, its quark-mass dependence is
expected to be mild. In fact, the logarithm in the χPT
formula for BB is suppressed for gB�Bπ ¼ 0.449 [44] used
in this study, which leads to a smaller coefficient of the
logarithm term compared to that of the decay constant and
matrix element. For the SU(3)-breaking ratios, the expres-
sion up to NLO becomes

32
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QBs

QBd

¼ ~QSUð2Þ
0

�
1 − XQ

YQ þ ZQðgSUð2ÞB�Bπ
Þ2

ð4πfSUð2ÞÞ2 lðm2
LLÞ

þ ~CSUð2Þ
Ql m2

LL þ ~CSUð2Þ
Qh ðm2

HH −m2
HH;physÞ

þ CðsÞ
Qsðm2

SS −m2
HH;physÞ þ ~CSUð2Þ

Qa a2
�
: ð133Þ

Note that these expressions do not give unity even at
the ml ¼ ms point because SU(3) flavor symmetry is lost,
and the SUð2ÞχPT formula can be applied only for the
region ml ≪ ms.

B. Details of the chiral fitting

For the chiral fit, we use the values of fSUð2Þ and BSUð2Þ
0

from Ref. [26] and that of gSUð2ÞB�Bπ
from Ref. [44], which are

summarized in Table IX.
We carry out combined fits using HYP1 and HYP2 link-

smearing data assuming that terms unrelated to the lattice
spacing are common among the smearings. Their correla-
tion is taken into account. As mentioned in the previous
subsection, we introduce an s-quark mass dependence up to
the linear term. To fully track the sea s-quark dependence,
however, at least three independent data in the ðmh; aÞ

TABLE VI. Correlator fit results [OðaÞ improved].

24c1, mh ¼ 0.040, ml ¼ 0.005

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f:

HYP1 0.005 0.5107(27) 0.1337ð34Þeþ 5 0.1387ð32Þeþ 10 0.2664ð65Þeþ 7 1.3 0.311ð13Þeþ 2 0.4
0.034 0.5440(13) 0.1600ð18Þeþ 5 0.1512ð15Þeþ 10 0.2984ð40Þeþ 7 1.4 0.2372ð45Þeþ 2 0.6
0.04 0.5510(12) 0.1650ð17Þeþ 5 0.1531ð14Þeþ 10 0.3037ð38Þeþ 7 1.4 0.2198ð38Þeþ 2 0.6

HYP2 0.005 0.4654(22) 0.1183ð24Þeþ 5 0.1405ð27Þeþ 10 0.2668ð55Þeþ 7 1.3 0.559ð16Þeþ 2 0.4
0.034 0.4997(10) 0.1406ð13Þeþ 5 0.1542ð14Þeþ 10 0.3041ð33Þeþ 7 2.1 0.4187ð68Þeþ 2 0.3
0.04 0.5072(10) 0.1450ð13Þeþ 5 0.1564ð13Þeþ 10 0.3098ð31Þeþ 7 2.2 0.3858ð59Þeþ 2 0.3

24c2, mh ¼ 0.040, ml ¼ 0.01

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f:

HYP1 0.01 0.5118(35) 0.1339ð43Þeþ 5 0.1371ð41Þeþ 10 0.276ð10Þeþ 7 1.8 0.318ð16Þeþ 2 0.9
0.034 0.5409(21) 0.1552ð30Þeþ 5 0.1477ð27Þeþ 10 0.3046ð68Þeþ 7 1.8 0.2438ð76Þeþ 2 1.1
0.04 0.5481(19) 0.1601ð28Þeþ 5 0.1496ð25Þeþ 10 0.3098ð64Þeþ 7 1.8 0.2255ð66Þeþ 2 1.1

HYP2 0.01 0.4647(29) 0.1155ð31Þeþ 5 0.1354ð35Þeþ 10 0.2710ð81Þeþ 7 0.9 0.600ð21Þeþ 2 1.1
0.034 0.4956(17) 0.1344ð21Þeþ 5 0.1479ð22Þeþ 10 0.3003ð53Þeþ 7 1.1 0.439ð10Þeþ 2 0.9
0.04 0.5034(15) 0.1388ð21Þeþ 5 0.1503ð21Þeþ 10 0.3063ð50Þeþ 7 1.1 0.4028ð90Þeþ 2 0.9

32c1, mh ¼ 0.030, ml ¼ 0.004

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f:

HYP1 0.004 0.4232(28) 0.775ð19Þeþ 4 0.1197ð29Þeþ 10 0.1107ð31Þeþ 7 0.4 0.505ð45Þeþ 1 0.5
0.027 0.4519(14) 0.953ð12Þeþ 4 0.1342ð16Þeþ 10 0.1263ð21Þeþ 7 0.6 0.399ð16Þeþ 1 0.9
0.03 0.4557(14) 0.973ð12Þeþ 4 0.1355ð15Þeþ 10 0.1279ð21Þeþ 7 0.7 0.382ð14Þeþ 1 1.0

HYP2 0.004 0.3818(28) 0.704ð17Þeþ 4 0.1200ð27Þeþ 10 0.1098ð28Þeþ 7 1.0 0.1131ð76Þeþ 2 2.0
0.027 0.4116(14) 0.869ð10Þeþ 4 0.1363ð15Þeþ 10 0.1278ð19Þeþ 7 1.4 0.867ð23Þeþ 1 2.3
0.03 0.4155(13) 0.887ð10Þeþ 4 0.1377ð15Þeþ 10 0.1295ð19Þeþ 7 1.4 0.826ð21Þeþ 1 2.3

32c2, mh ¼ 0.030, ml ¼ 0.006

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f:

HYP1 0.006 0.4291(21) 0.830ð17Þeþ 4 0.1277ð24Þeþ 10 0.1166ð26Þeþ 7 0.8 0.506ð35Þeþ 1 0.7
0.027 0.4528(15) 0.969ð14Þeþ 4 0.1379ð17Þeþ 10 0.1288ð18Þeþ 7 0.9 0.409ð13Þeþ 1 1.2
0.03 0.4556(14) 0.984ð13Þeþ 4 0.1387ð16Þeþ 10 0.1299ð17Þeþ 7 1.0 0.396ð12Þeþ 1 1.3

HYP2 0.006 0.3853(18) 0.737ð13Þeþ 4 0.1253ð20Þeþ 10 0.1147ð22Þeþ 7 0.8 0.1114ð50Þeþ 2 0.4
0.027 0.4113(14) 0.871ð12Þeþ 4 0.1376ð16Þeþ 10 0.1288ð16Þeþ 7 1.8 0.860ð22Þeþ 1 0.5
0.03 0.4142(14) 0.884ð12Þeþ 4 0.1386ð16Þeþ 10 0.1301ð16Þeþ 7 1.8 0.830ð20Þeþ 1 0.5

32c3, mh ¼ 0.030, ml ¼ 0.008

Smear mq E0 A ~LS A ~SS ASS χ2=d:o:f: ASS
L χ2=d:o:f:

HYP1 0.008 0.4296(23) 0.818ð17Þeþ 4 0.1233ð24Þeþ 10 0.1135ð25Þeþ 7 0.7 0.513ð37Þeþ 1 1.9
0.027 0.4529(17) 0.952ð15Þeþ 4 0.1338ð19Þeþ 10 0.1259ð21Þeþ 7 0.8 0.399ð18Þeþ 1 1.6
0.03 0.4567(16) 0.972ð15Þeþ 4 0.1350ð19Þeþ 10 0.1275ð20Þeþ 7 0.8 0.381ð17Þeþ 1 1.6

HYP2 0.008 0.3895(22) 0.748ð14Þeþ 4 0.1247ð21Þeþ 10 0.1142ð23Þeþ 7 1.7 0.1035ð53Þeþ 2 1.3
0.027 0.4127(15) 0.865ð12Þeþ 4 0.1351ð16Þeþ 10 0.1269ð19Þeþ 7 1.7 0.804ð29Þeþ 1 1.5
0.03 0.4164(15) 0.882ð11Þeþ 4 0.1364ð16Þeþ 10 0.1285ð18Þeþ 7 1.7 0.766ð27Þeþ 1 1.5
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parameter space are required. Our simulation setting only
has one sea s-quark mass parameter for each lattice spacing
and the parameter is not tuned to the physical one, and
therefore the data cannot be fitted using the formulas (126),
(127), and (133). Nevertheless, we use these formulas
assuming that the sea s-quark mass parameter is on the
physical point, which causes the sea s-quark terms to
vanish. Later on we estimate the uncertainty from this
inconsistency using partially quenched SUð3ÞχPT. On the
other hand, we have two valence s-quark mass data points.
In our analysis we first linearly interpolate the data to the

physical s quark mass point using the two valence data
points, and then the fit functions are applied by setting
ms ¼ mphys

h .
In order to take into account the ambiguity of the chiral

fit function ansatz, we also use a linear fit function form,

GðmL; aÞ ¼ G0ð1þ C0
lm

2
LL þ C0

aa2Þ; ð134Þ

for Bd quantities and SU(3)-breaking ratios, which has the
same form as that for the Bs sector in the SUð2ÞχPT

TABLE VIII. Constants XQ, YQ, and ZQ in Eqs. (126) and
(133).

Q XQ YQ ZQ

Φ −3=4 1 3
M −1 2 3
B −1=2 1 −3

TABLE IX. Low-energy constants used in this work.

LECs NLO SUð2ÞχPT NLO SUð2ÞχPTðFVÞ
BSUð2Þ
0 [GeV] [26] 4.12(7) 4.03(7)

fSUð2Þ [GeV] [26] 0.110(2) 0.112(2)

gSUð2ÞB�Bπ
[44] 0.449ð47Þstatð19Þsys

Λχ [GeV] 1.0

TABLE VII. Decay constants, matrix elements, and B parameters in lattice units at the simulation points. ΦBs
, ΦBs

=ΦB, MBs
,

ðMBs
=MBÞ1=2, BBs

, and ðBBs
=BBÞ1=2 are interpolated to the physical s quark mass. Matching factors are multiplied.

HYP1, OðaÞ unimproved

Vol ml ΦB ΦBs
ΦBs

=ΦB MB MBs ðMBs
=MBÞ1=2 BB BBs ðBBs

=BBÞ1=2
24c 0.005 0.2613(38) 0.2998(21) 1.147(12) 0.1580(86) 0.2098(56) 1.152(22) 0.867(38) 0.875(17) 1.004(15)
24c 0.01 0.2630(48) 0.2940(33) 1.118(11) 0.158(10) 0.1986(74) 1.118(20) 0.861(42) 0.861(23) 1.000(15)
32c 0.004 0.1611(22) 0.1872(15) 1.162(12) 0.568(49) 0.788(29) 1.178(42) 0.820(67) 0.843(28) 1.014(34)
32c 0.006 0.1674(20) 0.1880(16) 1.1230(71) 0.625(44) 0.808(30) 1.136(28) 0.837(56) 0.857(26) 1.012(24)
32c 0.008 0.1676(20) 0.1873(17) 1.1179(73) 0.658(49) 0.806(38) 1.107(25) 0.879(59) 0.861(35) 0.990(19)

HYP2, OðaÞ unimproved

Vol ml ΦB ΦBs
ΦBs

=ΦB MB MBs ðMBs
=MBÞ1=2 BB BBs ðBBs

=BBÞ1=2
24c 0.005 0.2327(27) 0.2638(15) 1.134(10) 0.1193(49) 0.1555(34) 1.142(17) 0.825(26) 0.837(14) 1.007(11)
24c 0.01 0.2312(35) 0.2573(23) 1.113(10) 0.1237(57) 0.1521(44) 1.109(14) 0.867(30) 0.861(18) 0.996(10)
32c 0.004 0.1483(20) 0.1718(12) 1.158(11) 0.491(33) 0.670(23) 1.168(32) 0.837(51) 0.851(24) 1.008(25)
32c 0.006 0.1522(15) 0.1713(14) 1.1256(69) 0.505(24) 0.652(20) 1.136(18) 0.817(35) 0.833(20) 1.010(15)
32c 0.008 0.1547(18) 0.1716(14) 1.1093(72) 0.525(25) 0.637(21) 1.102(16) 0.822(35) 0.811(23) 0.993(11)

HYP1, OðaÞ improved

Vol ml ΦB ΦBs
ΦBs

=ΦB MB MBs ðMBs
=MBÞ1=2 BB BBs ðBBs

=BBÞ1=2
24c 0.005 0.2706(38) 0.3112(21) 1.150(12) 0.1661(89) 0.2217(58) 1.156(22) 0.850(36) 0.858(17) 1.005(15)
24c 0.01 0.2726(49) 0.3053(34) 1.120(11) 0.167(10) 0.2105(77) 1.120(20) 0.846(40) 0.846(22) 1.000(14)
32c 0.004 0.1658(22) 0.1928(15) 1.163(12) 0.593(50) 0.824(30) 1.178(41) 0.809(65) 0.831(28) 1.013(33)
32c 0.006 0.1720(20) 0.1935(17) 1.1252(71) 0.654(44) 0.847(31) 1.138(28) 0.829(54) 0.848(25) 1.011(23)
32c 0.008 0.1724(21) 0.1930(17) 1.1196(72) 0.686(49) 0.845(39) 1.110(24) 0.865(57) 0.850(34) 0.991(18)

HYP2, OðaÞ improved

Vol ml ΦB ΦBs
ΦBs

=ΦB MB MBs ðMBs
=MBÞ1=2 BB BBs ðBBs

=BBÞ1=2
24c 0.005 0.2450(28) 0.2791(15) 1.139(10) 0.1295(52) 0.1699(37) 1.145(17) 0.809(25) 0.818(13) 1.006(10)
24c 0.01 0.2439(36) 0.2724(24) 1.1166(98) 0.1348(61) 0.1664(47) 1.111(13) 0.849(28) 0.840(17) 0.9950(96)
32c 0.004 0.1547(20) 0.1795(13) 1.160(11) 0.530(34) 0.717(24) 1.163(31) 0.830(48) 0.834(23) 1.002(23)
32c 0.006 0.1585(16) 0.1790(15) 1.1292(69) 0.545(25) 0.701(21) 1.134(17) 0.813(33) 0.820(19) 1.004(14)
32c 0.008 0.1614(18) 0.1796(15) 1.1124(72) 0.562(27) 0.687(23) 1.106(16) 0.809(34) 0.799(22) 0.994(11)
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framework. We also investigate the uncertainty from chiral
fits by eliminating the heaviest quark mass data in both the
24c and 32c ensembles.

C. Scaling check and OðaÞ improvement

We present fit results using the SUð2ÞχPT formula in
Table X. We also show the chiral fit using the SUð2ÞχPT
formula in Figs. 1 and 2, in which both OðaÞ-unimproved
and -improved results are presented. The features of the
data are as follows.

(i) The data shows that HYP1 smearing gives larger
scaling violations than HYP2.

(ii) HYP1 and HYP2 results are almost consistent
with each other in the continuum limit. This con-
sistency is seen even in the OðaÞ-unimproved case
within large statistical errors. While the OðaÞ-
improved data shows slightly better consistency
than the unimproved case, we cannot see any clear

effectiveness of the OðaÞ-improvement with the
current statistics.

(iii) The OðaÞ improvement slightly pushes data up for
decay constants and matrix elements at each simu-
lation point.

(iv) Being a ratio, the scaling violation for ξ and fBs
=fB

is tiny. HYP1 and HYP2 OðaÞ-improved and
-unimproved results are consistent at each simula-
tion point.

When OðaÞ improvement is successfully accomplished
and a2 scaling is used in the continuum extrapolation
[assuming that the Oðα2saÞ and Oða3Þ contributions are
small], HYP1 and HYP2 results must give the same value
in the continuum limit, and our data is actually consistent
with this observation. Therefore we use a combined fit of
HYP1 and HYP2 assuming that the chiral fit parameter
for each smearing is different only for the coefficients of
the a2 term.
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FIG. 1 (color online). The SUð2ÞχPT fit of fB, fBs
, and fBs

=fB comparing OðaÞ-unimproved and -improved data. HYP1 and HYP2
data are fit independently. Thick lines with bands represent the continuum limit.

TABLE X. Chiral fit results in lattice units using the SUð2ÞχPT formula. The values show physical-point and continuum-limit results.
Matching factors are multiplied.

HYP1 HYP2 Combined

OðaÞ-unimp OðaÞ-imp OðaÞ-unimp OðaÞ-imp OðaÞ-unimp OðaÞ-imp

Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f:

ΦB 0.1437(50) 0.78 0.1460(50) 0.67 0.1400(41) 1.17 0.1436(42) 1.06 0.1392(41) 2.00 0.1428(42) 1.51
ΦBs

0.1766(37) 0.77 0.1795(38) 0.75 0.1725(30) 1.27 0.1771(31) 1.36 0.1726(31) 2.18 0.1772(32) 1.30
ΦBs

=ΦB 1.228(23) 0.74 1.229(22) 0.66 1.236(20) 0.33 1.238(20) 0.22 1.233(20) 0.74 1.235(20) 0.69

MB 0.432(91) 0.37 0.443(93) 0.34 0.410(50) 0.03 0.435(52) 0.01 0.402(50) 0.36 0.430(54) 0.33
MBs

0.686(64) 0.68 0.704(67) 0.70 0.653(40) 0.09 0.683(43) 0.04 0.636(39) 1.03 0.669(41) 0.86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MB
p

1.261(62) 0.07 1.261(61) 0.05 1.262(42) 0.19 1.255(41) 0.06 1.262(43) 0.08 1.255(42) 0.04

BB 0.79(11) 0.20 0.79(11) 0.17 0.753(74) 0.34 0.763(70) 0.42 0.757(78) 0.57 0.766(75) 0.62
BBs

0.833(53) 0.20 0.829(52) 0.22 0.807(40) 1.23 0.802(38) 1.09 0.804(41) 1.56 0.802(39) 1.45ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BBs

=BB
p

1.019(45) 0.19 1.020(44) 0.15 1.025(30) 0.13 1.018(29) 0.05 1.023(31) 0.09 1.016(29) 0.09
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D. Fit results and criteria for final results

In this work, OðaÞ-improved data are taken for the final
results. Hereafter, numerical data and figures indicate the
OðaÞ-improved case. We present chiral fit results in Figs. 3,
4, and 5. Correlations between the two kinds of link
smearing in the static action is included in the fitting.
χ2=d:o:f:’s and p values in the fits are presented in the
figures. the χ2=d:o:f:’s in each fit are all at an acceptable
level, and thus it is hard to exclude any of the fit using the
ansatz. We thus take the following criteria for the chiral and
continuum extrapolations.

(i) For Bd quantities and SU(3)-breaking ratios, an
average of the results from SUð2ÞχPT and the linear
fit, whose physical point values are presented in

Table XI, is taken. We then take half of the full
difference between the SUð2ÞχPT and linear results
as an uncertainty from the chiral fit function ansatz.

(ii) For Bs quantities, the SUð2ÞχPT fit (linear fit) results
are taken as central values. To investigate the chiral
fit form ambiguity, data in the region mπ >
350 MeV are removed and we see its effect on
the extrapolated value. We take the difference
between the full data and cut data—where the
heaviest quark mass points at each lattice spacing
are removed (“SUð2ÞχPT cut” in Figs. 3, 4, and 5)—
as a chiral fit ambiguity.

Combined with the ratio of the decay constants, ξ can be
obtained from Eq. (20). While the ratio of the B parameters
is well determined, the current data for the decay constants

FIG. 3 (color online). Chiral fit of fB, fBs
, and fBs

=fB using the SUð2ÞχPT and linear formulas. “cut” indicates that the heaviest quark
mass points at each lattice spacing were removed in the fitting.
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FIG. 2 (color online). The SUð2ÞχPT fit ofMB,MBs
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has a large uncertainty from the chiral extrapolation, which
also leads to a poor determination of ξ from Eq. (20) and
does not provide any gain. We hence simply use Eq. (3) to
calculate ξ in this work.

E. Finite-volume effect

Our lattice has a modest physical volume of around
2.75 fm and the lowest mπL is about 4; thus, we may
estimate the FV uncertainty using FV NLOχPT. The FV
correction can be included in the χPT formula by replacing
the chiral logarithms (128) with [45,46]

lðm2
LLÞ ¼ m2

LL ln

�
m2

LL

Λ2
χ
þ δ1ðmLLLÞ

�
; ð135Þ

δ1ðmLLLÞ ¼
4

mLLL

X
~r≠0

K1ðjrjmLLLÞ
jrj ; ð136Þ

where K1 are modified Bessel functions of the second
kind. For the numerical implementation of Eq. (136),
we use the multiplicities given in Refs. [43,45]. With
SUð2ÞχPT for the chiral extrapolation, we cannot

FIG. 4 (color online). Chiral fit of MB, MBs
, and ðMBs

=MBÞ1=2 using the SUð2ÞχPT and linear formulas. “cut” indicates that the
heaviest quark mass points at each lattice spacing were removed in the fitting.

FIG. 5 (color online). Chiral fit of BB, BBs
, and ðBBs

=BBÞ1=2 using the SUð2ÞχPT and linear formulas. “cut” indicates that the heaviest
quark mass points at each lattice spacing were removed in the fitting.
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evaluate the FV effect for the Bs sector in this pro-
cedure. The effect is, however, expected to be quite
small in this sector, and we estimate that this uncertainty
is negligible. In the simulated quark-mass region, the
FV correction slightly pushes the data up for Bd
quantities, and hence it pushed them down for the
SU(3)-breaking ratios, fBs

=fB and ξ.

VIII. SYSTEMATIC ERRORS

In this section we clarify the systematic errors we take
into account. A summary of the systematic errors is shown
in Table XII and also in Fig. 6.

A. Chiral extrapolation

As described in Sec. VII, we use the SUð2ÞχPT formula
for the chiral and continuum extrapolations. The linear fit
function ansatz cannot be excluded with the current
statistics, and thus we take their average. The method
for estimating the associated systematic errors has been
described in detail in Sec. VII.

B. gB�Bπ

In the chiral fit, we use gB�Bπ ¼ 0.449ð47Þð19Þ, where
the first uncertainty is statistical and the second is system-
atic [44]. This value was obtained using the 2þ 1-flavor
dynamical DWF configurations, which is the same as that
used in this simulation. The systematic errors were fully
evaluated in Ref. [44], and thus we quote this value as a
reliable one. We use 0.449 as a central value and change it
by �0.051 in the chiral fit for the uncertainty of this
coupling.

C. Discretization

The static heavy- and light-quark system hasOðaÞ lattice
discretization errors even if chiral fermions are employed
for the light quarks, in which case the OðaÞ discretization
errors start with OðαsaÞ. In this simulation, OðaÞ improve-
ment is made using one-loop perturbation theory [30].
Thus, the remaining OðaÞ lattice artifact is supposed to be
Oðα2saÞ at each simulated lattice spacing a. For the lattice
artifact, the coupling should be the lattice one, i.e., defined

TABLE XI. Chiral fit results in lattice units using the linear fit function. The values show physical-point and continuum-limit results.
Matching factors are multiplied.

HYP1 HYP2 Combined

OðaÞ-unimp OðaÞ-imp OðaÞ-unimp OðaÞ-imp OðaÞ-unimp OðaÞ-imp

Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f: Value χ2=d:o:f:

ΦB 0.1500(53) 1.17 0.1523(54) 1.03 0.1463(44) 1.63 0.1501(46) 1.48 0.1455(44) 2.14 0.1492(45) 1.63
ΦBs

0.1766(37) 0.77 0.1795(38) 0.75 0.1725(30) 1.27 0.1771(31) 1.36 0.1726(31) 2.18 0.1772(32) 1.30
ΦBs

=ΦB 1.164(22) 1.37 1.165(21) 1.27 1.172(20) 1.01 1.174(19) 0.82 1.169(20) 1.00 1.171(19) 0.94

MB 0.47(10) 0.44 0.48(10) 0.41 0.450(55) 0.03 0.477(58) 0.01 0.442(56) 0.36 0.472(60) 0.32
MBs

0.686(64) 0.68 0.704(67) 0.70 0.653(40) 0.09 0.683(43) 0.04 0.636(39) 1.03 0.669(41) 0.86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MB

p
1.186(58) 0.16 1.187(57) 0.13 1.186(40) 0.29 1.180(38) 0.12 1.187(40) 0.12 1.180(39) 0.06

BB 0.80(11) 0.20 0.80(11) 0.17 0.760(75) 0.33 0.769(71) 0.41 0.763(79) 0.57 0.773(75) 0.61
BBs

0.833(53) 0.20 0.829(52) 0.22 0.807(40) 1.23 0.802(38) 1.09 0.804(41) 1.56 0.802(39) 1.45ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BBs

=BB
p

1.015(45) 0.19 1.015(44) 0.15 1.020(30) 0.13 1.013(28) 0.05 1.019(30) 0.09 1.012(29) 0.09

TABLE XII. Error budget [%] for final quantities.

fB fBs
fBs

=fB fB
ffiffiffiffiffiffi
B̂B

p
fBs

ffiffiffiffiffiffiffi
B̂Bs

q
ξ B̂B B̂Bs

BBs
=BB

Statistics 2.99 1.81 1.65 6.34 3.12 3.36 9.80 4.93 5.80
Chiral/continuum extrapolation 3.54 1.98 2.66 2.55 2.13 3.08 14.84 7.15 3.66
Finite-volume effect 0.82 0.0 1.00 0.76 0.00 1.07 0.15 0.0 0.16
Discretization 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2
One-loop renormalization 6.0 6.0 0.0 6.0 6.0 1.2 6.0 6.0 1.2
gB�Bπ 0.24 0.00 0.35 0.14 0.00 0.25 0.20 0.00 0.22
Scale 1.82 1.85 0.04 1.84 1.86 0.05 0.04 0.05 0.02
Physical quark mass 0.05 0.01 0.06 0.06 0.19 0.20 0.03 0.00 0.02
Off-physical sea s-quark mass 0.84 0.69 0.79 0.20 0.39 0.91 0.28 0.19 0.42
Fit range 0.44 2.31 0.26 0.10 1.74 0.58 3.14 0.00 1.54
Total systematic error 7.38 7.09 3.00 6.90 6.94 3.66 16.34 9.39 4.18
Total error (incl. statistical) 7.96 7.32 3.42 9.37 7.61 4.97 19.05 10.61 7.15
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by Eq. (89), whose actual value is shown in Table III.
Conservatively assuming ΛQCD ∼ 500 MeV, the order of
magnitude for each discretization error is summarized in
Table XIII. While without one-loop perturbative OðaÞ
improvement the magnitude of the OðαsaÞ term is more
than half of the Oða2Þ term, the improvement reduces it
substantially. The uncertainties from Oðα2saÞ are ∼0.9%
(24c) and ∼0.6% (32c). The uncertainty from the Oða3Þ
contribution, which starts at the one-loop level, is even
smaller than that. Thus we take 1% as an uncertainty from
the remaining OðaÞ and Oða3Þ contributions in the con-
tinuum. For the SU(3)-breaking ratios, the lattice artifact
comes with a factor of ðms −mdÞ=ΛQCD ∼ 0.2, which leads
to a reduced uncertainty down of 0.2%.

D. Renormalization

In this work, renormalization is carried out in the one-
loop perturbation framework. We use power counting to
estimate the higher-order uncertainty of the perturbation.
We use a two-step matching procedure: first, full QCD
theory and HQET are matched in the continuum at a scale
μ ¼ mb; second, continuum and lattice HQETare matched
at the scale μ ¼ a−1. The values of αs in these matchings
are presented in Table XIII. Assuming that the coefficients
of the power expansion are one, the counting estimation

shows a two-loop uncertainty of 5.1% in the first matching
and of 3.1% in the second. We add them in quadrature,
leading to 6%. For the ratio of the decay constants, the
renormalization factor is completely canceled out, and
thus the perturbation ambiguity is negligible. For ξ,
however, the nonvanishing contribution Z2=Z1 remains
in the ratio, which causes an uncertainty. Nevertheless,
because this uncertainty is suppressed by a factor of
ðms −mlÞ=ΛQCD ∼ 0.2, the one-loop ambiguity is reduced
to 1.2%. We note that the one-loop perturbation ambiguity
also exists in the OðaÞ improvement coefficients, which is
counted as the discretization error (as discussed the
previous subsection).

E. Scale

As shown in Table I, the lattice scales used in this study
have a 1%-level uncertainty. We investigate the systematic
error from this by varying the value of the lattice spacing
within the uncertainty. While the matching factors and
OðaÞ-improved coefficients need to be implicitly varied for
this search, the effect is negligible. Thus we only take the
error into account when the lattice units are converted into
physical units and the chiral/continuum extrapolations are
carried out.

F. Light-quark mass

Light-quark masses at the physical point also have a
3%-level uncertainty, as shown in Table IV. This affects
the values of the physical observables. We check the effects
by varying the physical quark-mass values within the
uncertainty.

G. Of-physical sea s-quark mass

Our gluon ensemble has only one dynamical s-quark
mass parameter, which is slightly off from the physical
s-quark mass. In spite of this, we use the SUð2ÞχPT fit
functions assuming that the sea s quark is at the physical
mass. The uncertainty from this inconsistency must be
investigated. To deal with it, we make an estimation using
SUð3ÞχPT as a model. We use partially quenched
SUð3ÞHMχPT [47,48], whose explicit formulas are also
presented in Ref. [40]. The ambiguity from the off-physical
s-quark mass effect is investigated by taking the difference
between the correct treatment of our simulation setup and
the fake treatment where the s-quark mass is assumed to be
at the physical point.

H. Finite volume

The FVeffect is estimated using FVχPT, as mentioned in
Sec. VII. The uncertainty from the FV effect is estimated
from the difference between SUð2ÞχPT and FV SUð2ÞχPT.
The effect for Bs quantities is expected to be significantly
small, and thus it is neglected in our analysis.

TABLE XIII. Power counting for perturbation and discretiza-
tion error estimations. We here define â ¼ aΛQCD.

αsðmbÞ 0.2261
ðαsðmbÞÞ2 0.0511

24c 32c
αLATs 0.1769 0.1683
ðαLATs Þ2 0.0313 0.0283
â 0.29 0.22
â2 0.084 0.048
â3 0.024 0.011
αLATs â 0.051 0.037
ðαLATs Þ2â 0.0091 0.0062
αLATs â3 0.0042 0.0019
â2: αLATs â: αLATs â3 1∶0.61∶0.05 1∶0.77∶0.04
â2: ðαLATs Þ2â: αLATs â3 1∶0.11∶0.05 1∶0.13∶0.04

FIG. 6 (color online). Error budget for final quantities. The
height of the bars denotes the total error, while the relative size of
the colors is determined by the squared errors.

NEUTRAL B MESON MIXINGS AND B MESON DECAY … PHYSICAL REVIEW D 91, 114505 (2015)

114505-21



I. Fit-range dependence

As mentioned in Sec. VI E, our correlator fit results
have a non-negligible fit-range dependence. Although
this uncertainty is statistical rather than systematic, we
count it as a systematic error here. To take into account
the uncertainty of the fit range choices, we shift the
minimal value of t in the fit range toward a larger value
by 2 for the 2PT functions and shorten the range by 2
for the 3PT functions. In Appendix B, the physical
quantities with the original and shifted fit ranges for
each simulation parameter are shown in Figs. 16, 17,
and 18. We find that non-negligible fit range depend-
encies remain in some cases; the cases in which the
difference between the fit range choices is beyond 1σ
statistical error are listed in the caption of each figure.
We define the uncertainty of the fit range dependencies
as follows.
(1) When physical quantities at some quark-mass

parameter move beyond 1σ statistical error by
changing the fit range, the data at the mass parameter
for both HYP1 and HYP2 are replaced to see the
effect of the move.

(2) Chiral/continuum fits are performed to investigate
the shift caused by the replacement of the data.

(3) We repeat this procedure for each data point that has
a large shift beyond 1σ statistical error by changing
the fit range.

(4) The final uncertainty is obtained by adding each
shift of the chiral/continuum extrapolated value in
quadrature.

The resulting uncertainty is taken as a systematic error
in our calculation.

IX. CONCLUSIONS

A. Results of physical quantities

We present the final results for B meson quantities in the
static limit of the b quark:

½fB�static ¼ 218.8ð6.5Þstatð16.1Þsys MeV; ð137Þ

½fBs
�static ¼ 263.5ð4.8Þstatð18.7Þsys MeV; ð138Þ

½fBs
=fB�static ¼ 1.193ð20Þstatð36Þsys; ð139Þ

�
fB

ffiffiffiffiffiffi
B̂B

q �
static

¼ 240ð15Þstatð17Þsys MeV; ð140Þ
�
fBs

ffiffiffiffiffiffiffi
B̂Bs

q �
static

¼ 290ð09Þstatð20Þsys MeV; ð141Þ

½ξ�static ¼ 1.208ð41Þstatð44Þsys; ð142Þ

½B̂B�static ¼ 1.17ð11Þstatð19Þsys; ð143Þ

½B̂Bs
�static ¼ 1.22ð06Þstatð11Þsys; ð144Þ

½BBs
=BB�static ¼ 1.028ð60Þstatð43Þsys; ð145Þ

where the first errors are statistical and the second are
systematic. Note that the Oð1=mbÞ uncertainty, which is
mentioned in the next subsection, is not included in the
systematic errors above. We also show final results includ-
ing the Oð1=mbÞ uncertainty in the systematic error:

fB ¼ 218.8ð6.5Þstatð30.8Þsys MeV; ð146Þ

fBs
¼ 263.5ð4.8Þstatð36.7Þsys MeV; ð147Þ

fBs
=fB ¼ 1.193ð20Þstatð44Þsys; ð148Þ

fB

ffiffiffiffiffiffi
B̂B

q
¼ 240ð15Þstatð33Þsys MeV; ð149Þ

fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼ 290ð09Þstatð40Þsys MeV; ð150Þ

ξ ¼ 1.208ð41Þstatð52Þsys; ð151Þ

B̂B ¼ 1.17ð11Þstatð24Þsys; ð152Þ

B̂Bs
¼ 1.22ð06Þstatð19Þsys; ð153Þ

BBs
=BB ¼ 1.028ð60Þstatð49Þsys: ð154Þ

We present here the constraint on the ratio of the CKM
matrix element (2) obtained through Eq. (12):

����Vtd

Vts

���� ¼ 0.206ð13Þ; ð155Þ

where the statistical and systematic errors including the
Oð1=mbÞ uncertainty are all added in quadrature.

B. Comparison with other approaches
and the 1=mb ambiguity

Since we use the static approximation for the b quark,
there exists an OðΛQCD=mbÞ uncertainty for the physical
quantities. Here, we take the PDG value for the b-quark
mass in the MS scheme, mb ¼ 4.18ð03Þ GeV [15], and we
assume ΛQCD ¼ 0.5 GeV. The uncertainty from the static
approximation becomes 12%. For the SU(3)-breaking
ratios, however, there would be a suppression factor
coming from the SU(3) light flavor symmetry, which
leads to
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ΛQCD

mb
×
ms −md

ΛQCD
∼ 2.2%: ð156Þ

We show comparisons with other works for our obtained
quantities in Figs. 7, 8, and 9. (See also the review of lattice
results by the Flavor Lattice Averaging Group (FLAG)
[49].) Our results have a ∼10% larger value for the decay
constants fB and fBs

compared to other works at the
physical b-quark mass point, which would be plausibly
understood as coming from the static approximation
ambiguity. The ETM Collaboration’s results in the static
limit in Ref. [50] also show this tendency. However, the

ALPHA Collaboration’s results for fB and fBs
in the static

limit indicate a much smaller deviation from those at the
physical b-quark mass point [12]. We cannot determine the
reason for this difference compared to our results, because
our current uncertainty is still large. On the other hand,
there is no clear difference from the physical b-quark point

in fB
ffiffiffiffiffiffi
B̂B

p
, fBs

ffiffiffiffiffiffiffi
B̂Bs

q
, B̂B, and B̂Bs

, because of the large

error. For the SU(3)-breaking ratios, a significant deviation
from others is not seen since the static approximation
uncertainty is largely reduced by the SU(3) light flavor
symmetry factor, as described in Eq. (156).
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FIG. 7 (color online). Comparison of fB, fBs
, and fBs

=fB with other works. The data is cited from Refs. [50] (ETM 2011), [12]
(ALPHA 2014), [51] (HPQCD 2013), [52] (ETM 2013A), [53,54] (HPQCD 2012A, HPQCD 2012B), [55] (FNAL/MILC 2011), [56]
(RBC/UKQCD 2014), [14] (ETM 2013B), and [40] (RBC/UKQCD 2010). The values of fB and fBs

in ETM 2011 are obtained fromΦB

and ΦBs
divided by

ffiffiffiffiffiffiffi
mB

p
and ffiffiffiffiffiffiffiffimBs

p , respectively. Errors for the static-limit results do not contain the 1=mb uncertainty.
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FIG. 8 (color online). Comparison of fB
ffiffiffiffiffiffi
B̂B

p
, fBs

ffiffiffiffiffiffiffi
B̂Bs

q
, and ξ with other works. The data is cited from Refs. [57] (HPQCD 2009),

[58] (FNAL/MILC 2011), [59] (FNAL/MILC 2012), [14] (ETM 2013), and [40] (RBC/UKQCD 2010). The RGI values of fB
ffiffiffiffiffiffi
B̂B

p
and

fBs

ffiffiffiffiffiffiffi
B̂Bs

q
in FNAL/MILC 2011 are obtained by converting fB

ffiffiffiffiffiffi
BB

p
and fBs

ffiffiffiffiffiffiffi
BBs

p
at μ ¼ mb in Ref. [58] with the two-loop

multiplicative factor 1.516. Errors for the static-limit results do not contain the 1=mb uncertainty.
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, and BBs
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(ETM 2013), and [59] (FNAL/MILC 2012). Errors for the static-limit results do not contain the 1=mb uncertainty.
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Finally, it would be interesting to see a correspondence
between ξ and fBs

=fB. In this study we obtained the
difference

Δ ¼ ξ −
fBs

fB
¼ 0.015ð73Þ; ð157Þ

where the correlation between ξ and fBs
=fB is omitted. As

mentioned in Sec. III A, a naive factorization suggests that
ξ is close to fBs

=fB, and our result supports this observa-
tion in the static limit of the b quark. In Fig. 10 we show Δ
from other works together with our results. No discrepancy
between ξ and fBs

=fB beyond 1σ error has yet been seen.

C. Further improvements for the next step

Although the obtained results in this work are encour-
aging, there exist limitations due to insufficient statistics
and various systematic errors. As the current error budget in
Fig. 6 shows, dominant uncertainties are the statistical
error, chiral extrapolation, and the uncertainty from
renormalization. To overcome the current situation, we
present the following possible options.

All-mode averaging (AMA): Currently, our results have a
large statistical error and the chiral extrapolation is
suffering from a lack of statistics. Gluon link smearings
in the static action help to improve signal qualities to
some extent; however, the statistical error is not small
enough. The AMA technique [60] provides a substantial
computational cost reduction, which leads to improved
statistics. In the AMA, a bunch of source points are used

to increase statistics while keeping the computational
cost small by using a conjugate gradient (CG) solver
with relaxed convergence conditions.
Physical light-quark mass point simulation: The lightest
pion mass in this paper is ∼290 [MeV], which leaves a
large uncertainty from the chiral extrapolation. This
error would be significantly reduced by a physical point
simulation, where the simulated pion mass is ∼135
[MeV]. The 2þ 1-flavor dynamical ensembles are being
generated by the RBC and UKQCD collaborations using
Möbius DWF [61], which keeps almost the same lattice
spacings as those in this work but with a doubled
physical volume [62]. It would increase the computa-
tional cost by a large amount, and hence the AMA
technique mentioned above is crucial.
Nonperturbative renormalization: While the one-loop
renormalization uncertainty is 0% or quite small for the
SU(3)-breaking ratios, it is estimated to be at the most
6% for non-ratio quantities. Nonperturbative renormal-
ization is, hence, required for the non-ratio quantities in
order to reduce the large uncertainty. The renormaliza-
tion would be accomplished using the momentum-
subtraction (RI/MOM) scheme [63,64], in which an
additional renormalization condition is required to
manage the 1=a power divergence.
These programs are nontrivial but promising directions.

Some of them are currently on-going [65] and we plan to
present more definite results on this project in the near
future.
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APPENDIX A: EFFECTIVE MASS AND CORRELATOR PLOTS

Figures 11–15 show effective mass plots in the two-point function and three-point function plots. The fit ranges and fit
results are included in the figures.
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FIG. 10 (color online). Comparison of Δ ¼ ξ − fBs
=fB with

other works. The data is cited from Refs. [57] (HPQCD 2009),
[59] (FNAL/MILC 2012), and [14] (ETM 2013). In calculating
Δ, correlations between ξ and fBs

=fB are not taken into account.
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FIG. 11 (color online). Effective mass (two-point function) and three-point function plot for 24c1. The figures show Eeff ¼
− lnðCXXðtþ 1; 0Þ=CXXðt; 0ÞÞ with XX ¼ ð ~LS; ~SS; SSÞ for 2PT, CSS

L ðtf; t; 0Þ for 3PT VVþ AA, and CSS
S ðtf; t; 0Þ for 3PT SSþ PP. Fit

ranges and fit results are shown in the figures. For the three-point functions tf is fixed to be 20.
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FIG. 12 (color online). Effective mass (two-point function) and three-point function plot for 24c2. The figures show Eeff ¼
− lnðCXXðtþ 1; 0Þ=CXXðt; 0ÞÞ with XX ¼ ð ~LS; ~SS; SSÞ for 2PT, CSS

L ðtf; t; 0Þ for 3PT VVþ AA, and CSS
S ðtf; t; 0Þ for 3PT SSþ PP. Fit

ranges and fit results are shown in the figures. For the three-point functions tf is fixed to be 20.
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FIG. 13 (color online). Effective mass (two-point function) and three-point function plot for 32c1. The figures show Eeff ¼
− lnðCXXðtþ 1; 0Þ=CXXðt; 0ÞÞ with XX ¼ ð ~LS; ~SS; SSÞ for 2PT, CSS

L ðtf; t; 0Þ for 3PT VVþ AA, and CSS
S ðtf; t; 0Þ for 3PT SSþ PP. Fit

ranges and fit results are shown in the figures. For the three-point functions tf is fixed to be 24.
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FIG. 14 (color online). Effective mass (two-point function) and three-point function plot for 32c2. The figures show Eeff ¼
− lnðCXXðtþ 1; 0Þ=CXXðt; 0ÞÞ with XX ¼ ð ~LS; ~SS; SSÞ for 2PT, CSS

L ðtf; t; 0Þ for 3PT VVþ AA, and CSS
S ðtf; t; 0Þ for 3PT SSþ PP. Fit

ranges and fit results are shown in the figures. For the three-point functions tf is fixed to be 24.
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FIG. 15 (color online). Effective mass (two-point function) and three-point function plot for 32c3. The figures show Eeff ¼
− lnðCXXðtþ 1; 0Þ=CXXðt; 0ÞÞ with XX ¼ ð ~LS; ~SS; SSÞ for 2PT, CSS

L ðtf; t; 0Þ for 3PT VVþ AA, and CSS
S ðtf; t; 0Þ for 3PT SSþ PP. Fit

ranges and fit results are shown in the figures. For the three-point functions tf is fixed to be 24.
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APPENDIX B: FIT-RANGE
DEPENDENCE

We show the fit range dependencies of physical
quantities at each simulation point in Figs. 16,17,
and 18. To check the dependencies, we shift the
minimal value of t in the fit range toward a larger
value by 2 for the 2PT functions and shorten the range
by 2 for the 3PT functions, which we name “fit range
2” in the figures. To be more specific, the actual fit
ranges are

original ð24cÞ∶ t ¼ 10–15 ðL̄S; S̄SÞ; t ¼ 13–18 ðSSÞ;
t ¼ 7–13 ðVVþAA;SSþ PPÞ;

original ð32cÞ∶ t ¼ 10–16 ðL̄S; S̄SÞ; t ¼ 13–19 ðSSÞ;
t ¼ 9–15 ðVVþAA;SSþ PPÞ;

fit range 2 ð24cÞ∶ t ¼ 12–15 ðL̄S; S̄SÞ; t ¼ 15–18 ðSSÞ;
t ¼ 8–12 ðVVþAA;SSþ PPÞ;

fit range 2 ð32cÞ∶ t ¼ 12–16 ðL̄S; S̄SÞ; t ¼ 15–19 ðSSÞ;
t ¼ 10–14 ðVVþAA;SSþ PPÞ:

B(HYP1) Bs(HYP1) Bs/ B(HYP1) B(HYP2) Bs(HYP2) Bs/ B(HYP2)

original

fit range 2

B(HYP1) Bs(HYP1) Bs/ B(HYP1) B(HYP2) Bs(HYP2) Bs/ B(HYP2)

original

fit range 2

B(HYP1) Bs(HYP1) Bs/ B(HYP1) B(HYP2) Bs(HYP2) Bs/ B(HYP2)

original

fit range 2

B(HYP1) Bs(HYP1) Bs/ B(HYP1) B(HYP2) Bs(HYP2) Bs/ B(HYP2)

original

fit range 2

B(HYP1) Bs(HYP1) Bs/ B(HYP1) B(HYP2) Bs(HYP2) Bs/ B(HYP2)

original

fit range 2

FIG. 16. Fit-range dependencies of ΦB, ΦBs
, and ΦBs

=ΦB at each simulation point. Horizontal labels are suppressed. We find
differences between the fit-range choices beyond 1σ statistical error in 24c1ðΦB;ΦBs

Þ, 24c2ðΦBs
Þ, 32c1ðΦB;ΦBs

=ΦBÞ, and 32c2ðΦBs
Þ.
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FIG. 17. Fit-range dependencies of MB, MBs
, and ðMBs

=MBÞ1=2 at each simulation point. Horizontal labels are suppressed. We find
differences between the fit-range choices beyond 1σ statistical error in 24c1ðMB;MBs

Þ, 24c2ððMBs
=MBÞ1=2Þ, and 32c2ðMBs

Þ.
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We find disagreements between the choices of the fit ranges beyond 1σ statistical error for some cases.
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