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It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase
appears in a color superconductor when the pairing between different quark flavors is under the
circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is
still unclear because an exact treatment of three-dimensional crystal structures is rather difficult. In this
work we present a solid-state-like calculation of the ground-state energy of the body-centered cubic (BCC)
structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space without
assuming a small amplitude of the order parameter. We develop a computational scheme to overcome the
difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more
favorable than the one-dimensional modulation in a narrow window around the conventional LOFF-normal
phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau
approach.
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I. INTRODUCTION

The ground state of exotic fermion Cooper pairing with
mismatched Fermi surfaces is a longstanding problem in
the theory of superconductivity [1]. In electronic super-
conductors, the mismatched Fermi surfaces are normally
induced by the Zeeman energy splitting 2δμ in a magnetic
field. For s-wave pairing at weak coupling, it is known that,
at a critical field δμ1 ¼ 0.707Δ0 whereΔ0 is the pairing gap
at vanishingmismatch, a first-order phase transition from the
gapped BCS state to the normal state occurs [2]. Further
theoretical studies showed that the inhomogeneous Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) state can survive in a
narrow window δμ1 < δμ < δμ2, where the upper critical
field δμ2 ¼ 0.754Δ0 [3,4]. However, since the thermody-
namic critical field ismuch lower than δμ1 due to strong orbit
effect, it is rather hard to observe the LOFF state in ordinary
superconductors [2]. In recent years, experimental eviden-
ces for the LOFF state in some superconducting materials
have been reported [5–8].
On the other hand, exotic pairing phases have promoted

new interest in the studies of dense quark matter under the
circumstances of compact stars [9–19] and ultracold atomic
Fermi gases with population imbalance [20,21]. Color
superconductivity in dense quark matter appears due to
the attractive interactions in certain diquark channels
[22–26]. Because of the constraints from beta equilibrium
and electric charge neutrality, different quark flavors (u, d,
and s) acquire mismatched Fermi surfaces. Quark color
superconductors under compact-star constraints as well as
atomic Fermi gases with population imbalance therefore
provide rather clean systems to realize the long-sought
exotic LOFF phase.

Around the tricritical point in the temperature-mismatch
phase diagram, the LOFF phase can be studied rigorously
by using the Ginzburg-Laudau (GL) analysis since both the
gap parameter and the pair momentum are vanishingly
small [1]. It was found that the solution with two antipodal
wave vectors is the preferred one [27–29]. However, the
real ground state of the LOFF phase is still debated due to
the limited theoretical approaches at zero temperature. So
far rigorous studies of the LOFF phase at zero temperature
are restricted to its one-dimensional structures including
the Fulde-Ferrell (FF) state with a plane-wave form ΔðzÞ ¼
Δe2iqz and the Larkin-Ovhinnikov (LO) state with an
antipodal-wave form ΔðzÞ ¼ 2Δ cosð2qzÞ. A recent self-
consistent treatment of the 1D modulation [30] show
that a solitonic lattice is formed near the lower critical
field, and the phase transition to the BCS state is
continuous. Near the upper critical field the gap function
becomes sinusoidal, and the transition to the normal state is
of first order.
In addition to these 1D structures, there exist a large

number of three-dimensional crystal structures. The general
form of a crystal structure of the order parameter can be
expressed as

ΔðrÞ ¼
XP
k¼1

Δe2iqn̂k·r: ð1Þ

A specific crystal structure corresponds to a multi-
wave configuration determined by the P unit vectors
nkðk ¼ 1; 2;…; PÞ. In general, we expect two competing
mechanisms: Increasing the number of waves tends to
lower the energy, but it may also causes higher repulsive
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interaction energy between different wave directions. In a
pioneer work, Bowers and Rajagopal investigated 23
different crystal structures by using the GL approach
[10], where the grand potential measured with respect to
the normal state was expanded up to the order OðΔ6Þ,

δΩðΔÞ
N F

¼ PαΔ2 þ 1

2
βΔ4 þ 1

3
γΔ6 þOðΔ8Þ ð2Þ

with N F being the density of state at the Fermi surface
and the pair momentum fixed at the optimal value
q ¼ 1.1997δμ. Among the structures with γ0, the favored
one seems to be the body-centered cubic (BCC) with P ¼ 6
[31]. Further, it was conjectured that the face-centered
cubic (FCC) with P ¼ 8 [32] is the preferred structure since
its γ is negative and the largest [10]. For the BCC structure,
the GL analysis up to the order OðΔ6Þ predicts a strong
first-order phase transition at δμ� ≃ 3.6Δ0 with the gap
parameter Δ≃ 0.8Δ0 [10]. The prediction of a strong first-
order phase transition may invalidate the GL approach
itself. On the other hand, by using the quasiclassical
equation approach with a Fourier expansion for the order
parameter, Combescot and Mora [33,34] predicted that the
BCC-normal transition is of rather weak first order: The
upper critical field δμ� is only about 4%higher than δμ2 with
Δ≃ 0.1Δ0 at δμ ¼ δμ�. If this result is reliable, it indicates
that the higher-order expansions in the GL analysis is
important for quantitative predictions. To understand this
intuitively, let us simply add the eighth-order term η

4
Δ8 to

the GL potential (2). A detailed analysis of the influence
of a positive η on the phase transition is presented in
Appendix A. We find that with increasing η, the first-order
phase transition becomes weaker and the upper critical field
δμ� decreases. For η → þ∞, the phase transition approaches
secondorder and δμ� → δμ2. Therefore, to givemore precise
predictions we need to study the higher-order expansions
and the convergence property of the GL series, or use a
different way to evaluate the grand potential without
assuming a small value of Δ.
For a specific crystal structure given by (1), it is periodic

in coordinate space. As a result, the eigenvalue equation
for the fermionic excitation spectrum in this periodic pair
potential, which is known as the Bogoliubov-de Gennes
(BdG) equation, is in analogy to the Schrödinger equation
of quantum particles in a periodic potential. This indicates
that the fermionic excitation spectrum has a band structure,
which can be solved from the BdG equation. The grand
potential can be directly evaluated once the fermionic
excitation spectrum is known [30]. In this work, we present
a solid-state-like calculation of the grand potential of the
BCC structure. Our numerical results show that the phase
transition from the BCC state to the normal state is of rather
weak first order, consistent with the work by Combescot
and Mora [33,34]. This implies that it is quite necessary to

evaluate the higher-order terms in the GL expansion to
improve the quantitative predictions.

II. THERMODYNAMIC POTENTIAL

To be specific, we consider a general effective
Lagrangian for two-flavor quark pairing at high density
and at weak coupling. The Lagrangian density is given
by [1]

L ¼ ψ†½i∂t − εðp̂Þ þ μ̂�ψ þ Lint; ð3Þ

where ψ ¼ ðψu;ψdÞT denotes the two-flavor quark field
and εðp̂Þ is the quark dispersion with the momentum
operator p̂ ¼ −i∇. In the momentum representation we
have εðpÞ ¼ jpj. The quark chemical potentials are speci-
fied by the diagonal matrix μ̂ ¼ diagðμu; μdÞ in the flavor
space, where

μu ¼ μþ δμ; μd ¼ μ − δμ: ð4Þ

The interaction Lagrangian density which leads to Cooper
pairing between different flavors can be expressed as [1]

Lint ¼ gðψ†σ2ψ
�ÞðψTσ2ψÞ; ð5Þ

where g is the coupling constant and σ2 is the second Pauli
matrix in the flavor space. Notice that we have neglected
the antiquark degree of freedom because it plays no role at
high density and at weak coupling. We have also neglected
the color and spin degrees of freedom, which simply give
rise to a degenerate factor.
Color superconductivity is characterized by nonzero

expectation value of the diquark field φðt; rÞ ¼
−2igψTσ2ψ . For the purpose of studying inhomogeneous
phases, we set the expectation value of φðt; rÞ to be static
but inhomogeneous, i.e., hφðt; rÞi ¼ ΔðrÞ. With the
Nambu-Gor’kov spinor Ψ ¼ ðψψ�ÞT, the mean-field
Lagrangian reads

LMF ¼
1

2
Ψ†

 
i∂t − εðp̂Þ þ μ̂ −iσ2ΔðrÞ

iσ2Δ�ðrÞ i∂t þ εðp̂Þ − μ̂

!
Ψ

−
jΔðrÞj2
4g

: ð6Þ

The order parameters of the BCC and FCC structures can
be expressed as

ΔðrÞ ¼ 2Δ½cos ð2qxÞ þ cos ð2qyÞ þ cos ð2qzÞ� ð7Þ

and

ΔðrÞ ¼ 8Δ cos

�
2qxffiffiffi
3

p
�
cos

�
2qyffiffiffi
3

p
�
cos

�
2qzffiffiffi
3

p
�
; ð8Þ
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respectively. Therefore, we consider a 3D periodic structure
where the unit cell is spanned by three linearly independent
vectors a1 ¼ aex, a2 ¼ aey, and a3 ¼ aez with a ¼ π=q

for the BCC and a ¼ ffiffiffi
3

p
π=q for the FCC. The order

parameter is periodic in space, i.e., ΔðrÞ ¼ Δðrþ aiÞ.
It can be decomposed into a discrete set of Fourier
components,

ΔðrÞ ¼
X
G

ΔGeiG·r ¼
X∞

l;m;n¼−∞
Δ½lmn�eiG½lmn�·r; ð9Þ

where the reciprocal lattice vector G reads

G¼G½lmn� ¼
2π

a
ðlexþmeyþnezÞ; l;m;n∈Z: ð10Þ

The Fourier component ΔG ¼ Δ½lmn� can be evaluated as

ΔG ¼ Δ½ðδl;1 þ δl;−1Þδm;0δn;0 þ δl;0ðδm;1 þ δm;−1Þδn;0
þ δl;0δm;0ðδn;1 þ δn;−1Þ� ð11Þ

and

ΔG ¼ Δðδl;1 þ δl;−1Þðδm;1 þ δm;−1Þðδn;1 þ δn;−1Þ ð12Þ

for the BCC and FCC structures, respectively.
Then we consider a finite system in a cubic box defined

as x; y; z ∈ ½−L=2; L=2� with the length L ¼ Na. For
convenience we impose the periodic boundary condition.
The thermodynamic limit is reached by setting N → ∞.
Using the momentum representation, we have the Fourier
transformation

Ψðτ; rÞ ¼ V−1=2
X
ν;p

Ψνpe−iðωντ−p·rÞ: ð13Þ

Here V is the volume of the system, ων¼ð2νþ1ÞπTðν∈ZÞ
is the fermion Matsubara frequency, and the quantized
momentum p is given by

p ¼ 2π

L
ðlex þmey þ nezÞ ð14Þ

with l; m; n ∈ Z. The partition function of the system is
given by

Z ¼
Z

½dΨ�½dΨ†�e−S ð15Þ

with the Euclidean action S ¼ −
R 1=T
0 dτ

R
V d

3rL. The
grand potential per volume reads

Ω ¼ −
T
V
lnZ: ð16Þ

In the mean-field approximation, the action S is quadratic.
Therefore, the partition function Z and grand potential Ω
can be evaluated. Using the Fourier expansions for Ψ and
Δ, we obtain the mean-field action

SMF ¼
V
T

X
G

jΔGj2
4g

−
1

2T

X
ν;p;p0

Ψ†
νpðiωνδp;p0 −Hp;p0 ÞΨνp0 ;

ð17Þ

where the effective Hamiltonian matrix Hp;p0 reads

Hp;p0 ¼

0
B@

ðjpj − μ̂Þδp;p0 iσ2
P
G
ΔGδG;p−p0

−iσ2
P
G
Δ�

GδG;p0−p −ðjpj − μ̂Þδp;p0

1
CA: ð18Þ

The effective HamiltonianHp;p0 is a huge matrix in Nambu-
Gor’kov, flavor, and (discrete) momentum spaces. It is
Hermitian and can, in principle, be diagonalized. Assuming
that the eigenvalues of Hp;p0 are denoted by Eλ, we can
formally express the grand potential as

Ω ¼ 1

4g

X
G

jΔGj2 −
1

2V

X
λ

WðEλÞ; ð19Þ

where the function WðEÞ ¼ E
2
þ T lnð1þ e−E=TÞ. The

summation over G can be worked out as
P

GjΔGj2 ¼ PΔ2.
In practice, diagonalization of the matrix Hp;p0 is

infeasible. However, H can be brought into a block-
diagonal form with N3 independent blocks in the momen-
tum space according to the famous Bloch theorem [30].
To understand this, we consider the eigenvalue equation for
the fermionic excitation spectrum in the coordinate space,
which is known as the BdG equation. For our system, the
BdG equation reads

 
εð−i∇Þ − μ̂ iσ2ΔðrÞ
−iσ2Δ�ðrÞ −εð−i∇Þ þ μ̂

!
ϕλðrÞ ¼ EλϕλðrÞ: ð20Þ

According to the Bloch theorem, the solution of the
eigenfunction ϕλðrÞ takes the form of the so-called
Bloch function. We have

ϕλðrÞ ¼ eik·rϕλkðrÞ; ð21Þ

where k is the momentum in the Brillouin zone (BZ) and
the function ϕλkðrÞ has the same periodicity as the order
parameter ΔðrÞ. We, therefore, have the similar Fourier
expansion,

ϕλkðrÞ ¼
X
G

ϕGðkÞeiG·r: ð22Þ
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Substituting this expansion into the BdG equation, for a
given k we obtain a matrix equationX

G0
HG;G0 ðkÞϕG0 ðkÞ ¼ EλðkÞϕGðkÞ; ð23Þ

where the matrix HG;G0 ðkÞ is given by 
ðjkþGj − μ̂ÞδG;G0 iσ2ΔG−G0

−iσ2Δ�
G0−G −ðjkþGj − μ̂ÞδG;G0

!
: ð24Þ

This shows that, for a given k-point in the BZ, we can solve
the eigenvalue spectrum fEλðkÞg by diagonalizing the
matrix HG;G0 ðkÞ. Without loss of generality, the BZ can
be chosen as kx; ky; kz ∈ ½−π=a; π=a�. For a quantized
volume V containing N3 unit cells, we have N3 allowed
momenta k in the BZ. Accordingly, the grand potential is
now given by

Ω ¼ PΔ2

4g
−

1

2V

X
k∈BZ

X
λ

W½EλðkÞ�: ð25Þ

In the thermodynamic limit N → ∞, the summation
1
V

P
k∈BZ is replaced by an integral over the BZ.

The Hamiltonian matrix HG;G0 ðkÞ can be further simpli-
fied to lower the matrix size. After a proper rearrangement
of the eigenvectorϕG,we find thatH canbedecomposed into
two blocks. We have H ¼ HΔ;δμ ⊕ H−Δ;−δμ. The blocks
can be expressed as HΔ;δμ ¼ HΔ − δμI , where I is the
identity matrix and the matrixHΔ is given by

ðHΔÞG;G0 ¼
�ðjkþGj−μÞδG;G0 ΔG−G0

Δ�
G0−G −ðjkþGj−μÞδG;G0

�
:

ð26Þ

The eigenvalues of HΔ;δμ do not depend on the sign of Δ.
Moreover, replacing δμ by−δμ amounts to a replacement of
the eigenvalue spectrum fEλðkÞg by f−EλðkÞg. Therefore,
the two blocks contribute equally to the grand potential, and
we only need to determine the eigenvalues of HΔ;δμ. The
Hamiltonian matrix (26) represents the general problem of
two-species pairing with mismatched Fermi surfaces. In the
weak-coupling limit, the pairing is dominated near the Fermi
surfaces.Therefore, thephysical result shouldbeuniversal in
terms of the pairing gap Δ0 at vanishing mismatch and the
density of state N F at the Fermi surface.
In the following we shall focus on the zero-temperature

case. The grand potential Ω is divergent and hence a proper
regularization scheme is needed. Since we need to deal with
the Bloch momentum kþG, the usual three-momentum
cutoff scheme [9,10] is not appropriate for numerical
calculations. Moreover, we are interested in the grand
potential δΩ measured with respect to the normal state.
Therefore, we employ a Pauli-Villars-like regularization

scheme, in which δΩ is well defined [30]. The “renormal-
ized” grand potential is given by [35]

δΩðΔ; qÞ ¼ ΩðΔ; qÞ −Ωð0; qÞ; ð27Þ

where

ΩðΔ; qÞ ¼ PΔ2

4g
−
1

2

Z
BZ

d3k
ð2πÞ3

X
λ

X2
j¼0

cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
λðkÞ þ jΛ2

q

ð28Þ
with c0 ¼ c2 ¼ 1 and c1 ¼ −2. Here fEλðkÞg denotes the
eigenvalue spectrum of HΔ;δμ. The coupling constant g can
be fixed by the BCS gap Δ0 at δμ ¼ 0. We expect that at
weak coupling the physical results depend on the cutoff Λ
only through the BCS gap Δ0 [30]. In Fig. 1, we show
the stability window for the FF state as a function of Δ0.
In the weak-coupling limit, the critical fields depend only
on Δ0. For reasons of accuracy [36], we shall choose
Δ0 ∼ 100 MeV at μ ¼ 400 MeV, which corresponds to the
realistic value ofΔ0 at moderate density [22]. Since the size

FF-N

BCS-FF
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FIG. 1 (color online). (Color online) The lower and upper
critical fields (upper panel) and the size of the stability window
ðδμ2 − δμ1Þ=Δ0 (lower panel) for the FF state as a function of Δ0

at μ ¼ 400 MeV. The thin lines denote results in the weak-
coupling limit. The blue solid and red dashed lines correspond to
Λ ¼ 400 and Λ ¼ 800 MeV, respectively.
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of the FF window ðδμ2 − δμ1Þ=Δ0 depends very weakly on
Δ0 and Λ, we can use the upper critical field δμ2 obtained
in Fig. 1 to “calibrate” δμ and appropriately extrapolate the
results to the weak-coupling limit.

III. MATRIX STRUCTURE

For a given k-point in the BZ, we can diagonalize the
Hamiltonian matrixHΔ;δμ to obtain its eigenvalue spectrum
fEλðkÞg. The choice of the k-points in the BZ should be
dense enough to achieve the thermodynamic limit [37]. The
eigenvalue equation can be rewritten as

X
G0

ðHΔÞG;G0 ðkÞϕG0 ðkÞ ¼ ½EλðkÞ þ δμ�ϕGðkÞ; ð29Þ

where the Hamiltonian matrix ðHΔÞG;G0 ðkÞ reads

ðHΔÞG;G0 ðkÞ ¼
�
ξkþGδG;G0 ΔG−G0

ΔG−G0 −ξkþGδG;G0

�
: ð30Þ

Here ξp ¼ jpj − μ and we have used the fact Δ�
G ¼ Δ−G.

The eigenstate ϕG includes two components uG and υG as
usual in the BCS theory. We have

ϕGðkÞ ¼
�
uGðkÞ
υGðkÞ

�
: ð31Þ

We notice that δμ can be absorbed into the eigenvalues. It is
easy to prove that the eigenvalues of HΔ do not depend on
the sign of Δ. Moreover, if ε is an eigenvalue of HΔ, −ε
must be another eigenvalue. Therefore, replacing the δμ by
−δμ amounts to a replacement of the eigenvalue spectrum
fEλðkÞg by f−EλðkÞg.
However, the matrixHΔ has infinite dimensions because

the integers l; m; n run from −∞ to þ∞. Therefore, we
have to make a truncation in order to perform a calculation.
It is natural to make a symmetrical truncation, i.e.,

−D ≤ l; m; n ≤ D; ðD ∈ ZþÞ: ð32Þ

For sufficiently large D, the contribution from the high-
energy bands becomes vanishingly small and the grand
potential δΩ converges to its precise value. After making
this truncation, the matrix equation can be expressed as

H

�
u

υ

�
¼
�
H11 H12

H21 H22

��
u

υ

�
¼ ðEþ δμÞ

�
u

υ

�
; ð33Þ

where u and υ are ð2Dþ 1Þ3-dimensional vectors and Hij

are ð2Dþ 1Þ3 × ð2Dþ 1Þ3 matrices. The matrix elements
of Hij can be formally expressed as

H½l;m;n�;½l0;m0;n0�
11 ¼ −H½l;m;n�;½l0;m0;n0�

22 ¼ ξ½l;m;n�δl;l0δm;m0δn;n0 ;

H½l;m;n�;½l0;m0;n0�
12 ¼ H½l;m;n�;½l0;m0;n0�

21 ¼ Δ½l−l0;m−m0;n−n0�; ð34Þ

where

ξ½l;m;n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kxþ

2πl
a

�
2

þ
�
kyþ

2πm
a

�
2

þ
�
kzþ

2πn
a

�
2

s

−μ: ð35Þ

Here the matrix index ½l; m; n� corresponds to the reciprocal
lattice vector G½lmn� ¼ ð2π=aÞðlex þmey þ nezÞ. It shows
that the blocksH11 andH22 are diagonal. The off-diagonal
blocks H12 and H21 carry the information of the order
parameter Δ and characterize the crystal structure.
For a specific value of D, we can write down the explicit

form of the vectors u and υ and the matrices Hij. Here
we use D ¼ 1 as an example. The vectors u and υ are
27-dimensional and can be expressed as

u ¼

0
BBBBBBBBBBBBBBBB@

u½−1;−1�
u½−1;0�
u½−1;1�
u½0;−1�
u½0;0�
u½0;1�
u½1;−1�
u½1;0�
u½1;1�

1
CCCCCCCCCCCCCCCCA

; υ ¼

0
BBBBBBBBBBBBBBBB@

υ½−1;−1�
υ½−1;0�
υ½−1;1�
υ½0;−1�
υ½0;0�
υ½0;1�
υ½1;−1�
υ½1;0�
υ½1;1�

1
CCCCCCCCCCCCCCCCA

; ð36Þ

where u½l;m� and υ½l;m� are defined as

u½l;m� ¼

0
B@

u½l;m;−1�
u½l;m;0�
u½l;m;1�

1
CA; υ½l;m� ¼

0
B@

υ½l;m;−1�
υ½l;m;0�
υ½l;m;1�

1
CA: ð37Þ

In this representation, the off-diagonal blocksH12 andH21

are given by

H12 ¼

0
BBBBBBBBBBBBBBBB@

Δ1 Δ2 0 Δ2 0 0 0 0 0

Δ2 Δ1 Δ2 0 Δ2 0 0 0 0

0 Δ2 Δ1 0 0 Δ2 0 0 0

Δ2 0 0 Δ1 Δ2 0 Δ2 0 0

0 Δ2 0 Δ2 Δ1 Δ2 0 Δ2 0

0 0 Δ2 0 Δ2 Δ1 0 0 Δ2

0 0 0 Δ2 0 0 Δ1 Δ2 0

0 0 0 0 Δ2 0 Δ2 Δ1 Δ2

0 0 0 0 0 Δ2 0 Δ2 Δ1

1
CCCCCCCCCCCCCCCCA

ð38Þ
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for the BCC structure and

H12¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 Δ1 0 0 0 0

0 0 0 Δ1 0 Δ1 0 0 0

0 0 0 0 Δ1 0 0 0 0

0 Δ1 0 0 0 0 0 Δ1 0

Δ1 0 Δ1 0 0 0 Δ1 0 Δ1

0 Δ1 0 0 0 0 0 Δ1 0

0 0 0 0 Δ1 0 0 0 0

0 0 0 Δ1 0 Δ1 0 0 0

0 0 0 0 Δ1 0 0 0 0

1
CCCCCCCCCCCCCCCCA

ð39Þ

for the FCC structure, respectively. Here the blocks Δ1 and
Δ2 are defined as

Δ1 ¼

0
B@

0 Δ 0

Δ 0 Δ
0 Δ 0

1
CA;

Δ2 ¼

0
B@

Δ 0 0

0 Δ 0

0 0 Δ

1
CA: ð40Þ

In principle, the eigenvalue spectrum fEλðkÞg can be
obtained by diagonalizing the matrix H with a
size 2ð2Dþ 1Þ3.
We notice that the matrix size 2ð2Dþ 1Þ3 grows

dramatically with increasing cutoff D. Therefore, for
realistic diagonalization, it is better to reduce the size
of the matrix. Here we find that, with a proper
rearrangement of the basis ϕ or after a similarity
transformation, the matrix H becomes block diagonal.
We have

H ∼
�
Hþ 0

0 H−

�
; ð41Þ

where size of the blocks Hþ and H− are both ð2Dþ 1Þ3.
The eigenvector ϕ is now defined as

ϕ ¼
�
ϕþ
ϕ−

�
: ð42Þ

For D ¼ 1, the 27-dimensional vectors ϕþ and ϕ− are
given by

ϕþ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

υ½−1;−1;−1�
u½−1;−1;0�
υ½−1;−1;1�
u½−1;0;−1�
υ½−1;0;0�
u½−1;0;1�
υ½−1;1;−1�
u½−1;1;0�
υ½−1;1;1�
u½0;−1;−1�
υ½0;−1;0�
u½0;−1;1�
υ½0;0;−1�
u½0;0;0�
υ½0;0;1�
u½0;1;−1�
υ½0;1;0�
u½0;1;1�
υ½1;−1;−1�
u½1;−1;0�
υ½1;−1;1�
u½1;0;−1�
υ½1;0;0�
u½1;0;1�
υ½1;1;−1�
u½1;1;0�
υ½1;1;1�

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ϕ− ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

u½−1;−1;−1�
υ½−1;−1;0�
u½−1;−1;1�
υ½−1;0;−1�
u½−1;0;0�
υ½−1;0;1�
u½−1;1;−1�
υ½−1;1;0�
u½−1;1;1�
υ½0;−1;−1�
u½0;−1;0�
υ½0;−1;1�
u½0;0;−1�
υ½0;0;0�
u½0;0;1�
υ½0;1;−1�
u½0;1;0�
υ½0;1;1�

u½1;−1;−1�
υ½1;−1;0�
u½1;−1;1�
υ½1;0;−1�
u½1;0;0�
υ½1;0;1�
u½1;1;−1�
υ½1;1;0�
u½1;1;1�

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ð43Þ

which is just a proper rearrangement of the original
basis given by (36). The blocks Hþ and H− are
given by

H� ¼ �H0 þH12; ð44Þ

where H12 is given by (34) or (38) and (39) for D ¼ 1.
H0 is a diagonal matrix containing the kinetic energies
ξ½l;m;n�. We have

H½l;m;n�;½l0;m0;n0�
0 ¼ ð−1Þlþmþnξ½l;m;n�δl;l0δm;m0δn;n0 : ð45Þ

For D ¼ 1, we obtain

H0 ¼ diagð−ξ½−1;−1;−1�; ξ½−1;−1;0�;−ξ½−1;−1;1�; � � � ;
× ξ½0;0;0�; � � � ;−ξ½1;1;−1�; ξ½1;1;0�;−ξ½1;1;1�Þ: ð46Þ
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It is easy to show that the eigenvalue spectra of Hþ and
H− are dependent: If the eigenvalue spectrum of Hþ is
given by fελðkÞg, the eigenvalue spectrum of H− reads
f−ελðkÞg. Therefore, we only need to diagonalize the
matrix Hþ or H− which has a size ð2Dþ 1Þ3. Once the
eigenvalue spectrum of Hþ is known, the eigenvalue
spectrum of Hamiltonian matrix HΔ;δμ is given by

fEλðkÞg ¼ fελðkÞ − δμg∪f−ελðkÞ − δμg: ð47Þ

Therefore, we can in principle calculate the potential
landscape δΩðΔ; qÞ. The solution ðΔ; qÞ of a specific
crystal structure corresponds to the global minimum of
the potential landscape.

IV. COMPUTATION AND RESULTS

To achieve satisfying convergence we normally need a
large cutoff D. However, the matrix size ð2Dþ 1Þ3 and,
hence, the computing time and cost grow dramatically with
increasing D. The cutoff D needed for convergence can be
roughly estimated from the maximum momentum kmax in
the matrix,

kmax ¼ ð2Dþ 1Þ π
a
: ð48Þ

The value of kmax can be estimated from the LO state.
The calculation of the LO state is much easier than 3D
structures because the matrix size becomes 2Dþ 1. The
details of the calculation of the LO state are presented in
Appendix B. For Δ0 ∼ 100 MeV we need kmax ≃ 5 GeV
[38]. Since we are interested in the region δμ=Δ0 ∈
½0.7; 0.8� and the optimal pair momentum
is q ∼ δμ, we estimate D ∼ 35 for the BCC and
D ∼ 60 for the FCC. These huge matrix sizes are beyond
the capability of our current computing facilities. On the
other hand, even though a supercomputer may be able to
diagonalize these huge matrices, the computing time and
cost are still enormous, which makes the calculation
infeasible.
Since we are interested in the grand potential δΩ rather

than the band structure (the eigenvalues), we can neglect a
small amount of the off-diagonal couplings Δ in the matrix
Hþ. By doing so, the huge matrix Hþ can be decomposed
into a number of blocks with size ð2dþ 1Þ3. For symmetry
reasons, we set the centers of these blocks at the reciprocal
lattice vectors,

G½nx;ny;nz� ¼ ð2dþ 1Þ 2π
a
ðnxex þ nyey þ nzezÞ; ð49Þ

with nx; ny; nz ∈ Z. With increasing d, the grand potential
converges to the result from exact diagonalization.
Good convergence is normally reached at some value
d ¼ d0. The details of our computational scheme are

presented in Appendix C. If the block size ð2d0 þ 1Þ3 is
within our computing capability, the calculation becomes
feasible. Fortunately, we find that this computational
scheme works for the BCC structure. At present, we are
not able to perform a calculation for the FCC structure,
since the value of d0 needed for convergence is much
larger. Note that the computing cost is still very large even
though we have employed this effective computational
scheme.
We have performed calculations of the BCC structure

for Δ0 ¼ 60, 80, 100 MeV [36] at μ ¼ 400 MeV [39].
For different values of Δ0, the results are almost the
same in terms of the quantity ðδμ − δμ2Þ=Δ0. Therefore,
we anticipate that our results can be appropriately
extrapolated to the weak-coupling limit Δ0 → 0. In the
following, we shall present the result for Δ0 ¼ 100 MeV.
For a given value of δμ=Δ0, we calculate the potential
curve δΩðΔÞ at various values of q and search for the
optimal pair momentum and the minimum of the
potential landscape. The potential curves at the optimal
pair momenta for several values of δμ=Δ0 are shown in
Fig. 2. With increasing value of δμ=Δ0, the potential
minimum gets shallower. At a critical value δμ�−
δμ2 ≃ 0.03Δ0, the potential minimum approaches zero
and a first-order phase transition to the normal state
occurs. The comparison of the grand potentials of
various phases are shown in Fig. 3. For the LO state,
its phase transition to the normal state occur almost at
the same point as the FF state, δμ2 ≃ 0.8Δ0. At
δμ ¼ δμ2, the grand potential of the BCC structure is
negative, which indicates that the BCC structure is
energetically favored around the FF-normal transition
point. Well below the FF-normal transition point, the
BCC state has higher grand potential than the LO state
and hence is not favored. Near the BCS-LO transition,
the solitionic state becomes favored [30]. However, this
does not change our qualitative conclusion.
Our result is qualitatively consistent with the GL analysis

[10]. However, the quantitative difference is significant:
The GL analysis predicts a strong first-order phase tran-
sition and a large upper critical field [10], while our result
shows a weak first-order phase transition at which
Δ≃ 0.1Δ0. On the other hand, our result is quantitatively
compatible with the quasiclassical equation approach
[33,34], where it shows that the BCC structure is preferred
in a narrow window around δμ ¼ δμ2 at zero temperature
[40]. Therefore, the GL analysis up to the orderOðΔ6Þmay
not be quantitatively sufficient. We notice that the LO state
already shows the limitation of the GL analysis: While the
GL analysis predicts a second-order phase transition, exact
calculation shows a first-order phase transition [30] (see
also Appendix B). In the future, it is necessary to study the
higher-order expansions and the convergence property of
the GL series, which would help to quantitatively improve
the GL predictions.
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V. SUMMARY

In summary, we have performed a solid-state-like calcu-
lation of the ground-state energy of a 3D structure in
crystalline color superconductivity. We proposed a compu-
tational scheme to overcome the difficulties in diagonalizing
matrices of huge sizes. Our numerical results show that the
BCC structure is preferred in a small window around the

conventional FF-normal phase transition point, which
indicates that the higher-order terms in the GL approach
are rather important. In the future it would be possible to
perform a calculation for the FCC structure with stronger
computing facilities and/or with a better method of matrix
diagonalization. This solid-state-like approach can also be
applied to study the crystalline structures of the three-flavor
color-superconducting quark matter [41] and the inhomo-
geneous chiral condensate [42].
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FIG. 3 (color online). (Color online) Comparison of the grand
potentials of various phases: BCS (black solid), FF (blue dotted),
LO (green dash-dotted), and BCC (red dashed). The horizontal
axis has been “calibrated" by using the quantity ðδμ − δμ2Þ=Δ0.
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FIG. 2 (color online). The potential curves δΩðΔÞ of the BCC structure at the optimal pair momenta for various values of δμ=Δ0. The
grand potential is scaled by a constant Ω0 ¼ 2.5 × 106ðMeVÞ4. The red dots show the data obtained from our numerical calculation.
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APPENDIX A: GINZBURG-LANDAU THEORY:
IMPORTANCE OF HIGHER-ORDER

EXPANSIONS

In the Ginzburg-Landau (GL) theory of crystalline
color superconductors at zero temperature and at the
weak coupling, the grand potential measured with
respect to the normal state, δΩ ¼ Ω − ΩN, is expanded
as [10]

δΩðΔÞ
N F

¼ PαΔ2 þ 1

2
βΔ4 þ 1

3
γΔ6 þ 1

4
ηΔ8 þOðΔ10Þ;

ðA1Þ

where N F is the density of state at the Fermi surface. The
coefficient α is universal for all crystal structures and is
given by [10]

α ¼ −1þ δμ

2q
ln
qþ δμ

q − δμ
−
1

2
ln

Δ2
0

4ðq2 − δμ2Þ : ðA2Þ

Let us consider the vicinity of the conventional LOFF-
normal transition point δμ ¼ δμ2, where we have

δμ2
Δ0

¼ 0.7544;
q
δμ2

¼ 1.1997: ðA3Þ

At the pair momentum q ¼ 1.1997δμ, we obtain

α ¼ ln
δμ

Δ0

− ln
δμ2
Δ0

¼ ln
δμ

δμ2
: ðA4Þ

For convenience, we make the GL potential dimensionless
by using the variables δΩ̄ ¼ δΩ=ðN0δμ

2Þ, Δ̄ ¼ Δ=δμ,
β̄ ¼ βδμ2, γ̄ ¼ γδμ4, and η̄ ¼ ηδμ6. We have

δΩ̄ ¼ PαΔ̄2 þ 1

2
β̄Δ̄4 þ 1

3
γ̄Δ̄6 þ 1

4
η̄Δ̄8 þOðΔ̄10Þ: ðA5Þ

The GL coefficients β̄ and γ̄ for a number of crystalline
structures were first calculated by Bowers and Rajagopal
[10]. The predictions for the nature of the phase transitions
were normally based on the GL potential up to the sixth
order (Δ6). To our knowledge, the higher-order GL
coefficients have never been calculated. Here we show
that the higher-order GL expansions are important for the
prediction of the phase transition. To be specific, let us
consider the BCC structure. Its GL coefficients β̄ and γ̄
have been evaluated as [10]

β̄ ¼ −31.466; γ̄ ¼ 19.711: ðA6Þ

Since β̄ < 0, the phase transition to the normal state should
be of first order. If we employ the GL potential up to the
sixth order, we predict a strong first-order phase transition
at δμ ¼ δμ� ¼ 3.625Δ0. Let us turn on the eighth-order
term and study how the size of the coefficient η̄ influences
the quantitative prediction of the phase transition. In
Fig. 4, we show the GL potential curves for two different
values of η̄ at δμ ¼ δμ2. For vanishing η̄, the potential curve
develops a deep minimum δΩ̄min ≃ −13.4 at Δ≃ 0.95Δ0,
which indicates a strong first-order phase transition at
δμ ¼ δμ� ≫ δμ2. However, for a large value η̄ ¼ 1000,
we find a shallow minimum δΩ̄min ≃ −0.21 located at
Δ≃ 0.31Δ0. In Fig. 5, we show the GL potential curves
at the first-order phase transition point δμ ¼ δμ�. For η̄ ¼ 0
we find a strong first-order phase transition at δμ ¼ δμ� ¼
3.625Δ0, where the minima located at Δ ¼ 0 and Δ ¼
0.83Δ0 become degenerate. For η̄ ¼ 1000, however, we
observe a much weaker first-order phase transition at
δμ ¼ δμ� ¼ 0.951Δ0, where the degenerate minima are
located at Δ ¼ 0 and Δ ¼ 0.28Δ0. These results clearly
show that, for larger η̄, the first-order phase transition
becomes weaker. For η̄→þ∞, we expect that δμ�→δμ2¼
0.754Δ0. On the other hand, if η̄ is small or even negative,
then the next order Δ10 would become important.

FIG. 4. The GL potential curves of the BCC structure for different values of η̄ at δμ ¼ δμ2 ¼ 0.754Δ0.
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APPENDIX B: CALCULATION OF THE
LO STATE

The order parameter of the LO state is given by

ΔðzÞ ¼ 2Δ cosð2qzÞ: ðB1Þ

It is periodic along the z direction with the periodicity
a ¼ π=q. So it can be decomposed into a discrete set of
Fourier components,

ΔðzÞ ¼
X∞
n¼−∞

Δne2niqz; ðB2Þ

The Fourier component Δn is given by

Δn ¼
1

a

Z
a

0

dzΔðzÞe−2niqz ¼ Δðδn;1 þ δn;−1Þ: ðB3Þ

The matrix equation takes a similar form as the 3D
structures. We haveX

n0
ðHΔÞn;n0 ðkÞϕn0 ðkÞ ¼ ½EλðkÞ þ δμ�ϕnðkÞ; ðB4Þ

where the Hamiltonian matrix ðHΔÞn;n0 ðkÞ reads

ðHΔÞn;n0 ðkÞ ¼
�
ξnδn;n0 Δn−n0

Δn−n0 −ξnδn;n0

�
ðB5Þ

with

ξn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz þ 2nqÞ2

q
− μ: ðB6Þ

We notice that only the motion in the z direction becomes
quantized. The BZ for kz can be defined as −π=a < kz <
π=a or −q < kz < q. The eigenstate ϕn includes two
components un and υn. We have

ϕnðkÞ ¼
�
unðkÞ
υnðkÞ

�
: ðB7Þ

If ε is an eigenvalue of HΔ, −ε must be another
eigenvalue. Therefore, replacing the δμ by −δμ amounts
to a replacement of the eigenvalue spectrum fEλðkÞg
by f−EλðkÞg.
After a truncation −D < n < D, we obtain a finite

matrix equation

H

�
u

υ

�
¼
�
H11 H12

H21 H22

��
u

υ

�
¼ ðEþ δμÞ

�
u

υ

�
; ðB8Þ

where u and υ are ð2Dþ 1Þ-dimensional vectors and
Hij are ð2Dþ 1Þ × ð2Dþ 1Þmatrices. For a specific value
of D, we can write down the explicit form of the vectors u
and υ and the matrices Hij. Here we use D ¼ 2 as an
example. The vectors u and υ are 5-dimensional can be
expressed as

u ¼

0
BBBBB@

u−2
u−1
u0
u1
u2

1
CCCCCA; υ ¼

0
BBBBB@

υ−2

υ−1

υ0

υ1

υ2

1
CCCCCA: ðB9Þ

The matrices Hij can be explicitly written as

FIG. 5. The GL potential curves of the BCC structure for different values of η̄ at the first-order phase transition point δμ ¼ δμ�.
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H11 ¼ −H22 ¼

0
BBBBBBB@

ξ−2 0 0 0 0

0 ξ−1 0 0 0

0 0 ξ0 0 0

0 0 0 ξ1 0

0 0 0 0 ξ2

1
CCCCCCCA
;

H12 ¼ H21 ¼

0
BBBBBBB@

0 Δ 0 0 0

Δ 0 Δ 0 0

0 Δ 0 Δ 0

0 0 Δ 0 Δ
0 0 0 Δ 0

1
CCCCCCCA
: ðB10Þ

The eigenvalue spectrum fEλðkÞg can be obtained by
diagonalizing the matrix H with a size 2ð2Dþ 1Þ. With a
proper rearrangement of the basis ϕ or a similarity trans-
formation, we have

H ∼
�
Hþ 0

0 H−

�
; ðB11Þ

where the sizes ofHþ andH− are both 2Dþ 1. The basis ϕ
is now defined as

ϕ ¼
�
ϕþ
ϕ−

�
: ðB12Þ

For D ¼ 2, the 5-dimensional vectors ϕþ and ϕ− are
given by

ϕþ ¼

0
BBBBBB@

u−2
υ−1

u0
υ1

u2

1
CCCCCCA
; ϕ− ¼

0
BBBBBB@

υ−2

u−1
υ0

u1
υ2

1
CCCCCCA
: ðB13Þ

The blocks Hþ and H− can be expressed as

H� ¼ �H0 þH12: ðB14Þ

H0 is a diagonal matrix containing the kinetic energies.
We have

ðH0Þn;n0 ¼ ð−1Þnξnδn;n0 : ðB15Þ

The eigenvalue spectra of Hþ and H− are dependent:
If the eigenvalue spectrum of Hþ is given by fελðkÞg,
the eigenvalue spectrum of H− reads f−ελðkÞg. Therefore,
we need only to diagonalize the matrix Hþ or H− which
has a dimension 2Dþ 1. Once the eigenvalue spectrum of
Hþ is known, the eigenvalue spectrum of Hamiltonian
matrix HΔ;δμ is given by fEðkÞg¼fελðkÞ−δμg∪
f−ελðkÞ−δμg.
The thermodynamic potential of the LO state at zero

temperature can be expressed as

ΩLO ¼ Δ2

2H
− 2

Z
d2k⊥
ð2πÞ2

Z
BZ

dkz
2π

X
λ

jEλðk⊥; kzÞj: ðB16Þ

Similar Pauli-Villas-like regularization scheme should be
applied finally. In Fig. 6(a), we show the grand potential
of the LO state for Δ0 ¼ 80 MeV. The grand potential
for the self-consistent 1D modulation for Δ0 ¼ 80 MeV
was also reported in [30]. We find that the results for the
LO state and the self-consistent 1D modulation agrees
with each other near the phase transition to the normal
state. Near the BCS-LO transition point, the self-
consistent one-dimensional modulation has lower grand
potential than the LO state. It was shown in [30] that the
self-consistent 1D modulation forms a soliton lattice
structure near the lower critical field, which lowers the
grand potential of the system. Near the upper critical field
the gap function becomes sinusoidal, and therefore the
grand potentials of the LO state and the 1D modulation

FIG. 6 (color online). (Color Online) (a) Comparison of the grand potentials of the LO state and the self-consistent 1D modulation
for Δ0 ¼ 80 MeV. (b) The potential curve of the LO state at δμ ¼ 0.775Δ0 and at the optimal pair momentum q ¼ 0.9Δ0 or
q ¼ 1.1613δμ.
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agree with each other. We notice that the phase transition
from the LO state to the normal state is of first order,
which is in contradiction to the prediction from the GL
analysis. To understand the reason, we show in Fig. 6(b)
the potential curve at δμ ¼ 0.775Δ0 and at the optimal
pair momentum q ¼ 1.1613δμ. We find that the potential
curve has two minima: a shallow minimum at Δ≃
0.12Δ0 and a deep minimum at Δ≃ 0.44Δ0.
Obviously, the shallow minimum is responsible for the
GL theory which predicts a second-order phase transition.
However, the deep global minimum, which cannot be
captured by the GL theory up to the order Δ6, is
responsible for the real first-order phase transition.
Therefore, the LO state already shows the importance
of the higher-order expansions in the GL theory.

APPENDIX C: CALCULATION OF
THE GRAND POTENTIAL:
SMALL BLOCK METHOD

The key problem in the numerical calculation is the
diagonalization of the matrix Hþ or H− and obtaining all
the eigenvalues. For the BCC and FCC structures, we use
a symmetrical truncation −D < l, m, n < D with a large
cutoff D ∈ Zþ. However, the matrix size grows dramati-
cally with increasing cutoff D, which makes the calcu-
lation infeasible because of not only the computing
capability of current computing facilities but also the
computing time and cost. Notice that we need to
diagonalize the matrix Hþ for various values of the
momentum k in the BZ, the gap parameter Δ, and the
pair momentum q.
We first estimate the size of D needed for the

convergence of the grand potential δΩ. The matrix size
ð2Dþ 1Þ3 and hence the computing time and cost grow
dramatically with increasing D. The cutoff D is related to
the maximum momentum kmax in each direction (x, y, and
z). We have

kmax ¼ ð2Dþ 1Þ π
a
: ðC1Þ

This maximum momentum can be roughly estimated from
the calculation of the LO state. For the LO state, the matrix
size becomes 2Dþ 1 and exact diagonalization is possible.
The regime of δμ we are interested in is δμ=Δ0 ∈ ½0.7 −
0.8� and the optimal pair momentum is located at q≃ δμ.
From the calculation of the LO state at Δ0 ∼ 100 MeV,
we find that kmax must reach at least 5 GeV for
convergence. Notice that we have kmax ¼ ð2Dþ 1Þq
for the BCC and

ffiffiffi
3

p
kmax ¼ ð2Dþ 1Þq for the FCC.

Therefore, the cutoff D for the BCC can be estimated as
D ∼ 35, which corresponds to a matrix size ∼3 × 105.
For the FCC, the cutoff is even larger because of the

factor
ffiffiffi
3

p
. We have D ∼ 60 for the FCC, which

corresponds to a matrix size ∼1.5 × 106. Notice that
this is only a naive estimation. In practice, the cutoff
needed for convergence may be smaller or larger. Exact
diagonalization of such huge matrices to obtain all the
eigenvalues are impossible with our current computing
facility.
We therefore need a feasible scheme to evaluate the

grand potential δΩ. Notice that decreasing the value of Δ0

does not reduce the size of the matrices. In this case, even
though kmax becomes smaller, the pair momentum q also
gets smaller. Let us call an off-diagonal elementΔ inHþ or
H− a “coupling". Because our goal is to evaluate the grand
potential δΩ rather than to know exactly all the band
dispersions (eigenvalues), we may neglect a small amount
of couplings to lower the size of the matrices. By neglecting
this small amount of couplings, the huge matrix Hþ
becomes block diagonal with each block having a much
smaller size. In general, we expect that the omission of a
small amount of couplings Δ induces only a perturbation to
the grand potential δΩ. We shall call this scheme small
block method (SBM).
To be specific, the size of the small blocks in our

calculation is ð2dþ 1Þ3 with d ∈ Zþ. In general, we
have d < D. For symmetry reasons, we require that the
centers of these blocks are located at the reciprocal lattice
vectors

G½nx;ny;nz� ¼ ð2dþ 1Þ 2π
a
ðnxex þ nyey þ nzezÞ ðC2Þ

with nx, ny, nz ∈ Z. This scheme makes the SBM
feasible even though ð2Dþ 1Þ3 is not divisible by
ð2dþ 1Þ3. In practice, we first choose a large cutoff
D which is sufficient for convergence. By increasing the
value of d, we find that the grand potential δΩ finally
converges. In practice, if the grand potentials evaluated at
several values of d, i.e., d0 − k, d0 − kþ 1, …, and
d0ðk ∈ ZþÞ, are very close to each other, we identify that
the grand potential converges to its precise value from
exact diagonalization. At the converging value d ¼ d0,
the block size ð2d0 þ 1Þ3 is normally much smaller than
the total size ð2Dþ 1Þ3. This scheme makes the calcu-
lation feasible and also saves a lot of computing time
and cost.
The matrices for the 3D structures are huge and

cannot be written down here. For the sake of simplicity,
let us use the LO state as a toy example for the SBM.
In this case, the matrix size and the block size are
2Dþ 1 and 2dþ 1, respectively. The centers of the
blocks are located at the reciprocal lattice vectors
ð2dþ 1Þ2qnzez with nz ∈ Z. For D ¼ 10, the matrix
Hþ reads
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0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

εþ10 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Δ εþ9 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Δ εþ8 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Δ εþ7 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 Δ εþ6 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 Δ εþ5 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 Δ εþ4 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Δ εþ3 Δ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Δ εþ2 Δ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Δ εþ1 Δ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Δ ε0 Δ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Δ ε−1 Δ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Δ ε−2 Δ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−3 Δ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−4 Δ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−5 Δ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−6 Δ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−7 Δ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−8 Δ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−9 Δ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−10

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðC3Þ

where εn ¼ ð−1Þn½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz þ 2nqÞ2

p
− μ�. If we take d ¼ 2, we neglect the couplings Δ in bold. In this case, the

matrix Hþ is approximated as

FIG. 7. Comparison of the grand potentials calculated from the exact diagonalization and from the small block method. (a) The relative
error R for the LO state at δμ=Δ0 ¼ 0.77 and q=δμ ¼ 1.16 with D ¼ 50 and d ¼ 20. (b) The grand potential for the BCC state at
δμ=Δ0 ¼ 0.75, q=δμ ¼ 1.07, and Δ=Δ0 ¼ 0.167 as a function of d.
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0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

εþ10 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Δ εþ9 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Δ εþ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 εþ7 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 Δ εþ6 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 Δ εþ5 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 Δ εþ4 Δ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Δ εþ3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 εþ2 Δ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Δ εþ1 Δ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Δ ε0 Δ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Δ ε−1 Δ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Δ ε−2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ε−3 Δ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−4 Δ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−5 Δ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−6 Δ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−7 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε−8 Δ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−9 Δ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ ε−10

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ðC4Þ

Therefore, by neglecting a small amount of couplings,
we have made the large matrix Hþ block-diagonal. Notice
that this is only a toy example for the SBM. In practice,
D ¼ 10 and d ¼ 2 is obviously not enough for
convergence.
For the LO state, exact diagonalization of the matrices at

q≃ δμ is quite easy because the size of the matrices is
2Dþ 1. We can therefore check the error induced by the
SBM. The relative error induced by the SBM can be
defined as

R ¼ jδΩSBM − δΩEXj
δΩEX

; ðC5Þ

where δΩSBM and δΩEX are the grand potentials obtained
from the SBM and exact diagonalization, respectively. In
Fig. 7(a), we show a numerical example of the relative error
for the LO state at δμ=Δ0 ¼ 0.77 and q=δμ ¼ 1.16. In the
calculations, we use D ¼ 50 and d ¼ 20. We find that the
relative error is very small, generally of order Oð10−3Þ.

The slightly larger error around Δ=Δ0 ¼ 0.5 is due to the
fact that δΩ itself is very small there. For the BCC structure,
we are not able to check the relative error at q≃ δμ because
it is impossible to exactly diagonalize the matrices with a
huge size ð2Dþ 1Þ3. However, we can check the d
dependence of the grand potential. For pair momentum
around q≃ δμ, we choose a sufficiently large cutoff D and
increase the value of d. We evaluate the grand potentials for
various values of d (i.e., d0 − k, d0 − kþ 1, …, and d0). If
they are very close to each other, we identify that the grand
potential converges. Then the grand potential δΩ can be
evaluated at d ¼ d0. In Fig. 7, we show the d dependence of
the grand potential of the BCC structure at δμ=Δ0 ¼ 0.75,
q=δμ ¼ 1.07, and Δ=Δ0 ¼ 0.167. In the calculation we
choose D ¼ 50 which is sufficiently large to guarantee the
convergence at large G. We find that for the BCC structure,
d0 is normally within the range 10 < d0 < 15, which is
feasible for a calculation. For the FCC structure, we do not
find a satisfying convergence at these small values of d.
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