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In the present work we have studied the chiral odd generalized parton distributions in the impact
parameter space by assuming a flexible parametrization in a quark-diquark model. In order to obtain the
explicit contributions from the up and down quarks, we have considered both the scalar (spin-0) and the
axial-vector (spin-1) configurations for the diquark. We have also studied the spin densities for the up and
down quarks in this model for monopole, dipole and quadrupole contributions for unpolarized and
polarized quarks in unpolarized and polarized protons.
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I. INTRODUCTION

Many experiments are presently running worldwide and
some have finished taking the data towards the study of
hadronic structure. There has been an enormous interest to
understand the partonic distribution and many models have
been proposed to explain the hadronic properties theoreti-
cally. Last two decades have been dedicated towards the
study of generalized parton distributions (GPDs) which
contain 3D structure information of the hadrons [1–9].
Several experiments, for example, H1 Collaboration
[10,11], ZEUSCollaboration [12,13] and fixed target experi-
ments at HERMES [14] have completed taking data on
deeply virtual Compton scattering (DVCS). Experiments are
also running at JLAB, Hall A and B [15] and COMPASS at
CERN [16] to access the GPDs.
GPDs have been classified into two types: the chiral even

GPDswhere quark helicity does not flip (H;E; ~H; ~E) and the
chiral odd GPDs which include the quark helicity flip
(HT; ET; ~HT; ~ET). In a complete quark-parton model of
the nucleon, the quark density or unpolarized distribution
f1ðxÞ is the probability to find a quark with momentum
fraction x in the parent nucleon without considering the
orientation of the spin, g1ðxÞmeasures the helicity of quark in
the longitudinally polarized nucleon and h1ðxÞ is the number
density of quarks having polarization parallel to the nucleon
minus the quarks antiparallel to nucleon polarization. These
quark distributions can be respectively obtained from H; ~H
andHT .GPDsdependon threevariables x; ζ; t, wherex is the
fraction of momentum transferred, ζ (skewness) gives
the longitudinal momentum transfer and t is the square of
the momentum transfer in the process. However, it has to be
realized that only two of these variables ζ (fully defined by
detecting the scattered lepton ζ ¼ xb, wherexb is theBjorken
variable) and t (fully defined by detecting either the recoil
proton or meson) are accessible experimentally.
Chiral even GPDs allow us to access partonic configu-

rations not only with a given longitudinal momentum
fraction but also at a specific (transverse) location inside

the hadron. In the forward limit they reduce to usual parton
densities and when integrated over x, they reduce to the
form factors which are the nonforward matrix elements of
the current operator and describe how the forward matrix
element (charge) is distributed in position space. They can
be related to the angular momentum carried by quarks
inside the nucleon and the distribution of quarks can be
described in the longitudinal direction as well as in the
impact parameter space [17–21]. On the other hand, Fourier
transform (FT) of the GPDs with respect to transverse
momentum transfer gives the distribution of partons in
transverse position space [22]. Recently chiral even GPDs
from DVCS amplitude for nonzero skewness in longi-
tudinal and impact parameter space have been studied
[23]. For the case of nonzero skewness, both longitudinal
and transverse distribution of partons is obtained in the
hadron [20] whereas for the case of zero skewness,
the momentum transfer is only in the transverse direction
thus giving the transverse distribution of the partons.
Chiral even GPDs encode the various properties of the
hadrons for example electromagnetic form factors,
gravitational form factors [24,25] and also provide the
detailed information upon the charge and magnetization
densities [26,27].
The chiral odd GPDs, in the forward limit, reduce to

transversity h1ðxÞ. When integrated over x, the fundamental
term 2 ~HT þ ET has been studied in a self-consistent two-
body model [28–30], basically for the quantum fluctuation
of an electron at one-loop in QED. This term is of great
interest as it provides valuable information about the
correlation between the spin and orbital angular momentum
of the quarks inside the nucleon. There is however no
direct interpretation for ~ET [31]. Chiral odd GPDs have
been studied in the longitudinal and transverse position
spaces [32] where a field theory inspired model of spin-1=2
system is considered. GPDs have also been discussed in a
simple version of MIT bag model with an SU(6) proton
wave function [33] and in light-front constituent quark
models [34].
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In addition to this, relatively small number of studies
have been done to study the nucleon spin densities which
describe the quark distributions in the nucleon for unpo-
larized and polarized quarks in unpolarized and polarized
nucleon. The nucleon spin densities have been studied in
light-front constituent quark model where the first x-
moments of spin densities have been obtained for the up
and down quarks [35]. Lattice calculations regarding the
lowest two x-moments of the transverse spin densities of
the quarks in the nucleon have also been performed [36]
predicting that the Boer-Mulders function h⊥1 is large and
negative for both the up and down quarks. This is based on
the arguments given by Burkardt [28] where transverse
deformation of parton distribution has been discussed.
Recently, transverse distortion in impact parameter space
has been studied in the light-cone model [37]. Spin
densities in transverse plane and generalized quark dis-
tributions have been studied in Ref. [31] providing the
relation between second leading twist T-odd quark
transverse momentum distributions, the Boer-Mulders
distribution function h⊥1 and a linear combination of
GPDs.
In the present work, we have studied the transversely

polarized chiral odd GPDs and the spin densities in the
impact parameter space which are not so well-known
aspects of the nucleon structure. We have used the covariant
model [38] to evaluate the quark-proton helicity ampli-
tudes. The formalism is based upon the dissociation of the
initial proton into a quark and a fixed mass system
(diquark). To obtain the distinct predictions for the up
and down quarks we have considered both the spin-0
(scalar) and spin-1 (axial-vector) configurations for the
diquark [39–41]. Further, we have obtained the results for
the fundamental term 2 ~HT þ ET , linked with the transverse
momentum distributions (TMDs) and its first moment
providing the proton’s transverse anomalous magnetic
moment. We have also studied the spin densities for
monopole, dipole and quadrupole contributions for differ-
ent situations, for example, when the quarks and proton
both are unpolarized, when the quarks are polarized but
proton is unpolarized and finally when both the quarks and
proton are polarized but in different directions.
The plan of the paper is as follows. To make the

manuscript readable as well as to facilitate discussion, in
Sec. II we present some of the essentials of the chiral even
and chiral odd GPDs. In Sec. III, the GPDs in the impact
parameter space have been discussed. Section IV includes
the details of the spin densities. Section V comprises the
summary and conclusions.

II. CHIRAL EVEN AND CHIRAL ODD
GENERALIZED PARTON DISTRIBUTIONS

The GPDs can be defined from the quark-quark proton
correlator function as follows:

ΦΓ
Λ0;Λðx;Δ; PÞ ¼

Z
dz−

2π
eixP

þz−hp0;Λ0jψ̄
�
−
z
2

�
Γψ

×

�
−
z
2

�
jp;Λijzþ¼0;z⊥¼0; ð1Þ

where Γ ¼ γþ, γþγ5, iσiþγ5 ði ¼ 1; 2Þ, with target spins Λ,
Λ0 and momenta p, p0. For the chiral odd case, we take
Γ ¼ iσiþγ5. The correlator can be parametrized as

Φiσiþγ5
Λ0;Λ ðx; ζ; tÞ ¼ ŪðP0;Λ0Þ

�
iσiþHTðx; ζ; tÞ þ

γþΔi − Δþγi

2M

× ETðx; ζ; tÞ þ
PþΔi − ΔþPi

M2
~HTðx; ζ; tÞ

þ γþPi − Pþγi

2M

�
UðP;ΛÞ: ð2Þ

The four momentum light-cone components in an asym-
metric frame can be defined as

P ¼
�
Pþ;

M2

Pþ ; 0

�
;

P0 ¼
�
ð1 − ζÞPþ;

M2 þ Δ2⊥
ð1 − ζÞPþ ;Δ⊥

�
;

Δ ¼
�
ζPþ;

ð1 − ζ=2ÞM2 þ Δ2⊥=2
ð1 − ζÞPþ ;Δ⊥

�
;

t ¼ t0 −
Δ2⊥

ð1 − ζÞ ; t0 ¼ −
ζ2M2

ð1 − ζÞ ; ð3Þ

whereΔ⊥ is the squaremomentum transfer in theprocess and
ζ is the skewness parameter.
The helicity amplitude fΛΛ

0
Λγ0

for the deep virtual meson

production can be introduced with the helicities of the
virtual photon and the initial proton being Λγ, Λ and the
helicities of the pion and the proton being 0, Λ0 respec-
tively. Following Refs. [42,43], the helicity amplitude fΛΛ

0
Λγ0

into gΛΛ
0

Λγ0
ðx; ζ; t; Q2Þ and AΛ0λ0;Λλðx; ζ; tÞ can be decom-

posed into hard part and soft part as follows:

fΛΛ
0

Λγ0
ðζ; tÞ ¼

X
λ;λ0

gΛΛ
0

Λγ0
ðx; ζ; t; Q2Þ ⊗ AS

Λ0λ0;Λλðx; ζ; tÞ; ð4Þ

where we have used the superscript S for denoting the spin
of scalar and axial-vector diquark contributions towards the
GPDs. The convolution integral is given by ⊗→

R
1
−ζþ1 dx,

the term gΛΛ
0

Λγ0
(hard part) describes the partonic subprocess

γ� þ q → π0 þ q and quark-proton helicity amplitude
AS
Λ0λ0;Λλ (soft part) contains the GPDs. The model which

we used here is the quark-diquark model in which the
proton dissociates into a quark and a recoiling mass system
which is considered as a diquark.
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The quark-proton scattering amplitudes at leading order
with proton-quark-diquark vertices can be computed from
Fig. 1. We have considered the spin-0 and spin-1 diquark so
that we can obtain the explicit up and down quarks
contributions by using the SU(4) symmetry of the proton
wave function. For the case of spin-0 scalar diquark, the
amplitude can be written as follows [43]:

A0
Λ0λ0;Λλ ¼

Z
d2k⊥ϕ�

Λ0λ0 ðk0; P0ÞϕΛλðk; PÞ; ð5Þ

where the vertex functions can be defined as

ϕΛ;λðk; PÞ ¼ ΓðkÞ ūðk; λÞUðP;ΛÞ
k2 −m2

;

ϕ�
Λ0;λ0 ðk0; P0Þ ¼ Γðk0Þ ŪðP0;Λ0Þuðk0; λ0Þ

k02 −m2
: ð6Þ

The ΓðkÞ give the scalar coupling at proton-quark-diquark
vertex and can be defined as

ΓðkÞ ¼ gs
k2 −m2

ðk2 −M2
ΛÞ2

; ð7Þ

where gs is a coupling constant. The vertex structures for
spin-0 diquark are given as

ϕ�þþðk; pÞ ¼ AðmþMxÞ;
ϕ�þ−ðk; pÞ ¼ Aðk1 þ ik2Þ;
ϕ−−ðk; pÞ ¼ ϕþþðk; pÞ;
ϕ−þðk; pÞ ¼ −ϕ�þ−ðk; pÞ: ð8Þ

For the case of spin-1 axial-vector diquark, the amplitude
can be written as follows [43]:

A1
Λ0λ0;Λλ ¼

Z
d2k⊥ϕ�μ

Λ0λ0 ðk0; P0Þ
X
λ00

ϵ�λ00μ ϵλ
00
ν ϕ

ν
Λλðk; PÞ; ð9Þ

where λ00 is the diquark helicity. In the present work we
consider only the transverse helicities. Further, the vertex
functions in this case can be defined as

ϕν
Λ;λðk; PÞ ¼ ΓðkÞ ūðk; λÞγ

5γμUðP;ΛÞ
k2 −m2

;

ϕ�
Λ0;λ0 ðk0; P0Þ ¼ Γðk0Þ ŪðP0;Λ0Þγ5γμuðk0; λ0Þ

k02 −m2
: ð10Þ

The explicit vertex structures for spin-1 diquark are given as

ϕþ
þþðk; pÞ ¼ A

k1 − ik2
1 − x

;

ϕ−þþðk; pÞ ¼ −A
ðk1 þ ik2Þx

1 − x
;

ϕþ
þ−ðk; pÞ ¼ 0;

ϕ−þ−ðk; pÞ ¼ −AðmþMxÞ;
ϕþ
−þðk; pÞ ¼ −AðmþMxÞ;

ϕ−
−þðk; pÞ ¼ 0; ð11Þ

where A ¼ 1ffiffi
x

p ΓðkÞ
k2−m2, k2 −m2 ¼ M2x − x

1−xM
2
x −m2 − k2⊥

1−x
and k0i ¼ ki − ð1 − xÞΔi ði ¼ 1; 2Þ. HereMx is the invariant
mass of the diquark and we have taken it at a fixed value.
The chiral odd GPDs can now be expressed in terms of

the helicity amplitudes and are given as

τ½2 ~HTðx; 0; tÞ þ ETðx; 0; tÞ�S ¼ ASþþ;þ− þ AS
−þ;−−;

HTðx; 0; tÞS ¼ ASþþ;−− þ A−þ;þ−;

τ2 ~HTðx; 0; tÞS ¼ −AS
−þ;þ−;

~ETðx; 0; tÞS ¼ 0; ð12Þ

where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
2M

: ð13Þ

One cannot extract the precise form of the relations
between the GPDs and TMDs but one can discuss the
relations of first, second, third, and fourth type, depending
on the number of derivatives of the involved GPDs in
impact parameter space. The relations between these
functions have been discussed in detail in Ref. [44].
After obtaining the chiral odd GPDs from helicity

amplitudes, we can obtain the flavor structure of the
GPDs using the SU(4) symmetry of the proton wave
function as follows [38]:

Fu
T ¼ 3

2
F0
T −

1

6
F1
T;

Fd
T ¼ −

1

3
F1
T; ð14Þ

where Fq
T ¼ f ~HT; ~ET;HT; ETg ðq ¼ u; dÞ.

FIG. 1 (color online). Vertex tree level diagram defining the
quark-diquark model.
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III. GPDS IN IMPACT PARAMETER SPACE

The FTwith respect to the transverse momentum transfer
Δ⊥ gives the GPDs in transverse impact parameter space.
We have introduced b⊥ conjugate to Δ⊥ which gives the
distribution of the quarks in the transverse plane. In the
present case, we have taken ζ ¼ 0 which implies that
the momentum transfer is completely in the transverse
direction. One can write

Hðx; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥Hðx; 0;−Δ2⊥Þe−iΔ⊥·b⊥ ;

Eðx; b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥Eðx; 0;−Δ2⊥Þe−iΔ⊥·b⊥ : ð15Þ

Here b ¼ jb⊥j is the impact parameter measuring the
transverse distance between the struck parton and the
center of momentum of the hadron. In the DGLAP
region (ζ < x < 1) [3], the parameter b gives the location
of the quark where it is pulled out and put back
to the nucleon whereas in Efremov-Radyushkin-
Brodsky-Lepage region (−ζ < x < ζ) it describes the
location of quark-antiquark pair inside the nucleon.
The fundamental quantity ET þ 2 ~HT describes the Boer-

Mulders function h⊥1 and gives the distribution of polarized
quarks inside the unpolarized nucleons in the opposite
direction. The first moment of ETðx; 0; 0Þ þ 2 ~HTðx; 0; 0Þ is
normalized as

Z
1

−1
dxðETðx; 0; 0Þ þ 2 ~HTðx; 0; 0ÞÞ ¼ κT; ð16Þ

where κT gives the average position of quarks considering
them in the x̂ − ŷ plane in such a way that they are with
spin along x̂ direction and shifted in ŷ direction in an
unpolarized target relative to the transverse center of
momentum. The term ET þ 2 ~HT gives the deformation
in the center of momentum frame due to spin-orbit

correlation and can be defined in terms of impact parameter
space as follows:

ETðx; b2Þ þ 2 ~HTðx; b2Þ

¼
Z

d2Δ⊥e−ib·ΔðETðx; 0; tÞ þ 2 ~HTðx; 0; tÞÞ: ð17Þ

From Eqs. (5), (9) and (12) we can compute ET þ 2 ~HT
for the cases of scalar diquark spin-0 and axial-vector
spin-1 and the results for S ¼ 0 and S ¼ 1 components can
be expressed as

ð2 ~HTðx; 0; tÞ þ ETðx; 0; tÞÞ0

¼ 2M
Z

d2k⊥
g2sð1 − xÞ5ðMxþmÞ2

xL2
1L

2
2

;

ð2 ~HTðx; 0; tÞ þ ETðx; 0; tÞÞ1

¼ −2M
Z

d2k⊥
g2Að1 − xÞ4
xL2

1L
2
2

; ð18Þ

where

L1 ¼ k2⊥ −M2xð1 − xÞ þM2
xxþM2

Λð1 − xÞ;
L2 ¼ k⊥ − ð1 − xÞΔ2⊥ −M2xð1 − xÞ þM2

xx

þM2
Λð1 − xÞ: ð19Þ

Using Eq. (14), we can now calculate the explicit
contribution for the up and down quarks for each of
the GPD and substituting them further in Eq. (18) gives
the combination ð2 ~HTðx; 0; tÞ þ ETðx; 0; tÞÞS. The term
ETðx; b2Þ þ 2 ~HTðx; b2Þ in impact parameter space can
be obtained from Eq. (17). We have taken the following
value of the masses as input parameters:

M ¼ 0.938 GeV; m ¼ 0.5 GeV;

Mu
x ¼ 0.4972 GeV; Mu

Λ ¼ 0.9728 GeV;

Md
x ¼ 0.7918 GeV; Md

Λ ¼ 0.9214 GeV: ð20Þ

FIG. 2 (color online). ðET þ 2 ~HTÞq (q ¼ u; d) as function of b⊥ for fixed values of x for the up (left panel) and down (right panel)
quarks.
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We have presented in Fig. 2, 2 ~HT þ ET for the up and down
quarks as function of b⊥ for fixed values of x. The
magnitude of the term 2 ~HT þ ET is found to increase as
the value of the b⊥ decreases or in other words the
distribution peaks are highest at b⊥ ¼ 0. As the term
basically describes the correlation between the quark spin
and angular momenta, we can say that the partons are
distributed mostly near b⊥ ¼ 0 which is the center of
momentum.Aswemove away from the center ofmomentum
towards larger values of b⊥, the density of partons decreases.
It is also observed that as the value of x increases the
magnitude of 2 ~HT þ ET decreases. The difference between
the magnitudes of 2 ~HT þ ET is more towards the lower
values of b⊥.

IV. SPIN DENSITIES

In this section, we define the three-dimensional den-
sities: (a) ρðx; b⊥; λ;ΛÞwhich gives the probability to find a
quark with momentum fraction x and transverse position
b⊥ with light-cone helicity λð¼ �1Þ and longitudinal
polarization Λð¼ �1Þ. (b) ρðx; b⊥; s⊥; S⊥Þ which gives
the probability to find a quark with momentum fraction x
with transverse position b⊥ and transverse spin s⊥ in the
proton with transverse spin S⊥. We have

ρðx;b⊥;λ;ΛÞ

¼ 1

2

�
Hðx;b2Þþbjϵji

Si

M
E0ðx;b2ÞþλΛ ~Hðx;b2Þ

�
; ð21Þ

ρðx; b⊥; s⊥; S⊥Þ ¼
1

2

�
Hðx; b2Þ þ siSi

�
HTðx; b2Þ −

1

4M2
Δb

~HTðx; b2Þ
�
þ bjϵji

M
ðSiE0ðx; b2Þ

þ si½E0
Tðx; b2Þ þ 2 ~H0

Tðx; b2Þ�Þ þ sið2bibj − b2δijÞ
Sj

M2
~H00

Tðx; b2Þ
�
: ð22Þ

They depend on b⊥ only via b2⊥ ¼ b2 due to rotational
invariance and we can define

f0 ¼ ∂
∂b2f; f00 ¼

� ∂
∂b2

�
2

f; Δbf¼4
∂
∂b2

�
b2

∂
∂b2

�
f;

ð23Þ

with two-dimensional antisymmetric tensor ϵij, ϵ12 ¼
−ϵ21 ¼ 1 and ϵ11 ¼ ϵ22 ¼ 0. TMDs and impact parameter
dependent parton distribution functions are related to each
other and contain valuable information about the structure
of the nucleon [44]. The relations read as follows:

f1 ⟷ H; f⊥1T ⟷ −E0; g1 ⟷ ~H;

h1 ⟷ HT − Δb

~HT

4M2
; h⊥1 ⟷ −ðE0

T þ 2 ~H0
TÞ;

h⊥1T ⟷ 2 ~H00
T; ð24Þ

where f⊥1T and h⊥1 are Sivers and Boer-Mulders distribution
functions respectively, f1 denotes the unpolarized quark
distribution, g1 the quark helicity distribution and h1 is the
quark transversity distribution.
In order to study the spin densities in the present model

for the up and down quarks, we have fixed the value of x
here. In Eq. (21), the first term H describes the density of
unpolarized quarks in the unpolarized proton. The term
with ~H reflects the difference in density of quarks with
helicity either being equal or opposite to the proton helicity.
The term containing E0 describes a sideways shift in the
unpolarized parton density when the proton is transversely
polarized. Equation (22) receives contribution from

the monopole H
2
, dipole −1

2
sibjðE0

T þ 2 ~H0
T=MÞ and quad-

rupole 1
2
siSiðb2x − b2yÞ ~H00

T=M2 terms. The monopole term
H
2
in Eq. (21) describing the unpolarized quark density gets

further modified due to the chiral odd terms HT and Δb
~HT

in Eq. (22) where both quark and the proton are trans-
versely polarized. The dipole structure can be either
obtained from the chiral even E0 appearing in the longi-
tudinal spin distribution [Eq. (21)], from the chiral odd
contribution E0

T þ 2 ~H0
T from the transversely polarized

quarks in [Eq. (22)] or both. The term ~H00
T in Eq. (22)

describes the quadrupole structure when both quark and
proton are transversely polarized.
The chiral even terms Hðx; 0; tÞ and Eðx; 0; tÞ can be

obtained following Ref. [43] and the expression for S ¼ 0
and S ¼ 1 diquark are respectively expressed as

H0ðx;0; tÞ¼ 1

ð1−xÞ
�
ðMxþmÞ2ð1−xÞ4I3þð1−xÞ4

×

�
I1þ I2

2
þ
�
M2xð1−xÞ−M2

xx−M2
Λð1−xÞ

−m2ð1−xÞ− ð1−xÞ2Δ2⊥
2

�
I3

��
;

H1ðx;0; tÞ¼−
2ð1−xÞ2

x

�
I1þ I2

2
þ I3

�
M2xð1−xÞ−M2

xx

−M2
Λð1−xÞ− ð1−xÞ2Δ2⊥

2

��
;

E0ðx;0; tÞ¼−2MðMxþmÞð1−xÞ4I3;
E1ðx;0; tÞ¼ 2MðMxþmÞð1−xÞ4I3: ð25Þ
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Here

I1 ¼ π

Z
1

0

ð1 − αÞdα
D2

;

I2 ¼ π

Z
1

0

αdα
D2

;

I3 ¼ π

Z
1

0

αð1 − αÞdα
D3

;

D ¼ αð1 − αÞð1 − xÞ2Δ2⊥ −M2xð1 − xÞ
þM2

xxþM2
Λð1 − xÞ: ð26Þ

The FT for different contributions discussed in Eqs. (21)
and (22) are expressed as

−
1

2

sibjðET
0ðx;b⊥Þþ2 ~H0

Tðx;b⊥ÞÞ
M

¼ sibj
2M

Z
Δ2dΔ
2π

J1ðΔbÞðETðx;0; tÞþ2 ~HTðx;0; tÞÞ;

ð27Þ

1

2
siSi

�
HTðx; b⊥Þ − Δb

~HTðx; b⊥Þ
4M2

�

¼ 1

2
siSi

�Z
ΔdΔ
2π

J0ðΔbÞHTðx; 0; tÞ þ
4

4M2

Z
Δ2dΔ
2π

×

�
J1ðΔbÞ þ

1

2
ΔbðJ0ðΔbÞ − J2ðΔbÞÞ

�
~HTðx; 0; tÞ

�
;

ð28Þ

1

2
siSiðb2i −b2jÞ

~H00
Tðx;b⊥Þ
M2

¼ 1

2M2
siSiðb2i −b2jÞ

Z
ΔdΔ
2π

�
−
1

2
Δ2J0ðΔbÞ ~HTðx;0; tÞ

�
;

ð29Þ
−
1

2
Sibj

E0ðx; b⊥Þ
M

¼ 1

4πM
Sibj

Z
Δ2J1ðΔbÞEðx; 0; tÞdΔ;

ð30Þ

1

2
SjbiE0ðx; b⊥Þ ¼ −

1

4π
Sjbi

Z
Δ2J1ðΔbÞEðx; 0; tÞdΔ;

ð31Þ
1

2

�
SjbiE0ðx; b⊥Þ − sibjðET

0ðx; b⊥Þ þ 2 ~H0
Tðx; b⊥ÞÞ

M

�
;

¼ −
1

4π
Sjbi

Z
Δ2J1ðΔbÞEðx; 0; tÞdΔ

þ 1

4π

Sibj
M

Z
Δ2dΔJ1ðΔbÞðET

0ðx; 0; tÞ þ 2 ~H0
Tðx; 0; tÞÞ

ð32Þ

where J0ðΔbÞ; J1ðΔbÞ; J2ðΔbÞ are the Bessel functions of
first kind.
As, in the present work, we are emphasizing on the spin

densities of the valence quarks in impact parameter space,
the value of x is taken to be fixed as x ¼ 0.5. This is
primarily because the valence quarks are supposed to
dominate at large and intermediate x ðx ≥ 0.2Þ. To get
the clear picture of the densities of various contributions we
have plotted them as function of bx and by at fixed values of
x. In Fig. 3, we have presented the result for the monopole

ρρ ρ

FIG. 3 (color online). The monopole contributionH=2 for the unpolarized quarks in the unpolarized proton for the up (left panel) and
down (right panel) quarks.
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contribution for unpolarized quarks in an unpolarized
proton for the up and down quarks H=2. We observe that
the distribution for the up quark is more spread as compared
to the distribution of the down quark and is almost twice in
magnitude. In Fig. 4 we have presented the results for the
dipole contribution − 1

2
sibjðE0

T þ 2 ~H0
TÞ=M for x̂-polarized

quarks in an unpolarized proton. It is observed that the
distribution has a reflection symmetry along the ŷ direction
and all orientations are equally probable in the positive and
negative ŷ direction. The density obtained for the up quark
is however greater than the density obtained for the down
quark. In case the monopole term H=2 is multiplied by the
quark charge and the sum over all the flavors of quarks is
taken, the nucleon parton charge density in the transverse

plane is obtained. In Fig. 5, we have shown the results for
the sum of the monopoleH=2 and the dipole − 1

2
sibjðE0

T þ
2 ~H0

TÞ contributions. This results in the distortion in the
impact parameter space and the distortion is found to be
towards the positive y-axis for the up quark. A compara-
tively smaller distortion is observed for the down quark.
When the quarks are transversely polarized in an unpolar-
ized proton, the dipole contribution introduces a large
distortion transverse to both the quark spin and the
momentum of the proton. This in turn suggests that quarks
in this situation also have a transverse component of orbital
angular momentum which is related to the nonvanishing of
the Boer-Mulders function describing the distribution of the
polarized quarks inside the unpolarized proton. Thus, a

ρ ρ

FIG. 4 (color online). The dipole contribution − 1
2
sibjðE0

T þ 2 ~H0
TÞ=M for the transversely polarized quarks in the unpolarized proton

for the up (left panel) and down (right panel) quarks.

ρ ρ

FIG. 5 (color online). The sumofmonopoleH=2 and dipole contribution−1
2
sibjðE0

Tþ2 ~H0
TÞ for the up (left panel) and down (right panel)

quarks.
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large distortion suggests a large value of first moment
of ET þ 2 ~HT .
In Fig. 6 the results of the dipole contribution − 1

2
SibjE0

for the unpolarized quarks in the transversely polarized
proton have been presented. It is clear that the dipole
contribution is twice as larger for the up quark as compared
to the down quark and the distribution is more spread over
the bx and by plane for the up quark than the down quark. In
Fig. 7 we have shown the results for the sum of contri-
butions coming from the monopole H and the dipole term
−1
2
SibjE0 (which in this case is for transversely x̂-polarized

proton for the up and down quarks). One can see that the
distortion is obtained and it is larger for the up quark than
for the down quark. This is basically due to the presence of

the E0 term which already has a large magnitude for the
up quark.
In Figs. 8 and 9 we have presented the results for the

monopole 1
2
siSiðHT − Δb

~H0
T=4M2Þ and the quadrupole

1
2
siSiðb2i − b2jÞ ~H00

T=M2 terms where the quarks and protons
are transversely polarized. We observe that the sign flips for
up and down quarks for both contributions. The opposite
sign for monopole 1

2
siSiðHT − Δb

~H0
T=4M2Þ and quadru-

pole 1
2
siSiðb2i − b2jÞ ~H00

T=M2 term is due to the sign differ-
ence in the up and down quark’s x dependence of HT and
~H0
T as predicted by the model. It is also seen that the

monopole term for the up quark is more spread than
the down quark and in the case of quadrupole contribution,

ρ ρ

FIG. 6 (color online). The dipole contribution − 1
2
SibjE0 for the unpolarized quarks in the transversely polarized proton for the up (left

panel) and down (right panel) quarks.

ρ ρ

FIG. 7 (color online). The sum of monopoleH=2 and dipole contribution − 1
2
SibjE0=M for the unpolarized quarks in the transversely

polarized proton for the up (left panel) and down (right panel) quarks.
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the up quark distribution is again more spread as compared
to the down quark distribution which is spread over the
small region in the plane with opposite sign. Similar results
have also been obtained for nucleon spin densities in light-
front constituent quark model [34,35].
In Figs. 10, 11 and 12 we have presented the results

for dipole 1
2
SjbiE0=M, total dipole 1

2
½SjbiE0−sibjðE0

Tþ
2 ~H0

TÞ=M� and the quadrupole siSjbibj ~H
00
T=M2 contribu-

tions for x̂-polarized quarks when the proton is trans-
versely polarized in the ŷ direction. The distortion due to
the dipole contribution 1

2
SybxE0 in Fig. 10 gets rotated

with respect to the results shown in Fig. 6 and the total
dipole contribution in Fig. 11 is obtained from the second
dipole term considered in Fig. 4 with the additional factor

of SjbiE0. The result is sizeable and it is observed that the
density is larger for up quark than for the down quark.
However, for the quadrupole term siSjbibj ~H

00
T=M2, the

result for the up quark is well spread over the plane
whereas for the down quark the distribution is spread in
almost half of the region as compared to the up quark.
Extensive work has been done in the light-front constitu-
ent quark model [35] where the first moment of spin
densities has been studied for valence quarks. However, in
the present work we have studied the spin densities over a
fixed value of x. One can further improve the results by
considering the meson cloud of the nucleon at the
hadronic scale by including its contribution in the
evolution [45,46].

ρ ρ

FIG. 8 (color online). The monopole contribution 1
2
siSiðHT − Δb

~H0
T=4M2Þ for the quarks in the proton polarized in the same direction

for the up (left panel) and down (right panel) quarks.

ρ ρ

FIG. 9 (color online). The quadrupole contribution 1
2
siSiðb2i − b2jÞ ~H00

T=M2 for the quarks in the proton polarized in the same direction
for the up (left panel) and down (right panel) quarks.
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ρ ρ

FIG. 10 (color online). The dipole contribution 1
2
SjbiE0=M for x̂-polarized quarks in a proton polarized in ŷ direction for the up

(left panel) and down (right panel) quarks.

ρ ρ

FIG. 12 (color online). The quadrupole contribution siSjbibj ~H
00
T=M2 for x̂-polarized quarks in a proton polarized in ŷ direction for the

up (left panel) and down (right panel) quarks.

ρ ρ

FIG. 11 (color online). The total dipole 1
2
½SjbiE0 − sibjðE0

T þ 2 ~H0
TÞ=M� for x̂-polarized quarks in a proton polarized in ŷ direction for

the up (left panel) and down (right panel) quarks.
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V. SUMMARY AND CONCLUSIONS

In the present work, we have studied the chiral odd GPDs
in the impact parameter space. We have considered a model
with the quark-proton scattering amplitudes at leading
order with proton-quark-diquark vertices. It corresponds
to a two-body process consisting of a struck quark and a
diquark state. In order to obtain the explicit contributions
from up and down quarks, we have considered both the
scalar (spin-0) and the axial-vector (spin-1) configurations
for the diquark. Using the quark-proton helicity amplitudes,
we have calculated the chiral odd GPDs for the case of zero
skewness when the momentum transfer is in the totally
transverse direction. In addition to this, we have also
studied the spin densities for the up and down quarks
for monopole, dipole and quadrupole contributions for
unpolarized and polarized quarks in unpolarized and
polarized proton.
For the case when unpolarized quarks are present in the

unpolarized proton the density distributions for the monop-
ole H and dipole −1

2
sibjðE0

T þ 2 ~HTÞ terms are found to be
larger for the up and down quarks and when we take the
contributions from both the terms, the density distribution
gets distorted in the plane. Similarly, when we consider the
monopole contributions for an unpolarized proton and the

dipole contribution from a transversely polarized proton,
the density distribution again gets distorted. We have also
obtained the results for the polarized quarks in the polarized
proton for the monopole 1

2
siSiðHT − Δb

~H0
T=4M2Þ and the

quadrupole 1
2
siSiðb2i − b2jÞ ~H00

T=M2 contributions. Here
again we find the sign flip for the up and down quarks
in the monopole and quadrupole contributions which is due
to the different sign obtained for the HT and ~HT in the
model. We have also considered the x̂-polarized quarks in
the ŷ-polarized proton and the spin distribution is rotated
with respect to the results obtained for unpolarized quarks
in unpolarized proton. The shift obtained here is however in
the same direction which leads to the same sign of the
magnetic moment of the up and down quarks. Similar
results are obtained for the case of quadrupole contribu-
tions. The spin densities provide a complete description of
the spin structure of the nucleon and its relation with TMDs
could be tested in future experiments.
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