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The gravitational form factors are related to the matrix elements of the energy-momentum tensor 7+
Using the light front wave functions of the scalar quark-diquark model for a nucleon predicted by the
soft-wall AdS/QCD, we calculate the flavor-dependent A(Q?), B(Q?) and C(Q?) form factors. We also
present all the matrix elements of the energy-momentum tensor in a transversely polarized state. Further,
we evaluate the matrix element of the Pauli-Lubanski operator in this model and show that the intrinsic spin

sum rule involves the form factor C. The longitudinal momentum densities in the transverse impact
parameter space are also discussed for both unpolarized and transversely polarized nucleons.
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I. INTRODUCTION

Understanding the spin structure of the proton, which
means how the proton spin (1/2) is distributed among its
constituent quarks and gluons, is one of the fundamental
problems in hadron physics. Most of the studies, both
theoretical and experimental, mainly aim at the longitudinal
spin or helicity. Understanding the transverse spin and
transverse angular momentum of the proton is a much more
involved problem. The complications associated with the
transverse angular momentum are best understood in the
light front framework, in which one gets an intuitive picture
of deep inelastic electron-proton scattering processes. The
longitudinal angular momentum operator is kinematical on
the light front, whereas the transverse angular momentum
and rotation operators are dynamical. This implies that the
partonic structure of the transverse spin is different from
that of the longitudinal spin structure of the proton.
Recently, several sum rules have been proposed in the
literature about transverse spin. In [1,2] a sum rule was
derived in terms of the intrinsic transverse spin operator on
the light front. Unlike the transverse rotation operator or
Pauli-Lubanski operator, matrix elements of the intrinsic
spin operator are frame independent. This sum rule was
explicitly verified in perturbation theory for a dressed quark
at one loop. Another sum rule was proposed in [3]
involving the transversity distribution. A new transverse
polarization sum rule was proposed in [4-6] which was
interpreted at the partonic level. This was partially moti-
vated by [7], where a relation between the expectation
values of equal time transverse rotation operators and the
gravitational form factors is derived using delocalized
states in the rest frame of the nucleon. Authors of [4,5]
analyzed the matrix elements of the transverse component
of the Pauli-Lubanski operator for a transversely polarized
state and related it to the gravitational form factors A(0) and
B(0). In [8-10], it was pointed out that the above result is
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frame dependent. In fact, the only frame-independent result
is obtained in terms of the intrinsic spin operators on the
light front; the corresponding relation not only involves
A(0) and B(0) but also the higher twist term C(0), and the
contribution from C(0) is not suppressed. In this work, we
verify the statements made in [10] in a model calculation.

Here, we evaluate the gravitational form factors (GFFs)
for a transversely polarized proton from the energy-
momentum tensor and verify the sum rule for the transverse
spin in a light front quark-diquark model. For this work, we
take a phenomenological light front quark-diquark model
recently proposed by Gutsche et al. [11] with the corrected
parameters given in Ref. [12]. In this model, the diquark is
considered to be scalar (i.e., scalar diquark model) and the
light front wave functions for the proton are constructed
from the wave functions obtained in light front AdS/QCD
correspondence [13]. The parameters in this model are fixed
by fitting to the electromagnetic form factors of the nucleons.
Using the overlap formalism of light front wave functions,
we calculate the GFFs from the energy-momentum
tensor (T*) for a transversely polarized proton. The intrinsic
spin operators which can be derived from the transverse
components of the Pauli-Lubansky operator are shown to
satisfy the sum rule consistent with [10].

The Fourier transform of the gravitational form factor in
the impact parameter space has interesting interpretations
[14,15]. The Fourier transform of the form factor A(Q?)
gives the longitudinal momentum density (p™ density) in
the transverse impact parameter space. We have evaluated
this momentum density in our model. For an unpolarized
nucleon the momentum density is axially symmetric
whereas for a transversely polarized nucleon, the deviation
from the axially symmetric distribution is found to be
dipolar in nature.

In Sec. II, we describe the model very briefly before
providing the results for the GFFs in Sec. III. In Sec. IV, we
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derive the matrix elements of the energy-momentum tensor
and the Pauli-Lubanski operator for a transversely polar-
ized proton state with transverse momentum P+ = 0. The
sum rule for the intrinsic transverse spin obtained from the
Pauli-Lubanski operator involves the GFFs A(0), B(0) and
C(0). In Sec. V, the longitudinal momentum densities in the
transverse impact parameter space for both unpolarized and
transversely polarized nucleons are discussed. In Sec. VI,
we summarize our main results. The detail expressions of

the matrix elements of 7% are provided in the Appendix.

II. LIGHT FRONT QUARK-DIQUARK MODEL
FOR THE NUCLEON

In the quark-scalar diquark model, the nucleon with three
valence quarks is considered as an effectively composite
system of a fermion and a neutral scalar bound state of
diquark based on one loop quantum fluctuations. The
generic ansatz for the massless light front wave functions
(LFWFs) as proposed in [11] is

Wiq(kaﬂ = 40511)(3@1&)»

k' +ik> (5
l//tq<ka1_) == M 4051 >(x7k¢)v
3 k' —ik*
1//+q(x’kL) = M (/)£1>(x’ kl)’

1

yo, (v k) = o) (x. kL), (1)

where l//j];] ,(x. k1) are the LFWFs with specific nucleon
helicities 4y = =+ and the struck quark ¢ has a spin 4, = =+,

where the plus and minus correspond to —l—% and —%

respectively. For the nucleons, g can be either an up (u)

or down (d) quark. The functions (py)(x,k 1) and

9051,2) (x,k ) are the wave functions predicted by soft-wall

AdS/QCD [13]
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70‘%( /x>x“5’)(1 -X
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The normalizations of the Dirac and Pauli form factors are
fixed as

(i) 4m

i (i)
o)) (x.k.) = N} s

1{(Q?)
HOUN

15(0%)
130)

F{(Q*) =n, F3(0%) =k, (3)
so that F{(0) = n, and F3(0) = k, where n, =2, n; = 1
and the anomalous magnetic moments for the u and d
quarks are x, = 1.673 and k; = —2.033. The structure

integrals 17(Q?) obtained from the LFWFs have the form
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TABLE I. List of the parameters used in the light front quark-
diquark model for x = 406.6 MeV.

Parameters u d
a 0.035 0.20
p( 0.080 1.00
a® 0.75 1.25
»2 —0.60 —0.20
ND 29.180 33.918
N® 1.459 1.413

1 1
ﬁ@%—Adm%h—wWW&ug%

X exp [—4Q—K2210g(1 /x)] , (4)

1
13(0%) = 2% dxxz";l)‘l(l _x)2+2b§1>gq(x>

QZ
X exp {—Wlog(l/x)] ) (5)
with
(1-x)? K
2\ 2
Ry 0% = 1 o4 () 4 poai /)
QZ
X |:1 —4K210g(1/x):|’ (6)
@ ) (1
o,(x) = %x“sfu)‘“é)(l - x)bﬁ’)_bg’)' (7)
Ny

In this model, the value of the AdS/QCD parameter « is
taken to be 406.6 MeV and the other parameters are fixed
by fitting to the electromagnetic properties for the proton
and neutron such as form factors, magnetic moments and
charge radii [12]. For completeness, the parameters are
listed in Table 1. Here, we should mention that the value of
the parameter x depends on the exact AdS/QCD model;
here we use the value of k = 406.6 MeV as determined by
fitting the nucleon form factors with experimental data
in Ref. [16].

ITII. GRAVITATIONAL FORM FACTORS

The GFFs which are related to the matrix elements
of the stress tensor (7#) play an important role in
hadronic physics. For a spin 1/2 composite system, the
matrix elements of 7 involve four gravitational form
factors [4,10]
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FIG. 1 (color online).
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contributions are shown in (b) and (c) and the diquark contributions are shown in (e) and (f).

(P.S|T(0)|P.S)=U(P".S") | ~Bi(a*)=;

prpe

F(A) +B(¢) g (P 1 P)

+Ci(q?) i

xU(P,S),

7'q" —q* 9"

+ Ci(qz)Mng”y

(8)

where P = (P + P')/2 and ¢ = P' — P and A(q?), B(¢?),
C(¢*) and C(g?*) are the GFFs. The spin-nonflip form
factor A is an analog of the Dirac form factor F. A(g?)
allows us to measure the momentum fractions carried by
each constituent of a hadron. According to Ji’s [17] sum
rule, 2(J,) = A,(0) + B,(0). Thus, one has to measure the
spin-flip form factor B to find the quark contributions to the
nucleon spin. B(g?) is analogous to the Pauli form factor
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F, for the vector current. In the light front representation,
one can easily compute spin-nonflip and spin-flip GFFs by
calculating the ++ component of the matrix elements of
the stress tensor [18] as

P+ a MGt P D = A, ©)
= (2
et QDip = (g i) ()

2(P*)? 2M

Here we consider the Yukawa Lagrangian

£ = L O = @, - iy + £ 9)(0,0)

1
- Elqud) + gy, (11)

which leads to the corresponding energy-momentum tensor
as

. v = u A v v
e =slpr' (O y) —wr 0yl + () (0 ¢)—g*L.  (12)
Using the two-particle Fock states for J° = +1 and J° =
— 1 and the light front wave functions given in Eq. (1), we
evaluate the GFFs A(q?) and B(q?) depending on different
flavors (struck quark) as

_ Ti(q*) + Tip(4?)
17(0) ’

Alq®) = A%(q%) + A" (¢?) (13)

I2q(qz) —Izb(flz)
13(0) ’

B(¢*)=B(¢*)+B"(¢*)=2M, (14)

where A%/%(¢?) and 79" (g?) are the GFFs and structure
integrals corresponding to the quark/scalar diquark. The
explicit expressions of the structure integrals are listed in
the Appendix. The integrals /¢(Q?) in the denominators on
the right-hand side of Egs. (13) and (14) have the form

I?(Qz) _ /)1 dxxz“ﬁzl)(l _ X)thgll)Rq(x, QZ)
Q2
X exp [—mlog(l/x)], (15)

1
5(0%) =2 [ w11 =2 o 0

X exp [—%log(l /x)} , (16)

with R, (x, Q?) and 0,(x) as defined in Egs. (6) and (7). In
Figs. 1(a) and 1(b), we show the total A(g*) and B(q?)
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depending on different struck quarks. The contributions of
the quark and diquark to the total spin-nonflip and spin-flip
GFFs are shown in Figs. 1(c)-1(f). One notices that at
zero momentum transfer, A(0) = A4(0) + A?(0) = 1 and
B(0) = B4(0) + B®(0) = 0 as expected.

IV. MATRIX ELEMENTS OF THE
ENERGY-MOMENTUM TENSOR

Here we consider the transversely polarized state to
calculate the matrix elements of 7#. The transversely
polarized state (polarized along the positive x direction) is
given by

1

P S(l)> =
’ V2

(W3, (PH, PL) + |5, (P, PL)),  (17)

where \Il;p(\I/%p) represents the two-particle Fock state

corresponding to J* = + % (J, = —%) For the transversely

polarized state we calculate the matrix elements of 7+ for

\I/gp going to \IJ%P and \Ilﬁp

right-hand side of Eq. (8), we use the matrix elements of the
different y matrices listed in the Appendix of Ref. [10].
Here we list only the final expressions of all the matrix
elements for zero skewness and the detailed calculations are
given in the Appendix,

going to \I/;p. To evaluate the

(W), (P03, (P)) + (03, (P')| T+ W) (P))

Z(IZq - Izb) .
W(“Iﬁ)

2P g, (18)

=2(P")?

= B(Q%)

n

(U (P)|TH |03, (P)) + (U3, (P)| T[] (P))
_ 2(Zag —Lup)
13(0)
P+
= B(Qz)ﬁ(iqliqi)’ (19)

n

P*(iq' q%)

(03, (P)| T2 23, (P)) + (W3, (P)|T+2| W], (P))
— 2(I6q - Z'617)

o P
— B0 T, (20)
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(W], (P)|T |, (P)) + (W, (P")|T*~ W], (P)) (P', S| T+ |P, s1)
_ 2(Zgy —Isp) (ig?)  (Tsg—Tsp) .,
IZ(O) + - 13(0) (l‘h_)
= —{A(QQ)(ZM,,) —B(Qz)(?wj+ C(QZ)Ll(;Ij = —M,[A(Q%) +2C(0%)](iq?). (25)

We see from Eq. (22) that the matrix element of 7+ in a
+ C(Q?)(4M n):| (ig?). (21)  transversely polarized state does not depend on the form
factor A(Q?). It depends only on the form factor B(Q?).

We keep only terms linear in q, which are relevant for Whereas, Eq. (25) implies that the matrix element of T+
evaluation of the matrix elements of transverse spin. The ~ depends on both € (Q?) and A(Q?). For nonzero skewness,
matrix elements of 7% up to O(q) are the matrix element of 72 has a term proportional to g* as
shown in [10]. But the matrix element of 72 in this quark-

2(Zyy —Iy) diquark model is zero when we consider only the term

(P SWIT [P, SW) = (PT)? 14(0) (iq1) linear in q. The main reason is that the LFWFs are
p 22 independent of quark mass in this model. For zero skew-
= B(Q?) (P7) (ig?). (22) ness, the results of this quark-diquark model are consistent
M, with Ref. [10]. Using Egs. (13) and (25), we evaluate the
' )|t an _ ?(QZ) form factor. In Fig. 2 we show the form factor
(P, STTT|P, ) =0, (23) ¢ (Q?) for the different struck quarks. The quark and the
' o)7t2 Wy _ diquark contributions are shown in Figs. 2(b) and 2(c)
(P, STTT=|P,SV) =0, (24) respectively.
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FIG. 2 (color online).  Plots of the nucleon gravitational form factor C(Q?). The contributions of the quark and diquark are shown in (b)
and (c).
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A. Matrix element of the Pauli-Lubanski operator (PS] f(l3| pPst)

The Pauli-Lubanski operator is defined as [10] i 14 ) PR '
= =2 (22’6 (0) |5 — (P'SV[T}* (0)|Ps)
— q:o

1 . -
Wi=3FiP + K’P? - EE%P—, (26) (28)

and
where F' and E' are the light front transverse rotation and

transverse boost operators. K> is the longitudinal boost _
operator. The matrix elements of the operators F2, K> and ~ (PSWW|EF|PS™)

Eiz in a transversely polarized state are given b 0
yP sven oy = —i(2)8(0) |- (PSO|TH ()| PSVY |
aA2 q=0
(PSWIF?|PSM) (29)
0

— AP0 5 (PSOITOPS) | -
OA_ where A = P’ — P. Using the results of the individual
) . " matrix element in Egs. (27)—(29), the matrix element of the
) AL (PSTIT(0)|PS >} o (27) total Pauli-Lubanski operator W! can be written in this

q=!

quark-diquark model as
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FIG. 3 (color online). The longitudinal momentum densities for the active u quark in the transverse plane, upper panel for an
unpolarized nucleon, lower panel for a nucleon polarized along the x direction. (b), (d) are the top views of (a), (c) respectively.
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2Pt |2 \o¢ 19(0)
2

(PSOIW!|PSy  (PSW|W!|PSI)
1 {P* {3(I§q +Z4;) }
2 q=0
2 13(0)
+%<P+)2{2I§’(0)_2I§(0)H

(PSO|PsMy  — (27)%2P*8(0)
Pt {_ISq(O)_ISb(O)}
53(0)  15(0)

= 557 |3 Ma{24(0) + B(0) +2C(0)}
P~ ,B(0)
]
M,
2

1 {PJF

n

=—"[A(0) + B(0) + C(0)]. (30)

One can notice that as B(0) = 0 [Fig. 1(b)], only the matrix
element of 77~ makes a contribution to the matrix element
of the total W' operator in a transversely polarized state.

p% (b) [fm™2]

FIG. 4 (color online).
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For different struck quarks, the matrix element of the total
W! operator will give different values as C(0) is different
for u and d quarks. The nonvanishing contribution of C to
the matrix element of Pauli-Lubanski operator W' has been
reported previously in [10,19,20].

For a massive particle like a nucleon, the intrinsic spin
operators can be related with the Pauli-Lubanski operators
through the following relations [1,2,10],

M,lji:Wi—Pij3
(1 N .
=€V (EF/PJF + K3P —EEJP‘) - P73,
3 W+ 3 1 1 p2 2 pl

where J? is the helicity operator. The matrix element of the
intrinsic spin operator in a transversely polarized dressed
quark state has been explicitly demonstrated in [2].
The matrix element of the intrinsic spin operator in a
transversely polarized state in the quark-diquark model is
given by

(b) 06 0.4
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The longitudinal momentum densities for the active d quark in the transverse plane, upper panel for an

unpolarized nucleon, lower panel for a nucleon polarized along the x direction. (b), (d) are the top views of (a), (c) respectively.
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(psW| gt psWy 1 (PSWw!psW)

(PsOIpsMy M, (PsW|psh)

= J1A0) + BO) + C0)). (32)

In [10], the authors have described in detail whether the
matrix elements of the intrinsic spin operator are frame
independent or not whereas the authors in [4,5] have
claimed that the results are frame independent though they
have calculated only in a frame where P+ = 0.

V. LONGITUDINAL MOMENTUM DENSITY
IN THE TRANSVERSE PLANE

According to the standard interpretation [14,21-24], the
charge and anomalous magnetization densities in the
transverse plane can be identified with the two-dimensional
Fourier transform (FT) of the electromagnetic form factors
in the light-cone frame with g* = ¢° + ¢* = 0. Similar to
the electromagnetic densities, one can evaluate the grav-
itomagnetic density in the transverse plane by taking the FT

PHYSICAL REVIEW D 91, 114026 (2015)

of the gravitational form factor [14,15]. Since the longi-
tudinal momentum is given by the ++ component of the
energy-momentum tensor

Pt = /dx‘dleT++, (33)

it is possible to interpret the Fourier transform of
the gravitational form factor A(Q?) as the longitudinal
momentum density in the transverse plane [15]. For an
unpolarized nucleon the momentum density can be
defined as

o) = [ G aigenss.

- / "9 prn(on)a(e?). (34)
0 T

where b = |b | represents the impact parameter and Jj is
the cylindrical Bessel function of order zero and Q° = ¢ .
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b [hm]
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10
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=

o
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-0.6 -0.3 0 0.3 0.6
b, [fm]

FIG. 5 (color online). The longitudinal momentum densities of a nucleon in the transverse plane for the active quark u, upper panel for
an unpolarized nucleon, lower panel for a nucleon polarized along the x direction. (b), (d) are the top views of (a), (c) respectively.
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Under isospin symmetry, the momentum density is the
same for both a proton and neutron. Due to polarization, the
density gets modified by a term which involves the spin-flip
form factor B(Q?). For a transversely polarized nucleon,
the momentum density is given by [15]

S d 2
Q0 b0)B(QY).

pr(b) =) + sin(y — ) [ 922

(35)

where M, is the mass of the nucleon. The transverse
polarization of the nucleon is given by S, = (cos¢,x +
sin ¢, 9) and the transverse impact parameter is denoted by
b, = b(cos i + sin ¢, $). Without loss of generality, the
polarization of the nucleon is chosen along the x axis i.e.,
¢, = 0. The second term in Eq. (35) provides the deviation
from circular symmetry of the unpolarized density.
Results for the momentum density p(b) for the active
quark u for both unpolarized and the transversely polarized
nucleon are shown in Fig. 3. Similar plots for the active
quark d are shown in Fig. 4. The plots show that the

FIG. 6 (color online).
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unpolarized densities are axially symmetric and have the
peak at the center of the nucleon (b = 0). For the nucleon
polarized along the x direction, the peak of the densities
gets shifted towards the positive y direction and the
densities no longer have the symmetry. It can also be
noticed that the width of the density for the d quark is larger
but the height of the peak is sufficiently small compared to
the u quark. In Figs. 5 and 6, we show the total nucleon p*
densities (fermionic plus bosonic) for both the unpolarized
and the transversely polarized nucleon for different active
quarks u and d respectively. The total angular-dependent
part of the densities is small. So the shifting of the densities
in p7(b) is also very small and it is practically invisible in
Figs. 5(d) and 6(d). However, removing the axially sym-
metric part of the density from p;(b) i.e., if we look at
(pr(b) — p(b)), one can find that the total angular-dependent
part of the density (i.e., distortion from the symmetry)
displays a dipole pattern [Figs. 7(c) and 7(d)]. The
angular-dependentpartof the densities foractive quarks u and
d are shown in Figs. 7(a) and 7(b) respectively. Both plots
show the dipole pattern but it is broader for the d quark than
for the u quark. Though the dipolar distortion for the

(b) 0.6 14

12

10

b [hm]

IS

o

14

12

10

@®

IS

)

-0.6 -0.3 0 0.3 0.6
b, [fm]

The longitudinal momentum densities of a nucleon in the transverse plane for the active quark d, upper panel for

an unpolarized nucleon, lower panel for a nucleon polarized along the x direction. (b), (d) are the top views of (a), (c) respectively.
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The momentum density asymmetry (pr(b) — p(b)) in the transverse plane for a nucleon polarized in the

x direction, (a) for a u quark, (b) for a d quark, (c) for a nucleon when the active quark is « and (d) for a nucleon when the active quark is d.

individual quark is quite large when both quark and diquark
contributions are added together for the nucleon, the dis-
tortions become small irrespective of the struck quark flavor
[Figs. 7(c) and 7(d)].

VI. SUMMARY

The main result of this work is to show that the sum rules
for the intrinsic spin for a transversely polarized proton
involve the form factors A, B, and C'q in agreement with
the claim in Ref. [10]. We demonstrated this in a recently
proposed light front quark-diquark model where the
LFWFs are modeled from the wave functions obtained
from light front AdS/QCD. We also showed explicit Q>
behavior of the gravitational form factors in this model. We
evaluated the longitudinal momentum density (p™* density)
in the transverse plane for both an unpolarized and
polarized nucleon. For a transversely polarized nucleon,
the asymmetries in the distributions for an individual quark
are quite large, but when the contributions from the quark
and the bosonic diquark are considered, the overall

asymmetries in the nucleon become small but are shown
to be dipolar in nature.

APPENDIX A: MATRIX ELEMENTS OF 7*

1. T+*: Up going to up matrix element

T+ = % [0 w) = 0wl + (07 ¢) (07 9)

= i[l//i(é+w+) _ V/15+l/’+] L0 )(0F),  (Al)
fq 2
WP P = g, (P P = 0)) =TS,
]:b 2
(U3,(P.PL = q)|T,; |V, (PT.PL = 0)) = zl‘f((g) 3
(A2)

where
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= 2(P+)? / dxx [xzal (1—x)2+! (& 2x2“2_2(1 — x)22t3 1 <1Og’(<12/x) B szﬂ exp [_ logg/x) QTT

= 2(P+)? / dx(1 = x) [x% (1—x)2rtl 4 (%f) 2x2“2‘2(1 —x)t3 # <logl(<12 ) 4<)162_Q i)zﬂ
{_ log(1/x) x2Q> ]

X exp

> 4(1—x)?
=2(P")Z . (A4)
114(Q%) | Z1n(Q)
ol (Pt P = q)[THH|w] (PF, P+ = 0)) = 2(PT)2 | A, A5
Using the matrix elements Eq. (8),
(W, (PH, P = q) T+ @] (PF, PL = 0)) = 2(P*)?A(QY). (A6)
So,
T14(Q) | T1p(Q)
A QZ — q + . A7
O =mo Ho 7
2. T**: Up going to down plus down going to up matrix elements
F3(0%)
(W3, (POIT 0, (P)) + (W3, (POIT |3, (P)) = ==
Fh(0?)
(W3, (PIT5 195, (P)) + (W3, (P)|T{ |93, (P)) = 123(0) : (A8)
where
d*k | dx - - - -
1(0%) = +y2 [ LT T " Yt T T Nyt
100 = 2(p+7 [ S (Wl Rt (B 4y R )
Ix 7 1 7 Ix 7 0 7
+ il R vl (k) + vt R w0k
) N, 1 .. log(1/x) Q?
— 2(P+)2(1qi)2/de—TEx a2 (] — x)biht2 exp [— 24
= 2(P")*(iq1)2Z 5. (A9)
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2 . - 5 -
7307 = 2P [ Ty [yt (o) +u e R (e ) )
2 1677 RV O k) Fry oy (3 Ky o by

+ {wh Rl k) R (kD)

1
2

N, 1
= 2(PH)2(ig?)2 | dx—2—xata(1 — x)brth42 exp {—

log(1/x) x*Q?
Nl Mn :|

K2(1-x)* 4
= —2(P+)2(iQi)212b7

<xv§p<P'>|T++|W%,,<P>>+<\Pip<P/>|T++|\If§p<P>>=2<P+>2[ 80~ 10

Using the matrix elements from Eq. (8),

2(P+)?

(Wl ()T 03, (P)) <+ (W3, (P) [T+ 4, (P) = B(Q?) = (i)
So,
T5(Q%) T, (Q%)
2\ q _
BQ)=2M "0y o) )
3. T*!: Up going to up matrix element
T = Sy (0'y) — w3y + (07 9)(0'9)
= iy (@'yy) — vl 0w ] + (07 9) ('),
th'q 2
W (PP = T |0, (Pt = 0) = Tl
]:'b 2
W (PP = T o, (Pt = 0) = T8
where

d*k | dx %, 2 - w7 -
F{(Q*) =2P* / e (RO K Dy (e k) + oK wly (k)]

A 1 & log(1/x) Q2
i (2) = T (’Qi)} o [_ ra 4]

=P+ (qllI3q + iQing),
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d*k, dx -
400 =2p [Ty Ry )+ R )

:P+/dx R+ (] = x)2biH N2 21 (] x)Phatd 1 Q0 g
N, log( l/x S 4(1-x)2) [T

+<&>2x2"2‘1(1 x)2b2+31 K (i 2)} { log(1 x) 2Q2]

N, M; log(1/x) (1-x) 4
=P (q} T3 +1q7 Z%), (A17)
, (T34 + T3) (T +T%) . .

(W3, (P) T W3, (P)) = “=rr PHal + =P (i) (A18)

Using the matrix elements from Eq. (8),

1
(W], (P)[TH W] (P)) = A(Q)P*(q}) + 5 (AQ?) +B(Q*)P* (—ial). (A19)
Comparing Egs. (A18) and (A19),
(Z3q +Z3p)
2y _ \3q
AQ) = o
5 T + T3p)

A(Q?) +B(Q%) = W. (A20)

4. T+1: Up going to down plus down going to up matrix elements

o pn T U pn il gt Fi(Q%)
F(0)
(W3, (PIT3[93, (PY) + (5, (PIT3 193, (P)) = s (A21)
2
where
d’k | dx v, 7 - w, 7 -
Fi) =2pt [ S k) [{p R k) T R (R )
+ {wh e R k) (e R (e )
2 2
log(1 2
=2P*( qu_qJ_)/dx—— a1+a2—1(1 _x)b1+b2+3 exp [_LZ/X)QT]
K
= 2P*(iq1q1)Z4q. (A22)
d*k, dx -
1@ =2 [ (e 0wt B+ T R ()}
b 1 1* 7
+ {urli e Kl (e k) + v kv (e )
) Ny 1 .. log(1/x) x*Q?
= -2P"(iq' ¢%) de—TM—nx itatl(] — x)bithtlexp {—m 1
= -2P*(iq} 47 )Z 4. (A23)
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2(I4q I4b)

(W3 (POIT[3,(P) + (W3 (P) T 105, (P)) = =5

P*(iq}q1).
Using the matrix elements from Eq. (8),
+
(W, (P)[TH W3, (P)) + (W3, (P)| T+ W], (P)) = (QZ)M (ig1q?).

We keep only terms which are linear in g, then ignoring the term ¢! ¢7,

(@3 (P T+ W (P)) + (W3, (P)|TH ] (P)) = 0.

5. T*2: Up going to up matrix element

72 = Loy (@) - i B + (07 9) ()

= iy (0'w,) — Wl Ty] + (07 9)(%9).

NS}

q 2

<\:[/T (P+ PL = Q)|T+2|\I/ (P+,PL_O)>—]:;II((§ )’
]:b 2

(W), (P, P = g)|T}?| W], (P PL = 0)) = 15;’((3) |

where

fg(Qz)zzw/%(—k;)[ HE AN ERGHE I TAREN )

:P+/dx[{x2“1(1 _x>2b1+2+ (%)2)62&2—2(1 x)2b»+4 1 <logz€f/x) Q42>}qi
#(§) Pem mapt s iah)| exp -2 2

N, M2 log(1/x) K 4
= P*(q1Z5 —iq} Z5,).

A’k dx
Ao =2 [

2 22
:P+/dx|:{_x2a1+1(1 )2b1+1 + <x?> 2!12—1(1 x)2b7+3 1 <10g?1/x> 4()16 _Qx)2>}qi

N>\ 2 1 2 ) log(1 x20?
" <_2> S U x)2b2+3M2 logzcl/x)( lqi)] exp[_Kzo(gl(—/j:))2 4Q}

e b ek G k) T ekl (k)

=P (3 Zsp, —iq' Z%).

(Tsq+ZIso),, » (Tsq+I5)

(@l (P T2 0] (P)) = 90y ¢ T E)

Using the matrix elements from Eq. (8),
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(W, () T2, (P)) = A(Q)P* T +5 (A(Q?) +B(Q¥)P* (ial)

Comparing Egs. (A31) and (A32),

(Zsq +Zsp)
MO ="
(T5, + Z5)
A(Q*) +B(Q%) = - %‘(—0)

6. T+2: Up going to down plus down going to up matrix elements

K,:]
oL
<

(03, (P)|TF2 |03, (P)) + (W3, (P TP}, (P)) =

;'l@
TN~
Q<
3]
S—

(03, (P)|T32 |03, (P)) + (W3, (P T3], (P)) =

~
[\SRESY
~—~

=]
N—

where

d’k dx
Fie) =2 [

K Dw (k) +y (K v (e kD))
N, 1 {_ log(1/x) Qz]

(=k) [k Dty (e k) w !y (e K Dwt (k)

2 2

=2P%i(q%)? | dx—=——xatel(1 — x)htht3exp =

Nl Mn K2 4
= 2P*i(q1) " Zeq.

d’k | dx

+ e k7wl (k) +ur (e K (k)Y

k%[{wly;(x, k"L)l//i%(& ki) + WIE (x. k"L)Wi%(& ki)}

2092
= -2P"i(¢?)? dxﬂixaﬁaﬁl(l —x)bblexp | — log(1/x) x°Q

N, M, (1 —x)* 4
= —2P*i(q1 )*Z e,
2(Zsq —Zev) . .
(W3, (P) T2, (P)) o (W, (P)[ T2 03, (P)) = == = P )
2
Using the matrix elements from Eq. (8),
P+

(W], (P) [T+, (P)) + (W3, (P)|T*2| W] (P)) = B(Q?) 3y ilal)*
Ignoring the term (g3 )2,

(03, (P)[TH2[ W5, (P)) + (T3, (P)[T+2| W], (P)) = 0.
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7. T*~: Up going to up matrix element

-7 +m?
0"

; 1 1

TH =yl +3 (0+)? + E/lzqﬁz + interaction terms, (A40)

F7(0%)
HOR

F3(0%)
1{(0)

(W] (P+, Pt = q)|T; W] (P*. P =0)) =

(0], (P, Pt = q)|T; W], (PH, Pt = 0)) = (A41)

where

dkydx (kK3 +m?) [ 4., =
FHQ) = [ G [ R

dx [ 5, 1 (1-x)? (1-x)20?
= [ o g

" (ﬁ) (g 1\;2 { (log?IZ/X) - %2> - Q2(14_ . <logg/x) " Q42>
i

K2 23(1—-x)?2  Q? log(1/x) Q?
+1og<1/x>< log(1/x) T) P {‘ 2 T}
=Ty, (A42)

(L]

d*k dx 1 2 7
F5(0%) = /ﬁﬂzxm |:(kJ_ —g) Q4 +/12] [ll/+1(x k//J_)‘//+ (x. kJ_) ‘HI/ (x K Ly E(x, kL)}

Jefro 6] S
() e D)
P

=T, (A43)

Tyq+ I

(W3 (PP = q)[TH W, (P P4 = 0)) = s
1

(A44)

The diquark mass 1 appears only in C(Q?) and is taken to be 0.6 GeV. Using the matrix elements from Eq. (8),
(U, (PF. P = q)[T*7 W], (P, P = 0))
2 2 @ _ 2 ﬂ 2\4(aL)2 L (02 2
A@)(2v + 1) - (@) L+ c(@)4(ah) + Q@) (M), (A45)
If we ignore the (¢*)?-dependent term,

(W], (P+ P = q)|TH [T (P* PL = 0)) = A(Q?)(2M2) + C(Q?)(4M3). (A46)
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So

2 2 1 I7q+I7b
A(Q%) +2C(Q%) = WM T0) (A47)
8. T™: Up going to down plus down going to up matrix elements
:,rfl 2
(PN, (P) + (9, (P9, () =T
1y 7wl T — F(Q%)
(W, (P)IT, 7|03, (P)) + (W3, (P)|T, " |W,,(P)) = 1200) (A48)
where
Pk dx (B +m2) ) o . :
Fi(0?) = / Rl ) e () e R () )
+ {whi Rl k) +ut e K v (e k)
, Ny 1o 1-x)2 Q%1 —x)? log(1/x) 0
_ 2’43_ de_?Ex \+a; 2(1 _x>b1+b2+2 [ 10(g(1/);)) ( y x) —|—m2] exp [_ gl(<2 X) T]
Ty, (A49)
dkydx 1 q\? - -
F(0?) :/ 16;3 - KkL —§> +,12} [{1,,+1 X, k l)y/i%(x,kL)
L Rtk >} {m K] %<x ko) + (e R w0k
i Ny 1T, o b, |1 —x)? Q2(1 —x)2 2_Q_2 _ log(1/x) x*Q?
= 2iq1 | dxg it i {log (1/x) 4 Foy )P e o 4
= ~2i(q7)Zsp. (A50)
2(Zgy — T
(P )Ty P) + (3, 2T () = 2E8 0 i, (as1)
Using the matrix elements from Eq. (8),
(W1, (P T+ [W3,(P)) + (W, (P)| T[], (P)
2 2(L) 2 4a)? A 2
= |AQ)(2M,) = B(Q?) = 7= + C(Q7) — - + C(Q7) (4M,) | (~iq1). (A52)
Ignoring the (g2 )>-dependent term,
(W3 ()T W3, (P)) + (W3, (P) [T+ W], (P)) = [A(Q*)(2M,) + C(Q*)(4My)] (-id?)- (AS3)
So
) “ony L Teq =Ty
A(QY) +2¢(Q°) = M, 10) (A54)

The interaction terms will not contribute in the 2 — 2 process. They will contribute only when we consider the higher order
corrections.
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APPENDIX B: MATRIX ELEMENTS OF T+2 FOR NONZERO SKEWNESS

To calculate the matrix element of the Pauli-Lubanski operator, first we need to evaluate the matrix elements of T+2 for
nonzero skewness. For this section we use the following frame as

M2
P=(P",P,,P")= (P*O—)

2 2
- qg. +M
P =P PP )=(1=-0P" ~q1.775pr
N R (R L e ]
t+ 4%
q:P—P/:<¢P+,ql, §P+ >7 (B])
_ Mg 2 _ 2
where 1 = —=——+ and ¢] = Q.
1. T*2: Up going to down plus down going to up matrix elements
Fa(¢.0%)
(W, (PYITFI0, (P) + (0, (P)T210, (P) = =2,
F§(¢. 0
(W (P () + (0, (P20, (7)) = T2 (82)
2
where
A’k dx (1 —=x"\1/2 - -
F3(¢.0%) =2pP* — vl—C(—k%) p (Kt (k) v LK Oyt (k)
167z 1—x 2 2 2
- {mx Kol (k) +yt (R Dwl (k) ]
1—x 1/2 [ logxlogx’ 11/2
— 4 P+ V1= et et
o | () VR )
. o . o 1 (log x')?
X {[}C '(1 —x)blx’ 2 1(1 —)C/)b2 -x '(1 —x’)hlx 2 1(1 —X)bz] |:2A2 +( )2m
log x/ Q?*log x' log x/
a (1 — by la,—1 1-= Nby+1( 2 \2 1
(=Pt (1 =)™ gl 2K2(1—x’)A§}eXp{ 2«? 21<2(1—x’)2Aq+
= iPTZ5,(¢. Q%) +iP*(q] )*Z5,(¢. Q7). (B3)
b 2 dzkldx 1—x"\1/2 1 T* "o 7 Moo \ 7
Fieoh) =2p | S (T ) V=0 (Wl R (k) + R v (K )
{m](x" K 1( k) + ik w (kD
2
1 —x"\1/2 logxlogx” /2
_4ipt N2 V1=t 8t
s ( ) g[(1 (i —x”J
a ar— a ar— 1 //2<10gx )
X {[x 1(1 —x)”'x” 2 1(1 _x//)bz — X" 1(1 —x”)h'x 2 1(1 _x)bz] |:2A2 + (C] )2m:|
"log x Q?log x" x"log x”
a (] — blllazl_//bz 22 X 1
Tt (=22l 350 —x”)ZA%}eXp{ 22\l =')a,
= iP*Z4,(£, Q%) +iP*(q1)*Z§, (£, Q7). (B4)
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with
log(1/x") log(1/x)
A = ,
«(0) 23 (1=x")  23(1 —x)
log(1/x") _ log(1/x)
A = , B5
»(x) 23(1—x")  2*(1 —x) (B5)
where X' = ﬁé anq K L= k |- i%’gfé | for the struck quark

and x" = Tz and K' =k, + 7 g, for the scalar diquark.
So,

(W) (P [T 5 (P)) + (W3, (P)[T+?| W] (P))

9o) )t o) WP (B)

Using the matrix elements from Eq. (8):

PHYSICAL REVIEW D 91, 114026 (2015)
(W3, (P)[T2[W3,(P)) + (W, (P) T2 W], (P))

£2-9)
V1=¢
+C(Q) =

=§[A(Qz>+B<QZ>J

2-¢
AM,/T-C

M, (iP*)

B(Q) = iP*(q1)>

M \/1T
(B7)

Ignoring the term (g% )? and comparing Eqs. (B6) and (B7),

™
—

m
d\
D

(II9 b) 1 [

li_gMn. (B8)

So

[%«wgpay)|T+2|w§p<1>>>+<mgp<pf>|T+z|q,;p(P)>)

[0 T5+Ts
¢

S
oy S A0 B O)]
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