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We study the B meson semi-inclusive decays into spin-triplet D-wave chamonium states y;(J = 1,2, 3)
based on the nonrelativistic QCD factorization formula at next-to-leading order in @, and leading order in v
(the relative velocity of charm quark and antiquark in charmonium). The finite short-distance coefficients

for 3D[JL] channels are obtained for the first time. The long-distance matrix elements are estimated with
the help of potential model and QCD evolution equations. The branching ratios Br(B — v X) and Br(B —
w,X) are, respectively, predicted to be about 6 x 107 and 2 x 1073, with about 50% relative errors mainly
coming from the uncertainties of long-distance matrix elements. The branching ratio Br(B — w3X) can be

8]

very small due to a possible cancellation between the 3 [18] and 3P[2 channels. As an optimistic estimate, we

may use the 35
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I. INTRODUCTION

The decays of the B meson into charmonium states are
important processes to study the Cabibbo-Kobayashi-
Maskawa matrix and CP violation. In recent years these
processes have also been used to search for the missing
higher charmonium states and to study the properties of
chamoniumlike states, the so-called XYZ mesons (for
recent reviews see Refs. [1-3] and references therein).
These studies are important for understanding the under-
lying dynamics of strong interactions. In 2013, Belle
Collaboration found evidence for a new narrow resonance
X(3823) in the mass spectrum of y,y in the BX — y. 7K+
decay with branching ratio product [4]

Br(B* — X(3823)K*) - Br(X(3823) — x.17)
— (9.7 428+ 1.1) x 10°°. (1)

The mass of X(3823) and the ratio Br(X — y.7)/
Br(X — y.7) <041 at 90% C.L. [4] are all consistent
with those expected for the w,(1°D,) cc state. This
assignment is also consistent with the observation that
no peak around 3823 GeV is seen in the DD spectrum in
the B — DDK decay [5], as y, with the unnatural quantum
number J© =2~ cannot decay into DD. Moreover, the
partial decay width to light hadrons is estimated to be
I'(y, - LH) ~ 50 keV [6], while potential model calcu-
lations indicate that I'(y, — yy.,) = (208-342) keV and
I'(yy = yye) = (55-70) keV [7]. Thus, one may expect
that the decay mode y .,y is the dominant one for y, and the
corresponding branching ratio is no less than 50% [6].
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channel alone to set up the upper limit for Br(B — w3X), which is about 4 x 10~* and
may be used in searching for the missing state 5.

PACS numbers: 12.38.Bx, 13.20.He, 14.40.Pq

Therefore, with the assumption that X(3823) = w», Eq. (1)
will roughly imply that

1x 1075 < Br(B = y»K) < 2 x 1075, (2)

which is smaller than the production rate of J/y in the
similar B decay process [8] by one order of magnitude or
more. This is quite natural since the production rate of the
D-wave state should be suppressed by a factor of v* ~ 0.1
relative to that of the S-wave state in the factorization
hypothesis, where v denotes the relative velocity of the
charm quark pair in the rest frame of charmonium.

On the other hand, as for w(3770), which is usually
expected to be predominantly the y,(1°D,) state with a
small admixture of the y(23S,) component (S-D mixing), it
has a surprisingly large production rate in the B decay [8]:

Br(B* — w(3770)K*) = (49 £ 1.3) x 1074, (3)

which is comparable to that of y(3686) ~ y(23S,). Even if
one take into account the S-D mixing effects, the large
production rate of y(3770) can hardly be explained unless
the contributions from soft gluon interactions are numeri-
cally large [9]. However, the soft gluon interactions make
the factorization break down, therefore, the calculations are
model dependent.

While the calculations for exclusive B decays into
charmonium are complicated and often suffer from large
uncertainties due to factorization violation effects, espe-
cially for the P-wave [10] and D-wave [9] charmonium final
states, those for inclusive B decays can be well handled
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within the framework of nonrelativistic QCD (NRQCD)
factorization [11]. Moreover, the inclusive production
rates of chamonium in B decays can constrain the exclusive
ones quite strictly. The fraction of exclusive two-body
(charmonium H plus K meson) production rate in B decay
relative to the inclusive one

Br(B — HK)
Br(B — H + anything)

Ry(H) = (4)

is about 1/10 for H = J /y,w(3686), x|, and even smaller
than 1/100 for H = y, [8]. Therefore, it is interesting to
study the production rate of the spin-triplet states
w,;(1°D,)(J = 1,2, 3) in the inclusive B decays on arelative
reliable theoretical basis, and also to see whether the results
can be consistent with the large exclusive production rate
in (3).

On the other hand, the direct measurements on the decays
B — y;X are themselves interesting and important for
testing the NRQCD factorization approach and for determin-
ing the long-distance matrix elements related to y; produc-
tion. In particular, since the y5 state is still missing, it is very
useful to see whether the estimated production rate of /3 can
be large enough to search for it in the B decay processes.

The inclusive production of y; in B decays has been
studied at the leading order (LO) in a, [12,13] based on
NRQCD factorization. However, the next-to-leading order
(NLO) corrections in «, have proved to be very important
for similar inclusive production processes of S-/P-wave
[14] and spin-singlet D-wave [15] charmonium states.
Thus, in this paper, we will extend the NLO calculations
in Refs. [14,15] to the y; case. In Sec. II, we set up the
general notations and provide the LO results. The NLO
calculations are given in Sec. III, including how to get the
ultraviolet (UV) and infrared (IR) finite short-distance
coefficients, and how to estimate the long-distance matrix
elements. In Sec. IV, numerical results are given and
discussed, and a short summary is finally given in Sec. V.

II. GENERAL NOTATION AND LO RESULTS

The weak effective Hamiltonian relevant here has the
form

Har =S5 5 { VeV |5 w00 + €030

q s.d
6

ViV Y WO . (5)
=3

where the “current-current” operators are given by

O = [ey,(1 = ys)c][br*(1 —ys)ql,
Og = [eT%,(1 = ys)c][bT* (1 - r5)q]. (6)
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and the O ¢4 denote the QCD penguin operators. The
renormalization group improved NLO results for the
Wilson coefficients Cpj(u4) and Cpgj(u) (where [1]/[8]
denotes the color singlet/octet representation of the out-
going c¢¢ pair) and Ci_(¢) can be found in Ref. [16].
Numerically, C3_(u) are extremely small. And, compared
with Cig(u), Cpyj(u) is relative small and sensitive to the
renormalization scale u. At the scale u~ m,, the ratio
C[ZS] / C[Zl] ~ 15, which can explain why the color-octet (CO)

production mechanism in NRQCD factorization is of
particular important in the inclusive production of charmo-
nium in B decays [12-15]. This fact can also roughly
account for the smallness of the ratio in (4) since the CO cc¢
pair needs to emit soft gluons to evolve to the physical
charmonium state, and the reabsorption of the soft gluons
by the spectator quark to form a single K meson tends to be
an affair with small probability.

With the NRQCD factorization formula [11], the semi-
inclusive decay width of the B meson into charmonium H
can be expressed as

= ZF[n]
= ZC(b — ctln] + x)(O"[n]), (7)

I'(B— H+X)

which is valid up to power corrections of order Agcp/mp, .
Here, C(b — c¢[n] + x) = Cln] denotes the short-distance
coefficient corresponding to the production of the ¢¢ pair in
configuration n, which can be calculated perturbatively in
a,, and the long-distance matrix elements (LDMEs)
(OH[n]) describe the probabilities for the evolution of
c¢[n] to charmonium H, and thus are insensitive to the hard
processes and are universal parameters. Moreover, the
LDME:s can be arranged as a series in the power expansion
of v2. For the production of y,(J = 1,2,3) at LO in v,
one only needs to calculate the short-distance coefficients
(SDCs) for

"Dy}, (®)

(1]
n€{3 35[1]’31)[]01’2’

where n is classified by 2S“L[JC], and, respectively, S, L and
J denote the spin, the orbital angular momentum and the
total angular momentum, and C = 1, 8 refer to color-singlet
(CS) and CO configurations. The relevant operators O [n]
are listed in Appendix A.

Up to the NLO in a, by taking advantage of
|Vs> + [Vea|? ® 1, it is convenient to express the partial
decay rates I'[n] in (7) as [14]

Tl = o[ 01 + 3t + 52 (€l
20, Cntn) + )| T o)
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where

_ G%7|Vbc|2m2 (10)
07 2162(2m,)
n = 4m?/m2, 5p[n] is the penguin correction factor and d
denotes the dimension of the NRQCD operator. Then the
decay width is simplified to the calculations of the reduced
SDC f’s and g¢’s in Eq. (9) for the relevant configurations
in (8).

Because of the (V — A) structure of the current-current
operators in (6), only for n = 3S[11], 3S[18], 3P[18], 3D[11] in (8),
the LO coefficient f’s are nonzero, and they are

FBSY) = (1 =n2(1 + 2n),

FBSEm) =3 (1= n)2(1 +20)

(1=n)*(1+2n), (11)

which are consistent with the previous -calculations
[12-14].

Since the Wilson coefficients of QCD penguin operators
C3_¢ are much smaller than C(;) and Clg}, the double penguin
contributions are suppressed. One only needs to calculate
the interference between QCD penguin operators (O;_¢ and
the current-current operators. It is sufficient to evaluate the
penguin contributions at the LO in @, with Wilson
coefficients C3 (mb) :0010, C4 (mb) = —0024, C5 (mb) =

0.007.Cy(m,)=—0.028 together with CL0(m,) = 0.42
and Ch?(mb) = 2.19 [14], which give nonzero correction

factors

3G+ C) + Gt G

5P[3S[11]] _ 5P[3D[11]} C[I] ~ —0005,
(12a)
Sp [35[18]] =4 Cit G ~ —0.095, (12b)
Crg)
5PPP[18]} — 4Mz0.007. (12¢)
Crg)

III. NLO RESULTS AND EVOLUTIONS OF LDMES

In this section we will present some details in the

analytical NLO calculations, especially for the 3D[Jl]
Fock state, since the SDCs for other Fock states
(35[11],35[18],3P[Jg,]) were calculated in Ref. [14]. And then,
we will estimate the LDMEs by using the evolution

equations in NRQCD.
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A. SDCs at NLO in «a;

The relevant Feynman diagrams for the NLO QCD
corrections are all shown in Fig. 1, where (s,), (vi_s)
and (r;4) are the self-energy, vertex correction and real
correction diagrams, respectively. The four-fermion oper-
ator inserted in these diagrams (denoted by the two dots in
Fig. 1) is O; or Og in (6). In calculations of these diagrams,
one faces both the UV and the IR divergence. In the
following, we will summarize how to treat these divergen-
ces and how to get finite short-distance coefficients, and we
will refer more details of the calculations to Refs. [14]
and [15].

For the UV part, the Ward identity guarantees that by
summing up vertex correction diagrams (v3), (v¢) and the
four self-energy diagrams (s;) to (s4), we can get an UV
finite amplitude. The UV divergences in summing up
diagrams (v;), (v,) and (v4), (vs) are just the same as
those appearing in the operator renormalization of O; or
Og. Therefore, they can be canceled by introducing
counterterms in the weak Hamiltonian in (5). This pro-
cedure will introduce the renormalization scale x depend-
ence to the hadronic matrix element of O, /85 which in
principle should be canceled by that of Cyyjg up to higher
order in «;.

It needs to be stressed that we use two schemes to treat y5
in dimensional regularization. In our calculations in dimen-
sion d =4 —2e¢, only three gamma matrix structures
involving ys need to be handled. And in order to get the
UV finite terms at the NLO in a4, it is sufficient to rewrite
them as [14,15]

VoVl y @ Py T = (16 + 4Xge)l', @ I*,
Lr,7e ® vy’TH = (4 +4Yge)l', @ T,
L, ® 7,7 1"y = (4 +4Zge)l', @ T, (13)

where I, represents the electroweak vertex y,(1 —ys), and
the scheme dependence of y5 is fully reproduced by that of
Xg,Yr and Zg. We use both the naive-dimensional-
regularization (NDR) and the ’t Hooft—Veltman (HV) scheme
in our calculation, which corresponds to the parameters

NDR scheme: Xp = —1, Yr=2p=-2;
HV scheme: Xi = —1, Yp=2Zp=0. (14)

Having subtracted the UV divergences, we turn to the
treatment of the IR ones. There are three types of IR
divergences in our calculations. They are the soft and
collinear divergences, and also the Coulomb singularity in
diagram (v3) when the charm and anticharm quarks share
the same momentum. The emergence of Coulomb singu-
larity is a typical feature of the one-loop QCD corrections to
cc vertex in a nonrelativistic configuration, which should be
reproduced in the NRQCD calculations [11], and then
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Feynman diagrams of the NLO QCD corrections for the process b — Hlcc] + s/d, where (s,_4), (v1_¢) and (r|_4) are the self-
energy, vertex correction and real correction diagrams, respectively.

FIG. 1.

absorbed into the matrix element by redefinition of
the operator in NRQCD (see Refs. [14] and [15] for
more details).

The other IR divergences are all regularized by the
artificial gluon mass A. After summing up all the diagrams
in Fig. 1, the soft divergences are not canceled completely,
leaving those associated with the real correction diagrams
(r3) and (ry) in Fig. 1 if the outgoing c¢ pair is in the
3P[JS,] ,3Dm and 3D[21] configurations. This fact is simply
because the final state c¢ has been selected in a particular
configuration, and then, is not inclusive enough to cancel
the soft divergences. On the other hand, the uncanceled soft
divergences are necessary for the NRQCD factorization
[11], and they should be fully absorbed into the LDMESs by
the renormalization of the operators in NRQCD.

To see the absorbtion of the extra soft divergences more
explicitly, let us apply the NRQCD factorization formalism

s/d
7"1 7"2
g g
b sd b s
o vy
Cc c Cc
> I — )
s/d b ]
(v3)
c c c
> > éﬂ:% s
s/d b s/d

(ve)

in (7) to the parton level decay process b — cé[3D[Jl]]x, and
the partial decay width can be expressed as

(b - ceDMx)
CCsi0,08))) + ST O5(CS)))
+ 3 CCPINOsCPy)) + CCDINO (D).
.

(15)

Here, the matrix elements should be understood as those for
perturbative c¢ pairs in the corresponding nonrelativistic
configurations, while the SDCs are just the same as those
for y; production since they are independent of the long-
distance evolution of the cc pair into the physical state.

Thus, the short-distance coefficient C(3D[Jl]) in (15) can be
obtained by matching the QCD partial decay width
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rP (b — ce['D}}x) = C¥PCD)OL(D1))som
(16)
onto the NRQCD one in (15). Here in (16), (O;(*D;))gom

denotes the tree level matrix element of perturbative
cePD], and cQCP3DIY (7 = 1,2) have extra soft diver-
gences proportional to In(4*/m37) after the UV and
Coulomb subtractions, as have been mentioned above.
The operator Og(*P,/) can be mixed with O, (3D,) at the
NLO in a, through the perturbative NRQCD diagrams
shown in Fig. 2. Calculating these diagrams by using the
Feynman rules in NRQCD [11], the mixing can be
expressed as the relation between matrix elements:

where Cr =4/3, No =3 and Cj, are the generalized
Clebsch-Gordan coefficients between P, and 3D, which
had been calculated in Ref. [6] and are listed in Table I, the
superscript (1)/(0) denotes a matrix element at one-loop/
tree level, and u, is the NRQCD factorization scale
introduced through the MS subtraction of the UV diver-
gences in the dimensional regularization. Moreover, the
equality in (17) should be understood on the condition that
the Coulomb singularities in the corrections of operator
O3(3P;) have been fully subtracted. Substituting the LO

coefficients C(*P [,]) obtained in the last section and the

matrix elements in Eq. (17) into Eq. (15), one can get the
same IR divergences as those in the QCD results in (16).
This is a general feature of a low-energy effective theory
such as NRQCD, which should fully reproduce the QCD
results at the low-energy region. Therefore, the finite

lell 3D[1] 3D311 sDIJII
3 Plﬂl (m1) 3 Pjﬂ,’ (ma2) 3 P_(,!}'
3 Dm 3 D[ll
(m3) 3pl splil (my) sp

FIG. 2. The perturbative NRQCD diagrams of the mixing
between the operator Og(*P,) and O,(3D,) at the NLO in a.
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TABLE 1. The Clebsch-Gordan coefficient between 3P
and 3D,.

Cry *Py P ’P,
3 5 5 1

D, 5 i) 36
*Dy 0 3 i

3D 0 0 1

coefficient C (3D[Jl]) at the NLO in a, can be obtained
by matching (16) onto (15). The results are listed in
Appendix B as coefficients g3 in the notation in (9).
Similarly, the NLO coefficients C(*P [/]) can be obtained

with the help of the following matrix element relations in
NRQCD:

(22 1163 ,(0s(CPy )Y
3 W _ _ % (A V102 YUy
2 1N16 S ,(0s(3P; )
3oy — _ % (A D s\ (L
(O = =5 (i +5) 5 e = AL
(18)

where Bp =5/12. These coefficients and those for
n =35 35® \which had been calculated in Ref. [14],
are also listed in Appendix B.

It needs to be emphasized that the coefficients for the
3P[ﬁ] ,3D[11] and 3D[21] configurations are u, dependent after
matching, which will be canceled by the 1, dependence of
the LDMEs of 351 35% and 3P¥) order by order in a,. Up
to NLO in a4, the u, evolution equations for these LDMEs
can be derived from Eqs. (17) and (18), which are given by

d(0,(S))) _ a,32355 ,(Os(Py)) (199)
dlnpy 4z 3 m?2 '
d(Os(3S)))  a,32 >3 ((Os(CPy))
dinpy a3 r m> - (199)
d{Os(*Py)) _ o, 32 (0,(D,))
dingy4r3 I oy (199

B. Estimation of LDMEs

The color-singlet LDMESs for 3D[Jl] can be related to the
second derivative of the radial wave function at the origin

(01 (D)) = (27 +1)(1°D,|0,(*D,)|1°D;)
15|R},(0)]?

= (2/+ (2N, ==

(20)

where |R},,(0)[? can be estimated by the potential models.
The matrix element (01" (3D,)) = 0 for J' # J at the LO
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in 2. As for other LDMEs, there is little information from
experiments and model calculations. In Ref. [12], the
LDMEs were estimated by the naive velocity scaling rules
(VSRs)

(O¢'CPy)) (OF' (D))

(O (s it AT ()
and the spin symmetry relations
2J+1
(05" C81)) = —5— (05" (S1), (22a)
v 2] +1 ]
(05" CP1) = —5— (05" CP1)). (22b)

Similar relations are also used to estimate the LDMEs in
Ref. [13]. However, these relations tend to overestimate the
LDME:s and even provide the wrong pattern sometimes for
a reason which will be explained below.

Dynamically, the relations in (21) and (22) come from
the power counting for the soft gluon interactions in
NRQCD [11], which cause the mixing between operators
indicated by the evolution equations in (19). The color
factor 1/(2N.) = 1/6 in (19¢) tends to suppress the CO
matrix element (O%'(3P,)) relative to that in the naive
relation in (21). A similar suppression relative to the naive
VSRs for the CO matrix element was also found in J/y and
n. production at hadron colliders, where the suppression
factor of the CO matrix element to the CS one is about
1/100 [17] while in the naive VSRs it would be of order
v* ~ 1/15. Moreover, the nonuniversal coefficient C; in
(19¢) will violate the naive spin symmetry relation in (22b).
For example, (O%*(3P;)) = 0 at leading order in »? since
Cy3 = 0 for the single gluon transition in NRQCD.

On the other hand, the LDMEs can be roughly estimated
by solving the evolution equations in (19) in the leading
logarithm approximation. That is, for the evolution of the
LDMEs from the scale py, ~ m.v to the factorization scale
Ha ~ me >y, one can neglect the initial values at p,,
and the solutions of the equations in (19) will be given by

PHYSICAL REVIEW D 91, 114023 (2015)

1 3CyrB 8 s o 2 (9 3D
(0L} a) =y F(3_ﬂ0 s m) ©.Co)
(23b)

1 8 . ay(ur,)) (0,CD
(O5CP)) ) =37 CFC”<3ﬂo 0(((/4/\))>< 1’(?12 )
(23¢)
where i = 16— C, =3 and N; = 3. This method

was first proposed by the authors of Ref. [18] to reduce the
freedom of the CO matrix elements in Y annihilation decay
and recently developed in D-wave cases [6,15,19]. The
evolution method has been numerically checked in £, light
hadronic decay by comparing its result with that obtained
by extraction from experimental data, and they were found
to be consistent within about 30% error [20]. Here, we will
use the results in (23) to estimate the relevant LDMEs by
treating the CS ones (O;(*D;)) in (20) as input. The
uncertainties from neglecting the initial values for these
LDMEs can be partly estimated by varying the value of the
starting scale py, .

IV. RESULTS AND DISCUSSIONS

We choose |R],(0)]> = 0.015 GeV’ according to the
Buchmuller-Tye potential model model [21] and m, =
1.5 GeV to estimate the CS LDMEs (O, (*D,)) in (20), and
the results are listed in Table II. As for other LDMEs, we
evaluate them at NRQCD factorization scale u, = 2m, by
using the solutions in (23) with the starting scale uy =
m.v = 750 MeV for v> = 0.25. The results are also listed
in Table IL

The numerical results of the LO and the NLO SDCs
are shown in Table III with three different choices of
the renormalization scale u = m;/2, my,,2m;,, where
my, = 4.8 GeV. The LO and NLO Wilson coefficients in
the weak effective Hamiltonian in (5) are evaluated by the
formulas shown in Ref. [22]. From Table III, one can see

that the coefficients for *P!*) and 35%¥ are evidently larger
than the others. This is simply because they receive large

1 3C 8 «a 2(0.(3D contributions from tree level diagrams, which are propor-
(O10C81)(ua) = N, 2F <3ﬂ In S((ﬂA”))> < 1’(714 1)> tional to C[ZS].
o % ‘ Using the NLO SDCs at 4 = my, in Table III and the
(233)  LDMEs in Table IL, one can evaluate the branching ratios
TABLE II. The relevant LDMEs (in units of GeV?) at NRQCD factorization scale u, = 2m,, where
m, = 1.5 GeV.
States <0<;fzﬁ”>> <0<j££”)> <0<Z?£”)> <0<;§£§” oerh) <0<3};§‘ D oesthy oesEy)
78] 0.032 0 0 0.0029 0.0022 0.0001 0.0019 0.0008
) 0 0.053 0 0 0.0065 0.0022 0.0031 0.0013
V3 0 0 0.074 0 0 0.012 0.0044 0.0018
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TABLE IIL.
and my, = 4.8 GeV, m, = 1.5 GeV.

PHYSICAL REVIEW D 91, 114023 (2015)

The LO and NLO SDCs in the NDR and HV schemes. The QCD renormalization scale y is taken to be m,,/2, my,, 2m,,

Fock state LO NLO NDR scheme NLO HV scheme

U my/2 m, 2my, my/2 my, 2my, my,/2 m, 2my,
3D[Il] 0.0014 0.0335 0.0863 -0.5197 —0.4148 —0.3580 —0.4567 —0.3456 —0.2865
3D[21] 0 0 0 —0.8590 —0.6023 —0.4631 —0.7994 —0.5585 —0.4275
3Dg1] 0 0 0 0.0025 0.0017 0.0013 0.0023 0.0016 0.0012
3P([)8] 0 0 0 —1.309 —0.988 —0.827 —1.196 —0.8888 —-0.7375
3P[18] 10.918 9.780 9.060 15.11 13.21 11.97 15.86 13.59 12.13
3P[28] 0 0 0 —1.056 —0.7978 —0.6677 —0.9651 -0.7175 —0.5954
35[11] 0.0034 0.0805 0.2072 —0.1168 —0.2425 —0.3138 —0.0288 -0.1167 -0.1715
3 gl8] 5.459 4.890 4.530 7.340 6.346 5711 7.708 6.531 5.787

for the semi-inclusive B decays into y;. To estimate the
uncertainties from the factorization scale y, = 2m,. and the
LDMEs, we vary m, and p, , respectively, in the ranges
(1.4, 1.6) GeV and (700, 800) MeV, which will be shown as
errors in the following results.

Let us first consider the production rate of y, which is
believed to be the dominant component of y(3770). The
branching ratios in the NDR and HV schemes are

Br(B — y X)xpr = (5.091757) x 1074,

Br(B =y X)yy = (6.211375) x 107, (24)

respectively, where the dominant contributions come from
the CO channel 3P[lg]. The results in (24) are only slightly
larger than the branching ratio of the exclusive decay B —
w(3770)K in (3), and could be too small to account for the
ratio R,(y(3770)) defined in (4), which is expected to be
no more than 1/10. One might think that the y(3770) could
produce in B decays predominantly through its y(2S)
component. However, the 2S-1D mixing angle 6 is only

about —12° in the notation [23-25]

v (3686) = cos Oy (2S) + sin Oy,

yw(3770) = cos Oy — sin Oy (25). (25)

Thus, by using the PDG data Br(B—y(3686)X)=(3.07+
0.21)x 1073 [8], the inclusive branching ratio of B decay
into y(3770) through the w(2S) component would be

sin? OBr(B — y(25)X) ~ sin? Br(B — yw(3686)X)

= (133 +0.09) x 10, (26)

which is even smaller than those in (24). In total, the
predicted ratio R,(w(3770)) = (0.5-1) is substantially

larger than one expects, especially when the production
rates in (24) mainly come from the CO channel 3P[lg].
The inclusive production rate of w, in B decay is

predicted to be

Br(B = v, X)npr = (1.79708)) x 1073,

Br(B = yoX)yy = (1.9610¢¢) x 1072, (27)

where the dominant contributions come also from the CO

channel 3P[lg]. The results in (27) are about 2 orders of
magnitude larger than the exclusive one in (2). In other
words, the ratio R, (y,) ~ 0.01, which is consistent with the
one for another tensor meson y.,, of which R,(y.,) =
(0.7 £ 0.3) x 1072 [8]. The inclusive decay B — y,X may
be measured directly by the LHCb or Belle II collabora-
tions in the future, since the predicted branching ratios in
(27) are large, and the decay mode y .y for y, is expected
to be dominant.

As for the production of 3, the rates are predicted to be

Br(B — y3X)xpr = (0.331055) x 107,

Bi(B — y3X)uy = (0.891053) x 1074, (28)
which are much smaller than those for y, and y,. This
smallness occurs for the following reasons. First, for the

3P[18] channel the short-distance coefficient is the largest but
the corresponding matrix element (O%*(*P})) = 0 at lead-
ing order in v2. Furthermore, the extreme smallness of the
central values in (28) is the consequence of the cancellation

between contributions of the 35 and 3P¥ channels.
Considering the large uncertainties in the estimation of
the LDMES, the cancellation may be somewhat accidental,
and we will use a single channel, say, 3s [18] alone to estimate
the upper limit of the production rate of y/5. The results read
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38l
Br(B = y3X)npr = 3.53 x 1074,

3¢(8]
Br(B — y3X)p0 = 3.63 x 1074, (29)

which can also be treated as a rough estimation for the order
of magnitude of the branching ratio. Phenomenologically,
the phase space allowed in open-charmed decay w3 — DD
is a D-wave process, the partial decay width I'(y3; —
DD) ~ 0.5 MeV for m(y3) = 3806 MeV [26], and would
be no more than 1 MeV for m(y3) < 3830 MeV, which is
estimated by simply changing the phase space factor. Thus,
the missing state w3 is expected to be narrow. On the
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other hand, the partial decay width I"(y 3 — lighthadrons) ~
0.2MeV [6], which is compared with that of I'(y3; —
¥Xe2) ~0.3 MeV [7,26]. Therefore, one can expect that
the missing state w3 can be searched for in B decays
through the cascade decay ws; — yy.o — yyJ/w by the
LHCb or Belle II collaborations in the future. On the other
hand, comparing the measurement with our prediction is
important for both testing the NRQCD factorization
approach and determining the LDMEs.

The above results are only evaluated at the fixed
renormalization scale y = m,. The scale dependence of
the branching ratios Br(B — y,;X) for J = 1, 2 and 3 are
shown in Figs. 3, 4 and 5, respectively.
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V. SUMMARY

In summary, we study the semi-inclusive decays of the
B meson into spin-triplet D-wave chamonium states
w,;(J = 1,2,3) within the framework of NRQCD factori-
zation [11] at NLO in @, and LO in v2. The finite short-
distance coefficients for 3D[Jl] channels are obtained for he
first time, and the IR divergences in the QCD calculations
for these channels are absorbed into the redefinitions of

the NRQCD LDMEs for the *P(J' = 0,1,2) channels.

The LDME:s for the 3D[Jl] channels are estimated with the
help of a potential model, and other LDMEs are obtained
by solving the evolution equations in the leading loga-
rithm approximation, which tend to count correctly for the
spin-coupling factors C,, between the 3P[18,] and 3D[Jl]
states.

The branching ratios Br(B — y;,X) are predicted to be
about 6 x 10™* and 2 x 1073, respectively. The relative
errors for the above predictions are both about 50%, which
mainly come from the uncertainties of the LDMEs. The
branching ratio Br(B — y3X) can be very small due to the

cancellation between the 3S™ and 3P

use the single channel 3S [,8] alone to set up the upper limit

for Br(B — w3X), which is about 4 x 10~*. The above
predictions may deserve to be compared with the future
measurements to test the NRQCD factorization formula
and to determine the LDMESs further. In particular, the
decay B — y;X may be used to search for the missing state
w3 through the cascade decay w3 — yy.. — yyJ/y, and the
measurement on Br(B — w(3770)X) will provide new
information for understanding the large production rate
of y(3770) in exclusive B decays if it is dominated by the
w| component.

channels. Thus, we
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APPENDIX A: THE DEFINITIONS OF
RELEVANT OPERATORS

The relevant operators for inclusive production of
charmonium state H are defined as

H (3 gll]

O7(S)

=" o'w(ayay)y'oly, (A1)

OH(SY) = ¥ Teo'y(aan)y Ty, (A2)

OH(pEY =yt (—%B - 8) Tw(ayap)y' (—%B : 8) T,

APPENDIX B: THE RELEVANT NLO SDCs

1
For 35[1 ]
alsi] =

Ol &~

16

_?(2;7 + 1)(1 =n)*Inyln(l —n)

~ 2+ 1)(1 =)L)

16
+5 @+ 1 —1)*Z,

(1= MO +7=3) + 4227 == 1)) =3 (1 +5)(1 =1 In(1 =)

(A3)

OH(3P[18]) =" <—%B X 5) T (a}ay)
oyt (—%B x 3) T%. (A4)

HoapBly _ i P50

O"(Py) =y —ED &) | T (al,ay)
! (—%B”aﬁ)w : (AS)

H (3l 3 i T i
O"(CDy) =3x K'y(ayan)y' Ky, (A6)

1 . .
O"(Dy) = e Ky (ajyay )y Ky, (AT)

1 . y .
O (DY) = 2 Ky (ahan )y K. (A8)

where the spin tensor operator K’s are given by
K' = o/S, (A9)
K = e*lglSik + ekl gl Sik, (A10)
Kijk — O'iSjk —l—O'jSki +GkSij
Gl(5jksil_|_5kisjl+5ijskl)’ (All)
si— (2N (55 - 1p%s0 (A12)
S \2 3
16
+5 (L +n)(2n=1)Iny

(B1)
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8(n—1)3( ) An? (4P — 199 + 26) 2(165* — 670 + 7412 + 11— 34)  325(n— 1)3
3glth — In(1 — Iny— - In2
%51 3(n—2)° (=) 3(n-2) 1 3(n-2) 3(n-2)
2 4 4
#ar 0)(0 =02 (") -0+ 10 02K+ 5 @1+ )0 =) (B2
4 8
g3[*8\"] = = (8 = 450 + 360 + 1)+ (6~ 1) Inn. (B3)
8
For 3S[1],
4 8
giPSY] =5 (807 = 4512 4360+ 1) + S (61 = D Iny, (B4)
g [33[8]] _ 207> =3)(n—=1)*In(1 — 1) +172(4;12 — 197 +26)1n(n) N —16n* + 671’ = 74> = 11 +34  8n(n—1)*In(2)
2 (n—2) n-2 2(1-2) n—2
2
3@t 1) —1)21n(ﬂ) @0+ 1) — 12X + 21+ 1)1 — 127, (85)
Tdu? — 835 — 18)(n — 1)2In(2
93[35[181]:_( " )2( )*1n(2)
n_
. (52287% — 1479572 + 622 (5817 — 3% — 799 — 14) + 5779 + 5294) (5 — 1)
36(n —2)
_ (837° = 29177 + 188 + 110) (7 — 1)*In(1 — n)
(n—2)*
+ 601=2) ((426n* — 1158, + 2165° In(2) + 10625> — 5405 In(2) — 5471
’7_
9
+ 10871n(2) — 34 4 2161n(2)) In(y)) — > (2n+1)(n—1)’In%(2 —n)
+92n+1)(n=1)*In(1 =) In(2 =) —18(2n + 1)(n — 1) In(2) In(2 — 1)
m2
220+ 1)(dn + 5) (7 — 1) In(1 = ) In(r) — 6(20 + 1)(1 — 1>21n(ﬂ—§)
—1 2n—1
-9+ 1D)(2n+1)(n- 1)L12< ) +18(2n+1)(n— 1)Li2< (n ))
n—2 n—2
- 2n+1)(Tn+29)(n — 1)Lir(n) +2(2n + 1)(n — 1)*Xg
+ 72+ 1)(n = 1)*Yg — 27+ 1)(n — 1)*Z. (B6)
8
For 3P([)],

3[8]:_i 3_ 5,2 2 _1_62 —1)21 M
9Py’ = =5 (1877 =57 =38y +25) == (2n + 1)(n )n4mc

+§(2;7 +1) <;7 —1)2In(1 —7) —§(8q3 — 127> + 1) ln(n)), (B7)
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1 10 z
7 [3P([JS]] =3 (=421 — > + 1227 = 79) — 3 (2n+1)(n=1)*1n (4/2:2>

c

20 2
+? 2n+1)(n—-1>21In(1-7n) - 3 (201 — 30n% + 7) In(n). (B9)
For 3P,
16 8
PP = == 20 = 1)@ = 20— 1) In(n) = 5 (5617 =930 + 241+ 13)
32 16 U
20t D= 170 =) - 2 1= 01, (B10)

9P ==16771n(2)In(2 = ) = 1677 In(1 = 1) In(n)
+2;12(12;73 — 59 4+ 877 In(2) + 961 —3251n(2) — 48 + 321In(2)) In(y)

(n-2)?
8 (4n° = 21> +387—25)In(2)  4(3n*— 101> +87* +3)(n—1)In(1-7)
(n=2)? (n=2)*
54 (1622 — 63)* — ) + (123 + 647 )i — 24n(In(16) —7) — 204 2
+247] + (167° —63)n* —16(3+47° ) + (1 23—1—6 ) n(In(16) —7) =20 —|—6(2;7—|—1)(11—1)21n<m—2b)
3(n-2) H
-1 2(p—1
16 (170 6L, (201
n—2 n—2
=32°Lis (n) =220+ 1) (n = 1)*Xg +2(2n + 1) (n = 1)*Y . (B11)

93P PY) = —4(87° + 167* = 9 = 5) In(1 = ) In()
1
+ 801 =2) (50115* — 17939, + 15135#* + 62%(584* — 91> — 865> + 651 + 14)
]7 P—
10(477* = 210> + 251> = 187 — 58)(n — 1) In(1 — 1)
3(n-2)?
2(587* — 2697 43991 — 1127 — 36)(n — 1) In(2) 1
- + 398, — 18385n* + 3365* In(2) + 2669,°
=2y -2
— 14521 In(2) — 8351 + 16681 In(2) — 368y + 68 — 4321n(2)) In(7)
927+ 1)(n—1)2In2(2 = n) + 182y + 1)(n = 1)*>In(1 — ) In(2 — 1)

—4(4n=3)(Tn+3)In(2)In(2—n) = 12(2n + 1)(n = 1)? 1n(’:_§> _ 13_0 21+ 1)(n=1)?1n (4/,2\2>

+ 19077 — 4114) —

~1
—2(184% + 299 — 187 — 9)Li, <” 2>
;/I_

2(n—1
—2(145* + 91> = 36n — 29)Lis () + 4(4n — 3)(7n +3)Li2< E;v 2))

+402n+1)(n = 1)2Xg + 1420+ 1)(n = 1)2Yg = 220 + 1)(n — 1)?Zg. (B12)
For 3P¥,
8 16
g BPY) = -5 (763 = 1072 + 45 + 27) — i (2073 = 307% + 1) In(y)
32 16 2
+?(2n+ 1)(n—1)%1In(1 —7n) —?(2714— 1)(n— 1)21n<4't:1\2>, (B13)

aPPP =0, (B14)
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1 1
G PPy = == (721> + 8545 + 149y — 282) + — (—2007 + 300> + 815 — 28) In(y)

30 15
20 10 UA
—2n+ D=1 In(1—n)——=2n+ D(np—-1)21In( 2, ). Bl
#3101 =) = 5 2 =107 (1) (B15)
1
For 3D,
5
9D = = (B(=617 + 90 + 5) + 2 (80> = 4y = 4)) (n — 1)
10 , 20 ,
= (41 +5)n=1)*In(1 —n) = -~ 2n + 1)(n = 1)*In(1 ) In(x)
20 40 , 20
+ g+ 1)2n = 1) In(n) == 20 + 1) = 1)Lz (n) + = (20 + 1)1 = 1)*Z, (B16)
80 80
9:['DY) = ~-r* n(2) In(2 ) = -1 In(1 = n) In(i)
1
+ So—27 (n?(84n* — 5671 4 80n° In(2) + 1350% — 480> In(2)
11_
8(83n* — 22513 + 2357% — 407 — 54) In(2
— 12001 + 9607 1n(2) + 240 — 6401n(2)) In(y)) + 11 1 ;L(n_z)S 1= 54)In(2)
2(271° — 1981 + 5025* — 43853 — 531% + 1400 + 60) (7 — 1) In(1 — )
9(n-2)*
* S =27 (—4845(In(2048) — 6) + 5(3272 — 339)° + (2622 — 96072)5*
y—
1 15(77 + 12822)p° — 10(435 + 12822)% + 6125 + 72(19 + In(256)))
5 L (m3\ 80 , . /n—=1\ 80 , . (2(n—1)
- - T} 2L L
+3(277—|-1)(71 1) hl(;ﬂ) 5 7 Liz - +9r1 i "
16052Li 5 5
OO 3 o 1) 12K + 3 20 10— 17 (B17)
2 1
gDV = ~ 135 (107 + 1)(4007 = 645 + 1) Iny) + = (~4304n° + 55470 + 3007 — 1543)
80 ) 40 o (B
- - —n) —— - . BIS
+ 390+ D= 1Pt =) = 30 2o+ (= 0P 22 (B18)
1
For 3D[2],
alDY] =0, (B19)
wlDY] =0, (B20)
4
gD} = — 45 (2147 = 27307 = 307 4 89) - % (207% = 3052 — 257 + 1) In(y)
+ 2 o e D= 12 (1 =) = S 24 )= 1)21n s (B21)
3 21+ 1)@ n) =3 @n+ 1) i)’
1
For 3Dg],
alDy] =0, (B22)
0.PD) =0, (B23)
gsPDY) = S (2 — 112+ 107 — 1) + % (49— 1) (). (B24)
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