
QCD dynamics of tetraquark production

Stanley J. Brodsky*

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Richard F. Lebed†

Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
(Received 12 May 2015; published 18 June 2015)

We use the twist dimensions of the operators underlying the dynamical behavior of exclusive production
processes as a tool for determining the structure of exotic heavy-quark states such as the Zþ

c ð4430Þ
tetraquark. The resulting counting rules predict distinctive falloffs of the cross sections in center-of-mass
energy, thus distinguishing whether the tetraquarks are segregated into di-meson molecules, diquark-
antidiquark pairs, or more democratically arranged four-quark states. In addition, we propose straightfor-
ward methods of experimentally producing additional exotic multiquark states.
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I. INTRODUCTION

Hadronic physics has reached an important milestone in
the past year: the experimental confirmation by LHCb [1]
of the tetraquark (c̄cd̄u) state Zþ

c ð4430Þ with spin-parity
JP ¼ 1þ. Its interpretation as a true resonance is confirmed
by the observation that the phase shift δ of its complex
production amplitude increases by π

2
radians as the energy

crosses the resonant mass. The tetraquark thus joins the q̄q
meson and qqq baryon as a third class of hadrons. The
Zþ
c ð4430Þ represents just one of a growing collection of

unexpected charmoniumlike states, beginning with the
famous Xð3872Þ first seen by Belle in 2003 [2].
The discovery of the charged (Zþ

c ) states requires a
valence quark content of at least four quarks, c̄cd̄u, and the
strength of the observed transitions amongst the X, Y
(charmoniumlike states appearing in initial-state radiation
processes eþe− → γY), and Zc strongly suggest a common
tetraquark nature for all of these novel states [3]. The JPC ¼
1þþ Xð3872Þ, for example, is almost certainly a c̄cq̄q state,
in which q̄q is a linear combination of ūu and d̄d.
In this paper we will discuss two essential questions:

(a) the color composition of the tetraquarks in QCD, and
(b) the dynamics underlying their production. For example,
we shall argue that tetraquarks such as the Zc can be
produced near threshold in both hadronic collisions and
electroproduction. We will also discuss the possible exist-
ence of other novel multiquark hadronic states that are
natural extensions of tetraquark states.
The first, and still most widely known, ansatz proposed

for the structure of tetraquarks is one of di-meson mole-
cules bound by pion exchange or color van derWaals forces
(as reviewed in, e.g., Ref. [4]). The proximity of several of

these states to the corresponding two-meson thresholds is
quite remarkable: For instance, mXð3872Þ −mD�0 −mD0 ¼
−0.11� 0.21 MeV. On the other hand, a number of other
tetraquark candidates lie just above such thresholds, sug-
gesting some sort of potential barrier to allow bound states
with positive binding energy, while others—prominently,
the Zþ

c ð4430Þ—have no obvious nearby threshold with the
appropriate quantum numbers, in this case JP ¼ 1þ.
The prompt production cross section of the Xð3872Þ at

eþe− colliders is substantial, indicating that the Xð3872Þ
can be created with high relative momentum between its
components; however, since the binding energy between its
meson components is very small in the di-meson molecular
picture, this empirical observation creates great difficulty
for this picture [5–7], even when substantial final-state
interactions between the mesons [8,9] are taken into
account.
An alternative to the molecular picture, hadro-charmo-

nium [10], assumes that a compact charmonium state is
located at the center of a light-quark cloud; in this case, one
must question why such states would be quasistable, and to
what degree they would be obscured through mixing with
conventional charmonium.
In this work, we shall argue that tetraquarks are primarily

diquark-antidiquark (δ-δ̄) bound states. Thus, the Zþ
c ð4430Þ

can be considered as a ½c̄ d̄�3C½cu�3̄C bound state of a color-
(anti)triplet charmed diquark δ and an anti-diquark δ̄. The
same diquark clusters appear in the valence Fock state
structure of baryons; e.g., the ΛcðcudÞ can be considered as
a color-singlet ½cu�3̄Cd3C þ ½cd�3̄Cu3C composite. Inasmuch
as the diquarks can be considered pointlike color sources,
the confining potential that confines the color-triplet δ and δ̄
into color-singlet tetraquarks is thus identical to the con-
finement potential underlying qq̄ mesons and qδ̄ baryons.
Thus, three strong binding interactions are present in the
diquark-antidiquark picture: the interactions creating the δ
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and δ̄, and the δ-δ̄ binding. This is also the natural
interpretation obtained from anti-de Sitter space (AdS)/
QCD and superconformal algebra, an approach which
accounts remarkably well for the observed Regge spec-
troscopy of mesons and baryons in terms of bound states of
color-triplet and color-antitriplet constituents [11,12].
The diquark-antidiquark picture was first proposed for

charmoniumlike tetraquarks in Ref. [13]. Since the
diquarks are color triplets, this description leads to new
insights into confined color dynamics. However, unless the
model is constrained, it also predicts many more tetraquark
states than are seen experimentally. Nevertheless, recent
work [14] shows that if the spin-spin couplings within each
diquark dominate, one can explain many empirical features
of the observed tetraquark spectroscopy. The significance
of novel color correlations in exotics such as tetraquarks is
discussed in Ref. [15].
An important question is why the component quarks in a

δ-δ̄ bound state do not immediately reorganize themselves
(either dynamically, or simply using group-theory iden-
tities) into color-singlet q̄q pairs, thus recreating the
molecular picture. To address this objection, we note a
well-known fact of color dynamics: Two color-3 quarks
have an attractive color-3̄ channel that is fully half as strong
from gluon exchange as the attraction of a q̄ð3̄Þqð3Þ pair
into a color singlet. This result follows from simple SU(3)
color group theory: The coupling of two representations R1

and R2 to a representation R is proportional to the
combination of quadratic Casimirs given by C2ðRÞ−
C2ðR1Þ − C2ðR2Þ. For two quarks, the only attractive
channels are the q̄q singlet (R1 ¼ 3̄, R2 ¼ 3, R ¼ 1) and
the qq antitriplet (R1 ¼ R2 ¼ 3, R ¼ 3̄), and the latter is
half as strong as the former. In this sense, diquarks are
special entities in QCD; if two quarks are created closer to
each other than to any antiquarks, then it is natural to expect
them to form a bound quasiparticle. In fact, the greater the
energy available in a system (as often occurs in heavy-
quark processes), the more opportunities arise for such
channels to occur.
As an explicit example, we recently proposed [16] a new

paradigm: The tetraquarks are not simple quasistatic δ-δ̄
bound states, but instead arise as modes of a rapidly
separating δ-δ̄ pair, remaining confined, a color flux tube
stretching between them with its length determined by the
available energy. Many, but not all, of the narrow-width
tetraquarks lie near hadronic thresholds because these are
the energies at which the color string can easily break.
A case in point is the Xð4632Þ, the first exotic state found
above the 4573 MeV charmed-baryon (Λþ

c Λ̄
−
c ) threshold; it

decays dominantly to Λþ
c Λ̄

−
c (indeed, this is the only mode

yet seen), and this decay is precisely what one would expect
from flux-tube fragmentation to a single light q̄q pair.
Below this threshold, the exotic state widths are not
particularly large because they can hadronize only by
forming mesons with wave functions stretching from the

quarks in δ̄ to the antiquarks in the δ. As suggested above,
the δ-δ̄ pair can separate a significant distance (>1 fm) if it
is produced with enough relative momentum; for instance,
a B-meson decay can produce this circumstance.
The decay of the Zþ

c ð4430Þ suggests that it is a spatially
extended state: Even though the ψð2SÞ and J=ψ have
precisely the same JPC ¼ 1−− quantum numbers, the
Zþ
c ð4430Þ prefers by a large margin to decay to ψð2SÞπ

instead of J=ψπ [3]; the ψð2SÞ mode has much less phase
space, but is spatially much larger than J=ψ , matching the
expected size from the diquark decay mechanism.
The diquark interpretation of tetraquarks naturally leads

to the possibility of more complex hadronic states in QCD,
such as hexaquarks [17], which can arise as δ̄3Cδ̄3Cδ̄3C
color-singlets analogous to q3̄Cq3̄Cq3̄C (anti)baryonic
bound states. An example would be the charmed, charge
Q ¼ 2, baryon-number B ¼ 2 state ½uu�3̄C½cu�3̄C½uu�3̄C. In
this case, two of the diquarks, e.g., ½uu�3̄C and ½cu�3̄C, can
arrange themselves into a color-triplet ð3CÞ four-quark
cluster—precisely by the same analysis of attractive color
channels described above—which then, in turn, binds to the
½uu�3̄C diquark. Thus, one can consider such multiquark
states as a sequence of two-body bound-state clusters of
color-triplet and antitriplet states. Another example is the
B ¼ 2 octoquark resonance jc̄cuuduudi, which can
explain the dramatic spin dependence seen in elastic
pp → pp scattering at the charm production thresholdffiffiffi
s

p ≃ 5 GeV [18]. Again, this state can be considered as
sequential binding of four diquarks. The light-front wave
function in this case satisfies a cluster decomposition
analogous to that in the structure of the deuteron [19].
In this paper, we put the δ-δ̄ tetraquark picture to a new

dynamical test, using the well-known constituent counting
rules [20–30], to predict the fixed-θcm power-law scaling in
Mandelstam s of exclusive processes at high energies.
The counting rules determine the s power-law dependence
of cross sections and form factors for processes at
high s and fixed scattering angle θcm, where the power
of s is determined by the total number of fundamental
constituents—incoming plus outgoing—appearing in the
hard scattering. The first application of the counting rules in
this tetraquark picture, a study of the so-called “cusp effect”
of threshold-induced shifts to resonance masses, appeared
in a very recent paper [31] by one of the present authors.
The counting rules, derived from the twist of the

interpolating fields controlling each hadron at short dis-
tances, provide two especially interesting probes of tetra-
quark states. First, as originally pointed out in
Refs. [32,33], the high-s production data for exotic states
should follow the s power dependence predicted based on
their expected valence quark structure (i.e., four-quark
tetraquarks). Second, and original to this work, the count-
ing rules should be sensitive to the presence of diquarks.
If particularly strongly bound diquarks are formed in
the production process, and dissociate only after their
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production (so that the diquarks effectively function for a
time as single dynamical units) then the counting rules will
treat the diquarks effectively as elementary fundamental
color-triplet constituents at intermediate energies.
We will also discuss a simple method of producing

numerous exotic states, via electroproduction near the
charm (or other heavy-quark) threshold. While not directly
dependent upon the diquark hypothesis, the production
mechanism also addresses the formation and dynamics of
QCD multiquark exotics.
This paper is organized as follows: In Sec. II, we briefly

review the constituent counting rules, how they are derived,
and their limitations. Section III presents our principal
predictions for the production cross sections and the form
factors of exotic charmonium and bottomonium states.
Section IV proposes straightforward experimental methods
of producing numerous exotic states, particularly via
electroproduction processes. In Sec. V we summarize
and indicate future directions.

II. CONSTITUENT COUNTING RULES

The constituent counting rules, which we briefly review
in this section, were developed in the decade subsequent to
the creation of perturbative QCD (pQCD) [20–30]. In
essence, they represent the conformality and scale invari-
ance of QCD at high energies, and therefore are applicable
to a wide variety of field theories; for example, they have
been derived nonperturbatively in AdS/QCD [34]. The
summary presented here follows the more detailed intro-
duction in Ref. [32], which also was the first work to apply
counting rules to exotic multiquark hadrons.
The counting rules find their most incisive applications

in fixed-θcm exclusive scattering processes at high
ffiffiffi
s

p
, for

which none of the particles are accidentally close to being
collinear. Constituent masses can then be neglected, and all
of the Mandelstam variables s, t, and u≃ −ðsþ tÞ are
large. To maintain the integrity of the exclusive states, each
of the constituents must undergo a large momentum
transfer to be deflected through the same finite angle
θcm, i.e., fixed t=s; therefore, all large energy scales may
be expressed in terms of s. In pQCD, hard gluon exchanges
are responsible for the momentum transfers, while if
leptons also appear in the process (e.g., in electroproduc-
tion), then hard electroweak gauge boson exchanges must
also be taken into account. In the AdS/QCD picture, the
“operator dictionary” relates the counting rules to the short-
distance twist dimension of interpolating fields.
The counting rules in their simplest form simply enu-

merate s factors in propagators and spinor normalizations.
For simplicity, let us begin with processes in which all n
external constituents, n ¼ nin þ nout, are fermions. In order
for every constituent to share anOð1Þ fraction of the total s,
the leading-order Feynman diagrams for the scattering must
have at least n

2
− 1 hard gauge boson propagators (∼1=s),

and the associated vertices much be connected by at least

n
2
− 2 internal constituent propagators (∼1=

ffiffiffi
s

p
). Since each

external constituent fermion field carries a spinor normali-
zation scaling as s

1
4, the fermion scaling factors cancel

except for an overall factor s, leaving a total invariant
amplitude M scaling as

M ∝ 1=s
n
2
−2: ð1Þ

The cross section for a scattering process in which the
constituents form two initial-state and two final-state
particles may then be written

dσ
dt

¼ 1

16πs2
jMj2 ≡ 1

sn−2
f

�
t
s

�
: ð2Þ

As fixed by the mass dimension M−4 of the left-hand side
of this equation, the function f has mass dimensionM2n−8.
However, f itself is constructed so as not to scale with s; its
dimensionful factors instead arise from the amplitude
overlaps between the fundamental constituent fields and
their external composite states, such as those defining
decay constants.
Modifying this result to allow for external gauge bosons

is straightforward: Each external boson line introduced
replaces two external fermion lines [∼ð ffiffiffi

s
p Þ2] and one hard

gauge boson propagator (∼1=s), which cancel and there-
fore give precisely the same scaling expressions forM and
dσ=dt as in Eqs. (1)–(2).
In the case of this work, we consider the scenario in

which diquarks are treated as fundamental constituents for
purposes of counting, since they are tightly bound to each
other compared to their binding with the other quarks; in
scattering processes, they may be redirected as a single unit.
Moreover, as discussed above, they form overall color
triplets in their channel of greatest attraction and therefore
can interact with the other quarks via single-gluon
exchange. If one replaces the two dynamical quarks with
a single diquark in the counting argument, one loses the
hard gluon connecting them (∼1=s), while two hard
(fermionic) quark propagators are replaced by a single
(bosonic) diquark propagator [ð1= ffiffiffi

s
p Þ2 → 1=s], and the

four external spinor normalizations [ðs14Þ4] are replaced
with two external diquark normalizations [ð ffiffiffi

s
p Þ2]. The

latter two actions do not change the net counting of s
factors, while the removal of the extra gluon leads to a
scaling equivalent to that of reducing the number of
constituents from n to n − 2, exactly as one would have
from treating the diquark as a fundamental constituent. One
must note, however, that this scaling holds only if the
diquark propagates intact through the scattering process, or
if a δ-δ̄ pair is created in a pointlike configuration.
The original thrust of Ref. [32] actually points to a

contrary but complementary direction: If an exotic multi-
quark state is produced without a diquark component, then
the scattering cross section receives a contribution from all
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of the component valence quarks. The primary example
discussed in [32] is π− þ p → K0 þ Λð1405Þ, where the
small Λð1405Þ mass relative to nonstrange analogues such
as Nð1535Þ has led to the proposal that the former is a
pentaquark state. In this case, one can test this hypothesis
by measuring whether dσ=dt at large s scales according to
Eq. (2) as s−ð2þ3þ2þ3−2Þ ¼ s−8 or s−ð2þ3þ2þ5−2Þ ¼ s−10.
The same authors subsequently applied the large-s scaling
counting rules to examine the properties of generalized
parton distributions and distribution amplitudes that appear
in processes such as these [33]. Whether diquarks act as one
or two fundamental constituents, thus, becomes an exper-
imentally testable prospect.
By applying Eq. (1), one can determine the large-s

behavior of hadronic form factors from the corresponding
amplitude M. To give one explicit example, the Zþ

c
electromagnetic form factor FZc

ðsÞ should scale as [31]

FZc
ðsÞ → 1

s
1
2
ð1þ1þ4þ4Þ−2 ¼

1

s3
; ð3Þ

but scale as ∼1=s1 if the δ and δ̄ are very tightly bound.
A number of technical complications of real QCD

modify the simple s scaling naively obtained from
perturbative Feynman diagrams. Included in this list are
αsðsÞ running and renormalization-group effects in the
parton distribution amplitudes [35,36], Sudakov logarithms
[37–39], “pinch” singularities from virtual gluons going on
mass shell [40], and singularities of the “end point” type
when one or more constituents carry only a ≪1 fraction of
the total s [41]. Even so, the current consensus view holds
that the leading power-law scaling in s for exclusive
processes remains the same as in the naive analysis.

III. SCALING OF TETRAQUARK
CROSS SECTIONS

The scaling results and discussion of the previous section
can be directly applied to make a number of simple and
experimentally testable predictions for processes involving
exotic states. The most straightforward applications use
Eqs. (1)–(3) to predict cross sections at high s. Assuming
that the Zþ

c has four independent fundamental constituents
that share Oð1Þ fractions of the total energy, one expects

dσ
dt

ðeþe− → Zþ
c ðc̄cd̄uÞ þ Z̄−

c ðc̄cūdÞÞ ∝
1

s8
; ð4Þ

at finite scattering angle θc:m:. The same scaling occurs if
four ordinary mesons are produced in a direct eþe−
annihilation process. On the other hand, if the Zc states
are formed from especially tightly bound δ and δ̄ quasi-
particles, the scaling exponent drops to 1=s4, which is the
same result as for the production of two ordinary mesons.
In that case, it is then only because the exotic content of the
Zc is well established—the Zc clearly contains hidden

charm, but is nevertheless charged—that one can unam-
biguously assert the Zc is not an ordinary meson.
We note at this point an interesting distinction if one

selects the production of neutral pairs XX̄ or YȲ, for which
the scaling arguments are the same as for Zc pairs. If the X
or Y are comprised of tightly bound diquarks, then one
cannot be certain from the scaling behavior alone whether
or not the neutrals truly carry exotic quark content.
Furthermore, by Zc we do not mean just the Zþ

c ð4430Þ,
although its possession of a dominant decay mode
ψð2SÞπþ should make its reconstruction simpler.
Arguing against such a simple test is the fact that the

scaling predicted by the counting rules only holds when s is
“large enough.” At very high values of s, one expects the
scaling to work well, but then one is faced with both a
paucity of data and a proliferation of final states from which
to extract the exclusive two-particle events. At lower values
of s, one is faced with the problem that having more
constituents requires a larger total s before one is confident
of all constituents carrying energies that lie in the pertur-
bative regime; just from counting alone, one would expect
the onset of scaling behavior for eþe− → Zþ

c Z̄−
c to occur at

an s value about ð10=6Þ2 ≃ 2.8 times higher than for
eþe− → mesonþmeson. One can ameliorate this effect
(not to mention greatly increase the rate) by considering
semi-exotic processes such as eþe−→Zþ

c ðc̄cd̄uÞþπ−ðūdÞ,
but the question of the precise onset point for the asymp-
totic scaling regime remains.
A very simple modification, which extends the reach of

the scaling to lower s is to form cross section ratios in order
to eliminate systematic corrections. For example,

σðeþe− → Zþ
c ðc̄cd̄uÞ þ Z̄−

c̄ ðc̄cūdÞÞ
σðeþe− → μþμ−Þ ¼ jFZc

ðsÞj2

∝
1

sn−4
; ð5Þ

where the exponent of 1=s is 6 if Zc is a bound state of a
two quarks and two antiquarks, and 2 if it is a bound state of
two particularly tightly bound diquarks (n referring only to
the number of constituents in the numerator process).
Indeed, the first equality in Eq. (5) is effectively a definition
of the form factor FZc

ðsÞ, so it holds all the way down to the
threshold, s ¼ 4m2

Zc
.

In fact, one can perform a verification of the constituent
content of the Zþ

c with a significantly larger rate by
measuring a ratio that gives the transition form factor

σðeþe− → Zþ
c ðc̄cd̄uÞ þ π−ðūdÞÞ

σðeþe− → μþμ−Þ ¼ jFZc;πðsÞj2

∝
1

sn−4
; ð6Þ
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where the exponent of 1=s is 4 if Zþ
c is a bound state of two

quarks and two antiquarks, and 2 if it is a bound state of two
tightly bound diquarks.
Another type of eþe− exclusive annihilation cross

section ratio is particularly interesting. Consider the arche-
type process ratio:

σðeþe− → Zþ
c ðc̄cd̄uÞ þ π−ðūdÞÞ

σðeþe− → ΛcðcudÞΛ̄cðc̄ ū d̄ÞÞ
; ð7Þ

both of which have the same number of constituents, as
well as the same heavy-quark (c̄c) constituents. Therefore,
both the corrections due to high-s scaling and corrections
due to the total heavy-quark mass cancel in this ratio. While
independent of s at leading order, whether the ratio is
numerically large or small should be sensitive to the
fundamental QCD composition of the Zþ

c state; to wit, if
Zþ
c is primarily a di-meson “molecular” hadro-charmonium

ð½c̄c� þ ½d̄u�Þ or D̄-D ð½c̄u�½d̄c�Þ state, it should be bound by
weaker color-singlet van der Waals forces and, thus, be
numerically smaller than if the four quarks in the Zþ

c remain
coupled through color-nonsinglet hard gluon exchanges.
Indeed, one can envisage truly peculiar scenarios: If Zþ

c
contains tightly bound diquarks but Λc does not, then the
ratio of Eq. (7) could actually grow with s (in this case,
as s2).
Finally, we have to this point considered only eþe−

collider processes. Similar final states produced through p̄p
annihilation have identical ratios as powers of s. The
absolute high-energy cross sections fall with an additional
power of s4 (three quarks in each hadron, as compared with
a lepton-antilepton pair), but the rates can also be greatly
enhanced due to p̄p already containing the light quarks
required by the final state. To be explicit,

dσ
dt

ðp̄ðū ū d̄ÞpðuudÞ → Zþ
c ðc̄cd̄uÞ þ π−ðūdÞÞ ∝ 1

s10
ð8Þ

should be numerically substantial near threshold and fall
off very quickly for large s, while the ratio

σðp̄p → Zþ
c π

−Þ
σðp̄p → ΛcΛ̄cÞ

ð9Þ

has again the same quark content in the numerator and
denominator and, therefore, again has canceling scaling
and heavy-quark content factors; in particular, its depend-
ence on s should be much gentler.
Of course, many of the charmed processes analogous to

those described here and below have direct analogues in the
b̄b threshold region; for a discussion from a different
theoretical perspective, see Refs. [42–44].

IV. ELECTROPRODUCTION OF EXOTIC
STATES NEAR THRESHOLD

With the existence of the first genuine QCD exotics
having apparently been experimentally confirmed, one is
led to ask what other exotics await discovery and what
processes can most effectively be used to produce them.
Here we argue that electroproduction near the charm
threshold provides a natural laboratory for creating such
states. This kinematical region represents an obvious
energy regime for the formation of exotic states, because
the slowly-movi ng c̄ and c quarks produced readily
coalesce with comoving valence quarks of the target.
The diquark hypothesis is not essential to the analysis
presented in this section.
For example, consider the process ep → e0X in the target-

proton rest frame, which is most naturally considered a γ�p
collision. The virtual photon produces a c̄c pair a significant
fraction of the time. A simple estimate for the ratio of c̄c to
ūu pair-production events is the ratio of s-channel squared

masses at threshold, which is ∼ ðmpþmπÞ2
ðmΛcþmDÞ2 ≃ 7% at fixed γ�

momentum transfer above the charm threshold; note
that using the slightly lower hidden-charm threshold
ðmp þmJ=ΨÞ2 in the denominator produces almost the same
result. For energies slightly above the charm-production
threshold, s ¼ ðqþ pÞ2 ≃ ð4.2 GeVÞ2 where q and p are,
respectively, the photon and proton momenta, then the
charm quarks coalesce with the uud valence quarks moving
at the same rapidity to produce open-charm states such as
γ�p → D0ðc̄uÞΛþ

c ðcudÞ. For s > ð4.0 GeVÞ2, the hidden-
charm process γ�p → J=Ψþ p remains possible. Analysis
such as that described in Refs. [45,46] for γ�γ → ρρ may
then be performed.
But electroproduction also provides a direct way to

produce exotic hadronic states such as the Zþ
c ðc̄cd̄uÞ

tetraquark and the Oðc̄cuuduudÞ octoquark. For example,
if a low-mass pentaquark Pðc̄cuudÞ exists below the D̄Λc
threshold, then the process ep → e0Pðc̄cuudÞwould occur,
with P manifesting as a peak in the missing-mass (MX)
distribution of ep → e0X. If 4.2 GeV > mP > 4.0 GeV,
then P would likely appear as a resonance decaying to
J=ψ þ p. And if mP < 4.0 GeV, then P would exist as a
bound state and appear as a sharp peak in the MX
distribution of ep → e0X.
Alternately, one can perform an indirect search for a P

thus produced; if P has a sufficiently long lifetime, it can
collide with a second nucleon in a fixed target downstream
from the initial collision point and materialize as a hidden-
or open-charm state,

eþ p → e0 þ P;

⇓

P þ N → NJ=ψ ; DΛc: ð10Þ
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Even more exotic states could be produced this way,
if they indeed exist. A very interesting experimental
signal dating back three decades [47] is the surprisingly
large spin-spin correlation in pp elastic scattering, some-
times called the “Krisch effect.” The polarized cross
sections for scattering of protons with spins normal to
the scattering plane have a remarkable asymmetry: At
s ¼ ð5 GeVÞ2,

dσ
dt ðp↑p↑ → ppÞ
dσ
dt ðp↑p↓ → ppÞ≃ 4: ð11Þ

Such an asymmetry is strongly at odds with the expect-
ations of pQCD, since at such high energies one expects
spin differences to be washed out. Note, however, that such
an effect can occur if the high-energy process interferes
with a resonance lying right at s ¼ ð5 GeVÞ2. Since
the baryon-number B ¼ 2 hidden-charm threshold is
≃2mp þmJ=Ψ ¼ 5.0 GeV, the production of an octoquark
state Oþþ ¼ jc̄cuuduudi has been proposed as a resolu-
tion [48]. Should such a state exist, one can use the
electroproduction methods to search for its isospin partner
Oþ in the missing-mass spectrum of collisions on a
deuteron d target,

eþ d → e0 þOþðc̄cuududdÞ; ð12Þ

which would appear in the missing-mass spectrum of
ed → e0X. In this case, the open- and hidden-charm
thresholds lie at MX ≃mΛc

þmn þmD0 ¼ 5.1 GeV and
mp þmn þmJ=Ψ ¼ 5.0 GeV, respectively, and comments
analogous to the ones above for the P, regarding whether
theOþ would appear as a resonance or a bound state, apply
here as well. Furthermore, if Oþ is long-lived, it could
decay to J=ψ þ pþ n or could be dissociated as
Oþ þ A → J=ψ þ pþ nþ A0 in subsequent collisions in
a nuclear target.
These methods for finding exotic states in electropro-

duction can be extended to the production of nuclear-
bound quarkonium [49,50] states ½c̄c�A, in which
quarkonium is bound to nuclei by QCD van der Waals
interactions—the nuclear analogue to hadro-charmonium.
Such states could be produced in eA → e0X collisions.
What of the original tetraquarks? If the outgoing baryon

in the electroproduction process ep → e0X is a p, then the
extra inelastically-produced state is neutral. Since the
Xð3872Þ is the best-characterized exotic state, perhaps a
natural place to start the electroproduction program
is by observing the process ep → e0p0Xð3872Þ near its
s ¼ ð4.8 GeVÞ2 threshold. As for the charged tetraquarks
such as Zþ

c ð4430Þ, a charge-exchange electroproduction
process ep → e0nZþ

c ð4430Þ is required, which at its core
can be considered a γ�πþ collision. Neutral P and O states

could be created analogously, at correspondingly higher
thresholds.
To date, all of the observed exotic candidates contain

either hidden charm or bottom. Is incorporating heavy
quarks a necessary feature of observable tetraquark states?
The original δ-δ̄mechanism presented in Ref. [16] depends
upon having sufficient energy release in the production
process that the δ and δ̄ separate far enough so as to be
considered distinct particles; perhaps for lighter systems the
diquarks try to form but dissolve immediately into meson
pairs. In any case, all of the searches described above apply
to the strange sector as well, such as a uuds̄s pentaquark.
One possible result is that hidden-charm exotics emerge
naturally from these electroproduction experiments but
hidden-strangeness ones do not.
As an intermediate case, one can also study open-charm,

open-strangeness states using ep → e0ΛX as a γ�Kþðus̄Þ
collider. In this case, one would produce charged charmed-
strange pentaquarks such as c̄cs̄u. Here, one would look for
peaks in the MX distribution after tagging the final-state
electron e0 and Λ baryon.
Another interesting case is eþe− annihilation to four

heavy quarks. For example, just above the c̄cc̄c threshold,
one can produce eþe− → J=ψηc. Just below threshold, the
four heavy quarks can rearrange to form a exclusively
charmed tetraquark as a bound state of ½cc�3̄C and ½c̄ c̄�3C
diquarks.

V. DISCUSSION AND CONCLUSIONS

We have proposed a number of experimentally straight-
forward and feasible tests of the exotic nature of the
recently discovered tetraquark candidates such as
Xð3872Þ and Zþ

c ð4430Þ. Scenarios in which the four quarks
independently carry Oð1Þ fractions of the hadron momen-
tum, and scenarios in which the four quarks are segregated
into tightly bound diquark and antidiquark pairs, have been
explored utilizing constituent counting rules, which are
normally limited to tests at high momentum transfer. By
forming ratios of cross sections to different exclusive states,
one can extend the usefulness of the counting rules to the
threshold domain for producing heavy exotic states.
We have also discussed several promising methods to

produce other exotic multiquark states in near-threshold
electroproduction and electron-positron annihilation. One
can also confirm the existence of known exotic c̄c states by
creating them just above the threshold for production of
the charm-quark pair, where the limited phase space makes
the formation of exotics likely, through coalescing the soft
heavy quarks with the light valence quarks moving at
similar rapidities.
The exotic hadron production processes discussed in this

paper lead to many new experimental opportunities at eþe−
colliders such as BES and Belle, at electroproduction
facilities such as the 12 GeVUpgrade of JLab and proposed
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ep colliders, and at new hadronic beam facilities such as
P̄ANDA at FAIR and AFTER@LHC.
QCD, now in its fifth decade, continues to present us

with surprises. Even the full extent of its basic hadronic
spectrum remains an open question. However, given the
results of sufficiently ingenious experiments, an ever
deepening understanding of the theory and its novel
features will inevitably follow.
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