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We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward identities
(WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs
associated to the Poincaré invariance of the continuum theory. These relations come forth when the length
of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and
the periodicity axes are not aligned. We implement the method for the SU(3) Yang-Mills theory discretized
with the standard Wilson action in the presence of shifted boundary conditions in the (short) temporal
direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless
components of the tensor are determined with a precision of roughly half a percent for values of the bare

coupling constant in the range 0 < ¢ < 1.
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I. INTRODUCTION

On the lattice the Poincaré group is explicitly broken into
discrete subgroups, and the full symmetry is recovered only
in the continuum limit. As a consequence, a given defi-
nition of the energy-momentum tensor needs to be properly
renormalized to guarantee that the associated charges are
the generators of the Poincaré group in the continuum limit
and that the trace anomaly is correctly reproduced.

In order to construct the renormalized energy-momentum
tensor, the way to proceed is to impose suitable WIs at fixed
lattice spacing that hold up to cutoff effects which vanish in
the continuum limit [1]. This program can be realized in
practice if the Wls involve correlators which in turn are simple
enough to be computed numerically with good precision.

When the theory is considered in a finite box, the
Euclidean Lorentz symmetry is also softly broken by its
shape. If the length in one (temporal) direction L is chosen
to be shorter than the typical scale of the theory (thermal
theory), interesting WIs follows [2-4]. They become
particularly simple and of practical use if the periodicity
axes are tilted with respect to the lattice grid, i.e. if the hard
breaking of the Poincaré symmetry due to the lattice
discretization and the soft one due to the finite temporal
direction are not aligned. This setup has a natural imple-
mentation in the Euclidean path-integral formulation in
terms of shifted boundary conditions [2,5].

Here we define the renormalized energy-momentum
tensor of the Yang-Mills theory nonperturbatively by
working in this framework. This is achieved by supple-
menting the set of WIs found in Refs. [3,4] with a new one
which guarantees that the correct trace anomaly is repro-
duced in the continuum limit.

We implement this strategy for the SU(3) Yang-Mills
theory regularized with the standard Wilson action. We
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carry out extensive numerical simulations, and compute
with high precision the renormalization constants of the
traceless components of the tensor. The numerical deter-
mination of the renormalization constant of the trace part
requires additional simulations, and it is left for a forth-
coming publication. Over the last year an alternative
method, based on the Yang-Mills gradient flow, has also
been proposed for renormalizing nonperturbatively the
energy-momentum tensor [6—8].

II. WARD IDENTITIES IN THE PRESENCE OF
A NONZERO SHIFT

In this section we consider the SU(3) Yang-Mills theory
in the continuum. The definitions of the action and of the
partition function Z are reported in Appendixes A and B
together with other conventions. Here we are interested in
the thermal theory defined in the path integral formalism
with shifted boundary conditions,

Au(Lo, x) = A, (0,x = Lo§), (1)

along the compact (temporal) direction of length L, with
shift & € R?. The free-energy density is given by

f@m@——ivma%@x 2)

where V is the spatial volume of the box. In the thermo-
dynamic limit, which is always assumed in this section,
the invariance of the dynamics under the SO(4) group

implies [4]
F(Lo,8) = f(Loy/1+820). 3)
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When & # 0, odd derivatives in &, do not vanish, and the
following interesting relations hold [2—4] (x, # 0):

L0<T0k>§ = ‘17(9(951«111 Z(Ly, ),
0 _
a—gk<0>.§ = Lo(To(x0)0(0))e ., (4)

where T, is the energy-momentum tensor, 7,, =
f d3xTﬂ,,(x), O is a generic gauge invariant operator, and
the subscript ¢ indicates a connected correlation function. By
deriving once with respect to L, and to &, one obtains the

relation (no summation over repeated k here) [4]

Tw)e =725 (T = Tk O

In the equations above and in the rest of this paper, we focus
on correlation functions of the energy-momentum tensor 7',
with gauge-invariant operators inserted at a physical dis-
tance. As reviewed in Appendix C, it is appropriate in those
cases to consider the symmetric gauge-invariant definition of
the energy-momentum tensor given by

1 1

Ty =— {Fg(,Ffa - ZaﬂngﬂFgﬂ}. (6)
9o

By deriving two times with respect to the shift components

and by using Eq. (4), one obtains [4]

it

L i}
(Tor)e = OT&(Z<T01'T0J>§,C 0ij = é_z} ’ (7)
ij

where on the rhs the two fields are inserted at different times.
Analogously one shows that (x; # 0),

2
Lo(To(x0) T, (0))e . = {6— 1 —g; }(T()k)g
2
vLLolJ‘,;rk%E (Tok(x0)Tor(0))ecr  (8)

which can also be put in the more suggestive form

0 1 o) [(1 +&)3

8_5]( <T/m>§ = (1 T 52)28_51( fk <T0k>§:| . (9)

A. Finiteness of 7, and trace anomaly

In dimensional regularization, the energy-momentum
tensor in Eq. (6) is decomposed as

Tﬂl/ =Tw + 6;41177 (10)

where
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1 1
T/‘l/ = ?0 {FZ(JFZ(X —BéﬂngﬁFgﬂ},
€
T:ﬁg(z)FgﬂFgﬂ (11)

are two fields transforming as a two-index symmetric and a
singlet irreducible representation of the SO(D) group,
respectively, and D = 4 — 2e.

The field 7,, is a dimension-four gauge invariant
operator which is multiplicatively renormalizable. The
WI in Eq. (7) fixes its renormalization constant to 1.

This in turn implies that gjr,, renormalizes as

1 R 1
anFﬁa_—éﬂvngFZﬂ =24\ Fia 3a__5quZﬁFgﬁ ’
D D
(12)
where Z, is the renormalization constant of the coupling;

see Appendix D. By defining the renormalization group
invariant (RGI) operator as [9]

1 RGI 1
SOnFFl ) = 3per{ FlaFa

1 R
——5, F¢ F"} . (13)

{FﬁaFga -
D Mt ap”t af

we finally arrive at

v

R 1 RGI
T, = Tﬂu = 2bO{FZaFLa/a - Béﬂl/F(liﬁFZﬁ} s (14)

where b is the first coefficient of the f function given in
Eq. (D4). The field 7 is also dimension-four and gauge
invariant, but it is a singlet under SO(D). Therefore it mixes
with itself and with the identity operator. The Eq. (8) fixes
the multiplicative renormalization constant to 1, while a
natural prescription for the identity subtraction is

R =17-(1), (15)

where (...), indicates the vacuum expectation value for
Ly — oo (zero temperature). This in turn implies that one
can define

{FZﬂFZ/i}R = ZEI{FgﬂFgﬂ — (FasFaglo} (16)
and Eq. (15) becomes
R €Z,Zg 4 ra 1R
=——{F°F . 17
T 2Dﬂ2€g2{ ap aﬁ} (17)

By using the result in Eq. (D12) of Appendix D, one
obtains the well-known result for the trace anomaly
[10,11]:
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T

ﬂ a a
up = 4TR = _2_‘g3{FaﬂFaﬂ}R' (18)

By defining the renormalization group invariant operator
as [9]

p
{FayFa iRt = - Eo(FaFa )t (19)
p" ap bof U
we can finally write
bo 1 pa pa
T, =4 = > {Fa/,Fa/,}RGI. (20)

The WIs in Egs. (7) and (8) fix unambiguously the
renormalization constants of the composite fields entering
the energy-momentum tensor definition so that the correct
trace anomaly is reproduced. The Eqgs. (18)—(20) hold to all
orders in perturbation theory.

III. THE ENERGY-MOMENTUM TENSOR
ON THE LATTICE

We regularize the SU(3) Yang-Mills theory on a finite
four-dimensional lattice of spatial volume V = L3, tem-
poral direction L, and spacing a. The gauge field satisfies
periodic boundary conditions in the three spatial directions
and shifted boundary conditions in the compact direction

UM(L07X> = Uﬂ(O,X - Log)’ (21)

where U,(xo,x) are the link variables. The action is
discretized through the standard Wilson plaquette

S[U] :§a4zz {1 —%ReTr{UW(x)} , (22)

X Uy

where the trace is over the color index, and 8 = 6/¢3 with
go being the bare coupling constant. The plaquette is
defined as a function of the gauge links, and it given by

U, (x) = U,(x)U,(x + ap)Uj(x + ad)Uj(x),  (23)

where u,v=0,...,3, i is the unit vector along the
direction y, and x is the space-time coordinate. The gluon
field strength tensor is defined as! [1]

Fiux) = = Q) = QT (24

'We use the same notation for lattice and continuum quantities,
since any ambiguity is resolved from the context. As usual, the
continuum limit value of a renormalized lattice quantity, iden-
tified with the subscript R, is the one to be identified with its
continuum counterpart.
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where

0, (x) = U,()U, (x + ai)Ub(x + ad) Ui (x)
+ U, (x)Up(x = ap+ ad) U} (x — ap) U, (x - ajr)
+ Ul (x — ap) U} (x — aji — ab)
(x—afi —ad)U,(x — ab)
+Uj(x— ab)U,(x —abd)U,(x + aji — ab)U} (x).
(25)

The target energy-momentum tensor in the continuum is
a gauge-invariant operator of dimension four, which is a
combination of a traceless two-index symmetric and a singlet
irreducible representation of SO(4). When SO(4) is broken to
the hypercubic group SW,, the traceless two-index sym-
metric representation splits into a sextet (nondiagonal
components) and a triplet (diagonal traceless components).
Atfinite lattice spacing, the energy-momentum tensor is thus
a combination of gauge-invariant operators of dimension
d < 4 which, under the hypercubic group, transform as one
of those two representations and the singlet. In the SU(3)
Yang-Mills theory there are only three such operators (no
summation over repeated  and v here) [1,12]:

1

1

TLJ = (1 - 5/41/)?{1:741&17504
0

2] 1

T2 = 5W4—Q%FZ/5FZ/3
3] Ve po 1 pa pa
T =6, = FiFia =7 FigFoy (26)

and the identity. The sextet TLI,,] and the triplet T,[fll renorm-

alize multiplicatively, while the singlet T,[,zy] mixes also with
the identity. The renormalized energy-momentum tensor can
finally be written as

1 3 2 2
TR, = Zo{Th + 27T + zs[Tiw — (Ti)o)}. (27)

The renormalization constants Zz, zr and zg are finite and
depend on g3 only. At one loop in perturbation theory their
expressions are [1,12]

Zr(g3) = 1+0.2707643,

zr(g3) = 1= 0.0300842,
by

zs(9%) = 3 9% (28)

A. Nonperturbative renormalization conditions

The renormalization constants Zy, zy and zg can be
determined nonperturbatively by requiring that on the
lattice the WIs in Egs. (4), (5), and (9) hold up to
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discretization effects which vanish in the continuum limit.
The renormalization constant of the sextet is fixed to be
[13] (see also [14])

Af 1

Zr(g5) = AN (29)
k(T )e

where the derivative in the shift in Eq. (4) is discretized by

the symmetric finite difference

Af L [Z(Lo,g—a/%/Lo)] (30)

A& 2aV | Z(Ly &+ ak/Ly)
|

(1422 1]
1 [ g (T

Ok>§/}§’=§+afc/Lo B [ g
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to ensure that discretization effects start at O(a?).
In the thermodynamic limit, which is always assumed
in this section, the triplet is renormalized by requiring

that Eq. (5) holds up to harmless discretization
effects, 1i.e.
1= (Ta)
ZT(QO) = ‘ Bl Bl - (31)
ko (Too)e — (Thde

By choosing one possibility of discretizing Eq. (9), the
singlet renormalization constant is fixed to be

(1+62)° ol }
Tols §—g-ak/Ly

Z =
ey i

At finite L, the renormalization constants depend on the
bare coupling constant and on (a/L)? due to discretization
effects. Our prescription is to define them in the limit*
Ly — o at fixed g3

IV. NUMERICAL COMPUTATION

In this section we describe how the strategy outlined
above has been implemented in practice to determine the
renormalization constants Z; and z;. In all simulations the
basic Monte Carlo step is a combination of heatbath and
over-relaxation updates of the link variables using the
Cabibbo-Marinari scheme [15]. A single sweep is made
of 1 heatbath and 3 over-relaxation updates of all link
variables. All lattices have an inverse temporal length
1/Ly > T., where T, is the critical temperature of the
theory. We have checked explicitly the autocorrelation
times of the primary observables by profiting from the
long Monte Carlo histories, which are typically made of
0(10%) sweeps. No long autocorrelations were observed.’
For the statistical analysis we have blocked together the
primary observables generated in several hundreds of
consecutive sweeps, a value which is always much larger
than the autocorrelation times measured. It is important to
notice that the determinations of Z; and z; require (see
below) the computation of expectation values of single
local operators only. Indeed, increasing the spatial size of
the lattice does not increase the computational effort at
fixed statistical accuracy.

Notice that in Ref. [13] a different condition was imposed.
Since we were interested in Z7(g3) in a limited range of g3, we
defined Z7(g3) as in Eq. (29) but at finite L.

JAt these values of L, fluctuations of the topological charge
away from zero are heavily suppressed.

2 (32)

>§+a12/L0 - <Tﬂﬂ>g—ai</L0

I
A. Determination of Z;

The direct determination of Af/A¢, in Eq. (29) would
involve the computation of the ratio of two partition
functions with different shifts at the same value of Ly/a
and g3. Since the relevant phase spaces in the path integral
of the two systems overlap very poorly, the ratio cannot be
estimated in a single Monte Carlo simulation. A possible
way out is to define a series of physical systems with
actions which interpolate between the two original ones,
and then use the Monte Carlo procedure of Refs. [2,16,17].
The calculation, however, becomes quickly demanding for
large lattices since the numerical cost increases quadrati-
cally with the spatial volume.

To bypass this problem we can profit from the fact that
Af /A& is a smooth function of g3 at fixed values of Ly/a
and L/a in the range of chosen values. Its derivative with
respect to g3 can be written as

d Af 1
d_g(z)A—ij = 2aL’g {<S>§—a/L012 - <S>§+u/L01}}v (33)

where (S), stands for the expectation value of the action in
Eq. (22). Although the quantities on the rhs of Eq. (33) have
values which are close to each other, their difference can be
computed at a few permille accuracy with a moderate
numerical effort. The difference {(S)e_,/1.1 = (S)era/roi}
has been computed for & = (1,0,0) and L/a = 48 at 63,
59 and 48 values of g3 for Ly/a = 3,4 and 5, respectively.
A sample of values is reported in Table I, while all of them
are shown in the left plot of Fig. 1. At each value of Ly/a
the points are interpolated with a cubic spline, and the
resulting curve is integrated over g%. The free-case value is
computed analytically by using Eq. (E12) and is added to
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FIG. 1 (color online). Left: the derivative of Af /A&, (normalized to its Stefan-Boltzmann value) with respect to g(z) as a function of the

1

bare coupling. Right: (Ték) ¢ normalized to its tree-level expression as a function of g%. The data are generated on lattices with Ly/a = 3
(blue), 4 (green) and 5 (red), L/a = 48, and & = (1,0, 0). Statistical errors are smaller than symbols.

the integral. The systematics induced by the interpolation
and the numerical integration of the data is negligible with
respect to the statistical error.

To complete the calculation of Z;(g3), the expectation

value <T([)1k]> ¢ is measured in a dedicated set of simulations.

It is computed for & = (1,0,0) and L/a = 48 at 66, 60 and
38 values of g(z) for Ly/a = 3,4 and 5, respectively. A
sample of values is reported in Table II, and all of them are
shown in the right plot of Fig. 1. By interpolating the results
with a cubic spline, the renormalization constant Z7(g3) is
finally determined by the tree-level improved version of
Eq. (29) given by

A 1
Zr(g) = —{A—im — free case}. (34)

The results* for Z;(g3) at L/a = 48 and Ly/a = 3,4 and 5
are shown in the left plot of Fig. 2. At the larger value of
Log/a =5, discretization effects in a/L, are within our
statistical errors. Those due to the finiteness of a/L have
been checked by computing’ Z; at L/a = 16 and Ly/a =
3 in the full range of g5, and at Ly/a =5 and 6 for
g3 > 0.85. The results at Ly/a = 3 for L/a = 16 and 48
are statistically compatible, and their central values differ at
most by 0.5% toward the larger values of g3. Since on the
lattices with Ly/a =5 and L/a = 48 those effects are
expected to be suppressed at least by an additional factor of
1/8, we conclude that they are well within the statistical
errors. We thus quote the values of ZT(g(Z)) at Lo/a =5 and
L/a =48 as our best results in the limit a/Ly — 0, see
right plot of Fig. 2. Even if defined by renormalization
conditions which differ from ours by discretization effects,

4Preliminary results have been reported in Ref. [18].

At this small volume we have computed Af /A&, either with
the method described in this section, or with the Monte Carlo
procedure in Ref. [2]. The numerical results are in agreement
within statistical errors.

our values of Zy(g3) at g3 > 0.8 agree with those in
Refs. [13,14] which, however, in many cases have a much
larger statistical error.

B. Determination of z;

The renormalization constant z7 is computed by impos-
ing the tree-level improved version of Eq. (31) given by

1_ D T[l]
2r(g5) = Tt { < Ok)g — free case},
0 (3] (3]
Sk <T00>§ - <Tkk>.§
with
L&y
— =g /. 35
Ly(i+&) ¢ (35)

The latter condition guarantees that the WI remains valid
at finite volume as it stands [4]. The expectation values of
<T([)1,l> ¢ and of the difference (TEA) - (TE,Q) ¢ are measured
straightforwardly in the same Monte Carlo simulation.’
The free case is subtracted analytically by using its
expression in Appendix E. In practice we chose &=
(1/2,0,0) and g = 8 so that the ratio of the spatial linear
size over the temporal one is fixed to be L/Ly = 20. We
simulated 5 values of g3 in the range 0 < g5 <1 with
temporal length Ly/a =4,6,8 and 12. The results for
zr(g3) are given in Table 111, and they are shown in the
left plot of Fig. 3. Discretization effects turn out to be
quite larger than for Z;(gj) at the smaller values of
Lo/a. Our best extrapolation to a/L, =0 is given by
the overall fit of the data at Ly/a = 6,8 and 12 to the
function

®It is interesting to notice that the difference <T([)ﬂ) - <T,[:,g) c

requires roughly 10 times the statistics needed for <T([)l,l) ¢ to meet
the same relative statistical error.
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FIG. 2 (color online). Left: the renormalization factor Z;( g%) as a function of the bare coupling g% for Ly/a = 3 (blue), 4 (green) and
5 (red). Right: the renormalization factor ZT(gé) defined in the limit a/Ly — 0 together with the fit to the formula in Eq. (37) and the

one-loop analytic result in Eq. (28).
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FIG. 3 (color online). Left: the renormalization factor zT(g%, a/Ly) as a function of (a/Ly)?* for the five values of g(z) indicated in
the legend; it is also shown the extrapolation to (a/L,) = 0 with the fit function in Eq. (36). Right: the renormalization factor
zr(g3) at a/Ly = O for the five values of g3 simulated, together with their fit to the formula in Eq. (38) and with the one-loop analytic

result in Eq. (28).

2
zr(g3.a/Lo) = zr(g) + b1 G} (L%) : (36)

The quality of the fit is very good, and it leads to the
values of z7(g3) shown by the black points in the same
plot. To check for the systematics associated to the
extrapolation, we have performed a variety of different
fits: we have removed the points at Ly/a = 6 from our
best fit, we have fit each set of points independently
with a quadratic function in (a/L)?, we have amended
the combined fit function by adding a quadratic term in
g% to the coefficient of (a/Ly)?, and we have added a
quadratic term in (a/Lg)? in Eq. (36). The results of all
these fits are statistically compatible with those obtained
in our best fit to the function in Eq. (36) and the
selection of data points chosen. We take the maximum
spread of the central values from the various fits as a
systematic error due to the extrapolation, and we add it

in quadrature to the statistical one. The final results are
shown in the right plot of Fig. 3.

V. RESULTS AND CONCLUSIONS

The final results for Z;(g3) are shown in the right plot of
Fig. 2. They are very well represented by the expression

1 — 0445762
7 2\ 0
rl90) =72 0716562

+ 0.4357g5 — 0.522163

— 0.25434¢
(37)

in the full range 0 < g% < 1, a function which coincides
with the expansion in Eq. (28) to order g3. The deviation of
the curve from the data is smaller than the statistical
accuracy, see right plot of Fig. 2. The error to be attached
to Z7(g3) computed as in Eq. (37) is 0.4% up to g3 < 0.85,
while it grows linearly from 0.4% to 0.7% in the range
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0.85 < g3 < 1. Within our statistical errors, the nonpertur-
bative determination starts to deviate significantly from the
one-loop result at g3 ~ 0.25.

Our best results for z7(g3) are shown in the right plot of
Fig. 3. In the full range 0 < g3 < 1, they are well repre-
sented by the expression

1-0.5090¢2

it/ (38)
1-0.4789¢2

ZT(Q%) =

a function which again coincides with the expansion in
Eq. (28) to order g3. In this case the error to be attached to
the values in Eq. (38) grows linearly from 0.15% to 0.75%
in the interval 0 < g3 < 1. The one loop result agrees with
the nonperturbative determination up to g§ ~ 0.4 within our
statistical errors.

The above results for Z;(g3) and z7(g3) clearly show
that in the range of g3 where the Wilson action is frequently
simulated, one-loop perturbation theory is not adequate for
computing the renormalization constants of the traceless
components of the energy-momentum tensor defined as in
Eq. (26). Shifted boundary conditions offer an extremely
powerful tool to compute them, and therefore to define
nonperturbatively the energy-momentum tensor on the
lattice. The strategy implemented here can be easily
generalized to QCD, and to (beyond Standard Model)
QCD-like or supersymmetric theories.
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APPENDIX A: SU(3) CONVENTIONS

The Lie algebra of SU(3) may be identified with the
linear space of all hermitian traceless 3 x 3 matrices. In the
basis 7%, a = 1...8, with

Tr[T%] = 0, T4 = T4, (A1)
the elements of the algebra are linear combinations of them
with real coefficients. The structure constants £ in the
commutator relation

[Ta’ Tb] — l'fabcTc (AZ)
are real and totally antisymmetric in the indices if the
normalization condition
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Tr[T9T?)] = %5@” (A3)

is imposed.

APPENDIX B: CONTINUUM NOTATION

In the Euclidean space-time, the path integral of the
SU(3) Yang-Mills theory is defined as

Z= / DADEDce™, (B1)

where the measures on gauge and ghost fields are defined
as usual. The action is defined as

L=LO 4 LOF,

S = /d4x£(x), (B2)

with
G 1
E = —zg(% Tr[F/wF/ll/] 5

2
LOF = %Tr[ayAﬂavAv] + g—zTr[GMEDMC}, (B3)
0 0

where g is the bare coupling constant, 1, is the gauge-
fixing parameter, the trace is over the color index and

F,=0A,-0A,—ilA, Al

D,c = 0,c—ilA,.cl, A, = AJT".

A (B4)

J/Al

The ghost fields ¢ and ¢ are in the adjoint representation of
the SU(3) group, i.e. ¢ = ¢*T* and analogously for ¢.

1. BRST transformations

The action (B2) is invariant under the BRST trans-
formations defined as [19-21]

BA, = OD,c
5 = 1y0(9,A,)
dc = ifc?, (B5)

where @ is an infinitesimal Grassmann constant. They are
nilpotent up to the equations of motion of the ghost field c.
In fact, if we define

6 = ¢' — ¢ = 6AP,

where ¢ is one of the fundamental fields which transforms
as in Egs. (BYS), it is easy to prove that’

(B6)

"To this aim, it is useful to notice that 8(D,c) = 0.
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A’A, =0, A% =0, (B7)

while

AZZ’ = /Ioa”D”C.

(B8)

By using Egs. (B7) and (B8), it is easy to show that the
BRST transformations are nilpotent, up to the equation of
motion of ¢, when acting on any product of fundamental
fields at arbitrary space-time points and, thus, on any
functional of them.

The gauge-invariant part of the Yang-Mills action (B2) is
BRST-invariant because the BRST correspond to infini-
tesimal gauge transformations with parameter 6c(x). The
gauge-fixing part of the action turns out to be BRST-
invariant too. It can also be written as a BRST rotation of a
functional plus a term which, after integrating by parts, is
proportional to the equation of motion of ¢ and serves to
cancel the term coming from Eq. (BS).

2. Equations of motion

The equations of motion for the gauge field are given by

1 A 1
<{—2 DuF ol +209,0,4% + —zf“bc<aﬂab>cc}<x>o>
9 9 9o

- ‘<6A§z0<x>>’

where O represents a generic string of fields, and the
covariant derivative for the adjoint representation is defined
as in Eq. (B4), i.e.

(B9)

D,F,, = 0,F,, —ilA, F,]. (B10)
The equations of motion for the ghosts are
1 o
—0,[D,c]*(x 0> _—<_—0>,
(ot 520
<1 D,0,2)( )0> < o 0> (B11)
— cl*(x = .
o " 8c(x)

APPENDIX C: ENERGY-MOMENTUM TENSOR
IN THE CONTINUUM

The continuum theory is invariant under the group of
space-time translations,

X, =X, — €, (C1)

where ¢ indicates generically one of the fields Aw c,c. The

associated WIs can be derived in the usual way by studying

the variation of the functional integral under local trans-
formations parametrized by &,(x):

PHYSICAL REVIEW D 91, 114504 (2015)

oA, (x) = €, (x) 0,A, (x),

de(x) = p(x)apc(x),

5¢(x) = 2(x) D e, (x). (C2)
The resulting integrated WIs are
[ @m0 =-60). ()

where 00 is the variation of the string of fields O under the

transformation (C2). The canonical energy-momentum

tensor of the theory can be written as
Ty, = TG+ T ()

where

2
T/?I.;C = _zTr[F;mavAa] - 5/41/’607 (CS)
90

.2
T = g—onr[(?,,Aa(?yA”}
0

v %Tr[(aﬁé)(ayc) +(0,8)(D,¢)] = 8, LTS,
0

(Co)
For ¢,(z) = €,6%(z — x), Eq. (C3) gives
€,(0,Tju(x)0) = —(5,0), (C7)

and when all operators of the string O are localized far
away from x, the classical conservation identities

(9,T5,(x)0) = 0

ut

(C8)

are recovered. The canonical energy-momentum tensor is
neither symmetric nor gauge invariant. To make it both
symmetric and gauge invariant, one applies the Belinfante
procedure and uses the equation of motion. The resulting
tensor satisfies the on-shell Wls in Eq. (C8), and it gives the
same conserved charges of the canonical tensor when
inserted in on-shell correlation functions. The ambiguity
left by the use of the equations of motion allows one to
define the energy-momentum tensor as the one derived by
exploiting the reparametrization transformations of the
theory coupled to an external gravitational field
[10,11,22]. All definitions related by terms which vanish
by the equation of motion are equivalent provided the
corresponding contact terms are taken into account in
the WIs. The symmetric energy-momentum tensor is
defined as

TS, =T’ + T ®, (C9)
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where

2
TGP = g—2Tr[FWFm] -8, L6,
0

PHYSICAL REVIEW D 91, 114504 (2015)

22 1
T/(ijB - g_onr |:_A;lay8aAa - AyayaaAu + 6;41/ <5 auAaaﬁAﬁ + A(zaaaf)’A[)’)]
0

2
+—Tr[0,eD,c + 9,cD,c] =&
9o

2
STH0ED,c). (C10)

0

By comparing Egs. (C4) and (C9), it is quite easy to show that

1
9,T,, =0,T5, + aﬂ{Az [g— [DoF )

2
0

i.e., the two four-divergences differ by terms which are
proportional to the equations of motion. If we insert the last
equation in the WIs (C7) and we use the equations of
motion (BY), we arrive at

¢, (0,72, (x)0) =~ (5,0) + ,0, <Ag ) 5ju0(x)>. (12)

It is also useful to notice that

1
Tol? = AE, + %g—zTr[aaaDac], (C13)
0

where A is the BRST variation defined in Appendix B and

2 1

By = ?Tr —-A,0,6—A,0,c+6,, (5 (0,A,)C +Aa8a5> } .
0

(C14)

When the interpolating operator O is gauge-invariant, it
is thus appropriate to define a gauge-invariant energy-
momentum tensor

1

T,=Tu"=
v 122 g%

U

1
{FWFW - ZawFa/,Faﬂ} (C15)

which satisfies

(0T (x)0) = (9,T},(x)0).

T (C16)
where the term proportional to the equation of motion of
the ghosts is null because a gauge-invariant operator is
independent of the ¢ field. The WIs (C12) applies as well to
T,,(x) without any modification. It is worth nothing that
the gauge-invariant energy-momentum tensor generates the
very same charges in on-shell correlation functions as all
the other definitions in this appendix.

+ A—gaﬂaaAg + iz fabC(aﬂab)cC] }; (C11)
9% 9

[
APPENDIX D: RENORMALIZATION OF THE
ACTION DENSITY IN DIMENSIONAL
REGULARIZATION

In this appendix we report the essential formulas in
dimensional regularization which are needed in the paper,
for a recent review see Ref. [23] and reference therein. In
dimensional regularization one replaces [d*x — [dPx
and renormalizes the coupling constant as

%o =n*gZy, (D1)
where D = 4 — 2¢. The f function is
~ dg go -l
L) =u—=—-€gs 1 —==—InZ
fles) =3 = -esf1-57 w7, |
= —eg+p(9), (D2)
where
Blg) == > big*, (D3)
k=0
and
1 11 1 34
= = ~~N? D4
0T 4n)? 3 C T (4n)t3 e (b4

with the number of colors being N. = 3 in our case.
In the presence of shifted boundary conditions, it holds

8_g< ok)e = Lo 09 243 05 (FosFagle:  (DS)

which can be written as (xy # 0)

0 10gy g° 1 - S
%<T0k>§ = Ea—gg_SZE ?<T0k(x0){FaﬂFaﬂ(0)}R>§,c ;

(Do)

where Z; and the renormalized density are defined in
Eq. (16). The expectation values of the renormalized
operators in Eq. (D6) are finite and expandable in powers
of g. By following Ref. [9], see also Ref. [6], the ratio
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Zp = —€g= = (D7)
Ble.g)

must then have a series in g with no poles in ¢e. In
dimensional regularization the coefficients of the poles
in € in the renormalization constants start at O(g?) and,
therefore,

2¢ %9_3
99 g

eZgZ,=e+R. ~ R=> ng (D8)
k=1
which implies
ZgZ, R
—eg~ E~g — g(e + ) . (Dg)
ple,g) €9- p(9)
If we expand in g the denominator, we obtain
R R = kR
M:(l+;q>2(£) _tg (D10)
eg—p(9g) B) = \eg p

PHYSICAL REVIEW D 91, 114504 (2015)

Since this quantity cannot have poles in e,

)

p (D11)

and, therefore,

p

€ZpZ,=€—"=~. (D12)
g

The renormalization constant of the energy-density oper-
ator is unambiguously fixed from the one of the coupling.

APPENDIX E: LATTICE FREE THEORY WITH
SHIFTED BOUNDARY CONDITIONS

In this appendix we report the results for the expectation
values of <T([)1,3>§, <T5(1>§ - <T,[c3,l>§ (no sum over k), (T,[,z,bé,
and A f /A&, in the free theory on the lattice.® In the infinite

volume limit, the expectation value of the momentum
density is given by [4]

(1 8 2 d®p sin(po) Sin(pk)Za;éO,kCOS2(pa/2)
<T0k>§ :L_ 27)3 4sin2 (Lo 2 ’ (El)
0 4= Jpz (2m) sin® (%) + op
where
) 3 ) Pk Zﬂf
dp=p"&, wp:4;sm S5 ) Po=L—0—¢p. (E2)
If we notice that [4]
1 Lo—-1 ei¥o(2nt/Lo=¢) 1 @ e~ 0%
2.0 x0) = L, ; 4sin? (% — 9) + o? " 2sinho [eiL“"”LO‘b —1 elodb=Loo 1| (E3)
= Ly~ 2
where @ = 2sinh(®/2), and that real and imaginary parts of X read
ReS(h, . %)) — sinh(Ly@/2) c-osh[ii)(LO/Z - x9)} — sin?(Ly¢/2) sinh(&x,) ’ (B4)
sinh(@®)(cosh(Ly@) — cos(Lygp))
—sin(Ly¢) sinh(dxg)
ImX(¢, w, =— — , E5
mE(¢, @, %) 2 sinh(®)(cosh(Ly@) — cos(Log)) (ES)
we arrive at
¥The lattice spacing is set to @ = 1 in this appendix.
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3
<T([Jllg>§ =8 /BZ (;1;)) sin(pi)ImZ(gy. wp. 1) Z cos <pz“> (E6)

a#0,k

Analogously, for the traceless diagonal component of the energy-momentum tensor, we obtain

ng —

7By — 7y, = 4 Lﬁf / d’p
00/& kk/& — LO — |5z (2”)3 4sin2( )+a)12)

{foos(n) — cos(p] Y- sin(p,) = foos2po) = cos(2p] o () b (e1)

a#0,k a#0,k

H

which by summing over [ gives

d3
13e =4 [ 50 {Remtpyan ) Y s () - Rexigy 0. 2) Yo (1)

a#0.k a#0,k

+ReX(y, . 0) [cos(Zpk) 3 cos? (%) —cos(py) Y sin’( pa)] } (E8)

a#0.k a#0,k

For the trace part we obtain

<T[2]> _ _&LO_I/ d°p Zaﬁ;eacos (2)51n (Pp) (E9)
H ) g Ly %= Jpz (27)° 4sin®(8) + '
which by summing over [ gives
2y _ d’p
(Tin)e =8 ReX(¢y,. wp, 2 Zcos —ReX (¢, wp, 1 Zsm i)
sz (27)? k=1
— ReX(¢py. wp. 0) Z {sm (px) + cos <p2k) + 2cos? (Pk> Zsm Py ] } (E10)
q#k
In the free theory the discrete derivative of the free energy in Eq. (30) is given by
Af R e [wp + 4sin’((po = pi/Lo)/2)
— =4 3 In 5 ) ’ (El 1)
Ay = Jpz (27)° |y + 4sin*((po + pi/Lo)/2)
which by summing over [ gives
Af / azap3 . {cosh(Loc?A)p) —cos(Logp + pk)]' (E12)
Agy Bz (27)°  |[cosh(Ly@y,) — cos(Lopy — pi)

All previous equations remain valid in finite volume if one makes the substitution
d’p 1
/ o = Z (E13)
BZ (27’[) V »
and defines a prescription for the zero mode.

APPENDIX F: NUMERICAL RESULTS

For a representative sample of values of g7 that we have simulated we collect the results for the difference of the average
plaquettes entering Eq. (33) in Table I and the values of < > at &€= (1,0,0) in Table II. The values of <TQ£> ¢ and
<T£)0]>§ — (Tfk>§ for &= (1/2,0,0) are given in Table III.
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TABLE L. Values of the difference of the average plaquettes measured at bare coupling f = 6/ g(% on lattices of size
483 x Lo/a.

1L8 Zy.u<;¢ [(ReTrUﬂu>§+a/L0fc - <ReTrUﬂb>};—a/L(,f<]
p Ly/a=3 Ly/a=4 Ly/a=5
6.0 5.489(10) x 107 3.028(7) x 107* 4.2564(33) x 107
6.03 4.886(10) x 1074 2.443(6) x 1074 3.8484(38) x 10~
6.125 3.601(14) x 10~ 1.491(7) x 107* 1.0016(28) x 10~
6.5 1.576(11) x 1074 5.160(37) x 107> 2.339(20) x 107>
7.0 7.65(8) x 1073 2.232(33) x 1073 8.88(11) x 1076
8.0 2.96(5) x 1073 7.08(25) x 107° 2.43(9) x 1076
9.0 1.604(38) x 1073 3.60(17) x 1076 1.09(11) x 107°
10.0 1.041(23) x 1073 2.07(8) x 107° 6 6(9) x 1077
11.0 7.77(22) x 1076 1.49(8) x 107° 3.8(6) x 1077
12.0 5.85(25) x 1076 1.06(6) x 107° 3.2(5) x 1077
13.5 4.29(35) x 107° 7.9(8) x 1077 2.0(6) x 1077
17.0 2.39(14) x 107° 3.8(5) x 1077 1.3(4) x 1077
20.0 1.52(12) x 107° 2.8(4) x 1077 8.2(28) x 1078
24.0 1.14(8) x 107° 2.16(27) x 1077 4.6(24) x 1078
30.0 7.5(6) x 1077 1.48(26) x 1077 5.5(14) x 1078
50.0 2.99(23) x 1077 6.6(8) x 1078 (7) x 1078
80.0 1.25(15) x 1077 2.09(39) x 1078 97(37) x 1078

TABLE II. Values of (Tg,bé measured at bare coupling

p = 6/g3 on lattices of size 48% x Ly/a and & = (1,0,0).
(Tob)e

B Loja=3(x10"2) Ly/a=4(x10") Ly/a = 5(x107%)
6.0 _5273527)  —1.3772(13) —2.826(9)
603 -53921(29)  —1.4447(11) —4.047(6)
6125  -5.6976(29)  —1.6064(13) ~5.568(5)
6.3 ~6.1359(37)  —1.7977(12) ~6.797(6)
6.5 ~6.5124(28)  —1.9495(12) ~7.610(7)
7.0 ~7.1554(29)  —2.1899(20) ~8.786(7)
8.0 _79077(37)  —2.4488(20) ~9.916(8)
9.0 ~83673(21)  —2.5947(30) ~10.550(7)
100 -8.6896(14)  —2.7002(32) ~10.981(8)
110 -89385(16)  —2.7780(31) ~11.288(6)
120 -9.1331(20)  —2.8358(20) ~11.538(6)
13.5  -93654(23)  —-2.9111(16) ~11.822(6)
170 —9.7261(22)  —3.0181(16) ~12.276(6)
200  —9.9253(21)  —3.0862(17) ~12.525(6)
240  —10.1097(15)  —3.1420(17) ~12.768(7)
300 —102941(17)  —3.1987(18) ~12.995(6)
400 —10.4792(18)  —3.2587(6) ~13.240(6)
60.0  —10.6608(17)  —3.3148(7) —13.446(7)

TABLE III.  Values of (Té,l) ¢ and (T%) - (TE,J) ¢ measured at

bare coupling f = 6/g3 with shift &= (1/2,0,0) and at fixed
ratio L/Ly = 20.

s (T5)e(x107) (r [&b — (Ti)e(x107)
L/a =80 Lo/a =
6.3 —4.1926(32) —5.920(7)
75 ~5.2711(17) ~7.228(5)
10.0 ~6.1130(23) ~8.155(6)
15.0 ~6.7612(22) —8.825(6)
24.0 ~7.2041(9) —9.2798(23)
Lja=120 Ly/a=6
6.3 ~0.7067(4) ~1.0642(14)
75 ~0.9703(5) —1.4242(14)
10.0 —1.1345(5) ~1.6321(13)
15.0 ~1.2559(5) ~1.7761(14)
24.0 —1.3379(5) —1.8703(14)
L/a =160 Lo/a =38
6.3 —0.18493(15) —0.2839(6)
75 ~0.29738(16) —0.4475(5)
10.0 —0.35095(17) —0.5190(5)
15.0 —0.38832(18) —0.5666(5)
24.0 ~0.41292(22) ~0.5972(6)
L/a =240 Lo/a=12
7.5 —0.05643(11) —0.08597(37)
10.0 —0.06785(12) —0.10255(35)
15.0 —0.07494(16) —0.1121(5)
24.0 ~0.08029(17) ~0.1188(5)
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