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We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward identities
(WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs
associated to the Poincaré invariance of the continuum theory. These relations come forth when the length
of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and
the periodicity axes are not aligned. We implement the method for the SU(3) Yang-Mills theory discretized
with the standard Wilson action in the presence of shifted boundary conditions in the (short) temporal
direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless
components of the tensor are determined with a precision of roughly half a percent for values of the bare
coupling constant in the range 0 ≤ g20 ≤ 1.
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I. INTRODUCTION

On the lattice the Poincaré group is explicitly broken into
discrete subgroups, and the full symmetry is recovered only
in the continuum limit. As a consequence, a given defi-
nition of the energy-momentum tensor needs to be properly
renormalized to guarantee that the associated charges are
the generators of the Poincaré group in the continuum limit
and that the trace anomaly is correctly reproduced.
In order to construct the renormalized energy-momentum

tensor, the way to proceed is to impose suitable WIs at fixed
lattice spacing that hold up to cutoff effects which vanish in
the continuum limit [1]. This program can be realized in
practice if theWIs involve correlatorswhich in turn are simple
enough to be computed numerically with good precision.
When the theory is considered in a finite box, the

Euclidean Lorentz symmetry is also softly broken by its
shape. If the length in one (temporal) direction L0 is chosen
to be shorter than the typical scale of the theory (thermal
theory), interesting WIs follows [2–4]. They become
particularly simple and of practical use if the periodicity
axes are tilted with respect to the lattice grid, i.e. if the hard
breaking of the Poincaré symmetry due to the lattice
discretization and the soft one due to the finite temporal
direction are not aligned. This setup has a natural imple-
mentation in the Euclidean path-integral formulation in
terms of shifted boundary conditions [2,5].
Here we define the renormalized energy-momentum

tensor of the Yang-Mills theory nonperturbatively by
working in this framework. This is achieved by supple-
menting the set of WIs found in Refs. [3,4] with a new one
which guarantees that the correct trace anomaly is repro-
duced in the continuum limit.
We implement this strategy for the SU(3) Yang-Mills

theory regularized with the standard Wilson action. We

carry out extensive numerical simulations, and compute
with high precision the renormalization constants of the
traceless components of the tensor. The numerical deter-
mination of the renormalization constant of the trace part
requires additional simulations, and it is left for a forth-
coming publication. Over the last year an alternative
method, based on the Yang-Mills gradient flow, has also
been proposed for renormalizing nonperturbatively the
energy-momentum tensor [6–8].

II. WARD IDENTITIES IN THE PRESENCE OF
A NONZERO SHIFT

In this section we consider the SU(3) Yang-Mills theory
in the continuum. The definitions of the action and of the
partition function Z are reported in Appendixes A and B
together with other conventions. Here we are interested in
the thermal theory defined in the path integral formalism
with shifted boundary conditions,

AμðL0; xÞ ¼ Aμð0; x − L0ξÞ; ð1Þ

along the compact (temporal) direction of length L0 with
shift ξ ∈ R3. The free-energy density is given by

fðL0; ξÞ ¼ −
1

L0V
lnZðL0; ξÞ; ð2Þ

where V is the spatial volume of the box. In the thermo-
dynamic limit, which is always assumed in this section,
the invariance of the dynamics under the SO(4) group
implies [4]

fðL0; ξÞ ¼ f
�
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

q
; 0
�
: ð3Þ
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When ξ ≠ 0, odd derivatives in ξk do not vanish, and the
following interesting relations hold [2–4] (x0 ≠ 0):

L0hT0kiξ ¼
1

V
∂
∂ξk lnZðL0; ξÞ;

∂
∂ξk hOiξ ¼ L0hT̄0kðx0ÞOð0Þiξ;c; ð4Þ

where Tμν is the energy-momentum tensor, T̄μν ¼R
d3xTμνðxÞ, O is a generic gauge invariant operator, and

the subscriptc indicates a connected correlation function.By
deriving once with respect to L0 and to ξk, one obtains the
relation (no summation over repeated k here) [4]

hT0kiξ ¼
ξk

1 − ξ2k
fhT00iξ − hTkkiξg: ð5Þ

In the equations above and in the rest of this paper, we focus
on correlation functions of the energy-momentum tensorTμν

with gauge-invariant operators inserted at a physical dis-
tance. As reviewed in Appendix C, it is appropriate in those
cases to consider the symmetric gauge-invariant definitionof
the energy-momentum tensor given by

Tμν ¼
1

g20

�
Fa
μαFa

να −
1

4
δμνFa

αβF
a
αβ

�
: ð6Þ

By deriving two times with respect to the shift components
and by using Eq. (4), one obtains [4]

hT0kiξ ¼
L0ξk
2

X
ij

hT̄0iT0jiξ;c
�
δij −

ξiξj
ξ2

�
; ð7Þ

where on the rhs the two fields are inserted at different times.
Analogously one shows that (x0 ≠ 0),

L0hT̄0kðx0ÞTμμð0Þiξ;c¼
�
6−

1þξ2

ξ2k

�
hT0kiξ

þL0

1þξ2

ξk
hT̄0kðx0ÞT0kð0Þiξ;c; ð8Þ

which can also be put in the more suggestive form

∂
∂ξk hTμμiξ ¼

1

ð1þ ξ2Þ2
∂
∂ξk

�ð1þ ξ2Þ3
ξk

hT0kiξ
�
: ð9Þ

A. Finiteness of Tμν and trace anomaly

In dimensional regularization, the energy-momentum
tensor in Eq. (6) is decomposed as

Tμν ¼ τμν þ δμντ; ð10Þ

where

τμν ¼
1

g20

�
Fa
μαFa

να −
1

D
δμνFa

αβF
a
αβ

�
;

τ ¼ ϵ

2Dg20
Fa
αβF

a
αβ ð11Þ

are two fields transforming as a two-index symmetric and a
singlet irreducible representation of the SO(D) group,
respectively, and D ¼ 4 − 2ϵ.
The field τμν is a dimension-four gauge invariant

operator which is multiplicatively renormalizable. The
WI in Eq. (7) fixes its renormalization constant to 1.
This in turn implies that g20τμν renormalizes as

�
Fa
μαFa

να−
1

D
δμνFa

αβF
a
αβ

�
R
¼Zg

�
Fa
μαFa

να−
1

D
δμνFa

αβF
a
αβ

�
;

ð12Þ

where Zg is the renormalization constant of the coupling;
see Appendix D. By defining the renormalization group
invariant (RGI) operator as [9]

�
Fa
μαFa

να −
1

D
δμνFa

αβF
a
αβ

�
RGI
¼ 1

2b0g2

�
Fa
μαFa

να

−
1

D
δμνFa

αβF
a
αβ

�
R
; ð13Þ

we finally arrive at

τμν ¼ τRμν ¼ 2b0

�
Fa
μαFa

να −
1

D
δμνFa

αβF
a
αβ

�
RGI

; ð14Þ

where b0 is the first coefficient of the β function given in
Eq. (D4). The field τ is also dimension-four and gauge
invariant, but it is a singlet under SO(D). Therefore it mixes
with itself and with the identity operator. The Eq. (8) fixes
the multiplicative renormalization constant to 1, while a
natural prescription for the identity subtraction is

τR ¼ τ − hτi0 ð15Þ

where h…i0 indicates the vacuum expectation value for
L0 → ∞ (zero temperature). This in turn implies that one
can define

fFa
αβF

a
αβgR ¼ Z−1

E fFa
αβF

a
αβ − hFa

αβF
a
αβi0g; ð16Þ

and Eq. (15) becomes

τR ¼ ϵZgZE

2Dμ2ϵg2
fFa

αβF
a
αβgR: ð17Þ

By using the result in Eq. (D12) of Appendix D, one
obtains the well-known result for the trace anomaly
[10,11]:
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Tμμ ¼ 4τR ¼ −
β

2g3
fFa

αβF
a
αβgR: ð18Þ

By defining the renormalization group invariant operator
as [9]

fFa
αβF

a
αβgRGI ¼ −

β

b0g3
fFa

αβF
a
αβgR; ð19Þ

we can finally write

Tμμ ¼ 4τR ¼ b0
2
fFa

αβF
a
αβgRGI: ð20Þ

The WIs in Eqs. (7) and (8) fix unambiguously the
renormalization constants of the composite fields entering
the energy-momentum tensor definition so that the correct
trace anomaly is reproduced. The Eqs. (18)–(20) hold to all
orders in perturbation theory.

III. THE ENERGY-MOMENTUM TENSOR
ON THE LATTICE

We regularize the SU(3) Yang-Mills theory on a finite
four-dimensional lattice of spatial volume V ¼ L3, tem-
poral direction L0, and spacing a. The gauge field satisfies
periodic boundary conditions in the three spatial directions
and shifted boundary conditions in the compact direction

UμðL0; xÞ ¼ Uμð0; x − L0ξÞ; ð21Þ

where Uμðx0; xÞ are the link variables. The action is
discretized through the standard Wilson plaquette

S½U� ¼ β

2
a4
X
x

X
μ;ν

�
1 −

1

3
ReTrfUμνðxÞg

�
; ð22Þ

where the trace is over the color index, and β ¼ 6=g20 with
g0 being the bare coupling constant. The plaquette is
defined as a function of the gauge links, and it given by

UμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ; ð23Þ

where μ; ν ¼ 0;…; 3, μ̂ is the unit vector along the
direction μ, and x is the space-time coordinate. The gluon
field strength tensor is defined as1 [1]

Fa
μνðxÞ ¼ −

i
4a2

Trf½QμνðxÞ −QνμðxÞ�Tag; ð24Þ

where

QμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ
þUνðxÞU†

μðx− aμ̂þ aν̂ÞU†
νðx− aμ̂ÞUμðx− aμ̂Þ

þU†
μðx− aμ̂ÞU†

νðx− aμ̂− aν̂Þ
×Uμðx− aμ̂− aν̂ÞUνðx− aν̂Þ
þU†

νðx− aν̂ÞUμðx− aν̂ÞUνðxþ aμ̂− aν̂ÞU†
μðxÞ:
ð25Þ

The target energy-momentum tensor in the continuum is
a gauge-invariant operator of dimension four, which is a
combinationof a traceless two-index symmetric anda singlet
irreducible representationofSO(4).WhenSO(4) isbroken to
the hypercubic group SW4, the traceless two-index sym-
metric representation splits into a sextet (nondiagonal
components) and a triplet (diagonal traceless components).
At finite lattice spacing, the energy-momentum tensor is thus
a combination of gauge-invariant operators of dimension
d ≤ 4 which, under the hypercubic group, transform as one
of those two representations and the singlet. In the SU(3)
Yang-Mills theory there are only three such operators (no
summation over repeated μ and ν here) [1,12]:

T ½1�μν ¼ ð1 − δμνÞ
1

g20
fFa

μαFa
ναg

T ½2�μν ¼ δμν
1

4g20
Fa
αβF

a
αβ

T ½3�μν ¼ δμν
1

g20

�
Fa
μαFa

μα −
1

4
Fa
αβF

a
αβ

�
ð26Þ

and the identity. The sextet T ½1�μν and the triplet T ½3�μν renorm-

alize multiplicatively, while the singlet T ½2�μν mixes also with
the identity. The renormalized energy-momentum tensor can
finally be written as

TR
μν ¼ ZTfT ½1�μν þ zTT

½3�
μν þ zS½T ½2�μν − hT ½2�μνi0�g: ð27Þ

The renormalization constants ZT , zT and zS are finite and
depend on g20 only. At one loop in perturbation theory their
expressions are [1,12]

ZTðg20Þ ¼ 1þ 0.27076g20;

zTðg20Þ ¼ 1 − 0.03008g20;

zSðg20Þ ¼
b0
2
g20: ð28Þ

A. Nonperturbative renormalization conditions

The renormalization constants ZT , zT and zS can be
determined nonperturbatively by requiring that on the
lattice the WIs in Eqs. (4), (5), and (9) hold up to

1We use the same notation for lattice and continuum quantities,
since any ambiguity is resolved from the context. As usual, the
continuum limit value of a renormalized lattice quantity, iden-
tified with the subscript R, is the one to be identified with its
continuum counterpart.
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discretization effects which vanish in the continuum limit.
The renormalization constant of the sextet is fixed to be
[13] (see also [14])

ZTðg20Þ ¼ −
Δf
Δξk

1

hT ½1�0kiξ
; ð29Þ

where the derivative in the shift in Eq. (4) is discretized by
the symmetric finite difference

Δf
Δξk
¼ 1

2aV
ln

�
ZðL0; ξ − ak̂=L0Þ
ZðL0; ξþ ak̂=L0Þ

�
ð30Þ

to ensure that discretization effects start at Oða2Þ.
In the thermodynamic limit, which is always assumed
in this section, the triplet is renormalized by requiring
that Eq. (5) holds up to harmless discretization
effects, i.e.

zTðg20Þ ¼
1 − ξ2k
ξk

hT ½1�0kiξ
hT ½3�00iξ − hT ½3�kkiξ

: ð31Þ

By choosing one possibility of discretizing Eq. (9), the
singlet renormalization constant is fixed to be

zS ¼
1

ð1þ ξ2Þ2

h
ð1þξ02Þ3

ξ0k
hT ½1�0kiξ0

i
ξ0¼ξþak̂=L0

−
h
ð1þξ02Þ3

ξ0k
hT ½1�0kiξ0

i
ξ0¼ξ−ak̂=L0

hT ½2�μμiξþak̂=L0
− hT ½2�μμiξ−ak̂=L0

: ð32Þ

At finite L0, the renormalization constants depend on the
bare coupling constant and on ða=L0Þ2 due to discretization
effects. Our prescription is to define them in the limit2

L0 → ∞ at fixed g20.

IV. NUMERICAL COMPUTATION

In this section we describe how the strategy outlined
above has been implemented in practice to determine the
renormalization constants ZT and zT . In all simulations the
basic Monte Carlo step is a combination of heatbath and
over-relaxation updates of the link variables using the
Cabibbo-Marinari scheme [15]. A single sweep is made
of 1 heatbath and 3 over-relaxation updates of all link
variables. All lattices have an inverse temporal length
1=L0 > Tc, where Tc is the critical temperature of the
theory. We have checked explicitly the autocorrelation
times of the primary observables by profiting from the
long Monte Carlo histories, which are typically made of
Oð105Þ sweeps. No long autocorrelations were observed.3

For the statistical analysis we have blocked together the
primary observables generated in several hundreds of
consecutive sweeps, a value which is always much larger
than the autocorrelation times measured. It is important to
notice that the determinations of ZT and zT require (see
below) the computation of expectation values of single
local operators only. Indeed, increasing the spatial size of
the lattice does not increase the computational effort at
fixed statistical accuracy.

A. Determination of ZT

The direct determination of Δf=Δξk in Eq. (29) would
involve the computation of the ratio of two partition
functions with different shifts at the same value of L0=a
and g20. Since the relevant phase spaces in the path integral
of the two systems overlap very poorly, the ratio cannot be
estimated in a single Monte Carlo simulation. A possible
way out is to define a series of physical systems with
actions which interpolate between the two original ones,
and then use the Monte Carlo procedure of Refs. [2,16,17].
The calculation, however, becomes quickly demanding for
large lattices since the numerical cost increases quadrati-
cally with the spatial volume.
To bypass this problem we can profit from the fact that

Δf=Δξk is a smooth function of g20 at fixed values of L0=a
and L=a in the range of chosen values. Its derivative with
respect to g20 can be written as

d
dg20

Δf
Δξk
¼ 1

2aL3g20
fhSiξ−a=L0k̂

− hSiξþa=L0k̂
g; ð33Þ

where hSiξ stands for the expectation value of the action in
Eq. (22). Although the quantities on the rhs of Eq. (33) have
values which are close to each other, their difference can be
computed at a few permille accuracy with a moderate
numerical effort. The difference fhSiξ−a=L0k̂

− hSiξþa=L0k̂
g

has been computed for ξ ¼ ð1; 0; 0Þ and L=a ¼ 48 at 63,
59 and 48 values of g20 for L0=a ¼ 3; 4 and 5, respectively.
A sample of values is reported in Table I, while all of them
are shown in the left plot of Fig. 1. At each value of L0=a
the points are interpolated with a cubic spline, and the
resulting curve is integrated over g20. The free-case value is
computed analytically by using Eq. (E12) and is added to

2Notice that in Ref. [13] a different condition was imposed.
Since we were interested in ZTðg20Þ in a limited range of g20, we
defined ZTðg20Þ as in Eq. (29) but at finite L0.3At these values of L0 fluctuations of the topological charge
away from zero are heavily suppressed.
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the integral. The systematics induced by the interpolation
and the numerical integration of the data is negligible with
respect to the statistical error.
To complete the calculation of ZTðg20Þ, the expectation

value hT ½1�0kiξ is measured in a dedicated set of simulations.
It is computed for ξ ¼ ð1; 0; 0Þ and L=a ¼ 48 at 66, 60 and
38 values of g20 for L0=a ¼ 3; 4 and 5, respectively. A
sample of values is reported in Table II, and all of them are
shown in the right plot of Fig. 1. By interpolating the results
with a cubic spline, the renormalization constant ZTðg20Þ is
finally determined by the tree-level improved version of
Eq. (29) given by

ZTðg20Þ ¼ −
�
Δf
Δξk

1

hT ½1�0kiξ
− free case

�
: ð34Þ

The results4 for ZTðg20Þ at L=a ¼ 48 and L0=a ¼ 3; 4 and 5
are shown in the left plot of Fig. 2. At the larger value of
L0=a ¼ 5, discretization effects in a=L0 are within our
statistical errors. Those due to the finiteness of a=L have
been checked by computing5 ZT at L=a ¼ 16 and L0=a ¼
3 in the full range of g20, and at L0=a ¼ 5 and 6 for
g20 > 0.85. The results at L0=a ¼ 3 for L=a ¼ 16 and 48
are statistically compatible, and their central values differ at
most by 0.5% toward the larger values of g20. Since on the
lattices with L0=a ¼ 5 and L=a ¼ 48 those effects are
expected to be suppressed at least by an additional factor of
1/8, we conclude that they are well within the statistical
errors. We thus quote the values of ZTðg20Þ at L0=a ¼ 5 and
L=a ¼ 48 as our best results in the limit a=L0 → 0, see
right plot of Fig. 2. Even if defined by renormalization
conditions which differ from ours by discretization effects,

our values of ZTðg20Þ at g20 > 0.8 agree with those in
Refs. [13,14] which, however, in many cases have a much
larger statistical error.

B. Determination of zT
The renormalization constant zT is computed by impos-

ing the tree-level improved version of Eq. (31) given by

zTðg20Þ ¼
1 − ξ2k
ξk

� hT ½1�0kiξ
hT ½3�00iξ − hT ½3�kkiξ

− free case

�
;

with

Lξk
L0ð1þ ξ2kÞ

¼ q ∈ Z. ð35Þ

The latter condition guarantees that the WI remains valid
at finite volume as it stands [4]. The expectation values of

hT ½1�0kiξ and of the difference hT ½3�00iξ − hT ½3�kkiξ are measured
straightforwardly in the same Monte Carlo simulation.6

The free case is subtracted analytically by using its
expression in Appendix E. In practice we chose ξ ¼
ð1=2; 0; 0Þ and q ¼ 8 so that the ratio of the spatial linear
size over the temporal one is fixed to be L=L0 ¼ 20. We
simulated 5 values of g20 in the range 0 ≤ g20 ≤ 1 with
temporal length L0=a ¼ 4; 6; 8 and 12. The results for
zTðg20Þ are given in Table III, and they are shown in the
left plot of Fig. 3. Discretization effects turn out to be
quite larger than for ZTðg20Þ at the smaller values of
L0=a. Our best extrapolation to a=L0 ¼ 0 is given by
the overall fit of the data at L0=a ¼ 6; 8 and 12 to the
function

g
0
2

0

1

2

3

4

5

6

7

45
 L

04 /(
4π

2 a4 ) 
* 

d/
dg

02  [
Δf

/Δ
ξ k]

L
0
/a=3

L
0
/a=4

L
0
/a=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g

0
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
T

0k

[1
] >

ξ/<
T

0k

[1
] >

ξfr
ee

L
0
/a=3

L
0
/a=4

L
0
/a=5

FIG. 1 (color online). Left: the derivative of Δf=Δξk (normalized to its Stefan-Boltzmann value) with respect to g20 as a function of the

bare coupling. Right: hT ½1�0kiξ normalized to its tree-level expression as a function of g20. The data are generated on lattices with L0=a ¼ 3

(blue), 4 (green) and 5 (red), L=a ¼ 48, and ξ ¼ ð1; 0; 0Þ. Statistical errors are smaller than symbols.

4Preliminary results have been reported in Ref. [18].
5At this small volume we have computed Δf=Δξk either with

the method described in this section, or with the Monte Carlo
procedure in Ref. [2]. The numerical results are in agreement
within statistical errors.

6It is interesting to notice that the difference hT ½3�00iξ − hT ½3�kkiξ
requires roughly 10 times the statistics needed for hT ½1�0kiξ to meet
the same relative statistical error.
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zTðg20; a=L0Þ ¼ zTðg20Þ þ b1g20

	
a
L0



2

: ð36Þ

The quality of the fit is very good, and it leads to the
values of zTðg20Þ shown by the black points in the same
plot. To check for the systematics associated to the
extrapolation, we have performed a variety of different
fits: we have removed the points at L0=a ¼ 6 from our
best fit, we have fit each set of points independently
with a quadratic function in ða=L0Þ2, we have amended
the combined fit function by adding a quadratic term in
g20 to the coefficient of ða=L0Þ2, and we have added a
quadratic term in ða=L0Þ2 in Eq. (36). The results of all
these fits are statistically compatible with those obtained
in our best fit to the function in Eq. (36) and the
selection of data points chosen. We take the maximum
spread of the central values from the various fits as a
systematic error due to the extrapolation, and we add it

in quadrature to the statistical one. The final results are
shown in the right plot of Fig. 3.

V. RESULTS AND CONCLUSIONS

The final results for ZTðg20Þ are shown in the right plot of
Fig. 2. They are very well represented by the expression

ZTðg20Þ ¼
1 − 0.4457g20
1 − 0.7165g20

− 0.2543g40

þ 0.4357g60 − 0.5221g80 ð37Þ

in the full range 0 ≤ g20 ≤ 1, a function which coincides
with the expansion in Eq. (28) to order g20. The deviation of
the curve from the data is smaller than the statistical
accuracy, see right plot of Fig. 2. The error to be attached
to ZTðg20Þ computed as in Eq. (37) is 0.4% up to g20 ≤ 0.85,
while it grows linearly from 0.4% to 0.7% in the range
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FIG. 2 (color online). Left: the renormalization factor ZTðg20Þ as a function of the bare coupling g20 for L0=a ¼ 3 (blue), 4 (green) and
5 (red). Right: the renormalization factor ZTðg20Þ defined in the limit a=L0 → 0 together with the fit to the formula in Eq. (37) and the
one-loop analytic result in Eq. (28).
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FIG. 3 (color online). Left: the renormalization factor zTðg20; a=L0Þ as a function of ða=L0Þ2 for the five values of g20 indicated in
the legend; it is also shown the extrapolation to ða=L0Þ ¼ 0 with the fit function in Eq. (36). Right: the renormalization factor
zTðg20Þ at a=L0 ¼ 0 for the five values of g20 simulated, together with their fit to the formula in Eq. (38) and with the one-loop analytic
result in Eq. (28).
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0.85 ≤ g20 ≤ 1. Within our statistical errors, the nonpertur-
bative determination starts to deviate significantly from the
one-loop result at g20 ∼ 0.25.
Our best results for zTðg20Þ are shown in the right plot of

Fig. 3. In the full range 0 ≤ g20 ≤ 1, they are well repre-
sented by the expression

zTðg20Þ ¼
1 − 0.5090g20
1 − 0.4789g20

; ð38Þ

a function which again coincides with the expansion in
Eq. (28) to order g20. In this case the error to be attached to
the values in Eq. (38) grows linearly from 0.15% to 0.75%
in the interval 0 ≤ g20 ≤ 1. The one loop result agrees with
the nonperturbative determination up to g20 ∼ 0.4within our
statistical errors.
The above results for ZTðg20Þ and zTðg20Þ clearly show

that in the range of g20 where the Wilson action is frequently
simulated, one-loop perturbation theory is not adequate for
computing the renormalization constants of the traceless
components of the energy-momentum tensor defined as in
Eq. (26). Shifted boundary conditions offer an extremely
powerful tool to compute them, and therefore to define
nonperturbatively the energy-momentum tensor on the
lattice. The strategy implemented here can be easily
generalized to QCD, and to (beyond Standard Model)
QCD-like or supersymmetric theories.
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APPENDIX A: SU(3) CONVENTIONS

The Lie algebra of SU(3) may be identified with the
linear space of all hermitian traceless 3 × 3 matrices. In the
basis Ta, a ¼ 1…8, with

Tr½Ta� ¼ 0; Ta† ¼ Ta; ðA1Þ
the elements of the algebra are linear combinations of them
with real coefficients. The structure constants fabc in the
commutator relation

½Ta; Tb� ¼ ifabcTc ðA2Þ
are real and totally antisymmetric in the indices if the
normalization condition

Tr½TaTb� ¼ 1

2
δab ðA3Þ

is imposed.

APPENDIX B: CONTINUUM NOTATION

In the Euclidean space-time, the path integral of the
SU(3) Yang-Mills theory is defined as

Z ¼
Z

DADc̄Dce−S; ðB1Þ

where the measures on gauge and ghost fields are defined
as usual. The action is defined as

S ¼
Z

d4xLðxÞ; L ¼ LG þ LGF; ðB2Þ

with

LG ¼ 1

2g20
Tr½FμνFμν�;

LGF ¼ λ0
g20

Tr½∂μAμ∂νAν� þ
2

g20
Tr½∂μc̄Dμc�; ðB3Þ

where g0 is the bare coupling constant, λ0 is the gauge-
fixing parameter, the trace is over the color index and

Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�;
Dμc ¼ ∂μc − i½Aμ; c�; Aμ ¼ Aa

μTa: ðB4Þ

The ghost fields c and c̄ are in the adjoint representation of
the SU(3) group, i.e. c ¼ caTa and analogously for c̄.

1. BRST transformations

The action (B2) is invariant under the BRST trans-
formations defined as [19–21]

δAμ ¼ θDμc

δc̄ ¼ λ0θð∂μAμÞ
δc ¼ iθc2; ðB5Þ

where θ is an infinitesimal Grassmann constant. They are
nilpotent up to the equations of motion of the ghost field c.
In fact, if we define

δϕ ¼ ϕ0 − ϕ ¼ θΔϕ; ðB6Þ

where ϕ is one of the fundamental fields which transforms
as in Eqs. (B5), it is easy to prove that7

7To this aim, it is useful to notice that δðDμcÞ ¼ 0.
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Δ2Aμ ¼ 0; Δ2c ¼ 0; ðB7Þ

while

Δ2c̄ ¼ λ0∂μDμc: ðB8Þ

By using Eqs. (B7) and (B8), it is easy to show that the
BRST transformations are nilpotent, up to the equation of
motion of c, when acting on any product of fundamental
fields at arbitrary space-time points and, thus, on any
functional of them.
The gauge-invariant part of the Yang-Mills action (B2) is

BRST-invariant because the BRST correspond to infini-
tesimal gauge transformations with parameter θcðxÞ. The
gauge-fixing part of the action turns out to be BRST-
invariant too. It can also be written as a BRST rotation of a
functional plus a term which, after integrating by parts, is
proportional to the equation of motion of c and serves to
cancel the term coming from Eq. (B8).

2. Equations of motion

The equations of motion for the gauge field are given by

��
1

g20
½DαFαμ�a þ

λ0
g20

∂μ∂αAa
α þ

1

g20
fabcð∂μc̄bÞcc

�
ðxÞO

�

¼ −
�

δO
δAa

μðxÞ
�
; ðB9Þ

where O represents a generic string of fields, and the
covariant derivative for the adjoint representation is defined
as in Eq. (B4), i.e.

DμFμν ¼ ∂μFμν − i½Aμ; Fμν�: ðB10Þ

The equations of motion for the ghosts are

�
1

g20
∂μ½Dμc�aðxÞO

�
¼ −

�
δ

δc̄aðxÞO
�
;

�
1

g20
½Dμ∂μc̄�aðxÞO

�
¼

�
δ

δcaðxÞO
�
: ðB11Þ

APPENDIX C: ENERGY-MOMENTUM TENSOR
IN THE CONTINUUM

The continuum theory is invariant under the group of
space-time translations,

x0μ ¼ xμ − εμ; ϕ0ðx0μÞ ¼ ϕðxμÞ; ðC1Þ

where ϕ indicates generically one of the fields Aμ; c; c̄. The
associated WIs can be derived in the usual way by studying
the variation of the functional integral under local trans-
formations parametrized by εμðxÞ∶

δAμðxÞ ¼ ερðxÞ∂ρAμðxÞ;
δcðxÞ ¼ ερðxÞ∂ρcðxÞ;
δc̄ðxÞ ¼ c̄ðxÞ ∂ ρερðxÞ: ðC2Þ

The resulting integrated WIs are

Z
d4zενðzÞh∂μTc

μνðzÞOi ¼ −hδOi; ðC3Þ

where δO is the variation of the string of fields O under the
transformation (C2). The canonical energy-momentum
tensor of the theory can be written as

Tc
μν ¼ TG;c

μν þ TGF;c
μν ; ðC4Þ

where

TG;c
μν ¼ 2

g20
Tr½Fμα∂νAα� − δμνLG; ðC5Þ

TGF;c
μν ¼ 2λ0

g20
Tr½∂αAα∂νAμ�

þ 2

g20
Tr½ð∂μc̄Þð∂νcÞ þ ð∂νc̄ÞðDμcÞ� − δμνLFG:

ðC6Þ

For ενðzÞ ¼ ϵνδ
ð4Þðz − xÞ, Eq. (C3) gives

ϵνh∂μTc
μνðxÞOi ¼ −hδxOi; ðC7Þ

and when all operators of the string O are localized far
away from x, the classical conservation identities

h∂μTc
μνðxÞOi ¼ 0 ðC8Þ

are recovered. The canonical energy-momentum tensor is
neither symmetric nor gauge invariant. To make it both
symmetric and gauge invariant, one applies the Belinfante
procedure and uses the equation of motion. The resulting
tensor satisfies the on-shell WIs in Eq. (C8), and it gives the
same conserved charges of the canonical tensor when
inserted in on-shell correlation functions. The ambiguity
left by the use of the equations of motion allows one to
define the energy-momentum tensor as the one derived by
exploiting the reparametrization transformations of the
theory coupled to an external gravitational field
[10,11,22]. All definitions related by terms which vanish
by the equation of motion are equivalent provided the
corresponding contact terms are taken into account in
the WIs. The symmetric energy-momentum tensor is
defined as

TB
μν ¼ TG;B

μν þ TGF;B
μν ; ðC9Þ
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where

TG;B
μν ¼ 2

g20
Tr½FμαFνα� − δμνLG;

TGF;B
μν ¼ 2λ0

g20
Tr

�
−Aμ∂ν∂αAα − Aν∂μ∂αAα þ δμν

	
1

2
∂αAα∂βAβ þ Aα∂α∂βAβ


�

þ 2

g20
Tr½∂μc̄Dνcþ ∂νc̄Dμc� − δμν

2

g20
Tr½∂αc̄Dαc�: ðC10Þ

By comparing Eqs. (C4) and (C9), it is quite easy to show that

∂μTc
μν ¼ ∂μTB

μν þ ∂μ

�
Aa
ν

�
1

g20
½DαFαμ�a þ

λ0
g20

∂μ∂αAa
α þ

1

g20
fabcð∂μc̄bÞcc

��
; ðC11Þ

i.e., the two four-divergences differ by terms which are
proportional to the equations of motion. If we insert the last
equation in the WIs (C7) and we use the equations of
motion (B9), we arrive at

ϵνh∂μTB
μνðxÞOi¼−hδxOiþϵν∂μ

�
Aa
νðxÞ

δO
δAa

μðxÞ
�
: ðC12Þ

It is also useful to notice that

TGF;B
μν ¼ ΔΞμν þ δμν

1

g20
Tr½c̄∂αDαc�; ðC13Þ

where Δ is the BRST variation defined in Appendix B and

Ξμν¼
2

g20
Tr

�
−Aμ∂νc̄−Aν∂μc̄þδμν

	
1

2
ð∂αAαÞc̄þAα∂αc̄


�
:

ðC14Þ

When the interpolating operator O is gauge-invariant, it
is thus appropriate to define a gauge-invariant energy-
momentum tensor

Tμν ¼ TG;B
μν ¼ 1

g20

�
Fa
μαFa

να −
1

4
δμνFa

αβF
a
αβ

�
ðC15Þ

which satisfies

h∂μTμνðxÞOi ¼ h∂μTB
μνðxÞOi; ðC16Þ

where the term proportional to the equation of motion of
the ghosts is null because a gauge-invariant operator is
independent of the c̄ field. The WIs (C12) applies as well to
TμνðxÞ without any modification. It is worth nothing that
the gauge-invariant energy-momentum tensor generates the
very same charges in on-shell correlation functions as all
the other definitions in this appendix.

APPENDIX D: RENORMALIZATION OF THE
ACTION DENSITY IN DIMENSIONAL

REGULARIZATION

In this appendix we report the essential formulas in
dimensional regularization which are needed in the paper,
for a recent review see Ref. [23] and reference therein. In
dimensional regularization one replaces

R
d4x →

R
dDx

and renormalizes the coupling constant as

g20 ¼ μ2ϵg2Z−1
g ; ðD1Þ

where D ¼ 4 − 2ϵ. The β function is

~βðϵ; gÞ ¼ μ
∂g
∂μ ¼ −ϵg

�
1 −

g
2

∂
∂g lnZg

�
−1

¼ −ϵgþ βðgÞ; ðD2Þ
where

βðgÞ ¼ −g3
X∞
k¼0

bkg2k; ðD3Þ

and

b0 ¼
1

ð4πÞ2
11

3
Nc b1 ¼

1

ð4πÞ4
34

3
N2

c ðD4Þ

with the number of colors being Nc ¼ 3 in our case.
In the presence of shifted boundary conditions, it holds

∂
∂g hT0kiξ ¼

1

L0

∂g0
∂g

1

2g30

∂
∂ξk hF

a
αβF

a
αβiξ; ðD5Þ

which can be written as (x0 ≠ 0)

∂
∂g hT0kiξ ¼

1

2

∂g0
∂g

g3

g30
ZE

�
1

g3
hT̄0kðx0ÞfFa

αβF
a
αβð0ÞgRiξ;c

�
;

ðD6Þ
where ZE and the renormalized density are defined in
Eq. (16). The expectation values of the renormalized
operators in Eq. (D6) are finite and expandable in powers
of g. By following Ref. [9], see also Ref. [6], the ratio
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μ2ϵ
∂g0
∂g

g3

g30
ZE ¼ −ϵg

ZEZg

~βðϵ; gÞ ðD7Þ

must then have a series in g with no poles in ϵ. In
dimensional regularization the coefficients of the poles
in ϵ in the renormalization constants start at Oðg2Þ and,
therefore,

ϵZEZg ¼ ϵþ R; R ¼
X∞
k¼1

rkg2k; ðD8Þ

which implies

−ϵg
ZEZg

~βðϵ; gÞ ¼
gðϵþ RÞ
ϵg − βðgÞ : ðD9Þ

If we expand in g the denominator, we obtain

gðϵþ RÞ
ϵg − βðgÞ ¼

	
1þ Rg

β


X∞
k¼0

	
β

ϵg



k
−
Rg
β
: ðD10Þ

Since this quantity cannot have poles in ϵ,

R ¼ −
β

g
; ðD11Þ

and, therefore,

ϵZEZg ¼ ϵ −
β

g
: ðD12Þ

The renormalization constant of the energy-density oper-
ator is unambiguously fixed from the one of the coupling.

APPENDIX E: LATTICE FREE THEORY WITH
SHIFTED BOUNDARY CONDITIONS

In this appendix we report the results for the expectation

values of hT ½1�0kiξ, hT ½3�00iξ − hT ½3�kkiξ (no sum over k), hT ½2�μμiξ,
and Δf=Δξk in the free theory on the lattice.

8 In the infinite
volume limit, the expectation value of the momentum
density is given by [4]

hT ½1�0kiξ ¼
8

L0

XL0−1

l¼0

Z
BZ

d3p
ð2πÞ3

sinðp0Þ sinðpkÞ
P

α≠0;kcos
2ðpα=2Þ

4sin2ðp0

2
Þ þ ω2

p
; ðE1Þ

where

ϕp ¼ p · ξ; ω2
p ¼ 4

X3
k¼1

sin2
	
pk

2



; p0 ¼

2πl
L0

− ϕp: ðE2Þ

If we notice that [4]

Σðϕ;ω; x0Þ ¼
1

L0

XL0−1

l¼0

eix0ð2πl=L0−ϕÞ

4sin2ðπlL0
− ϕ

2
Þ þ ω2

¼ 1

2 sinh ω̂

�
eω̂x0

eiL0ϕþL0ω̂ − 1
−

e−ω̂x0

eiL0ϕ−L0ω̂ − 1

�
; ðE3Þ

where ω ¼ 2 sinhðω̂=2Þ, and that real and imaginary parts of Σ read

ReΣðϕ;ω; x0Þ ¼
sinhðL0ω̂=2Þ cosh½ω̂ðL0=2 − x0Þ� − sin2ðL0ϕ=2Þ sinhðω̂x0Þ

sinhðω̂ÞðcoshðL0ω̂Þ − cosðL0ϕÞÞ
; ðE4Þ

ImΣðϕ;ω; x0Þ ¼
− sinðL0ϕÞ sinhðω̂x0Þ

2 sinhðω̂ÞðcoshðL0ω̂Þ − cosðL0ϕÞÞ
; ðE5Þ

we arrive at

8The lattice spacing is set to a ¼ 1 in this appendix.
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hT ½1�0kiξ ¼ 8

Z
BZ

d3p
ð2πÞ3 sinðpkÞImΣðϕp;ωp; 1Þ

X
α≠0;k

cos2
	
pα

2



: ðE6Þ

Analogously, for the traceless diagonal component of the energy-momentum tensor, we obtain

T ½3�00iξ − hT ½3�kkiξ ¼
4

L0

XL0−1

l¼0

Z
BZ

d3p
ð2πÞ3

1

4sin2ðp0

2
Þ þ ω2

p

×

�
½cosðp0Þ − cosðpkÞ�

X
α≠0;k

sin2ðpαÞ − ½cosð2p0Þ − cosð2pkÞ�
X
α≠0;k

cos2
	
pα

2


�
; ðE7Þ

which by summing over l gives

hT ½3�00iξ − hT ½3�kkiξ ¼ 4

Z
BZ

d3p
ð2πÞ3

�
ReΣðϕp;ωp; 1Þ

X
α≠0;k

sin2ðpαÞ − ReΣðϕp;ωp; 2Þ
X
α≠0;k

cos2
	
pα

2




þ ReΣðϕp;ωp; 0Þ
�
cosð2pkÞ

X
α≠0;k

cos2
	
pα

2



− cosðpkÞ

X
α≠0;k

sin2ðpαÞ
��

: ðE8Þ

For the trace part we obtain

hT ½2�μμiξ ¼ −
16

L0

XL0−1

l¼0

Z
BZ

d3p
ð2πÞ3

P
α;β≠α cos

2ðpα
2
Þ sin2ðpβÞ

4 sin2ðp0

2
Þ þ ω2

p
; ðE9Þ

which by summing over l gives

hT ½2�μμiξ ¼ 8

Z
BZ

d3p
ð2πÞ3

�
ReΣðϕp;ωp; 2Þ

X3
k¼1

cos2
	
pk

2



− ReΣðϕp;ωp; 1Þ

X3
k¼1

sin2ðpkÞ

− ReΣðϕp;ωp; 0Þ
X3
k¼1

�
sin2ðpkÞ þ cos2

	
pk

2



þ 2cos2

	
pk

2


X
q≠k

sin2ðpqÞ
��

: ðE10Þ

In the free theory the discrete derivative of the free energy in Eq. (30) is given by

Δf
Δξk
¼ 4

XL0−1

l¼0

Z
BZ

d3p
ð2πÞ3 ln

�
ω2
p þ 4sin2ððp0 − pk=L0Þ=2Þ

ω2
p þ 4sin2ððp0 þ pk=L0Þ=2Þ

�
; ðE11Þ

which by summing over l gives

Δf
Δξk
¼ 2

Z
BZ

d3p
ð2πÞ3 ln

�
coshðL0ω̂pÞ − cosðL0ϕp þ pkÞ
coshðL0ω̂pÞ − cosðL0ϕp − pkÞ

�
: ðE12Þ

All previous equations remain valid in finite volume if one makes the substitutionZ
BZ

d3p
ð2πÞ3 →

1

V

X
p

ðE13Þ

and defines a prescription for the zero mode.

APPENDIX F: NUMERICAL RESULTS

For a representative sample of values of g20 that we have simulated, we collect the results for the difference of the average

plaquettes entering Eq. (33) in Table I and the values of hT ½1�0kiξ at ξ ¼ ð1; 0; 0Þ in Table II. The values of hT ½1�0kiξ and

hT ½3�00iξ − hT ½3�kkiξ for ξ ¼ ð1=2; 0; 0Þ are given in Table III.
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TABLE I. Values of the difference of the average plaquettes measured at bare coupling β ¼ 6=g20 on lattices of size
483 × L0=a.

1
18

P
μ;ν<μ½hReTrUμνiξþa=L0 k̂

− hReTrUμνiξ−a=L0 k̂
�

β L0=a ¼ 3 L0=a ¼ 4 L0=a ¼ 5

6.0 5.489ð10Þ × 10−4 3.028ð7Þ × 10−4 4.2564ð33Þ × 10−4

6.03 4.886ð10Þ × 10−4 2.443ð6Þ × 10−4 3.8484ð38Þ × 10−4

6.125 3.601ð14Þ × 10−4 1.491ð7Þ × 10−4 1.0016ð28Þ × 10−4

6.5 1.576ð11Þ × 10−4 5.160ð37Þ × 10−5 2.339ð20Þ × 10−5

7.0 7.65ð8Þ × 10−5 2.232ð33Þ × 10−5 8.88ð11Þ × 10−6

8.0 2.96ð5Þ × 10−5 7.08ð25Þ × 10−6 2.43ð9Þ × 10−6

9.0 1.604ð38Þ × 10−5 3.60ð17Þ × 10−6 1.09ð11Þ × 10−6

10.0 1.041ð23Þ × 10−5 2.07ð8Þ × 10−6 6.6ð9Þ × 10−7

11.0 7.77ð22Þ × 10−6 1.49ð8Þ × 10−6 3.8ð6Þ × 10−7

12.0 5.85ð25Þ × 10−6 1.06ð6Þ × 10−6 3.2ð5Þ × 10−7

13.5 4.29ð35Þ × 10−6 7.9ð8Þ × 10−7 2.0ð6Þ × 10−7

17.0 2.39ð14Þ × 10−6 3.8ð5Þ × 10−7 1.3ð4Þ × 10−7

20.0 1.52ð12Þ × 10−6 2.8ð4Þ × 10−7 8.2ð28Þ × 10−8

24.0 1.14ð8Þ × 10−6 2.16ð27Þ × 10−7 4.6ð24Þ × 10−8

30.0 7.5ð6Þ × 10−7 1.48ð26Þ × 10−7 5.5ð14Þ × 10−8

50.0 2.99ð23Þ × 10−7 6.6ð8Þ × 10−8 2.3ð7Þ × 10−8

80.0 1.25ð15Þ × 10−7 2.09ð39Þ × 10−8 0.97ð37Þ × 10−8

TABLE II. Values of hT ½1�0kiξ measured at bare coupling
β ¼ 6=g20 on lattices of size 483 × L0=a and ξ ¼ ð1; 0; 0Þ.

hT ½1�0kiξ
β L0=a ¼ 3ð×10−3Þ L0=a ¼ 4ð×10−3Þ L0=a ¼ 5ð×10−4Þ
6.0 −5.2735ð27Þ −1.3772ð13Þ −2.826ð9Þ
6.03 −5.3921ð29Þ −1.4447ð11Þ −4.047ð6Þ
6.125 −5.6976ð29Þ −1.6064ð13Þ −5.568ð5Þ
6.3 −6.1359ð37Þ −1.7977ð12Þ −6.797ð6Þ
6.5 −6.5124ð28Þ −1.9495ð12Þ −7.610ð7Þ
7.0 −7.1554ð29Þ −2.1899ð20Þ −8.786ð7Þ
8.0 −7.9077ð37Þ −2.4488ð20Þ −9.916ð8Þ
9.0 −8.3673ð21Þ −2.5947ð30Þ −10.550ð7Þ
10.0 −8.6896ð14Þ −2.7002ð32Þ −10.981ð8Þ
11.0 −8.9385ð16Þ −2.7780ð31Þ −11.288ð6Þ
12.0 −9.1331ð20Þ −2.8358ð20Þ −11.538ð6Þ
13.5 −9.3654ð23Þ −2.9111ð16Þ −11.822ð6Þ
17.0 −9.7261ð22Þ −3.0181ð16Þ −12.276ð6Þ
20.0 −9.9253ð21Þ −3.0862ð17Þ −12.525ð6Þ
24.0 −10.1097ð15Þ −3.1420ð17Þ −12.768ð7Þ
30.0 −10.2941ð17Þ −3.1987ð18Þ −12.995ð6Þ
40.0 −10.4792ð18Þ −3.2587ð6Þ −13.240ð6Þ
60.0 −10.6608ð17Þ −3.3148ð7Þ −13.446ð7Þ

TABLE III. Values of hT ½1�0kiξ and hT ½3�00iξ − hT ½3�kkiξ measured at
bare coupling β ¼ 6=g20 with shift ξ ¼ ð1=2; 0; 0Þ and at fixed
ratio L=L0 ¼ 20.

β hT ½1�0kiξð×10−3Þ hT ½3�00iξ − hT ½3�kkiξð×10−3Þ
L=a ¼ 80 L0=a ¼ 4

6.3 −4.1926ð32Þ −5.920ð7Þ
7.5 −5.2711ð17Þ −7.228ð5Þ
10.0 −6.1130ð23Þ −8.155ð6Þ
15.0 −6.7612ð22Þ −8.825ð6Þ
24.0 −7.2041ð9Þ −9.2798ð23Þ

L=a ¼ 120 L0=a ¼ 6

6.3 −0.7067ð4Þ −1.0642ð14Þ
7.5 −0.9703ð5Þ −1.4242ð14Þ
10.0 −1.1345ð5Þ −1.6321ð13Þ
15.0 −1.2559ð5Þ −1.7761ð14Þ
24.0 −1.3379ð5Þ −1.8703ð14Þ

L=a ¼ 160 L0=a ¼ 8

6.3 −0.18493ð15Þ −0.2839ð6Þ
7.5 −0.29738ð16Þ −0.4475ð5Þ
10.0 −0.35095ð17Þ −0.5190ð5Þ
15.0 −0.38832ð18Þ −0.5666ð5Þ
24.0 −0.41292ð22Þ −0.5972ð6Þ

L=a ¼ 240 L0=a ¼ 12

7.5 −0.05643ð11Þ −0.08597ð37Þ
10.0 −0.06785ð12Þ −0.10255ð35Þ
15.0 −0.07494ð16Þ −0.1121ð5Þ
24.0 −0.08029ð17Þ −0.1188ð5Þ
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