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baryons. We make comparisons with large-Nc expectations.
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I. INTRODUCTION

Composite Higgs models [1–5] are frequently based on
nonlinear sigma models. The most straightforward ultra-
violet completion of such a model is a gauge theory with the
corresponding spontaneous breaking of global symmetries.
A symmetry-breaking scheme that is much discussed is
SUðNÞ→ SOðNÞ. Such a breaking scheme can be accom-
modated in an SUðNcÞ gauge theory where the fermions are
in a real representation of the gauge group. Then N ¼ 2Nf,
where Nf is the number of flavors of Dirac fermions.
As the first stage in a program of investigating gauge

theories of interest beyond the Standard Model, we focus
here on the SU(4) gauge theory with fermions in the two-
index antisymmetric representation (denoted AS2 hence-
forth). This is the sextet of SU(4), a real representation. We
choose Nf ¼ 2 flavors of Dirac fermions, so that the global
chiral symmetry is also SU(4), which we expect to see
spontaneously broken to SO(4).
This theory is a way station on the route to the SU(4)

gauge theory with five Majorana fermions. That theory is
the most economical way to realize the symmetry breaking
of an SUð5Þ=SOð5Þ sigma model, which is the basis of, for
instance, the littlest Higgs model [6]. The SUð5Þ=SOð5Þ
sigma model is also central to more recent composite-Higgs
models [7–9]. Indeed, Vecchi [8] argued that the SU(4)
theory with AS2 fermions is the most attractive candidate
within this approach; Ferretti [9] elaborated on the phe-
nomenology of this composite-Higgs model.1 We can
simulate the Nf ¼ 2 theory with the standard Hybrid
Monte Carlo (HMC) algorithm, while study of the theory
with five Majorana fermions will require the more expen-
sive rational HMC algorithm.

In this paper we present a study of the basic features of
the Nf ¼ 2 theory, namely, its phase diagram and spec-
trum; preliminary results were presented in Ref. [12]. The
spectrum must exhibit multiplets of the unbroken SO(4)
flavor symmetry. One feature of these multiplets is that
mesons and diquarks transform into each other under
SO(4). Because of this, baryons with more than two quarks
are of particular interest; for reasons to be stated below, we
study baryons made of six quarks.
We could simply present our results for spectroscopy

without further analysis. However, we feel that, rather than
just doing that, we should try to give them some context:
we are studying a confining, chirally broken system. How
are the masses and matrix elements we compute for our
system different from, or similar to, what is seen in other
confining and chirally broken systems?
The context we choose to use is the 1=Nc expansion.

Theories with fermions in two-index representations have
been studied extensively in a 1=Nc framework [13], as an
alternative to the original 1=Nc expansion that deals
with fermions in the fundamental representation [14,15].
AS2 fermion loops are not suppressed at large Nc, leading
to different systematics than the conventional 1=Nc
expansion.
Either 1=Nc expansion can in principle be applied to

QCD, since for Nc ¼ 3 the AS2 and fundamental repre-
sentations are isomorphic. Furthermore, interesting equiv-
alences to supersymmetric Yang–Mills theory in the
Nc → ∞ limit have been argued for theories with AS2
fermions [16–19], related to the orientifold equivalence
among all gauge theories with two-index representations
(adjoint, AS2, or symmetric) in the large-Nc limit [20–22].
This framework continues to attract interest.2

Our new data on the spectrum and decay constants for
SU(3) and SU(4) theories with AS2 fermions will allow us1The models of Refs. [8,9] include fermions in the funda-

mental representation in addition to the AS2, in order to give the
top quark a mass via the partial-compositeness mechanism [10].
See also Ref. [11].

2See for example Refs. [23–29]. A recent review with
emphasis on properties of baryons is given in Ref. [30].
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to make a qualitative comparison to the scaling predictions
of this alternative 1=Nc expansion. This comparison is
made at a single value of the bare gauge coupling, in the
confined and chirally broken phase of our lattice action. We
have in hand already-published spectroscopy data for the
SU(3), SU(5), and SU(7) gauge theories with fermions in
the fundamental representation. These previous studies
were performed in the quenched approximation, but a
comparison to our new dynamical-fermion data for the
SU(3) theory, roughly matched in simulation volume and
lattice spacing to the quenched data sets, shows little effect
of quenching. This is because the dynamical fermion
masses are not light enough to produce appreciable
differences through loop effects. Of course, for the study
of the large-Nc limit with AS2 fermions, quenching is
completely unjustified.
Baryons in large Nc are of longstanding interest in the

traditional framework with fundamental-representation fer-
mions. They can be analyzed as many-quark states [31] or
can be taken to be topological objects in effective theories
of mesons [32–35]. Large-Nc mass formulas for baryons
have been presented in Refs. [23,36–40]. An old review
[41] summarizes much of this classic work.
Several recent lattice studies of baryon spectroscopy

have touched on large-Nc considerations. The first [42] was
a comparison of lattice Monte Carlo data for Nc ¼ 3
baryons to large-Nc formulas. There are also three related
studies at Nc ¼ 3, 5, and 7, comparing quenched spec-
troscopy with Nf ¼ 2 flavors of degenerate valence quarks
[43], spectroscopy with Nf ¼ 3 flavors (two degenerate
ones and a heavier strange quark) [44], and Nf ¼ 2 data to
baryon chiral perturbation theory [45]. Finally, Ref. [46]
reports calculations of quenched baryon spectroscopy in
SU(4). The results of these studies all conform to large-Nc
expectations for the fundamental representation; we will
make comparisons of our spectrum to these results where
appropriate.
We note in passing that the behavior of AS2 theories at

finite baryon density has also attracted some theoretical
interest [47,48]. The SU(4) gauge theory is particularly
useful for lattice work: Since the AS2 representation is real,
the theory at finite baryon density presents no sign problem.
Now we proceed to the body of the paper. Section II

collects some useful group-theoretic results about AS2
fermions in the SU(4) gauge theory and their special
symmetries. Six-quark baryons emerge as objects of
interest. We present the lattice action and a new discretiza-
tion issue in Sec. III. The choice of parameters used for
spectroscopy was made after a scan of the bare parameter
space (bare gauge coupling and hopping parameter). This
scan revealed some of the phase structure of this system,
which we present in Sec. IV. We describe our methods for
obtaining spectra in Sec. V and display tables of the
resulting meson and baryon spectra. We then plot these
results and offer comparisons among the SU(4) AS2

theory; the SU(3) theory; and quenched SU(3), SU(5),
and SU(7) theories: for mesons in Sec. VI and for baryons
in Sec. VII. Finally, Sec. VIII makes some phenomeno-
logical observations, summarizes our results, and suggests
future directions.

II. GROUP THEORY AND SYMMETRIES

In this section we discuss the symmetry aspects of AS2
fermions in SU(4), specializing to Nf ¼ 2. In Sec. II A we
review some basic properties of real and pseudoreal repre-
sentations and how they are reflected in symmetries of the
Wilson–Dirac operator and meson/diquark propagators.
In Sec. II B we turn to global symmetries. The pattern of

chiral symmetry breaking in SU(4) AS2 is different from
that in SU(3) gauge theories with fundamental-representa-
tion fermions, because the AS2 fermions live in a real
representation of the gauge group. The usual breaking
pattern, SUðNfÞ × SUðNfÞ → SUðNfÞ, is replaced by
SUð2NfÞ → SOð2NfÞ [49–51]. There are 2N2

f þ Nf − 1

Nambu–Goldstone bosons (NGBs), nine in all for Nf ¼ 2.
A consequence of reality is that, in addition to meson (qq̄)
and baryon states, there are also diquark states. Symmetries
associated with the fermions’ reality means that all diquark
correlators are identical to corresponding meson ones. For
example, the diquarks are needed to fill out the NGB
multiplets. The nine NGBs consist of three isotriplets: one
multiplet is qq̄, one is qq, and one is q̄ q̄.
The global symmetry of the Nf ¼ 2 AS2 theory is thus

SUð2NfÞ ¼ SUð4Þ. After dynamical symmetry breaking,
the unbroken symmetry is SO(4). We elaborate on this
symmetry-breaking pattern, focusing on how the two
invariant SU(2) subgroups of SO(4) are realized. As an
example, we classify the nine Nambu–Goldstone bosons
under the unbroken symmetry. In Sec. II C we recall the
equivalence between the AS2 representation of color SU(4)
and the vector representation of SO(6). We use this
equivalence to introduce the color-singlet state of six
AS2 fermions, which is fully antisymmetric in its color
indices. The remainder of the section explains why the six-
quark baryons are the interesting baryonic states and
describes how we construct baryon operators.

A. Symmetries of real and pseudoreal representations

We begin by recalling how basis states of the AS2
irreducible representation are built from color basis states
jii in the fundamental representation. The basis states of the
antisymmetric representation are

jiji ¼ 1ffiffiffi
2

p ðjiijji − jjijiiÞ; 1 ≤ i < j ≤ Nc: ð2:1Þ

There are NcðNc−1Þ=2 basis states—six states for Nc ¼ 4.
Starting from the transformation rule jii0 ¼ P

kUikjki, the
AS2 states transform as
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jiji0 ¼ 1ffiffiffi
2

p ðjii0jji0 − jji0jii0Þ

¼
X
k<l

ðUikUjl −UjkUilÞjkli

≡X
k<l

U½ij�½kl�jkli: ð2:2Þ

Equation (2.2) provides the composition rule forU½ij�½kl�, the
link matrices in the AS2 representation, in terms of links
Uik which are elements of the fundamental representation
of SUðNcÞ.
The AS2 representation of SU(4) is real. Correlators of

fermionic bilinears reflect this reality. This is similar to the
situation inNc ¼ 2where the fundamental representation is
pseudoreal. As in the case of the two-color theory with
fundamental fermions, which was nicely described in
Ref. [52], for any (pseudo)real representation there is an
exact identity between a meson correlator and a corre-
sponding diquark correlator,

hūðxÞΓdðxÞd̄ðyÞΓ†uðyÞi
¼ hūðxÞΓðSCd̄ðxÞTÞðdðyÞTSCÞΓ†uðyÞi; ð2:3Þ

where uðxÞ and dðxÞ are the two flavors of Dirac fermions
and Γ is a Dirac matrix. Let us see how this comes about.
The matrix S is defined as follows. A real or pseudoreal

irreducible representation is self-conjugate, meaning that
there is a quadratic form S such that for two vectors a and b
the product aTSb is a singlet. Demanding invariance under
a ¼ Ua0, b ¼ Ub0, we find

UTSU ¼ S; ð2:4Þ
which implies that the Hermitian generators Ta satisfy

TT
aS ¼ T�

aS ¼ −STa: ð2:5Þ
The entries of S are real, S� ¼ S, and it satisfies S−1 ¼ ST .
For a real representation, S≡ R ¼ RT is symmetric,
whereas for a pseudoreal representation, S≡ P ¼ −PT is
antisymmetric. For the AS2 representation of SU(4), it is
realized as

Sψ ½ij� ¼
X
k<l

ϵijklψ ½kl�: ð2:6Þ

(Note that ϵijkl ¼ ϵklij, so S is symmetric as it should be for
a real representation.)
The matrix C occurring in Eq. (2.3) is the usual charge-

conjugation matrix, which satisfies Cγμ ¼ −γTμC, and
C−1 ¼ C† ¼ CT ¼ −C. We recall that charge-conjugation
symmetry acts as3

ψ → Cψ̄T; ð2:7aÞ

ψ̄ → ψTC; ð2:7bÞ
Aμ → −A�

μ ðcontinuumÞ; ð2:7cÞ
Uμ → U�

μ ðlatticeÞ: ð2:7dÞ
We are now ready to derive the identity (2.3). Consider
any fermion action that is invariant under the charge-
conjugation symmetry (2.7) when the fermions belong to a
complex representation. If we now take the fermions to be
in a real representation (S≡ R), then the fermion action
will be invariant under the following discrete symmetry:

ψ → RCψ̄T; ð2:8aÞ

ψ̄ → ψTCR; ð2:8bÞ

Aμ → Aμ ðcontinuumÞ; ð2:8cÞ

Uμ → Uμ ðlatticeÞ: ð2:8dÞ

Thanks to the reality condition (2.4), the inclusion of R in
the fermions’ transformation rule makes up for the fact that
the gauge field does not transform. For a pseudoreal
representation (S≡ P), the discrete symmetry is

ψ → PCψ̄T; ð2:9aÞ

ψ̄ → −ψTCP: ð2:9bÞ

We may apply the transformation (2.8) [or (2.9)] to a single
Dirac fermion. This is unlike the usual charge conjugation
(2.7), which acts on the gauge field as well and must be
applied to all fields simultaneously. For both real and
pseudoreal representations, it follows that the (lattice) Dirac
operator satisfies the identity

SCDTS−1C−1 ¼ −SCDTS−1C ¼ D; ð2:10Þ

and Eq. (2.3) follows.
We comment in passing that for Wilson fermions

γ5D†γ5 ¼ D. Together with (the Hermitian conjugate of)
Eq. (2.10), this implies

Sγ5CD�Sγ5C ¼ −D; ð2:11Þ

and hence that the fermion determinant is real.

B. Unbroken SO(4) symmetry and baryon number

In a gauge theory with Nf Dirac fermions in a real
representation, the global symmetry is SUð2NfÞ. After
chiral symmetry breaking, the unbroken symmetry is
SOð2NfÞ. These statements are most obvious when the

3The Euclidean rules (2.7a) and (2.7b) are consistent with the
Minkowskian relation ψ̄ ¼ ψ†γ0, where we have identified
γ0 ≡ γ4.
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theory is formulated in terms of Majorana fermions.
Invariance under the transformation (2.8) allows each
Dirac field to be broken up into two Majorana fields, with
no mixing in the action as long as there are no mass terms.
The number of independent Majorana (or Weyl) fields is
NMaj ¼ 2Nf, making the global symmetry SUð2NfÞ. The
fermion condensate is a Majorana-fermion bilinear which,
for a real representation, is symmetric in its color indices.
As the expectation value of a scalar operator, it is
antisymmetric in its spin indices, and so it must be
symmetric in its (Majorana) flavor indices. It then follows
that the unbroken symmetry is SOð2NfÞ [49–51].
Since we elect to work with two AS2 Dirac fermions

(instead of four Majorana fermions), we should understand
how the SO(4) unbroken symmetry is realized on them.
SO(4) is doubly covered by SUð2Þ × SUð2Þ. We will now
work out how the two SU(2) groups act on our Dirac
fermions. As we will see, one of the SU(2) groups may be
identified with isospin, while the baryon number symmetry
becomes a subgroup of the other SU(2).
We start with the observation that SO(4) is the symmetry

group of the 3-sphere S3, which in turn can be identified
with the SU(2) group manifold via x̂ ¼ x4 þ i

P
3
a¼1 xaσa,

where σa are the Pauli matrices and
P

4
μ¼1 x

2
μ ¼ 1. The

product group SUð2Þ × SUð2Þ is then realized as4

x̂ → gx̂h†; g; h ∈ SUð2Þ: ð2:12Þ

To keep track of the SU(2) transformation properties, it is
convenient to rearrange the four real coordinates into two
complex ones. We choose ϕ1 ¼ x4 þ ix3, ϕ2 ¼ −x2 þ ix1,
so that

x̂ ¼
�
ϕ1 −ϕ�

2

ϕ2 ϕ�
1

�
; −x̂† ¼

�−ϕ�
1 −ϕ�

2

ϕ2 −ϕ1

�
: ð2:13Þ

(The minus sign in front of x̂† is introduced for conven-
ience below.)
The transformation properties under left-multiplication

are now obvious. The left column of the x̂ matrix is an
SU(2) doublet ðϕ1;ϕ2Þ. Denoting this doublet as Φα, the
right column is Φ0

α ¼ ϵαβΦ�
β, which again transforms in the

fundamental representation of SU(2).
Next, to obtain the behavior under right-multiplication,

we consider the left-action of h on −x̂†. We read off the
right-multiplication doublets: ð−ϕ�

1;ϕ2Þ from the left col-
umn of −x̂† and ð−ϕ�

2;−ϕ1Þ from its right column. The left
and right doublets are related by interchanging ϕ1

with −ϕ�
1.

We now turn to our AS2 theory. The role of real
coordinates is played by Majorana fermions, whereas that
of complex coordinates is played by Dirac fermions. What
takes the place of complex conjugation is the transforma-
tion (2.8). We may arrange our two Dirac fermions, u and
d, as well as their antifermions, in complete analogy with
Eq. (2.13),

Ψ ¼
�
u −RCd̄T

d RCūT

�
: ð2:14Þ

Motivated by this arrangement, we will refer to the left-
multiplication SU(2) as isospin symmetry and to the right-
multiplication SU(2) as custodial symmetry. It goes without
saying that the two SU(2)’s play a similar role, and the only
“preference” for the left-multiplication doublets is in our
notation. The isospin and custodial symmetries get inter-
changed by u ↔ −RCūT, which is basically the discrete
symmetry (2.8) applied to the u quark only.5

Let us take a closer look at the custodial-symmetry
generator σ3. With reference to Eq. (2.13), its action on
the second rowof x̂, which is themultiplet ðϕ2;ϕ�

1Þ, is δϕ2 ¼
ϕ2 and δϕ�

1 ¼ −ϕ�
1, or δϕ1 ¼ ϕ1. Thus, ϕ1 and ϕ2 transform

with the same phase. A translation to the language of
Eq. (2.14) is that the custodial σ3 is just the baryon number.
In a two-flavor theory of complex-representation fermions,
the unbroken symmetries are isospin and the U(1) of baryon
number. In our case, the U(1) is enlarged to a second SU(2)
that we call the custodial symmetry, the two other generators
of which thus raise or lower the baryon number.
Now that we have understood the unbroken symmetry

structure, let us consider a few simple applications. As a
first exercise, one can show that the transformation (2.8),
when applied to the u and d fields simultaneously, is in fact
an element of SO(4). Indeed, consider Ψ → −iσ2Ψiσ2,
which is a simultaneous rotation in isospin and custodial
SU(2). This is just u → RCūT , and the same for d.
We next turn to the NGBs. Start with the familiar triplet

of pions: d̄γ5u, ūγ5d, and ūγ5u − d̄γ5d. Now let us apply a
custodial rotation of the form expðiθσ1Þ. Then ūγ5d rotates
into a linear combination of itself, of dTRCγ5d, and of
ūγ5RCūT . The last two are, respectively, a diquark and an
antidiquark, each belonging to an isospin-1 multiplet. It
follows that there are indeed nine NGBs, which fall into
three isospin triplets: one made of diquarks, one of
antidiquarks, and one of quark-antiquark pairs.

C. SUð4Þ ↔ SOð6Þ correspondence and the
six-quark baryon

In this subsection we first work out in detail the
identification between the AS2 representation of SU(4)

4The product-group elements g ¼ −1, h ¼ 1 and g ¼ 1, h ¼
−1 coincide when they act on x̂. Hence, SUð2Þ × SUð2Þ is a
double covering of SO(4).

5We are free to add minus signs on the right-hand sides of
Eqs. (2.8a) and (2.8b) simultaneously.
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and the vector representation of SO(6). This allows us to
construct a fully antisymmetric color wave function for six
AS2 fermions, which will be common to all our baryon
states.
In Sec. II A we labeled the components of the AS2

representation by an index pair. We can alternatively
introduce a single index a ¼ 1;…; 6, with the correspon-
dence ψ1 ¼ ψ ½12�; ψ2 ¼ ψ ½13�; …; ψ6 ¼ ψ ½34�. In the ψa

basis, the matrix R of Sec. II A takes the explicit form

R ¼

0
BBBBBBBB@

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

1
CCCCCCCCA
: ð2:15Þ

The inner product of two AS2 spinors,

X
i<j

X
k<l

ϵijklψ ½ij�χ½kl� ¼ ψaRabχb ¼ ψTRχ; ð2:16Þ

is SU(4) invariant by virtue of Eq. (2.4).
We can recover the standard formulation of SO(6) by

applying a U(6) basis transformation to the AS2 states. As a
first step, we permute the basis elements and multiply one
of them by a minus sign, bringing R to the block diagonal
form

R ¼

0
B@

σ1 0 0

0 σ1 0

0 0 σ1

1
CA: ð2:17Þ

For a further change of basis, we note that

σ1 ¼ τ2; with τ ¼
�

z z�

z� z

�
; ð2:18Þ

where z ¼ ð1þ iÞ=2. We denote by Q the 6 × 6 matrix
with three blocks of the matrix τ along the main diagonal.
Upon performing the basis change

ψ → ψ 0 ¼ Qψ ; ð2:19Þ

the inner product becomes6

ψTRχ → ψTQTRQχ ¼ ψTχ: ð2:20Þ

The inner product has now taken its standard SO(6) form.
Under the same basis change, the AS2 SU(4) generators
transform as

Ta → QTaQ†: ð2:21Þ

Using the properties of the R and Q matrices and Eq. (2.5),
it follows that

ðQTaQ†ÞT ¼ Q†TT
aQ ¼ QRTT

aRQ† ¼ −QTaQ†: ð2:22Þ

In the new basis, the generators are antisymmetric (and
purely imaginary), as required for the standard basis of
SO(6).
As an application of the above, we can show that the

fully antisymmetric six-quark wave function

B ¼ ϵa1a2���a6ψa1ψa2 � � �ψa6 ð2:23Þ

is gauge invariant (we suppress flavor indices). To prove
this, start from

B0 ¼ ϵa1a2���a6ψ
0
a1ψ

0
a2 � � �ψ 0

a6 ; ð2:24Þ

where the ψ 0 basis was introduced in Eq. (2.19). This
operator is clearly gauge invariant, because in the ψ 0 basis
the SU(4) elements are mapped to orthogonal SO(6)
matrices, and the epsilon tensor in Eq. (2.24) is the invariant
six-dimensional tensor. Going back to the original basis,
we have

B0 ¼ ϵa1a2���a6ðQψÞa1ðQψÞa2 � � � ðQψÞa6 : ð2:25Þ

The matrix Q is unitary, and so it leaves invariant the
epsilon tensor, up to a factor of detQ ¼ −i. It follows that
B0 ¼ iB, and hence B is gauge invariant as well. We use the
fully antisymmetric color wave function (2.23) in the
construction of all baryon operators.

D. Diquarks, tetraquarks, and baryons

In constructing states with baryon number, we note first
that a color-singlet state has to be made of an even number
of quarks. Thus, we begin with diquarks. As we have seen,
the real color representation of the quarks leads to the
conclusion that diquarks are degenerate with mesons. Their
color wave function involves the inner product (2.16)

D ¼ ψf
aRabψ

g
b; ð2:26Þ

where f; g stand for the spin and flavor indices. Because R
is symmetric, diquarks have a symmetric color wave
function. Viewed through the prism of the nonrelativistic
quark model, which puts the two quarks in an s-wave, the
product of their spin and isospin wave functions must then
be antisymmetric.7 For (pseudo)scalars, the spin wave
function is antisymmetric, and the isospin wave function

6The inner product is invariant under SU(4) [equivalently
SO(6)] transformations, not under general U(6) transformations.

7Since we are talking about diquarks rather than mesons, both
quarks are in the σ3 ¼ þ1 state of the custodial SU(2).
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should be symmetric. Those that are NGBs have I ¼ 1, as
seen above. States with higher angular momentum are, of
course, also possible. These would include the diquark
analogs of (axial) vector and tensor mesons.
The only way to construct a color-singlet tetraquark state

is by pairwise contraction of the color indices,

T ¼ ðψf
aRabψ

g
bÞðψh

cRcdψ
i
dÞ: ð2:27Þ

One can permute the spin-flavor indices to derive a total of
three pairwise coupling schemes. Linear combinations of
these schemes will have mixed symmetry under color, but
each term will still factor into two color-singlet diquarks.
Moreover, by applying an RC transformation to one quark
flavor at a time, one finds that the tetraquarks are degen-
erate with ψ̄ψψψ and ψ̄ ψ̄ ψψ states. It is an open question
as to whether the tetraquark states in this theory will be
meson and diquark scattering states or bound states; we will
not study them further here.
The first baryonic state that cannot be factored into

smaller color-singlet components is the six-quark baryon
written in Eq. (2.23). It differs essentially from the various
pairwise contractions in that it is fully antisymmetric in
color. This makes it similar to the baryon of QCD,
and indeed similar to baryons made of fundamental-
representation quarks for anyNc. Bolognesi [24] has argued
that this is the correct baryonic state for studying the large-
Nc limit of gauge theories with AS2 quarks. In general, he
finds that baryons made of Nb ¼ NcðNc − 1Þ=2 constitu-
ents in the AS2 color representation fit well into a Skyrmion
picture. While our construction of the wave function (2.23)
relies on special properties of the Nc ¼ 4 theory, Bolognesi
has given an existence proof for a fully antisymmetric,
gauge invariant color wave function for any Nc.

E. Interpolating fields

A lattice simulation needs interpolating fields with an
appropriate set of quantum numbers. As noted above, since
it is fully antisymmetric under exchange, the AS2 color
wave function (2.23) is similar to the color wave function of
baryons made of fundamental representation fermions. The
multiplet patterns are therefore similar as well. The con-
struction of baryon correlators was discussed in detail in a
previous work by one of us [43]. Here we give a brief
synopsis.
A convenient set of interpolating fields for baryons are

operators which create nonrelativistic quark model trial
states. They are diagonal in a γ0 basis. In the case at hand, a
generic two-flavor baryon interpolating field made out of k
up quarks and 6 − k down quarks can be written as

OB ¼ ϵa1���a6C
s1���s6us1a1 � � � uskakdskþ1

akþ1
� � � ds6a6 ; ð2:28Þ

where summation over all color and spin indices is implied.
(We are free to put all the u’s to the left of all the d’s.)

The C’s are an appropriate set of Clebsch–Gordan coef-
ficients. The spin wave function of each quark type, u or d,
must be totally symmetric.
Next we may take linear combinations of the OB’s to

construct operators with definite isospin quantum numbers.
For states built of two flavors of quarks all in the same
spatial wave function, multiplets are locked in equal values
for angular momentum J and isospin I. Thus, we have
states with I ¼ J ¼ 3, 2, 1, and 0.
The two-baryon correlator must include all nonzero

contractions of creation operators at the source and anni-
hilation operators at the sink. For each flavor, this gives a
determinant of quark propagators. These must be summed
over all the ways that colors can be apportioned between
the quarks. For the analog of the Δþþ, the state with
I ¼ I3 ¼ J ¼ J3 ¼ Nb=2 ¼ 3, this is a single term. The
number of terms increases rapidly as the angular momen-
tum decreases, raising the computational cost of the
calculation. (This was an issue for the Nc ¼ 7 baryons
of Ref. [43].) Fortunately, Nb ¼ 6 is not too large, and the
calculation always remains manageable.
With baryon number as its third generator, our baryons

are highest-weight states of the custodial symmetry. In this
paper, we are content with studying these states, and we do
not consider the six-quark states with smaller baryon
number that would be needed to fill in multiplets of the
custodial symmetry.

III. LATTICE ACTION

We define the lattice theory with the usual Wilson
plaquette gauge action and with Wilson-clover fermions.
The fermion action uses gauge connections defined as
normalized hypercubic (nHYP) smeared links [53–55]. The
gauge coupling is set by the parameter β ¼ 2Nc=g20. We
take the two Dirac flavors to be degenerate, with common
bare quark mass introduced via the hopping parameter
κ ¼ ð2mq

0aþ 8Þ−1. As is appropriate for nHYP smearing
[56], we fix the clover coefficient at its tree level value,
cSW ¼ 1.
nHYP smearing introduces a new type of discretization

error, peculiar to the real representation of the matter field.
Our prescription for smearing the fermion’s gauge con-
nection begins with applying the nHYP formulas [55] to the
fundamental gauge link, and then the resulting fat link Vik
is promoted to the AS2 representation via Eq. (2.2). The
problem is that Vik is in fact an element of UðNcÞ, not
SUðNcÞ, viz.,

Vik ¼ eiθUik; ð3:1Þ

where both the SU(4) part Uik and the U(1) phase θ are
determined by our smearing recipe. Having its origin in the
smearing formulas, this U(1) phase is a discretization
effect, and hence it must vanish like some power of the
lattice spacing in the continuum limit. When we apply
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Eq. (2.2) to construct the AS2 fat link V ½ij�½kl� from the
original fat link Vik, we end up with V ½ij�½kl� ¼ e2iθU½ij�½kl�.
Because of this unphysical phase, the AS2 fat link V ½ij�½kl�
fails to satisfy the reality condition (2.4). This in turn leads
to violation of relations like Eq. (2.3).
We can gauge the severity of this discretization error by

looking at violations of Eq. (2.3). Comparing meson and
diquark propagators calculated on single configurations,
we have found differences in the third significant digit.
Similar effects are seen in the eigenvalue spectrum of the
Wilson-clover operator. To the extent that this error creeps
into the generation of configurations, there is no cause for
concern.
Nonetheless, the breaking of the symmetry (2.4) in the

observables is annoying. A way to fix this problem is to
replace the AS2 fat link V ½ij�½kl� obtained from Eq. (2.2) with

V 0
½ij�½kl� ¼

1

2
ðV þ SV�SÞ½ij�½kl� ð3:2Þ

before calculating observables. (This can be regarded as a
partial quenching, since the correction here is applied only
to the valence fermions; one may use V 0 for the sea
fermions as well, but since we had already generated
ensembles without this correction, we chose not to do so.)
The new AS2 link V 0

½ij�½kl� satisfies Eq. (2.4) by con-

struction, at the price of being slightly nonunitary. We
compared spectroscopy with and without this correction for
a 123 × 24 data set at one of our parameter values (β ¼ 9.6,
κ ¼ 0.1285). The differences turned out to lie well under
one standard deviation. We conclude that the discretization
error and the partial quenching (3.2) are benign.
Wilson fermions break chiral symmetry explicitly. In the

familiar case of a complex representation, the symmetry-
breaking pattern of the two-flavor continuum theory is
SUð2ÞL × SUð2ÞR → SUð2ÞV . With Wilson fermions, the
breaking of SUð2ÞL × SUð2ÞR becomes explicit, and only
SUð2ÞV (and, of course, baryon number) is a good
symmetry. While the NGBs become massless when we
tune κ to its critical value κc, full chiral symmetry is only
restored in the continuum limit. For κ > κc one enters the
Aoki phase [57,58], where one of the NGB fields
condenses, and SUð2ÞV is broken spontaneously.
In our model, the spontaneous symmetry breaking

SUð4Þ → SOð4Þ of a real representation turns into explicit
breaking with Wilson fermions. Only SO(4) is a good
symmetry on the lattice, and the full SU(4) flavor symmetry
is only recovered in the continuum limit. For κ < κc the
NGBs discussed in Sec. II—mesons and diquarks—acquire
a mass. For κ > κc again one expects to find an Aoki phase.
The case of five AS2 Majorana fermions [relevant for the
SUð5Þ=SOð5Þ nonlinear sigma model mentioned in the
Introduction] was recently studied using chiral Lagrangian
techniques in Ref. [59].

IV. PHASE DIAGRAM

As preparation for spectroscopy, we have to find
couplings in the confining and chirally broken phase.
The phase diagram of Wilson fermion actions in the
ðβ; κÞ plane can be complicated, depending on the fermion
content and the specific action used [57–61]. Figure 1
shows the phase diagram we have observed for the SU(4)
AS2 action considered in this paper. The curves shown
indicate:
(1) κcðβÞ, the critical value of the hopping parameter

where the quark mass mq vanishes.
(2) κtðβÞ, the curve of the thermal phase transition. Its

location shifts with the lattice size, and two lattice
sizes are indicated.

(3) κbðβÞ, the curve of a bulk phase transition that does
not move with lattice size.

We discuss each in turn.

A. κc determination

We define the quark mass through the axial Ward identity
(AWI), which relates the divergence of the axial current
Aa
μ ¼ ψ̄γμγ5ðτa=2Þψ to the pseudoscalar density Pa ¼

ψ̄γ5ðτa=2Þψ . At zero three-momentum we have

∂t

X
x

hAa
0ðx; tÞOai ¼ 2mq

X
x

hPaðx; tÞOai: ð4:1Þ

whereOa is a source, here taken to be a smeared “Gaussian
shell” source. The critical κcðβÞ line is determined through
the vanishing of the quark mass mq. As noted in Fig. 1, we
use several lattice sizes N3

s × Nt. When Nt > Ns, t labels
the usual temporal direction, but when Nt < Ns, we choose

FIG. 1 (color online). Phase diagram of the SU(4) AS2 theory
in the ðβ; κÞ plane. The solid lines are drawn to guide the eye and
are not a fit to the data. From right to left: κc, κtðNt ¼ 8Þ,
κtðNt ¼ 6Þ, and κb. The dotted line indicates weakening of the
bulk transition to a crossover.

SPECTROSCOPY OF SU(4) GAUGE THEORY WITH TWO … PHYSICAL REVIEW D 91, 114502 (2015)

114502-7



one of the spatial directions to be t in Eq. (4.1) from
correlators taken along one of the spacial directions of the
lattice (so that the sum over x in Eq. (4.1) includes two
directions with periodic fermion boundary conditions and
one antiperiodic direction).
One example of the κ dependence of the quark mass mq

is shown in the left panel of Fig. 2. The zero crossing at κc is
apparent, as is a discontinuity in the mqðκÞ. The latter is a
signal of a bulk transition, which we discuss below in
Sec. IV C. We note that there is little volume dependence in
κcðβÞ. We plot κcðβÞ from all the volumes in Fig. 1 as a
black line.

B. κt determination

The finite-temperature transition lines κtðβÞ are deter-
mined from the behavior of the Polyakov loop L. With AS2
fermions, the Z4 center symmetry of the pure-gauge theory
symmetry is broken only to Z2, and therefore there is a true
confinement phase transition in our theory. hLi ¼ 0 in the
low-temperature phase, while in the high-temperature

phase, hLi orders along the real axis. Typical scatter plots
of the Polyakov loop in the two phases are shown in the left
panel of Fig. 3. The average Polyakov loop as a function of
κ at four different β values for a 163 × 8 volume are shown
in the right panel of Fig. 3.
The κtðβÞ lines for two different volumes, 163 × 8 and

123 × 6, are shown in Fig. 1 as red lines. The transition
moves to weaker coupling as Nt increases, as expected
from asymptotic freedom.

C. κb determination

In addition to the temperature-dependent deconfinement
lines κtðβÞ, our system exhibits another transition line
κbðβÞ. Its presence is signaled by discontinuities in several
observables, notably the average plaquette and the quark
mass mq. We find that the position of the discontinuity is
independent of volume. This is a bulk transition associated
with the particular lattice action we use; most likely it has
nothing to do with continuum physics. The mechanism that
triggers the bulk transition is not clear to us. Similar

FIG. 2. Left: Quark mass mq as a function of κ in different volumes at β ¼ 9.6. Right: Average plaquette as a function of κ in different
volumes at β ¼ 9.6.

FIG. 3 (color online). Left: Scatter plots of the Polyakov loop in the two different phases on 163 × 8 lattices at β ¼ 9.6. Right: Average
Polyakov loop on 163 × 8 lattices for different β and κ values. The jump of the average Polyakov loop values for each β value signals a
finite-temperature transition.
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behavior has been observed in other lattice actions, when
the number of fermionic degrees of freedom is large
[57,58,60,61]. A similar bulk transition has been observed
in studies of the SU(4) pure-gauge theory at β ∼ 10.2 [62].
We have already seen, in the left panel of Fig. 2, a

discontinuity in the quark mass mq at κ ≈ 0.127 as we scan
at β ¼ 9.6. The right panel of Fig. 2 shows the average
plaquette values for β ¼ 9.6 in three different volumes. All
the plaquette data show a sudden jump at the same value
of κ.
The transition weakens in the large-β=small-κ region and

appears to show only a smooth crossover at β ≈ 10.0. The
κbðβÞ line, determined on two different volumes, 163 × 8

and 123 × 6, is sketched in Fig. 1 in blue. Further work is
needed to understand the origin of this peculiar bulk
transition. For the current study, however, we only need
to make sure that our simulation is on the weak-coupling
(large-β) side of this transition so that it has a direct
connection to continuum physics.

V. SPECTROSCOPY

A. SU(4) AS2

Referring to the phase diagram, Fig. 1, we chose to
simulate the SU(4) AS2 theory at β ¼ 9.6 for a range of
hopping parameter values 0.127 < κ < 0.130, between the
bulk transition and κc. Our simulation volumes were all
163 × 32, and the resulting spectra show that our chosen κ
values kept us in the confining phase, κ < κt. Gauge-field
updates used the HMC algorithm with a multilevel
Omelyan integrator, including one level of mass precondi-
tioning for the fermions; integration parameters were
adjusted to maintain acceptance rates on the order of
70%–80%. Gauge configurations were saved to a disk
every ten updates. The simulations are summarized in
Table I.
The coupling β ¼ 9.6 gives a lattice spacing that is

neither too large nor too small. For comparison with other
theories, we fix the lattice spacing using the shorter version
[63] of the Sommer [64] parameter r1, defined in terms of
the force FðrÞ between static quarks: r2FðrÞ ¼ −1.0 at
r ¼ r1. The real-world value is r1 ¼ 0.31 fm [65], and thus
Table I shows that our lattice spacings would correspond to
a length scale of approximately 0.1 fm in QCD. For later
comparison, we plot both Sommer parameters for our
simulations in Fig. 4.

In addition to the simulations listed in Table I, we used
the κ ¼ 0.129 lattices as a set of configurations on which
we computed partially quenched (PQ) spectroscopy with
four values of the valence quark mass, κV ¼ 0.1295, 0.130,
0.1305, and 0.131. These data sets used the full comple-
ment of κ ¼ 0.129 configurations. Of course, their lattice
spacing is the same as that of the κ ¼ 0.129 set.
The correlation functions of which the analysis produced

our spectroscopy used propagators constructed in the
Coulomb gauge, the sources of which were Gaussians.
We used ~p ¼ 0 point sinks. We collected sets for several
different values of the width R0 of the source. These
correlation functions are not variational since the source
and sink are different. We begin each fit with a distance-
dependent effective mass meffðtÞ, defined to be meffðtÞ ¼
logCðtÞ=Cðtþ 1Þ consistent with open boundary condi-
tions for the correlator CðtÞ. Because our sources and sinks
are not identical, meffðtÞ can approach its asymptotic value
from above or below. We mixed data with different values
of R0 to produce correlators with relatively flat meffðtÞ,
which we then used in a full analysis involving fits to a
wide range of t’s. For more detail see Ref. [43].
Our resulting data are shown in Tables II, III, and IV.

Table II shows the AWI mass and meson masses and decay
constants. The pseudoscalar and vector meson decay
constants, the definitions of which are given in
Eqs. (6.1) and (6.2) below, are given with lattice normali-
zation for the fermion fields. The conversion to continuum
numbers will be described below.
We also measured the masses of the J ¼ 0 and J ¼ 1

diquarks using nonrelativistic quark model interpolating
fields, diquark analogs of the operators we used for
baryons. Their masses are, as expected, degenerate with
those of their mesonic partners.
Tables III and IV give the baryon masses and mass

differences. These are computed together: A jackknife
average of correlated, single-exponential fits to all four
masses is performed, and the differences are collected. This
insures that the average mass difference is indeed the
difference of the average masses. Since the data sets for the
different angular-momentum states are identical, the uncer-
tainty in the mass difference is usually smaller than the
naive combination of uncertainties on the individual
masses. These fits are over the range 5 ≤ t ≤ 10. We have
checked that fits over nearby t ranges are consistent within
uncertainties with these results. We omit results for κV ¼
0.131 because the uncertainties in the baryon masses,
especially the J ¼ 0 baryon, are very large.

B. SU(3) fundamental

We also generated a data set for SU(3) gauge fields
coupled to Nf ¼ 2 fermions in the fundamental represen-
tation. We did this for two (related) reasons. First, the SU(4)
data sets include dynamical fermions, and so we felt that
our comparison to Nc ¼ 3 ought to be dynamical to

TABLE I. Parameters of the SU(4) AS2 simulations. All are at
coupling β ¼ 9.6, in volume 163 × 32.

κ Configurations r1=a

0.128 146 2.50(1)
0.1285 140 2.78(2)
0.129 200 2.97(2)
0.1292 161 3.22(3)
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dynamical. Second, all previous large-Nc comparisons
were of quenched data sets. While quenching is not the
state of the art, at the quark masses at which we work, one
might expect quenching artifacts to be small. A direct
comparison seemed to be in order, and we found (as
expected) that quenching effects indeed were small. This
will be seen in the figures. Again, we used the clover action
with nHYP links and cSW ¼ 1. The lattice volume was
again 163 × 32 sites. We chose a gauge coupling β ¼ 5.4.
We saved configurations every five HMC trajectories.
Parameter values are shown in Table V. Table VI shows

mesonic observables from the dynamical SU(3) simula-
tions, while Table VII shows baryon masses and mass
differences. These numbers are taken from a jackknife
average of the data sets with a fit range 5 ≤ t ≤ 10.

(a) (b)

FIG. 4. Sommer parameters r0 and r1 from the dynamical SU(3) and SU(4) data sets [panels (a) and (b), respectively].

TABLE II. AWI mass and meson spectra and decay constants
from dynamical SU(4) AS2 simulations. fPS and fV have lattice
normalization.

κ amq amPS amV afPS afV

0.1280 0.124 0.680(1) 0.888(3) 0.978(10) 1.559(18)
0.1285 0.089 0.554(2) 0.749(6) 0.730(12) 1.563(29)
0.1290 0.067 0.462(1) 0.666(3) 0.693(5) 1.516(4)
0.1292 0.057 0.417(2) 0.602(2) 0.637(7) 1.501(7)
0.1295a 0.053 0.409(1) 0.630(2) 0.654(3) 1.570(8)
0.1300a 0.039 0.350(2) 0.596(3) 0.627(3) 1.627(11)
0.1305a 0.025 0.281(2) 0.561(4) 0.596(4) 1.699(13)
0.1310a 0.011 0.190(4) 0.529(8) 0.562(5) 1.783(18)

aPartially quenched: same gauge configurations as κ ¼ 0.129.

TABLE III. Baryon masses from dynamical SU(4) AS2 sim-
ulations. The number labels the angular momentum of the state:
MBð3Þ ¼ MBðJ ¼ 3Þ.
κ aMBð3Þ aMBð2Þ aMBð1Þ aMBð0Þ
0.1280 3.134(43) 3.055(32) 2.972(30) 2.923(32)
0.1285 2.608(35) 2.513(27) 2.442(25) 2.389(23)
0.1290 2.297(21) 2.212(17) 2.147(16) 2.113(16)
0.1292 2.046(24) 1.990(22) 1.948(22) 1.920(18)
0.1295a 2.179(26) 2.075(20) 2.002(20) 1.972(18)
0.1300a 2.094(37) 1.964(35) 1.902(29) 1.848(28)
0.1305a 1.984(77) 1.854(52) 1.826(95) 1.732(57)

aPartially quenched: same gauge configurations as κ ¼ 0.129.

TABLE IV. Baryon mass splittings from dynamical SU(4) AS2
simulations. We define ΔMJ1J2 ≡MBðJ2Þ −MBðJ1Þ.
κ aΔM23 aΔM13 aΔM03

0.1280 0.079(29) 0.162(34) 0.210(34)
0.1285 0.095(26) 0.166(33) 0.219(34)
0.1290 0.086(16) 0.151(17) 0.185(19)
0.1292 0.056(16) 0.098(22) 0.126(12)
0.1295a 0.104(21) 0.177(22) 0.207(23)
0.1300a 0.131(36) 0.192(37) 0.247(37)
0.1305a 0.131(66) 0.159(117) 0.253(80)

aPartially quenched: same gauge configurations as κ ¼ 0.129.

TABLE V. Parameters of the SU(3) simulations. All are at
coupling β ¼ 5.4, in volume 163 × 32.

κ Configurations r1=a

0.125 100 2.95(2)
0.126 100 3.08(3)
0.1265 100 3.11(3)
0.127 100 3.23(3)
0.1272 100 3.30(3)

TABLE VI. AWI mass and meson spectra and decay constants
from dynamical SU(3) simulations. fPS and fV have lattice
normalization.

κ amq amPS amV afPS afV

0.1250 0.105 0.559(2) 0.696(3) 0.456(6) 0.905(4)
0.1260 0.070 0.457(1) 0.619(3) 0.424(4) 0.993(8)
0.1265 0.059 0.402(3) 0.576(5) 0.385(3) 1.001(9)
0.1270 0.042 0.340(3) 0.531(5) 0.370(5) 1.050(9)
0.1272 0.028 0.307(3) 0.479(6) 0.318(7) 1.037(13)
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VI. COMPARISONS: MESONS

We have presented our results for meson and baryon
spectra and also for meson decay constants in the SU(4)
AS2 and SU(3) theories in Sec. V. In this section and the
next, we will plot and rescale them for comparison with
each other and with the quenched SUðNcÞ theories,
Nc ¼ 3, 5, and 7. This is an important consistency check
on our results, and discrepancies with predicted scaling
may point to interesting directions for future study of AS2
theories with large Nc.

A. Spectroscopy

We plot the data for the pseudoscalar and vector meson
masses in Fig. 5. To set the scale, we use the Sommer
parameter r1, and for the quark mass, we use the lattice-
regulated AWI quark mass, scaled by r1 in the plots.
We display several data sets together. The new ones are

the SU(4) AS2 sets, shown in red (crosses for the full
dynamical sets and fancy diamonds for the partially
quenched ones) and the dynamical SU(3) sets (blue
squares). The black squares, diamonds, and octagons are

previously published data from quenched simulations with
Nc ¼ 3, 5, and 7 with fundamental fermions [43].
To carry out meaningful comparisons between data

obtained at different Nc’s, we must match the bare
parameters between the simulations in some common
way. This is an inherently ambiguous procedure, but let
us make the attempt. We know that hadron masses depend
monotonically on the quark mass. We can compare results
at the same values of the quark mass by selecting data at
constant ðmPS=mVÞ2—this is a quantity which is roughly
linear in the quark mass—or we can use the AWI quark
mass itself, rendered dimensionless by multiplication by r1.
These comparisons are shown in Fig. 6. For both quantities,
the theories can be matched over almost the entire range
of κ.
We now select matching points for which we have many

data sets. Thus, we choose to use ðmPS=mVÞ2 ¼ 0.54–0.56,
0.40, and 0.29–0.32 as the three ratios. We plot r1mV as a
function of 1=Nc, since we expect the leading corrections to
scale with 1=Nc. The result is shown in Fig. 7.
To leading order in the expansion, meson masses in both

the fundamental and AS2 theories are expected to be
independent of Nc [28]. Empirically, it appears that the
systems connected by the original ’t Hooft large-Nc scaling
argument—fundamental fermions—show smaller 1=Nc
variation than the AS2 systems over the range of Nc
shown. In particular, we note that the AS2 data withNc ¼ 4
and the fundamental data with Nc ¼ 7 show roughly the
same shift compared to Nc ¼ 3. This is seen to be the case
for all quark mass values (see Fig. 5).

B. Decay constants

We define the pseudoscalar decay constant fPS through
the matrix element

TABLE VII. Baryon masses and splittings from dynamical
SU(3) simulations. The number labels the angular momentum
of the state: MBð1=2Þ ¼ MBðJ ¼ 1=2Þ. The difference is
ΔM ≡MBð3=2Þ −MBð1=2Þ.
κ aMBð3=2Þ aMBð1=2Þ aΔM

0.1250 1.143(13) 1.042(7) 0.100(11)
0.1260 1.011(10) 0.926(7) 0.085(9)
0.1265 0.959(18) 0.838(11) 0.120(16)
0.1270 0.887(23) 0.748(8) 0.139(22)
0.1272 0.833(25) 0.698(8) 0.135(24)

(a) (b)

FIG. 5 (color online). Meson spectroscopy. On the left, the squared pseudoscalar mass scaled by r21; on the right, r1 times the vector
meson mass. The abscissa is r1 times the AWI quark mass. The data sets are black squares for quenched SU(3) fundamentals, black
diamonds for quenched SU(5) fundamentals, black octagons for quenched SU(7) fundamentals, and red crosses for SU(4) AS2; the
fancy diamonds are the PQ data. Finally, the blue squares are SU(3) with two dynamical, fundamental flavors.
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h0jūγ0γ5djPSi ¼ mPSfPS ð6:1Þ

(so fPS ≃ 132 MeV), while the vector meson decay
constant fV of state V is defined as

h0jūγidjVi ¼ m2
VfVϵi; ð6:2Þ

where ~ϵ is a polarization vector. With clover fermions in the
usual (κ) normalization, a continuum matrix element
(carrying dimension D) is defined to be

hψ̄Γψicont ¼
�
1 −

3

4

κ

κc

�
ZΓhψ̄ΓψilattaD; ð6:3Þ

and in perturbation theory for fermions in representation R,
the one-loop renormalization factor is

ZΓ ¼ 1þ g2C2ðRÞ
16π2

zΓ þ � � � : ð6:4Þ

zΓ for nHYP clover fermions is recorded in Ref. [66] as
−1.28 for the vector current and −1.30 for the axial current.
In the usual tadpole-improved analysis, one might take the
coupling from the lowest-order expression for the pla-
quette, using the fundamental representation Casimir,

−Tr
UP

Nc
¼ g2

C2ðFÞ
4

: ð6:5Þ

For the quenched data sets, the plaquette values (1.787,
2.858, and 3.976) give g2C2ðFÞ ¼ 2–2.26. In principle, we
should run the scale of the coupling from its value for the
plaquette, q�a ¼ 3.41, to the values computed in Ref. [66],
q�a≃ 1.7, but the combination of coupling and zΓ is so
small for nHYP fermions that, in all cases, ZΓ is within 1%
of unity.
A first determination of κc was described in Sec. IV.

Figure 4 shows that the lattice spacing is rather strongly
dependent on κ at fixed β, so one would not expect a naive
extrapolation of, say, amq or ðamPSÞ2 as a linear function of
κ would perform particularly well. In fact, it does not; we
can imagine doing fits to all four data points, or to the
lightest three. Since the fits have a nonzero number of
degrees of freedom, we can evaluate their quality. It is poor.
Instead, we focus on the dimensionless quantities r1mq

and r21m
2
PS. A comparison of critical hopping parameters

from the fits is shown in Fig. 8 for four possibilities, all with
a linear fit:
(1) From r1mq with all four mass values [χ2 ¼ 24.5

with 2 degrees of freedom (dof)];

(a) (b)

FIG. 6 (color online). Two ways to match bare parameters: panel (a) ðmPS=mVÞ2 vs κ and panel (b) r1mAWI vs κ. The data sets are
black squares for quenched SU(3) fundamentals, black diamonds for quenched SU(5) fundamentals, black octagons for quenched SU(7)
fundamentals, and red crosses for SU(4) AS2. Finally, the blue squares are SU(3) with two dynamical, fundamental flavors.

FIG. 7 (color online). Variation of r1mV vs 1=Nc for roughly
matched data using ðmPS=mVÞ2. The diamonds are for
ðmPS=mVÞ2 ¼ 0.54–0.56, octagons for ðmPS=mVÞ2 ¼ 0.40, and
squares for ðmPS=mVÞ2 ¼ 0.29–0.32. The blue symbols are the
dynamical SU(3) data, and the red symbols are the SU(4) AS2
data. Black symbols show quenched fundamental results.
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(2) From r1mq with the lowest three mass values
(χ2 ¼ 2.4 with 1 dof);

(3) From r21m
2
PS with all four mass values (χ2 ¼ 8.6with

2 dof);
(4) From r21m

2
PS with the lowest three mass values

(χ2 ¼ 7 with 1 dof).
The estimates of κc are all quite close. More importantly, the
uncertainty in the rescaling between lattice and continuum-
normalized matrix elements due to different choices of κc is
under 0.5% at any of the quark masses in our data sets. The
plots below assume κc ¼ 0.13122 and Z ¼ 1.
The partially quenched data sets, at fixed β and sea quark

κ, should all have the same lattice spacing. We should be
able to find a “valence κc” just by fitting amq or ðamPSÞ2 to
a straight line. This we do, finding κc ¼ 0.13137.
The dynamical SU(3) data sets have κc ¼ 0.12838ð9Þ

from a linear fit of r1mq in κ. The fit is stable with a χ2

below 1.1 per degree of freedom for the lowest five masses
(or fewer).
We collect our results for fPS and fV in Figs. 9 and 10.

We rescaled all fundamental-representation data byffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
, and we rescaled the AS2 data by ð3=NcÞ, to

remove the leading expected large-Nc scaling [25], leaving
the residual. The dynamical SU(3) data sets agree with the
previously presented quenched sets (at the relatively heavy
quark masses where they overlap), and the trend of
remarkable Nc scaling for the fundamental-representation
data contrasts with the AS2 data sets, where the shift from
Nc ¼ 3 to 4 is about 20%.
The slope of the rescaled r1fPS with respect to r1mq is

roughly 50% larger for the SU(4) AS2 results, compared to
all other results shown. Next-to-leading-order chiral per-
turbation theory predicts a larger contribution by a factor of

2 from the low-energy constant L4 for the SU(4) AS2 data
[67]; however, L4 itself is usually taken to be small or even
zero in QCD, since it is suppressed at large Nc (with
fundamental fermions) by the Okubo-Zweig-Iizuka (OZI)
rule [68].8 The OZI rule, which follows from suppression of

FIG. 8. Different determinations of κc in the SU(4) AS2 theory:
(1) from r1mq with all four mass values, (2) from r1mq with the
lowest three mass values, (3) from r21m

2
PS with all four mass

values, and (4) from r21m
2
PS with the lowest three mass values.

FIG. 9 (color online). Pseudoscalar decay constant. The ab-
scissa is r1 times the AWI quark mass. The data sets are black
squares for quenched SU(3) fundamentals, black diamonds for
quenched SU(5) fundamentals, black octagons for quenched
SU(7) fundamentals, and red crosses for SU(4) AS2; the fancy
diamonds are the PQ data. Finally, the blue squares are SU(3)
with two dynamical, fundamental flavors.

FIG. 10 (color online). Vector meson decay constant. The
abscissa is r1 times the AWI quark mass. The data sets are
labeled as in Fig. 9.

8Recent global analyses of the low-energy constants in QCD
[69] indicate that L4 is not necessarily small, despite the expected
large-Nc suppression.
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quark loops, does not hold for the AS2 expansion [28], and
so we might expect a larger slope for fPS vsmq in any AS2
theory compared to the conventional expansion at large Nc.
Results at larger values of Nc with AS2 fermions would
shed light on this discrepancy.

VII. COMPARISONS: BARYONS

Our baryon data are shown in Fig. 11. Unlike mesons,
baryon masses depend strongly on Nc and representation.
Fundamental representation data with Nc ¼ 3, 5, and 7
make that point. In the figure, quenched data are shown in
black, while the blue points are the SU(3) dynamical-
fermion data. Again, we scale the lattice masses by r1 and
plot the data vs the AWI quark mass. The SU(4) AS2
masses are shown in red, with octagons for dynamical data
sets and fancy diamonds for the partially quenched ones.
We have used the same symbols for all states, regardless of
their angular momentum, but have connected the states
with the same J by lines. The masses of all the states (all
Nc, all representations) are ordered in angular momentum
so that higher J lies higher. Of course, the masses in each
set come from the same underlying configurations, so they
are highly correlated and move together as the quark mass
is varied.
We can compare the fine structure in the AS2 data to the

familiar rotor formula [29,33,37],

MBðJÞ ¼ m0Nb þ B
JðJ þ 1Þ

Nb
: ð7:1Þ

Nb is the number of quarks in the baryon, and m0 can be
interpreted as a constituent quark mass. Thus, we set
Nb ¼ Nc for fundamental-representation fermions and
Nb ¼ 6 for SU(4) AS2. Equation (7.1) describes the data
well. This is shown for one quark mass, κ ¼ 0.1285, in
Fig. 12. The masses of the four different J states are fit to
two parameters, m0 and B. The results of the fit are shown
as squares in the figure. Repeating these fits for all masses,
we can plot the quark mass dependence ofm0 andB. This is
shown in Fig. 13.
Some residual Nc dependence is observed in Fig. 13,

especially in m0, shown in the left-hand panel. This
situation for the quenched fundamental data was discussed
in Ref. [44]. It was observed that the variation in the data
was (noisily) consistent with a 1=Nc contribution to m0;
that is, m0ðNcÞ ¼ m00 þm01=Nc þ… where m00 and m01

were of comparable, “typical QCD” size. With only two
AS2 points to compare, we cannot reliably fit for the
corresponding Nc dependence. However, we observe that
modeling m0ðNbÞ ¼ m00 þm01=Nb þ… gives roughly
consistent results with our Nc ¼ 4 AS2 data.
The situation for B is less clear cut: B comes from

small mass differences. Certainly, the Nc ¼ 5 and 7
fundamental B data and the Nc ¼ 4 AS2 B data lie on a
common line slightly separated from the Nc ¼ 3 data. This
is in qualitative agreement with large-Nc expectations,
BðNbÞ ¼ B0 þ B1=Nb þ � � �.
Overall, both m0 and B are of “typical hadronic size”

since 1=r1 ∼ 635 MeV and r1m0 and r1B are order unity.
However, they have rather different dependence on the
quark mass. In the Skyrme picture, B is the inverse of the

FIG. 11 (color online). Baryons. The black data are from the top
quenched SU(7), SU(5), and SU(3) data. The blue octagons are
SU(3) with dynamical fermions. The red points are the six-quark
baryons in SU(4) AS2, octagons are for dynamical data sets, and
fancy diamonds are for partially quenched ones.

FIG. 12. Fit to rotor formula (7.1) at κ ¼ 0.1285. Octagons
(with error bars) are the data points; squares are the best fit values.
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moment of inertia, scaled by Nb, so that B should be
proportional to 1=m0. In a quark model with hyperfine
interactions mediated by gluons, B is basically a product of
color magnetic moments for the quarks, and for heavy
quarks, the magnetic moment scales inversely with the
quark mass. This suggests B ∝ 1=m2

0. A log-log plot of B
vs 1=m0 certainly looks like a power law, with an exponent
near unity. This is shown for Nc ¼ 3 and 4 in Fig. 14 and
for the quenched fundamental data in Fig. 15.
The overall dependence of the baryon mass MB on the

quark mass mq is also interesting to study, since it may be
used with the Feynman–Hellmann theorem to determine
the baryonic matrix element of the scalar density, if one
defines

fðBÞq ≡ mq

MB

∂MB

∂mq
¼ mq

MB
hBjψ̄ψ jBi: ð7:2Þ

Multiplying by the ratio mq=MB cancels the renormaliza-
tion of the quark mass and gives a dimensionless ratio. For
the lowest-lying baryon, this quantity would determine the
cross section for direct detection through Higgs exchange
in the context of a composite dark matter model [46], in
conjunction with the same quantity defined for matrix
elements of the proton and neutron [70].
To determine the scalar matrix element, we carry out a

linear fit to the quantity r1MB as a function of r1mq; the
resulting slope is then multiplied by mq=MB at each data
point. To suppress possible finite-volume systematic errors,

(a) (b)

FIG. 13 (color online). The parameter m0 [panel (a)] and B [panel (b)] from two-flavor degenerate mass data as a function of
ðmPS=mVÞ2 from a fit to Eq. (7.1). Data from the quenched SU(3), SU(5), and SU(7) multiplets are shown, respectively, as squares,
diamonds, and octagons. Red crosses and fancy diamonds show the SU(4) data, unquenched and partially quenched, and the blue
squares are the dynamical SU(3) data sets.

FIG. 14 (color online). B vs 1=m0 from the rotor formula (7.1);
black diamonds from quenched SU(3), blue squares from full
SU(3). The SU(4) data are shown as red octagons for the
dynamical sets and fancy diamonds for the partially quenched set.

FIG. 15. For comparison, B vs 1=m0 from the rotor for-
mula (7.1) from the quenched fundamental data sets of Ref. [43]:
Nc ¼ 3, 5, and 7 data sets are squares, diamonds, and octagons.
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only points with mPSNs ≳ 4 are used in the fit; this
excludes a small fraction of our data.
Results of this analysis are plotted in Fig. 16. Since in the

limit mq → ∞ we expect MB ∼ Nbmq, the quantity fðBÞq

should approach 1 in the heavy-quark limit and 0 in the
chiral limit. The functional dependence observed for all of
our AS2 and fundamental data is broadly consistent at
intermediate values of mPS=mV , and consistency is also
seen with other lattice results for SU(2) and SU(4) theories
with relatively heavy quark masses [46,71].

VIII. CONSEQUENCES AND CONCLUSIONS

We have presented a first lattice calculation of the
spectrum for an SU(4) gauge theory with two Dirac
fermions in the two-index antisymmetric (AS2) represen-
tation. Because this is a real representation, its symmetries
are somewhat different from the familiar QCD case; in
particular the chiral symmetry group is enlarged, breaking
SUð4Þ → SOð4Þ. We have clarified some features of this
symmetry, particularly as relevant for lattice simulations.
Furthermore, we have mapped out the phase diagram for
our lattice action and identified and removed a novel
discretization error in nHYP smearing which appears
for real-representation fermions. Our work provides a
foundation for future studies of SU(4) theories with AS2
fermions and for other lattice studies of theories with real-
representation fermions.
Comparisons of SU(4) AS2 spectroscopy and matrix

elements with fundamental fermion data reveal regularities

anticipated by large-Nc arguments. Although we cannot
derive any quantitative results on the nature of the AS2
large-Nc expansion with only two points (Nc ¼ 3 and
Nc ¼ 4), our results for meson and baryon masses seem
consistent with the predictions of the large-Nc framework.
Scaling of decay constants seems to be less exact for

AS2 fermions than for fundamental ones, with the SU(4)
AS2 results clearly distinct from the various SUðNcÞ
fundamental theories. We note, however, that for Nc ≠ 4
AS2 fermions live in complex representations. The pattern
of chiral symmetry breaking is then identical to that of
ordinary QCD. Since Nc ¼ 4 is a special case, it might be
an outlier for the behavior of chirally sensitive observables
such as fPS.
As far as we know, no dynamical simulations of gauge

plus fermionic systems on volumes large enough for
spectroscopy with Nc > 4 have ever been performed. At
heavier quark masses, however, quenching effects are not
large. For future study, perhaps it would be appropriate to
imagine a first round of quenched simulations with AS2
fermions. Studies of mesonic properties could be done with
modest resources. With Nb ¼ NcðNc − 1Þ=2 quarks in a
baryon, they are bosons for Nc ¼ 5 (with 10 constituents),
and they alternate between a fermion and boson at larger
Nc. Unfortunately, the number of terms in the wave
function grows rapidly with Nc. Even for Nc ¼ 5, the
combinatorics of the lower-J correlators seem quite
daunting.
Returning to the Nc ¼ 4 theory, the six-quark AS2

baryons are almost certainly unstable against decay in
the chiral limit, since they can fall apart into three diquarks.
As an example, consider any of our baryons with
I ¼ J > 0. Diquark NGBs have I ¼ 1, and so the decay
into three such NGBs is allowed by isospin conservation.
However, the NGBs have J ¼ 0, meaning that the baryon’s
angular momentum will have to be converted into an orbital
motion. This leads to a kinematic suppression of the decay.
The same applies to the I ¼ J ¼ 0 baryon: The isospin
state of the three NGBs is antisymmetric, so they will have
to be in a spatially antisymmetric state that perforce
contains orbital angular momentum. Of course, knowing
that the decay actually occurs as a strong-interaction
process might be sufficient for phenomenology. For exam-
ple, in the chiral limit of a model like this, the lightest
baryon would probably not be a good dark matter candidate
because it would decay into massless NGBs.
As mentioned in the Introduction, of particular interest

for phenomenology is the NMaj ¼ 5 theory, the low-energy
effective theory of which is the SUð5Þ=SOð5Þ nonlinear
sigma model. We have begun a detailed study of this model
that we hope to report on in the future.
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