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We explore the use of “optimized” operators, designed to interpolate only a single meson eigenstate, in
three-point correlation functions with a vector-current insertion. These operators are constructed as linear
combinations in a large basis of meson interpolating fields using a variational analysis of matrices of
two-point correlation functions. After performing such a determination at both zero and nonzero
momentum, we compute three-point functions and are able to study radiative transition matrix elements
featuring excited-state mesons. The required two- and three-point correlation functions are efficiently
computed using the distillation framework in which there is a factorization between quark propagation and
operator construction, allowing for a large number of meson operators of definite momentum to be
considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of
dynamical quark all tuned to the physical strange quark mass, considering form factors and transitions of
pseudoscalar and vector meson excitations. The dependence on photon virtuality for a number of form
factors and transitions is extracted, and some discussion of excited-state phenomenology is presented.
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I. INTRODUCTION

The coupling of mesons and baryons to photons at leading
order in αem is given by matrix elements of the quark-field
vector current hfjjμjii where jμðxÞ ¼ ψ̄ðxÞγμψðxÞ. In the
case that the initial- and final-state hadrons are the same, we
express the matrix element in terms of Lorentz-invariant
form factors, whose dependence on the virtuality of the
photon, Q2, can be related to quark charge and current
distributions within the hadron. The current can also induce a
transition from one hadron eigenstate jii to another jfi, in
which case we speak of transition form factors. For hadrons
with nonzero spin, there are multiple possible amplitudes
which can be labeled by the helicity of the hadrons, or we
may expand the current in terms of multipoles to provide
another convenient physically motivated basis.
In the meson sector, these matrix elements appear in

photo- and electroproduction of mesons from nucleon
and nuclear targets, where the coupling of the photon to a
t-channel meson exchange is described by transition form
factors. Measurements of these processes with unprec-
edented statistics will be made in the GlueX and CLAS12
detectors at the 12 GeV upgraded Jefferson Lab [1]. In
particular, photoproduction has been proposed as a means to
produce large numbers of exotic JPC hybrids, those mesons
which contain an excitation of the gluonic field as well as the
usual quark-antiquark pair [2,3].

Production of excited mesons at very forward angles
using pion beams is also driven by the vector-current
transition form factor. In the Primakoff process, the pion
absorbs a nearly on-shell photon from a nucleon or nuclear
target, with an amplitude to transition to another meson
species given by transition form factors at Q2 ≈ 0. Recent
such measurements of the couplings a2 → πγ and π2 → πγ
have been made at COMPASS [4].
In charmonium and bottomonium, the relatively small

total widths of the low-lying states mean that radiative
transition rates between them constitute significant branch-
ing fractions and can be measured directly, as can rates of
decay to a photon plus light-quark mesons where the heavy
quark-antiquark pair annihilates [5,6].
In the baryon sector, the Q2 dependence of transition

form factors can be measured quite directly in electro-
production of excited nucleons off proton and neutron
targets. The relative magnitudes of the various multipole or
helicity amplitudes and the variation with photon virtuality
have been discussed as a means to study the internal quark-
gluon structure of excited N⋆ and Δ⋆ states [7].
The properties of hadrons constructed from strongly

interacting quarks and gluons should be calculable within
the relevant gauge-field theory, QCD. At the energy scale
of hadrons, QCD does not have a small coupling constant
and must be treated nonperturbatively. The tool we will use
to achieve this is lattice QCD, in which the field theory is
discretized on a finite grid of Euclidean space-time points
and where we can compute correlation functions as an*dudek@jlab.org
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average over a finite but large number of possible gauge-
field configurations.
The vector-current matrix elements that we are interested

in, hfjjμjii, appear in three-point correlation functions of
generic form, h0jOfðtfÞjμðtÞO†

i ðtiÞj0i. Here O†
i , O

†
f are

operators constructed from quark and gluon fields, capable
of interpolating mesons from the vacuum. In general, such
hadron operators with definite quantum numbers interpo-
late not just one QCD eigenstate but rather a linear
superposition of all states with those quantum numbers.
Each state propagates through Euclidean time with a factor
e−Et such that at large times only the state of lowest energy
survives, suggesting that if we separate the three operators
in the correlation function by large time intervals we will
obtain the transition between the lightest states with the
quantum numbers of Oi, Of. However, in many cases we
actually wish to study states which are not the lightest
with a given set of quantum numbers. If we use a generic
operator to interpolate them from the vacuum, their con-
tribution will be as subleading exponential dependences in
the correlation function, which become dominated by lighter
states as we propagate in Euclidean time. Determining the
amplitude of subleading exponential contributions through
fitting the time dependence proves to be unreliable.
Our solution to this problem is to form “optimal”

operators for the interpolation of each state that we wish
to study, that is operators which have a dominant amplitude
to produce a particular state and significantly reduced
amplitude to produce all other states, particularly those
lighter than the state in question. In this case the three-point
correlation functions are dominated by the desired initial
and final states, even if they are not the lightest in a given
quantum number sector. Optimal operators can be con-
structed as a linear superposition of operators in a large
basis, where there is a particular linear superposition for
each state in the tower of excited states. The different
superpositions are orthogonal in a suitable sense. We are
able to find appropriate superpositions through a variational
analysis of the matrix of two-point correlation functions,
h0jOiðtÞO†

jð0Þj0i, for a set of operators fOig.
The technology we will utilize, constructing “optimized”

operators as linear superpositions of a large basis of
interpolators, is useful not only for extracting transitions
featuring excited states but also to improve ground-state
signals by significantly reducing the unwanted contribu-
tions of excited states to correlation functions. The presence
of such contributions remains a problem for calculations
attempting precision extraction of ground-state matrix
elements [7–14]. An increase in statistical noise precludes
separating operators by large time separations, so instead
the use of optimized operators seeks to deal with the
problem directly by suppressing creation of the unwanted
excited states.
The use of optimized operators as a tool to extract excited-

state radiative transitions was previously considered in

Ref. [15], where the meson source operators, O†
i , were

optimized, while the meson sink operators, Of, were simple
local fermion bilinears. Quark propagation from the meson
sink proceeded using the “sequential source”method, which
proved to be a significant limitation on what could be
achieved. In this study we will make use of the distillation
framework for correlator construction [16] within which we
will be able to use optimized operators of definite momen-
tum at both source and sink as well as to insert a vector-
current operator of definite momentum. This is the first use
of distillation to compute three-point functions.
To demonstrate the technology, we perform a calculation

on dynamical lattices having three flavors of quarks all
tuned to approximately the physical strange quark mass—
the spectrum of isovector mesons on these lattices was
previously presented in Refs. [17,18]. We consider pseu-
doscalar and vector mesons in the SU(3) flavor octet,
extracting form factors and transition form factors for both
ground and excited states in these channels. This should be
expected to be a challenging undertaking—transitions
between excited-state and ground-state vector and pseudo-
scalar mesons are “hindered” and have relatively small
magnitude for small photon virtualities—as such we will be
extracting small signals from correlation functions built
using optimal excited-state operators.
In Sec. II we introduce the decomposition of vector-

current matrix elements in terms of Lorentz-covariant
kinematic factors multiplying the unknown form factors
we seek to extract. We proceed to introduce the gauge
configurations, operator basis, and background information
relevant to two-point calculations in Secs. III and IV.
Section V concerns three-point functions; we describe their
calculation within the distillation framework and their
relation to the matrix elements of interest while also
demonstrating the efficacy of optimized operators. We
present the results of our calculation in Sec. VI, comparing
with relevant previous calculations, and then conclude with
a summary and outlook in Sec. VII. Appendixes describing
helicity operators, momentum conservation in a finite
volume, the improvement of the vector current, and the
flavor structure of the current follow.

II. FORM FACTORS AND TRANSITIONS

The photon couples to the electric charges of u; d; s quarks
via the vector current jμ ¼ þ 2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs, up to

a factor of themagnitude of the electron charge, e. In general a
transition induced by this current between a hadron, h, of spin
J and a hadron, h0, of spin J0 is described by the matrix
element,

hh0J0 ðλ0; ~p0ÞjjμjhJðλ; ~pÞi;

where the spin state of h is specified in terms of its helicity, λ,

the projection of ~J along the direction of momentum ~p. These
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matrix elements are simply related to the helicity amplitude
for the transition γh → h0 by including the initial-state
photon’s polarization vector,

Mðγðλγ; ~qÞhJðλ; ~pÞ → h0J0 ðλ; ~p0ÞÞ
¼ ϵμðλγ; ~qÞhh0J0 ðλ0; ~p0ÞjjμjhJðλ; ~pÞi;

where ~q ¼ ~p0 − ~p and where the photon has a virtual-
ity Q2 ¼ −q2 ¼ j~p0 − ~pj2 − ðEh0 ð~p0Þ − Ehð~pÞÞ2.
There are relations between these amplitudes which

follow from the constraints of Lorentz invariance, current
conservation, and invariance under parity transformations.
These can be accounted for if we write a matrix-element
decomposition in terms of a number of Lorentz invariant
form factors, FiðQ2Þ,

hh0J0 ðλ0; ~p0ÞjjμjhJðλ; ~pÞi
¼

X
i

Kμ
i ½h0J0 ðλ0; ~p0Þ; hJðλ; ~pÞ�FiðQ2Þ: ð1Þ

The Lorentz-covariant “kinematic factors,” Kμ
i , are con-

structed from the meson 4-momenta, pν, p0
ν, and initial-

and final-state polarization tensors relevant to the spin of
the mesons, ϵρσ…ðλ; ~pÞ, ϵ�ρσ…ðλ0; ~p0Þ. For any given pair of
mesons h; h0, of definite spin and parity, there are only a
limited number of possible constructions consistent with
parity invariance, and with the additional constraint of
current conservation, we can write explicit decompositions
in terms of a few independent form factors.
For example, a pseudoscalar particle like the pion has

only a single form factor appearing in its decomposition,

hπþð~p0Þjjμjπþð~pÞi ¼ ðpþ p0ÞμFπðQ2Þ: ð2Þ

At Q2 ¼ 0, the vector current measures the charge of the
pion in units of e, so Fπð0Þ ¼ 1 exactly.
In a transition between two different pseudoscalar

particles, there is again only one form factor, but the
kinematic factor differs owing to the differing masses
(m;m0) of the pseudoscalar particles (π; π0),

hπ0þð~p0Þjjμjπþð~pÞi

¼
�
ðpþ p0Þμ þm02 −m2

Q2
ðp0 − pÞμ

�
Fπ0πðQ2Þ: ð3Þ

The transition matrix element between a vector particle
and a pseudoscalar can be expressed as

hπþð~p0Þjjμjρþðλ; ~pÞi

¼ ϵμνρσp0
νpρϵσðλ; ~pÞ

2

mπ þmρ
FρπðQ2Þ; ð4Þ

and for a vector meson stable under the strong interactions,
the transition form factor at Q2 ¼ 0 can be related to the

radiative decay width Γðρþ → πþγÞ¼ 4
3
α j~qj3
ðmρþmπÞ2 jFρπð0Þj2,

where ~q is the momentum of the final-state photon in the
rest frame of the decaying ρ meson.
The vector-current matrix element for a stable vector

hadron of mass m has three possible covariant structures
having the right parity transformation properties once
current conservation is demanded [19],

hρþðλ0; ~p0Þjjμjρþðλ; ~pÞi
¼−½ðpþp0Þμϵ�ðλ0; ~p0Þ ·ϵðλ; ~pÞ�G1ðQ2Þ
þ½ϵμðλ; ~pÞϵ�ðλ0; ~p0Þ ·pþϵμ�ðλ0; ~p0Þϵðλ; ~pÞ ·p0�G2ðQ2Þ

−
�
ðpþp0Þμϵ�ðλ0; ~p0Þ ·pϵðλ; ~pÞ ·p0 1

2m2

�
G3ðQ2Þ; ð5Þ

with a corresponding set of three independent dimension-
less form factors G1, G2, G3. A convenient basis having a
clearer physical motivation is provided by the expansion of
the vector current in terms of multipoles [20], which in this
case leads to a set of form factors,

GC ¼
�
1þ Q2

6m2

�
G1 −

Q2

6m2
G2 þ

Q2

6m2

�
1þ Q2

4m2

�
G3

GM ¼ G2

GQ ¼ G1 −G2 þ
�
1þ Q2

4m2

�
G3; ð6Þ

which are proportional to the charge (C0), magnetic dipole
(M1), and quadrupole (C2) multipoles, respectively.1 At
Q2 ¼ 0 they are related to the charge, magnetic moment,
and quadrupole moment of the vector meson: GCð0Þ ¼ 1,
GMð0Þ ¼ 2m · μρ, GQð0Þ ¼ m2 ·Qρ.
The other form factors we considered above may also be

identified with a particular multipolarity—in the ρ → πγ
transition case the single form factor is of magnetic dipole
(M1) type, while for the π cases, it is a charge form factor
ðC0Þ. For stable meson states, time-reversal invariance
indicates that the form factors are real functions of Q2.

III. CALCULATION DETAILS

In this first investigation of the extraction of excited-state
form factors using distillation, we restrict ourselves to a
single ensemble of gauge-field configurations, having three
degenerate flavors of dynamical quarks tuned to approx-
imately the physical strange quark mass. This set of
anisotropic Clover lattices [22,23] has been used previously
in studies of the meson spectrum [17,18,24–26], meson
decay constants [27], baryon spectrum [28–31], and
meson-meson scattering [32–35]. For the calculations

1Note that the relationship between G2 and GM was presented
with a typographic error in Ref. [21], which is corrected here.
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reported on in this paper, we used 535 configurations of
lattice volume ðL=asÞ3 × ðT=atÞ ¼ 163 × 128, with a spa-
tial grid spacing of as ∼ 0.12 fm and a temporal spacing
roughly 3.5 times smaller.
In this calculation we have an exact SUð3Þ flavor

symmetry such that all the octet mesons (π, K, η) are
degenerate with a mass close to 700MeV.Where results are
expressed in dimensionful units, they are determined from
the dimensionless quantities atE using the scale-setting
procedure,

E ¼ atE
atmΩ

·mphys
Ω ;

where atmΩ is the Ω baryon mass calculated on this lattice
and mphys

Ω . is the experimental value [5].
Our use of a Clover-improved anisotropic quark action

introduces an improvement term into the vector current
which appears at tree level. Discussion of the effect of
improvement and renormalization of the vector current will
appear in Sec. V E.

IV. TWO-POINT FUNCTION ANALYSIS

To determine radiative transition amplitudes between
meson states within QCD, we must first obtain the
spectrum of states and find operators, constructed from
quark and gluon fields, that reliably interpolate the states of
interest from the vacuum. In general a color-singlet
operator O†

i having definite JPC can produce all QCD
eigenstates having those quantum numbers,

O†
i j0i ¼

X
n

jnihnjO†
i j0i:

We seek to determine optimized interpolators, Ω†
n, which

when acting on the vacuum strongly interpolate only a
single state with much reduced contributions from other
states,

Ω†
nj0i ¼ jnihnjΩ†

nj0i þ
X
m≠n

jmihmjΩ†
nj0i

¼ jnihnjΩ†
nj0i þ

X
m≠n

jmiεm:

In essence we seek a procedure by which we can minimize
the εm (m ≠ n) relative to the strength with which our
operator creates the nth state, hnjΩ†

nj0i.
We will proceed by using a basis of interpolators, fOig,

to construct two-point correlation functions of the form

CijðtÞ ¼ h0jOiðtÞO†
jð0Þj0i;

where operators Oi are color-singlet constructions built
from the basic quark and gluon fields of QCD, having the

quantum numbers of the desired hadrons. Such correlation
functions can be expressed as

CijðtÞ ¼
X
n

1

2En
h0jOið0ÞjnihnjO†

jð0Þj0ie−Ent;

where the spectrum of eigenstates is seen to control the
Euclidean time dependence.2

A. Variational analysis

We propose that within any basis of operators there is a
particular linear combination that is most suited to inter-
polate the lightest state of the spectrum, another linear
combination that optimally interpolates the first-excited
state, a third combination for the second-excited state,
and so on. Thus, optimized interpolators take the form

Ω†
n ¼ P

iw
ðnÞ
i O†

i , where one can show that the best

estimate for the weights wðnÞ
i , in a variational sense, comes

from solving the generalized eigenvalue problem [36–39],

CðtÞvðnÞ ¼ λnðtÞCðt0ÞvðnÞ: ð7Þ

Here CðtÞ is the N × N matrix whose elements are the
correlation functions CijðtÞ constructed from the basis of N
operators, fOig, and vðnÞ is a generalized eigenvector. The
generalized eigenvalues, or principal correlators, λnðtÞ,
behave like e−Enðt−t0Þ at large times and can be used to
determine the spectrum of energy eigenstates. The vectors
vðnÞ are orthogonal on a metric, vðmÞ†Cðt0ÞvðnÞ ¼ δmn,
where t0 is a reference time slice. Examination of the
orthogonality condition suggests that t0 should be chosen
to be sufficiently large such that the correlation functions
are dominated by the N lowest-lying states, with heavier
states having decayed exponentially to a negligible level.
Further considerations on the choice of t0 are presented in
Refs. [38,39].
In practice we solve Eq. (7) independently on each time

slice, t, so that for each state, n, we obtain a time series of
generalized eigenvectors vðnÞðt; t0Þ, which we observe to be
essentially time independent with a suitably large choice of
t0. In practice we use the mean values (over the ensemble of

gauge configurations) of the elements vðnÞi chosen on a
single time slice to construct the optimized operators as

Ω†
n ¼

ffiffiffiffiffiffiffiffi
2En

p
e−Ent0=2

X
i

vðnÞi O†
i ; ð8Þ

where the coefficients multiplying the sum are chosen to
give the normalization hnjΩ†

nj0i ¼ 2En, which will prove
to be convenient when considering three-point functions.

2We have introduced our particular choice of state normali-
zation in a finite-volume here—we discuss this in Appendix B.
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The procedure of solving the generalized eigenvalue
problem in a basis of interpolating fields is carried out
independently for each quantum number channel at each
possible allowed momentum value.

B. Meson operator construction

A straightforward approach to constructing a basis of
operators capable of interpolating meson states is to use
fermion bilinears containing some number of spatially
directed gauge-covariant derivatives, that is operators of
generic structure,

O ∼ ψ̄ΓD
↔ � � �D↔ψ ; ð9Þ

whereD
↔ ≡ ⃖D − ~D. By expressing the vectorlike derivatives

and Gamma matrices in a circular basis, we can easily
construct operators of definite spin using the standard
SOð3Þ Clebsch–Gordon coefficients [17,18]. Operators
of this type with nonzero momentum can be constructed
to have definite helicity, as described in Ref. [40].
In this calculation, QCD is discretized on a grid of points

whose spatial structure has a cubic symmetry, and as such
we have not the complete continuous rotational symmetry
of the continuum but rather a reduced symmetry: the
symmetry of the cubic group at rest and the relevant little
group in a moving frame. A consequence is that, instead
of having an infinite number of irreducible representa-
tions labeled by integer spin J (at rest), we only have
access to the finite number of irreducible representations,
or irreps, of the cube, labelled A1, T1, T2, E, and A2. A
corresponding argument applies in flight, where the con-
tinuum helicity labeling is broken down to a finite number
of irreps of the little group; see Ref. [40] for details.
The operators of definite J (or helicity) constructed

above can be projected into irreps of the relevant symmetry
group using a procedure called subduction,

O½J�
Λμ ¼

XJ
M¼−J

SJM
ΛμO

JM; ð10Þ

whereΛ labels the cubic irrep and μ is the “row” of the irrep
(μ ¼ 1… dimðΛÞÞ. The subduction coefficients, SJM

Λμ , are
tabulated in Refs. [18,40]. These operators have been used
extensively to study the excited spectrum of mesons
[17,18,24–26,34,35].

C. Correlator construction through distillation

Operators which interpolate hadrons from the vacuum
have long been known to do so more effectively if the quark
fields are suitably smeared over space [41,42]. An
extremely convenient method to do this is provided by
distillation [16], where the smearing operator is constructed
on time slice t as an outer product of vectors in color and
~x-space,

□~x ~yðtÞ ¼
XND

n¼1

ξðnÞ~x ðtÞξðnÞ†~y ðtÞ; ð11Þ

where the ND vectors should be constructed to have strong
overlap onto the low-energy quark modes most relevant
to low-lying hadron states. A suitable choice for the
vectors are the eigenvectors of the gauge-covariant three-
dimensional Laplacian on a time slice ordered by their
eigenvalue.
Smearing each quark field, a meson creation operator

of fermion bilinear form with momentum ~p is

O†ð~pÞ ¼ ψ̄ ~x□~x ~ye−i~p·~yΓ~y ~z□~z ~wψ ~w;

where time, color, and spin indices have been suppressed
for brevity and where repeated position indices are
summed. The object Γ can be nonlocal in ~x-space and
may for example feature gauge-covariant derivatives as
discussed in the previous section.
An advantage of the distillation framework is that it leads

to a factorization of two-point functions into matrices
describing quark propagation, called perambulators, and
matrices describing operator construction. A generic con-
nected two-point function using fermion bilinear construc-
tions, in which we explicitly show the smearing operators,
can be decomposed as

h0jψ̄□Γf□ψðtÞ ψ̄□Γi□ψð0Þj0i
¼ −τnmð0; tÞΦf

mpðtÞτpqðt; 0ÞΦi
qnð0Þ;

where the perambulators, τpqðt; 0Þ ¼ ξðpÞ†ðtÞM−1
t;0ξ

ðqÞð0Þ,
can be obtained by inverting the Dirac matrix M on
sources fξðqÞgq¼1…ND

at time slice 0 and where

ΦmpðtÞ ¼ ξðmÞ†ðtÞΓξðpÞðtÞ encodes the operator construc-
tion (here we include the momentum projection in Γ).
In this study, as in the earlier spectrum determination,
Ref. [17], we use 64 distillation vectors.

D. Meson spectra and optimized operators

We computed correlation matrices for irreps correspond-
ing to JP ¼ 0−; 1− at rest and to magnitude of helicity
jλj ¼ 0; 1 with nonzero momentum. We made use of
~n~p ¼ ½0; 0; 0�; ½0; 0; 1�; ½0; 1; 1�; ½1; 1; 1�; ½0; 0; 2�, where the
momentum is expressed in units of 2π=L, ~p ¼ ð2π=LÞ~n~p.
The quark flavor constructions were chosen to give access
to the members of the SUð3ÞF octet—in this case the
two-point function Wick contraction contains only a single
connected diagram.
In the rest frame, we used operator constructions of the

type in Eq. (9) with up to three derivatives, while for
nonzero momentum we used up to two-derivative con-
structions. Further details about the construction of deriva-
tive operators and the basis used in this calculation can be
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found in Refs. [17,18,26,40]. The states we will consider in
this study are actually well determined using an operator
basis only up to two derivatives, but we retain the additional
three-derivative operators at rest for consistency with the
earlier studies [17,18].
The resulting correlation matrices were analyzed using

Eq. (7), with each principal correlator, λnðtÞ, being fit with
the form

λnðtÞ ¼ ð1 − AnÞe−Enðt−t0Þ þ Ane−E
0
nðt−t0Þ; ð12Þ

where the fit parameters are En, E0
n, and An—the second

exponential is present to absorb the effect of any states
other than jni remaining in the principal correlator. In
practice, for suitably large values of t0, we find that the
energy scale of E0

n is typically at or above the largest energy
extracted, En¼dimðCÞ.
A typical example is presented in Fig. 1, where the

principal correlators for the lightest three states in the

~n~p ¼ ½0; 0; 0�, ΛPC ¼ T−−
1 ðA−þ

1 Þ irreps, which contain
1−−ð0−þÞ mesons, are shown. We make use of a basis
of 26 operators in the T−−

1 channel and 12 operators
for A−þ

1 .
Another example is shown in Fig. 2(a) for the case

~n~p ¼ ½0; 0; 1�, ΛC ¼ Aþ
2 , which contains the helicity zero

component of mesons of “unnatural parity” (JP ¼ 0−;
1þ; 2−;…), where we present the effective mass of the

principal correlator, meff ¼ 1
δt log

λðtÞ
λðtþδtÞ with δt ¼ 3at.

As will be discussed in the next subsection, these states
appear to correspond (in order of increasing energy) to the
ground-state π, the a1, the first-excited π0, and the π2.
We note that in both figures we observe there is

negligible curvature present for t≳ t0, indicating that a
single state is dominating the correlation function. This
observation only holds for sufficiently large choices of
t0 and is one guide in the selection of a suitable t0 value.
We find that for all irreps considered in this study a choice
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FIG. 1 (color online). Left (right) columns: Principal correlators, plotted as eEnðt−t0ÞλnðtÞ, for lightest three states in irrep A−þ
1 ðT−−

1 Þ
with t0=at ¼ 7. Two exponential fits shown, with the resulting mass spectrum of 0−þ and 1−− mesons shown in the central column.
Radiative transitions and form factors to be presented in this paper shown by the lines joining the states (solid lines are charge transitions,
and dashed lines are magnetic transitions).
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of t0=at in the region between 5 and 8 is acceptable and that
the spectrum is largely independent of the particular choice
of t0 within this region. The time beyond which excited-
state contributions are negligible, which we can call t⋆,
plays an important role in the construction of our three-
point functions in terms of selecting the time separation of
the source and sink meson operators. We desire our three-
point functions to feature a time region in which the
correlation function is dominated by the transition of
interest, with contributions from other states having
decayed away. To achieve this we should separate the
source and sink projected operators [Eq. (8)] by at least
t⋆i þ t⋆f . It remains possible that the vector-current insertion
may act to suppress or amplify the contribution of
unwanted excited states, but since we do not have this
information in advance of the calculation, the above time
separation serves as a reasonable estimation of the
minimum.
The source and sink cannot be separated arbitrarily far as

the statistical noise on the entire three-point correlation
function grows exponentially with increasing separation.
We can obtain an estimate of the maximum practical time
separation for three-point functions by examining the
growth of noise in two-point function principal correlators.
As an example in Fig. 1 we see that the ground-state signal
remains of high statistical quality out to 25 time slices (and
beyond), while the first- and second-excited states begin to
show significant fluctuations above t=at ∼ 15. Later we

will find that, while optimized ground-state three-point
correlation functions are still statistically precise for time
separations as high as 36 time slices, excited-state corre-
lation functions are not well determined for separations
larger than around 20 time slices.
In practice we solve the matrix problem, Eq. (7),

independently on each time slice (as described in
Ref. [18]). For sufficiently large t0, we find that the

elements of the eigenvectors so obtained, vðnÞi ðtÞ, are
essentially flat for t≳ t0, and in practice we construct
our projected operators, Eq. (8), using ensemble mean
values taken from a single time slice. In Fig. 2(b) we show
the correlation functions h0jΩnðtÞΩ†

nð0Þj0i, observing that
they behave in the manner we expect for optimized
operators. The corresponding off-diagonal correlation func-
tions h0jΩnðtÞΩ†

n0 ð0Þj0i for n ≠ n0 are statistically com-
patible with zero for t≳ t0.
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FIG. 2 (color online). (a) Effective masses of principal corre-
lators for four lightest states in the Aþ

2 irrep for momentum
direction ~n~p ¼ ½1; 0; 0� along with the energy determined from a
two-exponential fit. (b) Optimized operator correlation functions,
ð2EnÞ−1eEnthΩnðtÞΩ†

nð0Þi, for the four states shown above.
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FIG. 4 (color online). Squared energies as a function of
j~n~pj2 ¼ ð L

2πÞ2j~pj2 for selected meson states. The points represent
extracted energies for all irreps considered in the variational
analysis (e.g. a vector meson like the ρ appears in three irreps
with [1, 1, 0]: A1; B1; B2), while the lines show the relativistic
dispersion relation for an anisotropy ξ ¼ 3.44.
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FIG. 3 (color online). The rest-frame pion correlation
function using the (distillation smeared) ψ̄γ5ψ operator (red)
vs using the optimized operator, Ω0 (blue). Plotted is
2mπemπ th0jOðtÞO†ð0Þj0i=jh0jOjπij2.
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We conclude this section by demonstrating that an
optimized ground-state operator constructed as described
above does indeed significantly reduce the contribution of
excited states to a correlation function, relaxing to the
ground state more quickly. This can be seen in Fig. 3 where
the optimized ground-state operator in A−þ

1 is compared
with the (distillation smeared) ψ̄γ5ψ operator.

E. Meson dispersion relations

As previously mentioned, we independently compute the
energy spectrum of states at each allowed value of ~p for
each relevant irrep, but we expect to see the same mesons
appearing at each momentum with an energy determined
by their rest mass and the relevant dispersion relation. After
identifying the mesons at each momentum (by their overlap
with characteristic operators [40]), we may examine their
dispersion relation, Eðj~pjÞ. This is presented in Fig. 4 for
mesons, π; π0; ρ; ρ0 and mesons a0; a1; b1; π1 (not used in
this analysis), where they are all observed to be compatible
with the relativistic dispersion relation, E2 ¼ m2 þ p2, or
in temporal lattice units,

ðatEÞ2 ¼ ðatmÞ2 þ
�

2π

ξðL=asÞ
�

2

j~n~pj2;

for a meson of mass m, with momentum
at ~p ¼ 1

ξ as ~p ¼ 1
ξ

2π
L=as

½nx; ny; nz�, with the anisotropy taking
the value ξ ¼ 3.44. Making use of optimized operators with
momenta up to [0, 0, 2] allows us to sample many values of
Q2 in the form factor extraction.

V. THREE-POINT FUNCTIONS

We now turn to the three-point correlation functions used
in this analysis which contain the vector-current matrix
elements of interest. Their basic form is

CfμiðΔt; tÞ ¼ h0jOfðΔtÞjμðtÞO†
i ð0Þj0i;

where the operatorsOi;f are capable of interpolating meson
states of definite momentum from the vacuum—a suitable
basis was discussed in the previous section. The relation
between the correlation function and the desired matrix
element is exposed by inserting complete sets of eigenstates
with the quantum numbers of Oi and Of and evolving all
operators back to the origin of Euclidean time,

CfμiðΔt; tÞ ¼
X
ni;nf

1

2Enf

1

2Eni

e−Enf
ðΔt−tÞe−Eni

t

× h0jOfð0Þjnfihnf jjμð0ÞjniihnijO†
i ð0Þj0i:

The summation runs over all states, but clearly if the
separations between the operators are large, Δt ≫ t ≫ 0,
only the lightest states in the i and f channels will
contribute, and we can extract the vector-current matrix
element between them. However, at modest time separa-
tions, there will remain subleading exponential contribu-
tions from excited states, and these “polluting” terms can be
a source of systematic error in the extraction of ground-
state matrix elements [7–14,43]. Reducing excited-state
pollution by simply separating operators by longer
Euclidean times is not always practical, due to the increase
in statistical noise with increasing separation.
One of our major aims here is to extract excited-state

matrix elements, which we may access using the optimized
operators described in the previous section. Using the
optimized operator for an excited state should lead to a
three-point correlation function whose leading behavior at
large times is given not by the ground state but rather by the
relevant excited state. If we are interested in the ground
state, there is also an advantage to using the appropriate
optimized operator in that it will have much reduced
overlap onto low-lying excitations (relative to any single
operator in the original basis, for example ψ̄γ5ψ , c.f.
Fig. 3), leading to a corresponding reduction in the
excited-state pollution in the three-point correlator.
Three-point correlation functions using optimized oper-

ators take the form

Cnfμni
ðΔt; tÞ ¼ h0jΩnf

ðΔtÞjμðtÞΩ†
nið0Þj0i

¼ e−Enf
ðΔt−tÞe−Eni

thnf jjμð0Þjnii þ…; ð13Þ

where the leading time dependence is that of the states
ðjnii; jnfiÞ, selected by the choice of optimized operators.
The absence of explicit overlap factors is a result of using
optimized operators, Eq. (8). The ellipsis represents the
residual contributions of other states, which should be
significantly suppressed when using optimized operators—
we will explore the degree to which this is manifested in
explicit calculation.

FIG. 5 (color online). Graphical depiction of a connected three-
point correlator. The gray blobs represent the source and sink
operators carrying the quantum numbers of the initial- and final-
state mesons. The blue line corresponds to a perambulator
(τpqðΔt; 0Þ ¼ ξðpÞ†ðΔtÞM−1

Δt;0ξ
ðqÞð0Þ), while the red line repre-

sents a generalized perambulator as described in the text,
GΓ
pqðΔt; t; 0Þ ¼ ξðpÞ†ðΔtÞM−1

Δt;tΓtM−1
t;0ξ

ðqÞð0Þ, which carries the
momentum and quantum numbers of the current insertion.
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A. Correlator construction and distillation

Three-point correlation functions featuring a current
insertion require a slight extension of the distillation
framework presented in Sec. IV C since the quark fields
in the current should be those which appear in the action,
which are not smeared. Exposing the smearing operators,
the general form required is

h0jψ̄□Γf
□ψðΔtÞ · ψ̄ΓψðtÞ · ψ̄□Γi

□ψð0Þj0i;

which, considering for now only the completely connected
Wick contraction, can be decomposed (as illustrated in
Fig. 5) as

h0jψ̄□Γf□ψðΔtÞ · ψ̄ΓψðtÞ · ψ̄□Γi□ψð0Þj0i
¼−τnmð0;ΔtÞΦf

mpðΔtÞ½ξðpÞ†ðΔtÞM−1
Δt;tΓM−1

t;0ξ
ðqÞð0Þ�Φi

qnð0Þ
¼−τnmð0;ΔtÞΦf

mpðΔtÞGΓ
pqðΔt; t;0ÞΦi

qnð0Þ;

where the object in square brackets, GΓ
pqðΔt; t; 0Þ, is a

generalized perambulator. It can be obtained through
inversion from sources fξðqÞgq¼1…ND

at time slice 0 to

obtainM−1
t;0ξ

ðqÞð0Þ; inversion from sources fξðpÞgp¼1…ND
at

time slice Δt to obtain M−1
t;Δtξ

ðpÞðΔtÞ, which can be related
to ξðpÞ†ðΔtÞM−1

Δt;t using γ5 hermiticity; and contraction with
the operator insertion, Γ, at each value of t between 0 and
Δt. In this calculation we do not average over multiple time
sources separated by the same value of Δt, although this
could be done to increase statistics.
In our application, exposing the Dirac spin,

~x-space and color indices, the current insertion is
Γαβ
~x;~y;a;b ¼ γαβμ e−i~q·~xδ~x;~yδa;b. In the case of an improved

vector current, which we consider later, we require also
Γαβ
~x;~y;a;b ¼ σαβ4ke

−i~q·~xδ~x;~yδa;b, yielding another set of general-

ized perambulators.

Within this constructionweare able to project eachoperator
into definite momentum, and as such we only compute
correlation functions in which the momentum is conserved,
~pf ¼ ~pi þ ~q. Some discussion of momentum conservation in
a finite volume appears in Appendix B. For the generalized
perambulators, we again use 64 distillation vectors.

B. Correlation functions using optimized operators

Turning first to the case of three-point functions with
pionlike operators at the source and sink, we plot in Fig. 6
the form factor [as defined in Eq. (2)] extracted from the
three-point function,

h0jOπðΔt; ~pfÞjμðt; ~qÞO†
πð0; ~piÞj0i;

where Oπ represents either ψ̄γ5ψ (in red) or the optimized
operator Ωπ (in blue). The sink operator, located at
Δt ¼ 28at ∼ 0.9 fm, is in the ΛC ¼ Aþ

2 irrep of momentum
~n~pf

¼ ½1; 0; 0�, while the source operator, located at t ¼ 0,

is at rest in the ΛPC ¼ A−þ
1 irrep. We clearly observe that

the optimized operators give rise to a signal which is flat
over a number of time slices away from the source and sink,
corresponding to the contribution of just the ground-state
pion, while the simpler ψ̄γ5ψ operators over this time range
always retain a non-negligible pollution from excited states.
Such behavior is expected from our two-point function
analysis: for example, at rest we find j h0jψ̄γ5ψ jn¼1i

h0jψ̄γ5ψ jn¼0i j ∼ 0.73,

so the distillation smeared operator ½ψ̄γ5ψ �†, acting on the
vacuum, creates both the ground and first-excited state with
comparable strength.
Our principal motivation for using optimized operators

is to get access to transitions involving excited states. In
Fig. 7 we show matrix elements extracted from three-point
correlation functions computed using either the ground-
state π or first-excited-state π0 optimized operator at the
source (ti ¼ 0; ~pi ¼ ½−1; 0;−1�) and either the ground-
state ρ or first-excited-state ρ0 operator at the sink
(tf ¼ 20at; ~pf ¼ ½1; 0;−1�). We observe that there are
clear statistically significant signals for excited-state tran-
sitions when using the appropriate optimized operators.
In general, even for optimized operators, there may still

be some residual contamination coming from states that lie
beyond the reach of our variational basis, and indeed
curvature away from flat behavior as we approach the
source or sink time slice is observed in Figs. 6 and 7.
To make maximal use of the time-series data, in

particular in those regions where there remains some
unwanted excited-state contribution, we opt to perform a
correlated fit over a time range with the form

FðQ2; tÞ ¼ FðQ2Þ þ ffe−δEfðΔt−tÞ þ fie−δEit; ð14Þ

where ff; δEf; fi; δEi and FðQ2Þ are real fit parameters.
We make further use only of the constant term, which
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FIG. 6 (color online). Form factor from vector-current three-
point function with pion operators at source (t ¼ 0, ~n ¼ ½0; 0; 0�)
and sink (Δt ¼ 28at, ~n ¼ ½1; 0; 0�). Red points correspond to
using the unoptimized bilinear ψ̄γ5ψ ; the optimized operator is
shown in blue.
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corresponds to the desired form factor. Fitting the data to
this form also exposes the energy scale of the pollution
terms, δEf and δEi. Generically, when present, we find that
these energies lie at or above the scale of the largest
energies we reliably extract in our two-point function
variational analysis. In cases where there is a clear extended

plateau region, we may exclude the exponential terms and
perform a fit to a constant value.
The dependence upon source-sink separation, Δt, for the

ground-state pion form factor can be seen in Fig. 8. The
lower panel shows the illustrative case ~n~pi

¼ ½1; 0; 0�,
~n~pf

¼ ½2; 0; 0�, where we observe that there is only a visible
plateau region for Δt ¼ 28at, while for the shorter sepa-
rations, Δt ¼ 12at; 16at, we make use of a fit using
Eq. (14). The resulting values of FπðQ2Þ are observed to
be compatible—other time separations were also explored
with similar results. The upper panel shows that this
procedure is generally applicable and leads to form factors
from each time separation that are in agreement across a
range of Q2.
In practice, while we extract a very large number of

form-factor determinations at many Q2-values, we choose
to make use of only those where application of Eq. (14) to
FðQ2; tÞ shows modest excited-state contributions. Any
cases where a clear trend toward a constant value is not
visible are discarded.

C. Extracting multiple form factors

Equation (1) presents the general form of the decom-
position of a vector-current matrix element into indepen-
dent form factors, FiðQ2Þ, and the corresponding
kinematical factors, Ki, which depend upon momenta
and helicities. Moving to a more complete notation
including momentum and helicity labels, our three-point
correlation functions may be written

h0jΩnf ;~pf ;λf ðΔtÞjμ~qðtÞΩ†
ni;~pi;λi

ð0Þj0i
¼ e−Enf

ðΔt−tÞe−Eni
thnf ; ~pf ; λf jjμð0Þjni; ~pi; λii þ…

¼ e−Enf
ðΔt−tÞe−Eni

t
X
i

Kμ
i ðnf ; ~pf ; λf ;ni; ~pi; λiÞFiðQ2Þ

þ…;

where as previously the ellipsis represents possible pollu-
tion from states other than ðjnii; jnfiÞ, which will have
residual time dependence but which as shown in the
previous section are suppressed when using optimized
operators.
Any one correlator provides, in general, an underdeter-

mined linear system for the multiple form factors we wish to
extract. By using different combinations of initial- and final-
state helicities and momenta all at the sameQ2, we can build
a linear system which is constrained or overconstrained,
from which we can determine the set fFiðQ2Þg. Removing
the known Euclidean time dependence, e−Enf

ðΔt−tÞe−Eni
t,

from the correlation functions, we should be left with objects
which are time independent up to pollution from other states,
which should be modest for optimized operators. For fixed-
state choices, ni;nf , using an indexing a¼ð~pi;λi;μ;~pf ;λfÞ,
we can write the linear system,

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12  14  16  18  20

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12  14  16  18  20

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12  14  16  18  20

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12  14  16  18  20

FIG. 7 (color online). Form factors extracted from optimized
three-point correlation functions with a π or π0 operator with
~p ¼ ½−1; 0;−1� at t ¼ 0 and a ρ or ρ0 operator with ~p ¼ ½1; 0;−1�
at t ¼ 20at. The source-sink separation in physical units is
roughly 0.7 fm.
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ΓaðΔt; tÞ≡ eEnf
ðΔt−tÞeEni

th0jΩnf ;~pf ;λf ðΔtÞjμ~qðtÞΩ†
ni;~pi;λi

ð0Þj0i
¼

X
i

KiðaÞFiðQ2Þ þ…; ð15Þ

where we explicitly multiply the correlation functions by the
time-dependent exponential factors, using the state energies
determined in the two-point function analysis. Correlations
are propagated using jackknife. Equation (15) is of the form
ℾ ¼ K · F with ℾ a vector over a, K a rectangular matrix
with indices a; i, and F a vector of form factors, indexed by i.
This may be converted into a system featuring a square
matrix: K†ℾ ¼ ½K†K�F , which can be inverted using sin-
gular value decomposition. In the case where only a single
form factor contributes, this procedure can still be followed
as a way to average over rotationally equivalent momentum
combinations.
In practice we solve this system independently for each

value of t between 0 and Δt—if our optimized operators
were perfect, leading to no pollution from other states, we
would obtain the same form factors on each time slice.
In fact we obtain FiðQ2; tÞ, where the time dependence is
fitted as described in the previous section to account for the
presence of pollution from other states.
This approach was previously used in Refs. [21] and [15]

in the extraction of charmonium form factors.

D. Cubic symmetry

A consequence of discretizing QCD on a hypercubic
grid is that the theory does not possess the full three-
dimensional rotational symmetry of the continuum.
Instead, we are restricted to a subset of rotations that leave
the cube invariant. This smaller symmetry group has only a
finite number of irreducible representations into which the
infinite set of continuum representations labelled by integer
spin, J, must be subduced. A simple example is J ¼ 2,
where the five equivalent rows (M ¼ −2…2) get distrib-
uted into a three-dimensional irrep called T2 and a two-
dimensional irrep called E. Because there is only a finite
number of these irreps, they must accommodate multiple
values of J, such that T2 also contains parts of J ¼ 3; 4….
For systems with nonzero momentum, the symmetry group
is called the “little group,” and the corresponding sub-
duction is from helicity, λ. Tables of the spin/helicity
content of cubic irreps can be found in Ref. [40].
To correctly reflect the symmetry of our theory then, we

should label our correlation functions according to irre-
ducible representations of the cubic symmetry. In practice
this is what we do by computing using the subduced
operators introduced in Sec. IV B. Using these operators,
the three-point functions take the form
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FIG. 8 (color online). Upper panel shows the pion ground-state form factor extracted from correlation functions with source-sink
separations of Δt ¼ ð12; 16; 28Þat using the procedure of fitting with Eq. (14). The lower panel illustrates this using the example of
~n~pi

¼ ½1; 0; 0�; ~n~pf
¼ ½2; 0; 0�.
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h0jΩΛf ;μf
nf ;~pf

ðΔtÞjΛγ ;μγ
~q ðtÞΩΛi;μi†

ni;~pi
ð0Þj0i; ð16Þ

where the indices Λ, μ label the cubic group irrep and the
row [1 � � � dimðΛÞ] of the irrep.
Considering only the cubic symmetry of the lattice, and

not any underlying continuumlike symmetry, we would not
expect there to be any relationship between different irreps.
Furthermore matrix-element decompositions should be
defined in terms of the irreps of the cube, not in terms
of hadrons of definite spin. For example a correlation
function with a T2 operator at the source should take values
that need not be related to one with an E operator at the
source.
However, were there really to be no relation, we could

hardly claim to be approximating QCD in a realistic
manner. In practical calculations it should be the case that,
through a combination of sufficiently fine lattice spacing,
reduction of discretization artifacts through improvement
of the action [44], and interpolation of hadrons using
operators smoothed over many lattice sites [45], the
continuum symmetry is manifested to a good approxima-
tion with only small deviations. For example we might
expect to see a relation between T2 and E correlation
functions corresponding to them originating from the same
J ¼ 2 meson. In previous two-point function calculations,
we have observed that the rotational symmetry of the
continuum theory is clearly visible in relations among the
irreps both for eigenstate masses and the values of matrix

elements h0jO½J�
Λμjni [17,18].

Since we expect to see a comparable restoration of the
rotational symmetry in this calculation, we do not attempt
to build decompositions according to the symmetries of the
cube, rather making use of the continuumlike helicity
decompositions presented earlier, subduced into irreducible
representations of the cube.
A slight additional complication in this analysis arises

from our use of anisotropic gauge configurations in
which the space and time directions are discretized with
different spacings. Spatially directed currents will need to
be renormalized separately from temporal currents, and
the discretization effects along the two directions are
expected to be different—in explicit calculation we will
not mix spatially directed currents with their temporal
counterparts. Had we used isotropic lattices, the temporal
component of the vector current would be related to the
spatial components; however, here we will keep them
separate with the temporal component of the current
subducing differently from the spatial components.
For spatial components,3 the subduced current is

j
Λγ ;μγ
~q ¼ P

λ½SΛγ ;μγ
J¼1;λ�

�
jλ where jλ ¼ ~ϵð~q; λÞ · ~j, whereas

temporal components subduce as j
Λγ ;μγ
~q ¼ ½SΛγ ;μγ

J¼0 ��jν¼0.

To relate the irrep-based correlation functions that we
compute, Eq. (16), to the helicity-based decompositions
presented in Eq. (1), we define subduced matrix elements,
which for the spatial-current case take the form

hnf ; ~pf ;Λf ; μf jjΛγ ;μγ jni; ~pi;Λi; μii
¼

X
λi;λγ ;λi

S
Λf;μf
Jf;λf

½SΛγ ;μγ
Jγ¼1;λγ

��½SΛi;μi
Ji;λi

��

×
X
l

~ϵð~q; λγÞ · ~Klðhf;Jfðλf; ~pfÞ; hi;Jiðλi; ~piÞÞFlðQ2Þ:

ð17Þ

A similar expression exists for the temporal portion of
the current; here it will subduce into a “scalar” one-
dimensional irrep.
The use of the Lorentz-covariant decomposition in this

expression implies relationships between different irreps
that we must establish are present in the computed
correlation functions for this approach to be considered
reasonable.
In Fig. 9(a) we show an example of the extracted

spectrum across little-group irreps, ΛC ¼ A−
1 ; B

−
1 ; B

−
2 ; A

−
2

for n~p ¼ ½1; 1; 0�, where the distribution of states matches
the expected subduction patterns for a pair of meson states:
a lighter ρ (JPC ¼ 1−−) state and a heavier b1 (JPC ¼ 1þ−)
state. Forming the optimized operator for the ρ state in each
of the A−

1 ; B
−
1 ; B

−
2 irreps, we can compute the three-point

function,

h0jΩρðΔt; ~p0Þjμðt; ~qÞΩ†
πð0; ~pÞj0i;

for ~n~p0 ¼ ½0; 1; 1�, ~n~p ¼ ½0;−1; 1�, and ~n~q ¼ ½0; 2; 0�,
across the little-group irreps A−

1 ; B
−
1 ; B

−
2 at the sink. The

source operator is the optimized operator for the ground-
state pion in the Aþ

2 irrep. The three different sink irrep
choices correspond to the subduced versions of the three
helicity projections of a vector meson. For Δt ¼ 28at, the
resulting form factor is plotted in Fig. 9(b), where we
observe that, while the amount of excited-state pollution
differs slightly in each irrep, the form-factor values are
consistent, indicating that we are observing components of
the same 1−− meson in the three irreps.
In general we find that the relationships between irreps

implied by using Lorentz-covariant decompositions of
matrix elements of hadrons of definite spin as in
Eq. (17) are present in our correlation functions and that
the corresponding linear systems of the type expressed in
Eq. (15) can be solved satisfactorily.
The cubic nature of the boundary of the lattice has

additional implications which impact the properties of

3Here we have made the choice to treat the vector current as a
creation operator as opposed to an annihilation operator. The
alternate definition would induce changes of phases throughout
the calculation (e.g. subduction coefficients and momentum
projection).
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unstable hadron states—we defer a discussion of this point
to Sec. VII.

E. Renormalization and improvement
of the vector current

The local vector current ψ̄γμψ is not conserved with a
Clover discretized fermion action and should be renormal-
ized multiplicatively by a factor ZV. We determine this
factor nonperturbatively by computing the charge form
factor of the πþ or ρþ meson at Q2 ¼ 0, where the
continuum value corresponds to the charge of the meson
in units of e, Fð0Þ ¼ 1, so that

ZV ¼ Fcont
π ð0Þ
Flat
π ð0Þ ¼ 1

Flat
π ð0Þ : ð18Þ

On an anisotropic lattice, where we have treated
space and time differently in the action, there can be
one ZV for the spatial vector current, ψ̄γiψ , and another
for the temporal vector current, ψ̄γ0ψ . We extract the
zero momentum transfer form factor from correlation
functions with identical source and sink momentum,

h0jΩπðΔt; ~pÞjμðt; ~q ¼ ~0ÞΩ†
πð0; ~pÞj0i. In Fig. 10 we show

our extracted values of ZV observing no significant
dependence on the momentum ~p. We do, however, observe
some dependence upon whether we extract from the pion
form factor or from the ρ form factor. The dependence upon
the state, a discretization effect, is expected as we have not
used a conserved current. In addition, some of the

discrepancy can be attributed to imperfect tuning of the
anisotropy parameters in the fermion and gauge action [22],
where the measured fermion anisotropy is 3.44 compared
to the target value of 3.5.
Using the π extraction, which is statistically most

precise, performing a correlated average over momenta,
we obtain

Zs
V ¼ 0.846ð6Þ; Zt

V ¼ 0.961ð7Þ; ð19Þ

for the spatial and temporal renormalization factors,
respectively. All subsequent presentations of form-
factor values in this paper have been multiplicatively
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FIG. 10 (color online). Vector-current renormalization factor
extracted fromQ2 ¼ 0 form factors of the pion (circles) and the ρ
(squares). Spatial current in blue and green and the temporal
current in red and orange.
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FIG. 9 (color online). (a) The energy spectrum for the little-group irreps, ΛC ¼ A−
1 ; B

−
1 ; B

−
2 ; A

−
2 with momentum ~n~p ¼ ½1; 1; 0�, which

are observed to contain states with degeneracy pattern consistent with the lowest ρð1−−Þ meson and the lowest b1ð1þ−Þ. (b) The
transition form factors extracted from the correlation functions h0jΩðΛÞ

ρ ð28; ~p0Þjμðt; ~qÞΩ†
πð0; ~pÞj0i with ~n~p0 ¼ ½0; 1; 1�, ~n~p ¼ ½0;−1; 1�

for the irreps ΛC ¼ A−
1 ; B

−
1 ; B

−
2 , which we observe to have consistent values, differing only in the amount of excited-state pollution (the

current is projected into the E2 irrep of momentum direction ~n~q ¼ ½0; 2; 0�). The black points in the upper left are the result of solving the
linear system described in Sec. V C, including all equivalent rotations of the source and sink momenta.
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renormalized by the ensemble mean value of the relevant
choice of these two factors.4

The anisotropic discretization also introduces a tree-level
OðaÞ improvement term not present in isotropic calcula-
tions which amounts to replacing the Euclidean current
jμ ¼ ψ̄γμψ with

j4 ¼ ψ̄γ4ψ þ 1

4

νs
ξ
ð1 − ξÞas∂jðψ̄σ4jψÞ

jk ¼ ψ̄γkψ þ 1

4
ð1 − ξÞat∂4ðψ̄σ4kψÞ; ð20Þ

where ξ ¼ as=at ¼ 3.44 is the anisotropy and νs ¼ 1.3 is a
parameter appearing in the anisotropic fermion action
[22,46]. Details of the derivation of the improved current
are deferred to Appendix C.
In Fig. 11 we plot our determination of the pion form

factor at a range of Q2 values using both the unimproved
and the improved current. We note that the addition of the
improvement term, which over the Q2 range considered
provides only a small shift, does bring the spatial- and
temporal-current extractions into better agreement. Since
we observe the effect of the improvement term to be small,
and our main aim is to explore the use of optimized meson
operators, in the remainder of this report, with the exception
of the ground-state pion form factor, we will make use of
only the spatial component of the unimproved vector
current.

VI. EXTRACTED FORM FACTORS
AND TRANSITIONS

In this section we present form factors and tran-
sitions for the lightest few isovector pseudoscalar
and vector mesons. We make use of the current
jν ¼ þ 2

3
ūγνu − 1

3
d̄γνd − 1

3
s̄γνs, such that the form factors

are in units of e, the magnitude of the electron charge. This
calculation is performed with three flavors of dynamical
quark all having the same mass, tuned approximately to the
physical strange quark mass. We extract vector-current
matrix elements between ðI; IzÞ ¼ ð1;þ1Þ members of
SUð3ÞF octets. Disconnected diagrams do not contribute
to the amplitudes considered in this analysis as demon-
strated in Appendix D, where the flavor structure of the
current is explored further.

A. Form factors

1. π form factor

The pion form-factor appears in the matrix-element
decomposition, hπþð~p0Þjjμjπþð~pÞi ¼ ðpþ p0ÞμFπðQ2Þ,
which we will extract from three-point Euclidean
correlation functions computed using optimized ground-
state pion operators of definite momentum at the source
(at t ¼ 0) and the sink (at Δt ¼ 28at). As discussed
previously, we will present FðQ2; tÞ, where the leading
Euclidean time dependence of the correlation function has
been removed, with any remaining time dependence signal-
ing the presence of excited-state contributions to the
correlation function. By utilizing many values of ~p and
~p0, we can determine the form factor at a range of Q2

values. We plot FπðQ2; tÞ for a subset of these Q2 values in
Fig. 12, where for eachQ2 we overlay a fit according to the
form in Eq. (14).
In Fig. 13 we plot the resulting Q2 dependence, shown

via both dimensionless a2t Q2 and the scale set using the Ω-
baryon mass prescription presented in Sec. III. A large
number of kinematic points is sampled by considering all
combinations of momentum such that n2~p ≤ 4, n2~p0 ≤ 4, and

n2~q ≤ 4. The extracted points, for the improved current

discussed in Sec. V E, appear to lie on a single curve, with
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FIG. 11 (color online). The pion ground-state form factor for
unimproved (ψ̄γμψ) and improved [Eq. (20)] currents.
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FIG. 12 (color online). Typical FπðQ2; tÞ extracted from
optimized three-point functions (points) with fit descriptions
using Eq. (14) (curves). Note that the data points have a high
degree of time slice correlation which is accounted for in the
fitting.

4The statistical uncertainty on ZV can be considered an overall
systematic error on the normalization of form factors.
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only small residual scatter which can originate from fitting-
range systematics and modest discretization effects.
Describing the Q2 dependence may offer some

phenomenological insight, albeit in this calculation at
an unphysically heavy quark mass. A commonly used
approach to describe vector-current form factors of hadrons
is to argue that the photon is behaving like the lightest
vector meson which can couple to the hadrons in question,
which in this case would be the ρ. This “vector meson
dominance” (VMD) describes the Q2 dependence by
FVMDðQ2Þ ¼ 1

1þQ2=m2
ρ
. Using the ρ mass determined on

these lattices, mρ ¼ 1020ð1Þ MeV, we have the dashed
curve shown in Fig. 13, which is seen to describe the lattice
data reasonably well only for small photon virtualities. One
possible explanation of this effect is that, as we move out to
larger Q2, considering only the nearest timelike pole, the ρ,
and neglecting all excitations becomes a progressively
poorer approximation.
The distribution of charge within the pion can be char-

acterized by the charge radius, defined via the slope of the
form factor at zero virtuality, hr2i ≡ −6 d

dQ2 FðQ2ÞjQ2¼0.
We may obtain this quantity from the discrete Q2 data
presented in Fig. 13 by parametrizing the Q2 depen-
dence for small virtualities. Considering Gaussian
ðFπðQ2Þ¼Fð0Þe−Q2=16β2Þ and pole ðFπðQ2Þ¼Fð0Þ 1

1þQ2=m2Þ
forms to describe Q2 < 0.3 GeV2, we obtain5 a charge
radius hr2i1=2π ¼ 0.47ð6Þ fm, where the error includes the
variation over the fit form. As we might expect, in a

calculation where three flavors of quarks all have
approximately the strange quark mass, we obtain a pion
charge radius somewhat smaller than the physical pion
hr2i1=2π ¼ 0.67ð1Þ fm [5,47] and also smaller than the
physical kaon hr2i1=2K ¼ 0.58ð4Þ fm [48].

2. ρ form factors

The three form-factors required to describe the vector-
current response of a vector hadron may be defined as in
Eq. (6), which makes use of a multipole basis. The
decomposition presented in Eq. (5) defines the linear
system which we may solve, as described in Sec. V C,
for the form factors. We plot the charge,GEðQ2Þ; magnetic,
GMðQ2Þ; and quadrupole, GQðQ2Þ, form factors in Fig. 14.
Examination of Eqs. (5) and (6) indicates that only the
charge form factor has a nonzero kinematic factor when
Q2 ¼ 0, and as such only it is determined there, while all
three form factors are sampled for positive nonzeroQ2. The
smallest form factor, GQ, shows the largest scatter, which
likely originates from modest discretization effects and
time slice fitting-range fluctuations.
Fitting the Q2 dependence of the charge form factor

with various forms,6 over various Q2 ranges, we obtain
GCð0Þ ¼ 0.94ð1Þ and hr2i1=2ρ ¼ 0.55ð5Þ fm where the
errors include a systematic variation over different fit
forms. The deviation of the charge from 1 was discussed
previously in Sec. V E.
To determine the magnetic and quadrupole moments

from GMð0Þ and GQð0Þ, it is necessary to parametrize the
Q2 dependence of the form factors and extrapolate back to
Q2 ¼ 0. Utilizing a range of possible forms, we obtain
GMð0Þ ¼ 2.17ð10Þ and GQð0Þ ¼ −0.54ð10Þ, accounting
for the variation over fit forms, which is much larger than
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FIG. 13 (color online). Pion ground-state form factor, FπðQ2Þ,
using the improved current, Eq. (20). Vector meson dominance
using the ρmeson mass on this lattice shown by the dashed curve.
Fits to the small-Q2 points using Gaussian and single-pole forms
are shown by the gray curves.
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FIG. 14 (color online). Ground-state ρ meson multipole form
factors. Points have the same color and shape labeling presented
in Fig. 13. Fits to the Q2 dependence, described in the text, are
shown as gray curves.

5If Fð0Þ is allowed to float in fits, a value statistically
compatible with 1 is obtained, as it must since the pion form
factor at zeroQ2 was used to set ZV . The fit χ2 values obtained are
fairly large due to the scatter in the statistically precise data,
which is likely due to small discretization effects which are not
described by these smooth fit forms.

6Gð0Þe−Q2=16β2 , Gð0Þe−Q2ð1þαQ2Þ=16β2 , Gð0Þ=ð1þQ2=m2Þ,
Gð0Þ=ð1þQ2=m2 þ γðQ2=m2Þ2Þ, and Gð0Þ e−Q

2=16β2

1þQ2=m2.
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the statistical uncertainty, in the errors. More precise
determinations of these quantities could be obtained if
twisted boundary conditions were used to sample the form
factors at smaller Q2 (see for example Ref. [49]).
Within a simple picture of the ρ as a qq̄ bound state, the

presence of a quadrupole moment would indicate a
required admixture of the D-wave into the dominantly
S-wave function. Previous estimates of the ρ-meson mag-
netic moment in versions of QCD with heavier than
physical quarks come from chiral effective theory [50],
where GMð0Þ ∼ 2.2 for large pion masses, and quenched
lattice QCD using either an energy shift in a magnetic field
[51], where GMð0Þ ¼ 2.13ð6Þ, or extrapolation to zero Q2

from a single spacelike virtuality [52], where GMð0Þ ¼
2.05ð4Þ, at comparable unphysical pion masses. A dynami-
cal calculation, Ref. [53], which appeared while this
manuscript was in the final stages of production, found,
at a comparable pion mass, GMð0Þ ¼ 2.23ð2Þ and
GQð0Þ ¼ −0.362ð20Þ, using a model extrapolation to
Q2 ¼ 0 from a single nonzero Q2 point.

3. π0 form factor

The examples presented in the previous two subsections
were the lightest states with the relevant quantum numbers.
As such it was not strictly necessary to use optimized
operators—any suitable meson interpolators used in the
three-point functions will, in the limit of large time
separations, give access to the matrix elements. We will
now move to the case of an excited state, the first excitation
of the pion, which we access using optimized operators to
eliminate the contribution of the ground-state pion.
As described in Sec. V, the signals for excited states are

typically noisier than those for the ground state, and as such
we separate the source and sink operators by a smaller time,
in this case Δt ¼ 16at. The decomposition for this matrix
element is of the same form as the pion described
previously, Eq. (2). We plot the extracted form factor,
Fπ0 ðQ2; tÞ, as a function of the current insertion time slice
in Fig. 15.
The Q2 dependence of the form factor, Fπ0 ðQ2Þ, is

presented in Fig. 16. While the extracted values at Q2 ¼ 0
are not statistically precise, they are certainly consistent
with unity. The charge radius can be extracted from the
slope at Q2 ¼ 0 which we determine by parametrizing7 the
data for Q2 ≲ 0.3 GeV2, yielding hr2i1=2π0 ¼ 0.74ð6Þ fm
where the error includes variation over the parametrization
form. As we might expect for a state which likely can be
characterized as a radial excitation, this is significantly
larger than the 0.47(6) fm found for the ground-state pion at
this quark mass.

Reference [53], computing at a very similar pion mass,
found 0.517(4) fm for the ground-state pion charge radius
and 0.59(3) fm for the first excitation of the pion. Their
approach determines a single point on the form-factor curve
at Q2 ∼ 0.16 GeV2 which is used to determine the slope at
Q2 ¼ 0 assuming monopole dependence on Q2.

B. Radiative transitions

1. π0 → πγ transition

In a transition between different pseudoscalar mesons,
the decomposition of the current in terms of a form factor
Fπ0πðQ2Þ is as in Eq. (3), and the form factor must vanish at
Q2 ¼ 0. The transition form factor is extracted from three-
point functions withΔt ¼ 20at, fitting the time dependence
as previously to account for any residual unwanted excited-
state contribution. We plot the extracted form factor in
Fig. 17—that we are now able to explore the timelike Q2

region, where previously all points were spacelike, follows
from the differing masses of the hadrons at source and sink.
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FIG. 15 (color online). Current insertion time dependence for
the form factor of the first excitation of the pion, Fπ0 ðQ2; tÞ,
shown for a range of source and sink momenta. The high degree
of time slice-time slice data correlation is manifested in the error
on the fit which is not significantly reduced relative to the error on
the individual data points.
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FIG. 16 (color online). First-excited pion form factor, Fπ0 ðQ2Þ.
Points have the same color and shape labeling presented in
Fig. 13. Fits to low Q2 dependence used to constrain charge
radius, as described in the text, shown as gray bands.

7Gaussian [Fπ0 ð0Þe−Q2=16β2 ] andone-pole [Fπ0 ð0Þ=ð1þQ2=m2Þ]
forms were used.
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A simple example of how this occurs is given by the case
where ~p0 ¼ ~p, so that Q2 ¼ −ðE0ð~pÞ − Eð~pÞÞ2 < 0. To be
able to trivially relate our Euclidean amplitudes to
Minkowski amplitudes, we must restrict ourselves to the
region where the current is not timelike enough to pro-
duce on-shell hadrons. In this calculation where the
ππ threshold is above the ρ mass, this limits us to
Q2 > −m2

ρ ∼ −1 GeV2. To explore further into the timelike
region, a somewhat more sophisticated approach must be
followed [54,55].

2. ρ → πγ transition

A suitable decomposition for a vector to pseudoscalar
transition in terms of a dimensionless form factor is given in
Eq. (4). Using optimized operators for the ground-state ρ
and ground-state π, we computed correlation functions with
Δt ¼ 28at for a large range of source and sink momenta—
the resulting determination of the form factor, FρπðQ2Þ, is
presented in Fig. 18.
The value of the form factor at Q2 ¼ 0, known as the

photocoupling, is of particular interest since it controls the

rate of the physically allowed radiative transition process,
ρ� → π�γ. As can be seen in Fig. 18, we do not determine
this quantity directly, but we may estimate it using
interpolation between our spacelike and timelike points.
Using a range of fit forms over severalQ2 ranges (plotted in
gray), we estimate Fρπð0Þ ¼ 0.494ð8Þ, where the error
includes variation over fit forms.
The Lorentz invariant matrix element for the decay

ρþ → πþγ can be obtained by contracting the matrix
element in Eq. (4) with a final-state polarization vector,
Mλγ ;λ ¼ ϵ�μðλγ; ~qÞhπþð~p0Þjjμjρþðλ; ~pÞi, and for a vector
stable under the strong interaction, we may obtain the
decay width from

Γðρþ → πþγÞ ¼ 1

32π2

Z
dΩ~q

j~qj
m2

ρ

1

3

X
λγ ;λ

jMλγ ;λj2;

where we have summed over the final-state photon polar-
izations and averaged over the initial-state polarization of
the ρ. Using the decomposition above, and restoring the
factors of e, we obtain the result relating the width to the
photocoupling,

Γðρþ → πþγÞ ¼ α
4

3

j~qj3
ðmρ þmπÞ2

jFρπð0Þj2;

where α ¼ e2=4π.
The calculation performed here uses three degenerate

quark flavors tuned to approximate the physical strange
quark mass, and as such our photocoupling deter-
mination cannot be directly compared with experiment. For
orientation we show in Fig. 18 the experimental values,
Fρπð0Þ ¼ 0.33ð2Þ and FK�Kð0Þ ¼ 0.57ð3Þ, extracted from
the corresponding decay rates obtained via the Primakoff
effect for pions and kaons incident on nuclear targets
[56–58].
The Q2 dependence of this meson transition form factor

plays a role in models of deuteron electromagnetic struc-
ture, where a virtual photon probe may couple to the bound
nucleons or to the meson currents proposed to supply the
binding [19].

3. ρ0 → πγ transition

The first-excited ρ state may also undergo a transition to
the ground-state pion, with the form of the decomposition
of the matrix element being the same as in the previous
section. In Sec. IV we presented the spectrum of excited
vector mesons, finding that the first-excited state,
mρ0 ¼ 1882ð11Þ MeV, is close to being degenerate with
the second-excited state mρ00 ¼ 1992ð6Þ MeV. Our use of
optimized operators corresponding to orthogonal combi-
nations of basis operators allows us to reliably study the
two excitations independently.
We extract the form factor using optimized operators in

correlation functions with time separation, Δt ¼ 20at, with
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FIG. 17 (color online). Transition form factor between first-
excited and ground-state pions, π0 → πγ. Points have the same
color and shape labeling presented in Fig. 13 with the excited
pion having momentum ~pf .
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FIG. 18 (color online). Ground-state ρ to ground-state π
transition form factor. Curves in gray show fits used to interpolate
between spacelike and timelike regions to determine the photo-
coupling, Fρπð0Þ. Experimental decay widths converted to photo-
couplings shown for orientation.
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the results presented in Fig. 19. To determine the photo-
coupling, Fρ0πð0Þ ¼ 0.050ð4Þ, we perform fits to the data
over various Q2 ranges using several fit forms, and the
quoted uncertainty includes this variation.
The photocoupling for this transition is observed to

be an order of magnitude smaller than that of ρ → πγ
extracted in Sec. VI B 2. Within simple models treating
mesons as qq̄ bound states with nonrelativistic wave
functions, such a suppression is expected—the net effect
of the current is to slightly shift in momentum space the
wave function of the pion, and since the ρ0 is likely
described as a radial excitation, the resulting wave function
overlap is much reduced relative to that for the ground-state
ρ. This is described as a hindered magnetic dipole tran-
sition. A relevant experimental example of a hindered
transition lies in the charmonium sector—the relative rates

of ψð2SÞ → ηcγ and J=ψ → ηcγ,
Γðψð2SÞ→ηcγÞ=j~qψð2SÞj
ΓðJ=ψ→ηcγÞ=j~qJ=ψ j ∼ 0.1

show the expected hierarchy of hindered vs nonhindered [5].

4. ρ00 → πγ transition

An extraction analogous to that presented in the pre-
vious subsection can be performed for the second-excited ρ

state, leading to the form factor shown in Fig. 20.
Interpolating to Q2 ¼ 0 using a range of forms yields
Fρ00πðQ2Þ ¼ −0.016ð3Þ, which is smaller still than the
ρ0 → πγ photocoupling. The sign is somewhat arbitrary
and would only have definite meaning were we to compare
to other transitions involving the ρ00.
Within a simple qq̄ bound-state model, we might expect

the ρ00 state to be dominated by a 3D1 configuration (and
indeed the operator overlaps presented in Ref. [3] seem to
suggest this), which would have a hindered structure in a
transition to the ground-state S-wave pseudoscalar owing to
the need for the current to provide a D-wave angular
dependence, which appears only as a relativistic correction
to the leading behavior.

5. π0 → ργ transition

The first-excited pion may undergo a transition to the
ground-state ρ. The results, extracted from Δt ¼ 20at
correlation functions, are presented in Fig. 21, along with
a number of parametrizations used to interpolate a photo-
coupling of Fπ0ρð0Þ ¼ 0.18ð2Þ. Again we observe a sig-
nificant suppression relative to the ρ → πγ case in line with
this being a hindered transition.
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FIG. 21 (color online). First-excited π transition to ground-state
ρ, Fπ0ρðQ2Þ. Gray curves show fits used to interpolate to the
photocoupling.
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FIG. 22 (color online). First-excited π transition to first-excited
ρ, Fπ0ρ0 ðQ2Þ. Gray curves show fits used to interpolate to the
photocoupling.

 0

 0.02

 0.04

 0.06

 0.08

 0.10

-0.02 -0.01  0  0.01  0.02  0.03  0.04

-0.4 -0.2  0  0.2  0.4  0.6  0.8

FIG. 19 (color online). First-excited ρ transition to the ground-
state π form factor, Fρ0πðQ2Þ. Points have the same color and
shape labeling presented in Fig. 18. Gray curves show fits used to
interpolate to the photocoupling.
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FIG. 20 (color online). Second-excited ρ transition to ground-
state π form factor, Fρ00πðQ2Þ. Points have the same color and
shape labeling presented in Fig. 18. Gray curves show fits used to
interpolate to the photocoupling.
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6. ρ0 → π0γ transition

This transition, which occurs between excited states, is
not expected to be hindered in the case that the ρ0 and π0 are
identified predominantly as the first radial excitations of the
ρ and π, respectively. As such we might expect a somewhat
larger photocoupling than in previous subsections. We
extracted the form factor from optimized operator corre-
lation functions with Δt ¼ 20at obtaining the results
presented in Fig. 22. Fits to the Q2 dependence with a
range of forms lead to an estimate of the photocoupling,
Fρ0π0 ðQ2Þ ¼ 0.7ð2Þ, which, although not determined with
high precision, is of comparable size to the ρ → πγ
coupling.

VII. SUMMARY

A desire to extract current matrix elements between
excited hadrons motivated our exploration of optimized
operators which are capable of interpolating only a single-
hadron eigenstate from the vacuum rather than a super-
position of all possible eigenstates.
We have demonstrated through explicit calculation the

utility of these optimized operators when used at the source
and sink of three-point correlation functions also featuring
a vector-current insertion. Matrix elements featuring the
two lightest pseudoscalar mesons and the three lightest
vector mesons were explored, with successful extraction of
excited-state transition matrix elements at a range of
momentum transfers. In the case that the optimized
operators correspond to ground states, their use reduces
the degree of unwanted excited-state contribution to the
correlation function and allows for the source and sink to be
separated by a smaller time interval with a corresponding
reduction in statistical noise.
Optimized operators, as we have implemented them, are

linear superpositions of a large basis of meson operators,
and it follows that we need a technique that allows efficient
evaluation of potentially complicated operator construc-
tions. Distillation has previously been shown to meet these
needs in the case of two-point correlation functions, and in
this study we have demonstrated its efficacy in the case of
three-point functions, the first time it has been used in this
manner. Its use allows the problem to be factorized into
pieces corresponding to operator constructions of definite
momentum at source and sink and independent pieces
corresponding to quark propagation. This separation of
operators from propagators avoids the problem encoun-
tered in sequential-source techniques of requiring the
operators to be selected before the Dirac matrix inversions
take place.
This first study was restricted to transitions involving

pseudoscalar and vector mesons, but we may easily
extend it to other meson quantum numbers using the
flexible operator basis presented in Refs. [17,18,40].
One important application is the determination of transition

photocouplings relevant to meson photoproduction experi-
ments like GlueX and CLAS12, where the process is
modeled as proceeding through t-channel meson exchange.
Part of the role of these experiments is to search for exotic
and nonexotic hybrid mesons, those states which have an
essential gluonic contribution in their wave function—it
has been claimed previously in models [2,59] that transition
photocouplings of hybrid mesons may be large, motivating
photoproduction searches. The technology we have
explored for mesons may also be applied to the baryon
sector in which the dependence of the transition form
factors on photon virtuality can be measured in electro-
production experiments on proton and neutron targets [7].
Throughout this analysis we have proceeded under the

assumption that the hadrons we consider are stable eigen-
states of QCD. In fact, for the quark mass used in the
calculation, only the ground-state π and ρ are below all
relevant kinematic thresholds, while the various excitations
can in principle decay. As the light quark masses are
reduced toward their physical value, even the ground-state
ρ ceases to be an eigenstate and rather appears as a
resonance in ππ scattering. In recent years there has been
significant progress determining meson resonance proper-
ties using lattice QCD, making use of the discrete spectrum
of states in the finite volume defined by the periodic lattice
boundary, following the formalism initially presented
in Ref. [60].
To date, however, there is no calculation exploring the

coupling of a resonance to external currents. A rigorous
calculation at physical kinematics, where the ρ is a
resonance, seeking the coupling ρ → πγ would in fact
need to determine the P-wave partial-wave amplitude for
πγ → ππ as a function of the invariant mass, mππ . By
analytically continuing the amplitude to complex values of
m2

ππ and extrapolating to the ρ-resonance pole, the coupling
could be extracted as the residue of the amplitude. Only
very recently [61] has the formalism relating matrix
elements extracted in a finite volume to the physical
amplitude been presented.
The techniques laid out in this paper, which allow the

extraction of matrix elements for each state in a tower of
discrete eigenstates, will be required in any attempt to
determine resonance couplings to external currents. The
extension of the operator basis to include, as well as single-
meson-like operators, also meson-meson constructions has
already been explored in two-point functions [33–35], and
the corresponding three-point function calculations can
now be attempted.
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APPENDIX A: ROTATIONS
AND HELICITY OPERATORS

In this analysis we have made use of sets of kinemat-
ically equivalent helicity matrix elements. The operators
appearing at the source and sink of our three-point
functions are subduced, with the subduction coefficients
implying certain choices of rotation conventions. One
method to consistently relate kinematically equivalent
subduced matrix elements to a canonical frame involves
embedding additional phases into the correlation functions
appearing in our linear system, Eq. (15). Following
Ref. [40] a helicity state is defined by

j~p; J; λi≡ R̂p̂L̂zðpÞjJ; λi; ðA1Þ

where jJ; λi is a state at rest with spin J and Jz component
λ, L̂zðpÞ is a boost along the z axis with momentum
magnitude p, and R̂p̂ is a rotation that rotates from the z
axis to direction p̂. A set of conventions to implement these
rotations, which separates them into a rotation from the z
axis to a reference momentum direction, followed by a
rotation which leaves the cubic lattice invariant is presented
in Ref. [40], where the corresponding subduction into
irreducible representations of the little group is also shown.
For an arbitrary rotation, R, these helicity states trans-

form as

R̂j~p; J; λi ¼ eiΦðR;~p;J;λÞjR~p; J; λi; ðA2Þ

where the helicity is left invariant and where rotations about
the direction of the momentum, ~p, introduce a helicity-
dependent phase.
A canonical state, where the spin state is specified using

the projection along the z axis, is defined as

j~p; J;mi≡ R̂p̂L̂zðpÞR̂−1
p̂ jJ;mi

¼ L̂ð~pÞjJ;mi;

where L̂ð~pÞ is a Lorentz boost along direction p̂ with
momentum magnitude, p. These states transform under
rotations as

R̂j~p; J;mi ¼
X
m0

DðJÞ
m0mðRÞjR~p; J;m0i

and are related to helicity states via

j~p; J; λi ¼
X
m

DðJÞ
mλðRp̂Þj~p; J;mi; ðA3Þ

where Rp̂ is the rotation for direction p̂ appearing
in Eq. (A1).
The application of this formalism that is required for the

work reported on in this paper is to consistently relate
helicity matrix elements in different frames. To achieve this
we must determine the phases in Eq. (A2), eiΦðR;~p;J;λÞ,
corresponding to the rotation conventions laid down in
Ref. [40] used in the construction of our helicity operators.
This can be achieved by evaluating matrix elements of
the form h~p0; J0; λ0jR̂j~p; J; λi. It is convenient to exchange
the helicity states for canonical states using Eq. (A3)—the
matrix element can then be written as

h~p0; J0; λ0jR̂j~p; J; λi
¼

X
m0;m

DðJ0Þ�
m0λ0 ðRp̂0 Þh~p0; J0; m0jR̂j~p; J;miDðJÞ

mλðRp̂Þ

¼
X
m0;m

DðJ0Þ�
m0λ0 ðRp̂0 ÞDðJÞ

m0mðRÞDðJÞ
mλðRp̂Þδ3ð~p0 − R~pÞδJ0J:

Using the composition of rotations, we have

DðJÞ
λ0λ ðR−1

p̂0 RRp̂Þ ¼
X
m0;m

DðJÞ�
m0λ0 ðRp̂0 ÞDðJÞ

m0mðRÞDðJÞ
mλðRp̂Þ;

and we conclude that the phase in Eq. (A2) is given by

eiΦðR;~p;J;λÞ ¼ DðJÞ
λλ ðR−1

Rp̂RRp̂Þ: ðA4Þ

A generic matrix element of the vector current between
states of definite momentum, spin, and helicity is

h~p0; J0; λ0jjμj~p; J; λi;

and for an arbitrary rotation R, this matrix element trans-
forms as

h~p0; J0; λ0jjμj~p; J; λi
¼ h~p0; J0; λ0jR̂−1R̂jμR̂−1R̂j~p; J; λi
¼ ½R−1�μνh~p0; J0; λ0jR̂−1jνR̂j~p; J; λi;

since the current rotates as a 4-vector, R̂jμR̂−1 ¼ ½R−1�μνjν.
Inserting complete sets of states, and using the fact,
expressed in Eq. (A2), that rotations do not change the
helicity of states, we obtain
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h~p0; J0; λ0jjμj~p; J; λi

¼ ½R−1�μν
Z

d3q
Z

d3kh~p0; J0; λ0jR̂−1j~q; J0; λ0i

× h~q; J0; λ0jjνj~k; J; λih~k; J; λjR̂j~p; J; λi: ðA5Þ

Using our newly derived representation of the phase,
Eq. (A4), we can write this as

h~p0; J0; λ0jjμj~p; J; λi
¼ ½R−1�μνDðJ0Þ�

λ0λ0 ðR−1
Rp̂0RRp̂0 ÞDðJÞ

λλ ðR−1
Rp̂RRp̂Þ

× hR~p0; J0; λ0jjνjR~p; J; λi:

In practice we use this expression to relate matrix
elements determined for various allowed lattice momenta,
~p; ~p0, to matrix elements for some reference momenta
~pref ¼ R~p; ~p0

ref ¼ R~p0.

APPENDIX B: MOMENTUM CONSERVATION
IN A FINITE VOLUME

We define meson eigenstates which in infinite volume
have normalization

hnð~kÞjn0ð~pÞi ¼ δnn0 ð2πÞ32Enð~kÞδð3Þð~k − ~pÞ;

such that the completeness relation takes the form

1 ¼
X
n

Z
d3~k
ð2πÞ3

1

2Enð~kÞ
jnð~kÞihnð~kÞj:

In a periodic cubic volume, L × L × L, the allowed

momenta of free particles is quantized, ~k ¼ 2π
L ~nk, where

~nk ¼ ðnx; ny; nzÞ and the normalization becomes

hnð~kÞjn0ð~pÞi ¼ δnn02Enð~kÞL3δn~k;n~p
, and completeness is

expressed as

1 ¼ 1

L3

X
n

X
~nk

1

2Enð~kÞ
jnð~kÞihnð~kÞj: ðB1Þ

Two-point correlation functions in which the source and
sink operators are projected into definite momentum have a
spectral representation which can be obtained by
inserting Eq. (B1),

CðtÞ ¼ h0jOfð~pf ; tÞO†
i ð~pi; 0Þj0i

¼ h0j
X
~x

ei~pf ·~xOfð~x; tÞ
X
~y

e−i~pi ·~yO†
i ð~y; 0Þj0i

¼ 1

L3

X
n

X
~nk

1

2Enð~kÞ
ðL3δ~pf

~kÞðL3δ~pi
~kÞe−Enth0jOfð~x ¼ ~0; 0Þjnð~kÞihnð~kÞjO†

i ð~y ¼ ~0; 0Þj0i

¼ L3δ~pf ;~pi

X
n

1

2En
e−Enth0jOfð~0; 0Þjnð~piÞihnð~piÞjO†

i ð~0; 0Þj0i;

where we note an explicit factor of the lattice volume, L3.
Three-point correlation functions projected into definite source, sink, and current momentum have a spectral

representation,

CðtÞ ¼ h0jOfð~pf ; tfÞjð~q; tÞO†
i ð~pi; tiÞj0i

¼ h0j
X
~x

ei~pf ·~xOfð~x; tfÞ
X
~z

e−i~q·~zjð~z; tÞ
X
~y

e−i~pi·~yO†
i ð~y; tiÞj0i

¼ L3δ~pf ;~piþ~q

X
ni;nf

1

2Eni

1

2Enf

e−Enf
ðtf−tÞe−Eni

ðt−tiÞh0jOfð~0; 0Þjnfð~pfÞihnfð~pfÞjjð~0; 0Þjnið~piÞihnið~piÞjO†
i ð~0; 0Þj0i;

which again features an explicit factor of the lattice volume, L3. This volume factor, common to two-point and
three-point functions, may conventionally be absorbed into the meson creation/annihilation matrix elements.

APPENDIX C: VECTOR-CURRENT IMPROVEMENT ON ANISOTROPIC
CLOVER LATTICES

The form of the anisotropic Clover fermion action that we use [23,46] can be obtained from the desired Euclidean action
Ψ̄ðmþDÞΨ using the field transformations

EXCITED MESON RADIATIVE TRANSITIONS FROM … PHYSICAL REVIEW D 91, 114501 (2015)

114501-21



Ψ ¼
�
1þ 1

2
Ωmatmþ 1

2
Ωtatγ4 ~D4 þ

1

2
Ωsasγj ~Dj

�
ψ

Ψ̄ ¼ ψ̄

�
1þ 1

2
Ω̄matmþ 1

2
Ω̄tatγ4 ⃖D4 þ

1

2
Ω̄sasγj ⃖Dj

�
;

leading to

ψ̄

��
1þ 1

2
ðΩm þ Ω̄mÞatm

�
m

þ
�
1þ 1

2
ðΩm þ Ω̄mÞatmþΩtatm

�
γ4 ~D4 þΩtat ~D4

~D4

þ
�
1þ 1

2
ðΩm þ Ω̄mÞatmþΩsasm

�
γj ~Dj þΩsas ~Dj

~Dj

þ 1

2
ðΩtat þ ΩsasÞσi4Fi4 þ ðΩsasÞ

X
i>j

σijFij

�
ψ ;

where a term proportional to fDi;D4g was eliminated by
choosing Ω̄t ¼ −Ωt and Ω̄s ¼ −Ωs. Making the choices,
Ω̄m þ Ωm ¼ 1, Ωs ¼ − 1

2
νs, Ωt ¼ − 1

2
, discretizing the

derivatives, smearing in the spatial directions, and inserting
tadpole factors give the action presented in Refs. [22,23].
Reference [22] describes the nonperturbative tuning of the
parameters.
The same transformation can be applied to the desired

vector current jμ ¼ Ψ̄γμΨ to obtain the classically OðaÞ
improved vector current. The transformation gives

jμ ¼
�
1þ 1

2
atm

�
ψ̄γμψ

−
1

4
atð∂4ðψ̄σμ4ψÞ − δμ4ψ̄ð ⃖D4 − ~D4ÞψÞ

−
1

4
νsasð∂jðψ̄σμjψÞ − δμjψ̄ð ⃖Dj − ~DjÞψÞ;

and use of the classical equations of motion for the quark
fields allows for the elimination of the gauge-covariant
derivatives acting on quark fields to give

j4 ¼
�
1þ 1

2
ðmþm0Þat

�
ψ̄γ4ψ þ 1

4

νs
ξ
ð1− ξÞas∂jðψ̄σ4jψÞ

jk ¼
�
1þ 1

2
ðmþm0ξÞat

�
ψ̄γkψ þ 1

4
ð1− ξÞat∂4ðψ̄σ4kψÞ;

where ξ ¼ as=at is the anisotropy.
Since we nonperturbatively determine the renormaliza-

tion of the vector current at any given quark mass by
computing meson form factors at zero momentum transfer,
we choose to absorb the mass-dependent factor into the
renormalization factor and consider the improved vector
currents,

j4 ¼ Zt
V

�
ψ̄γ4ψ þ 1

4

νs
ξ
ð1 − ξÞas∂jðψ̄σ4jψÞ

�

jk ¼ Zs
V

�
ψ̄γkψ þ 1

4
ð1 − ξÞat∂4ðψ̄σ4kψÞ

�
: ðC1Þ

As expected we observe that the improvement terms vanish
at the classical level in the case of an isotropic action,
ξ ¼ 1.

APPENDIX D: WICK CONTRACTIONS
FOR THREE QUARK FLAVORS

In this paper we work with a version of QCD in which
the up, down, and strange quarks all have the same mass,
leading to an exact SUð3ÞF symmetry. We compute
radiative transition matrix elements between states in
octets, 8F, of SUð3ÞF. In particular we consider the
ðI; IzÞ ¼ ð1;�1Þ elements and interpolate mesons from
the vacuum with operators having flavor structure d̄Γu.
Formally integrating out fermions from the path integral,

we replace field pairs qxq̄y with the appropriate quark
propagator, Qxy, the inverse of the Dirac operator. Since
the Dirac operator depends upon the quark mass, there can
be differing propagators for each flavor of quark, i.e.
uū → U, dd̄ → D, ss̄ → S. In the case of exact isospin
symmetry, mu ¼ md and U ¼ D, and if SUð3ÞF is
exact, U ¼ D ¼ S.
For transitions between I ¼ 1 mesons, inserting currents

ūγμu, d̄γμd or s̄γμs, the schematic Wick contractions shown
in Figs. 23(a) and 23(b) appear, where those shown in
Fig. 23(b) are referred to as disconnected contributions.
Were we to consider I ¼ 0 mesons, we could also receive
contributions from the Wick contractions shown in
Figs. 23(c) and 23(d).
The electromagnetic-current operator in units of e has

the flavor structure jemμ ¼ quūγμuþ qdd̄γμdþ qss̄γμs, and
it is convenient to express this in terms of SUð3ÞF singlet
and octet currents,

jemμ ¼ 1ffiffiffi
3

p ðqu þ qd þ qsÞj1−μ þ 1ffiffiffi
6

p ðqu þ qd − 2qsÞj8−μ

þ 1ffiffiffi
2

p ðqu − qdÞj8þμ ; ðD1Þ

where
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j1−μ ¼ 1ffiffiffi
3

p ðūγμuþ d̄γμdþ s̄γμsÞ

j8−μ ¼ 1ffiffiffi
6

p ðūγμuþ d̄γμd − 2s̄γμsÞ

j8þμ ¼ 1ffiffiffi
2

p ðūγμu − d̄γμdÞ ðD2Þ

and where the� superscript indicates the current’sG parity.
Considering Eq. (D2) in the SUð3ÞF limit where the

propagators for up, down, and strange quarks are identical
(U ¼ D ¼ S≡Q), it is clear that the octet currents j8þμ and
j8−μ cannot give rise to a disconnected contribution of the
type shown in Fig. 23(b), as the relevant part of the Wick
contraction would be proportional to

tr½γμU� − tr½γμD� ¼ tr½γμQ� − tr½γμQ� ¼ 0

tr½γμU� þ tr½γμD� − 2tr½γμS� ¼ ð1þ 1 − 2Þtr½γμQ� ¼ 0;

respectively. In general, the singlet current could give rise
to a disconnected contribution proportional to tr½γμQ�, but
since it enters the electromagnetic current with a weight of

qu þ qd þ qs ¼ þ 2
3
− 1

3
− 1

3
¼ 0, it too does not contribute

in practice.
For the case of the form factors of ðI; IzÞ ¼ ð1;þ1Þ

mesons like the πþ or ρþ, the initial- and final-state
mesons are identical and have the same G parity. The
G-parity invariance of QCD (assuming isospin invariance)
then ensures that the G parity of the current must be
positive and only j8þμ can contribute. As such the matrix
element is proportional to qu − qd ¼ þ 2

3
− − 1

3
¼ þ1 as

expected, and we see that there cannot be any disconnected
diagrams even away from the SUð3ÞF limit.8

For transitions like ρþ → πþγ, where the G parity flips,
while there are disconnected contributions away from the
SUð3ÞF limit, the logic presented above indicates that there
are not in this calculation, which is performed with exact
SUð3ÞF symmetry. Only connected diagrams are required,
and the matrix element is proportional to qu þ qd. We note
that in the SUð3ÞF case the matrix element for K⋆þ → Kþγ
is identical to ρþ → πþγ.

(a) (b)

(c)

(d)

FIG. 23 (color online). Possible quark line contractions required for meson three-point functions with a current insertion. Blue lines
represent quark propagation which could be described by a perambulator, and red lines represent quark propagation with a current
insertion which could be described by a generalized perambulator. Green lines indicate quark propagation which does not begin or end
on an operator which can be distillation smeared, and as such cannot be described by a perambulator. (a), (b) connected, disconnected
diagrams present for transition between isospin ¼ 1 mesons. (c), (d) additional disconnected diagrams when isospin ¼ 0 mesons
feature.

8although there can be if isospin symmetry is broken by
mu ≠ md.
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