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The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons
and the colored valence gluons shows that QCD can be viewed as the restricted QCD (RCD) made of the
binding gluons which has the valence gluons as colored source, and simplifies the QCD dynamics greatly.
In particular, it tells that the gauge covariant valence gluons can be treated as the constituents of hadrons,
and generalizes the quark model to the quark and valence gluon model. So it provides a comprehensive
picture of glueballs and their mixing with quarkoniums, and predicts new hybrid hadrons made of quarks
and valence gluons. We discuss how these predictions could be confirmed experimentally. In particular we
present a systematic search for the ground state glueballs and their mixing with quarkoniums below 2 GeV
in 0þþ, 2þþ, and 0−þ channels within the framework of QCD, and predict the relative branching ratios of
the radiative decay of ψ to the physical states.
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I. INTRODUCTION

One of the important issues in hadron spectroscopy is the
identification of glueballs. The general wisdom is that QCD
must have the glueballs made of gluons. In early days the
gauge invariant combinations of the QCD field strength
were suggested to generate the glueballs [1–3]. Later
several models of glueballs including the bag model and
the constituent model have been proposed [4–12].
Moreover, the lattice QCD has been able to estimate the
mass of the low-lying glueballs [13–16].
But so far the search for the glueballs has not been so

successful for two reasons. First, theoretically there has
been no consensus on how to construct the glueballs from
QCD. For example, there has been the proposal to make
the glueballs with “the constituent gluons,” but a precise
definition of the constituent gluon was lacking [6,7]. This
has made it difficult for us to predict what kind of glueballs
we can expect.
The other reason is that it is not clear how to identify the

glueballs experimentally. This is partly because the glue-
balls could mix with the quarkoniums, so that we must
take care of the possible mixing to identify the glueballs
experimentally [6,7]. This is why we have very few
candidates of the glueballs so far, compared to huge hadron
spectrum made of quarks listed by Particle Data Group
(PDG) [17].

This makes the search for the glueballs an important
issue in hadron spectroscopy. Indeed, one of the main
purposes of the Jefferson Lab 12 GeV upgrading is to
search for the glueballs [18]. The purpose of this paper is to
provide a comprehensive and clear picture of the glueballs
in QCD, to study the possible mixing with the quarko-
niums, and to discuss how to identify them theoretically
and experimentally.
Actually, it is not difficult to define the gauge covariant

colored gluons which form color octet which could be
identified as the constituent gluons. This can be done with
the Abelian decomposition known as the Cho decompo-
sition or Cho-Duan-Ge (CDG) decomposition, which
decomposes the QCD gauge potential to the color neutral
restricted potential and the colored valence potential gauge
independently [19–23].
What is remarkable about this decomposition is that the

restricted potential has the full non-Abelian gauge sym-
metry and the valence potential transforms gauge cova-
riantly. So we can construct the restricted QCD (RCD)
which describes the core dynamics of QCD with the
restricted potential, and view QCD as RCD which has
the valence gluons as the gauge covariant colored source.
Clearly the Abelian decomposition tells that there are

two types of gluons which play different roles. The
restricted potential describes the color neutral binding
gluons which confines the colored source, and the valence
potential describes the colored valence gluons which
become the colored source of QCD.*ymcho7@konkuk.ac.kr
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This seems to justify the intuitive idea of the constituent
gluons, because the valence gluons can be viewed as the
constituents of hadrons. But there is an important differ-
ence. Here the binding gluons are not treated as the
constituents. To understand this consider the atomic bound
states in QED. Obviously we have photons as well as
electrons (and protons) in atoms, but only the electron and
proton become the constituents because only they deter-
mine the atomic structure of the periodic table. The photons
play no role in the periodic table. They are there as the
electromagnetic field to provide the binding force and
binding energy, not as a constituent particle to determine
the atomic structure.
Exactly the same way we need quarks and gluons to

make the proton. But again the gluons inside the proton
does not play any role in the baryon spectrum. This means
that they must be the “binding” gluons, not the “constitu-
ent” gluons, which (just like the photons in atoms) provide
only the binding force and the binding energy of the proton.
If so, what are the binding gluons and the constituent
gluons? And how can one distinguish them? This is the
problem of the constituent model.
Clearly the Abelian decomposition provides a natural

answer. It tells that there are indeed two types of gluons,
binding gluons and valence gluons, and only the valence
gluons can be treated as the constituent gluons. And
the gluons in proton are the binding gluons, not the valence
gluons, because they play no role to determine the position
of the proton in the baryon spectrum. Only three constituent
quarks characterize the baryonic structure of the proton.
This tells that the binding gluons cannot be the con-

stituent of hadrons. As importantly this tells that we can
treat the colored valence gluons, just like the quarks, as the
constituent particles in QCD. In particular, we can easily
construct the color singlet glueballs with two or three
valence gluons. This provides a clear picture of the glue-
balls in QCD and helps us to identify the glueball more
clearly [19–21].
A potential problem with this picture of the glueballs is

that this could give us too many glueballs, while exper-
imentally we have few candidates of them so far. This is a
big mystery in hadron spectroscopy. So the real problem
with the glueballs is to understand why there are so few
candidates of them experimentally, compared to the rich
hadron spectrum based on the successful quark model.
As we have already mentioned, one reason (at least

partly) is the possible mixing with the quarkoniums.
This makes the experimental identification of glueballs
a nontrivial matter. To resolve this problem we need a
clear picture of the mixing mechanism, and the Abelian
decomposition can easily provide this [24].
Another reason is that the glueballs have an intrinsic

instability. To understand this we must understand the
confinement mechanism in QCD more clearly, and the
Abelian decomposition provides this [25,26]. First, it

assures that only the restricted potential can contribute to
the Wilson loop integral [27]. This can easily be understood
because the valence gluons (being colored) become the
confined prisoners, so that only the binding gluons can be
the confining agents [20,21]. This, of course, is the Abelian
dominance [28].
However, the Abelian dominance does not tell what is

the confinement mechanism. This is because the restricted
potential is made of two parts, the nontopological Maxwell
part and the topological Dirac’s monopole part [19,20].
And the Abelian dominance does not tell which part
generates the confinement, and how.
Fortunately we can tell which part is responsible for the

confinement. Implementing the Abelian decomposition on
lattice we can calculate the Wilson loop numerically with
the full potential, the restricted potential, and the monopole
potential separately, and show that the monopole potential
is responsible for the area law in the Wilson loop gauge
independently [29–32].
Moreover, we can tell that it is the monopole condensa-

tion, more precisely the monopole-antimonopole pair
condensation, which generates the confinement in QCD.
The Abelian decomposition allows us to calculate the QCD
effective action in the presence of the monopole back-
ground and establish the stable monopole condensation
gauge independently [25,26]. This tells that the true
vacuum of QCD is given by the monopole condensation
which generates the dimensional transmutation and the
mass gap.
This picture of the confinement helps us to understand

why there are not so many candidates of the glueballs,
because this tells that the glueballs made of the valence
gluons have an intrinsic instability. The effective action of
QCD tells that the colored gluons, unlike the quarks, tend to
annihilate each other in the chromo-electric background.
This must be contrasted with quarks, which remain stable
inside the hadrons. The reason is that the chromo-electric
field tend to create the quark pairs, but annihilate the
valence gluons [33–35].
This is closely related to the asymptotic freedom (anti-

screening) of gluons. It is well known that in QED the
strong electric background tends to generate the pair
creation of electrons, which makes the charge screening
[36,37]. But in QCD gluons and quarks play opposite roles
in the asymptotic freedom. The quarks enhance the screen-
ing while the gluons (override the quarks and) diminish it to
generate the anti-screening [38,39]. We can understand this
with the pair creation of the quarks and the pair annihilation
of the valence gluons in the chromo-electric field [25,26].
Clearly the Abelian decomposition predicts new hybrid

hadrons made of quarks and valence gluons, in addition to
the above glueballs. This is because the valence gluons, just
like the quarks, can be viewed as the constituents of (not
just the glueballs but) the hadrons. This suggests us to
generalize the quark model to the “quark and valence
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gluon” model, in which both quarks and valence gluons
become the constituents of hadrons [19–21].
In this generalization of the quark model we can

construct color singlet hadrons from the valence gluons
and the valence quarks. For example, we can have a qq̄g
color singlet hybrid meson with one octet valence gluon g
and a qq̄ octet. Or, we can have a qqqg hybrid baryon from
the qqq octet and one valence gluon octet g. So the Abelian
decomposition of QCD provides a totally new picture of
hadron spectroscopy.
Of course, there have been proposals of hybrid hadrons

before [40–43]. But a clear picture of hybrid hadrons was
missing. The quark and valence gluon model provides a
clear picture, and helps us to identify them experimentally.
Finally, the above picture of confinement predicts a

totally different type of glueball, the “magnetic” glueball
which we can call the “monoball” [20,21]. This is because
the monopole condensation could most likely have the
vacuum fluctuation which can naturally be identified as a
0þþ state, which represents the mass gap generated by the
monopole condensation. This is the monoball. Clearly this
has nothing to do with the above glueballs made of the
valence gluons.
The importance of the monoball comes from the fact that

it is a direct consequence of the monopole condensation. So
the identification of the monoball could be interpreted as
the experimental confirmation of the monopole condensa-
tion in QCD. This makes the experimental verification of
the monoball a most urgent issue in QCD.
Although the quark model has been very successful,

PDG tells that there are experimentally established had-
ronic states which cannot easily be explained by the quark
model. For example, the scalar meson f0ð500Þ or f0ð980Þ
does not seem to fit in the simple quark model, although
there have been many efforts to explain this within the
quark model [44–46]. We hope that our analysis in this
paper will help to identify their physical content more
clearly.
The paper is organized as follows. In Sec. II we review

the Abelian decomposition and the confinement mecha-
nism for later purpose. In Sec. III discuss the glueball
spectrum in QCD. In Sec. IV we discuss the glueball-
quarkonium mixing. In Sec. V we present the numerical
analysis of the low-lying glueball-quarkonium mixing in
0þþ, 2þþ, and 0−þ channels. In Sec. VI we briefly discuss
the hybrid hadrons in QCD. In Sec. VII we discuss the
monoball as the experimental evidence of the monopole
condensation in QCD. Finally in the last section we discuss
the physical implications of our analysis.

II. BINDING GLUONS AND VALENCE GLUONS:
A REVIEW

It is well known that QCD can be understood as the
extended QCD (ECD), namely RCD made of the binding
gluons which has the valence gluons as colored source

[19–21]. This follows from the Abelian decomposition of
QCD which decomposes the gauge potential to the
restricted part and the valence part gauge independently.
To show this we review the Abelian decomposition

first. Consider the SU(2) QCD for simplicity, and let
ðn̂1; n̂2; n̂3 ¼ n̂Þ be an arbitrary right-handed local ortho-
normal basis. To make the Abelian decomposition we
choose n̂ to be the Abelian direction, and impose the
isometry to project out the restricted potential Âμ which
describes the Abelian sub-dynamics of QCD [19–21]

Dμn̂ ¼ ð∂μ þ g~Aμ×Þn̂ ¼ 0;

~Aμ → Âμ ¼ Aμn̂ −
1

g
n̂ × ∂μn̂ ¼ Aμ þ Cμ;

Aμ ¼ Aμn̂; Cμ ¼ −
1

g
n̂ × ∂μn̂; Aμ ¼ n̂ · ~Aμ:

ð1Þ

This is the Abelian projection which projects out the color
neutral binding gluons. Notice that Âμ is precisely the
connection which leaves the Abelian direction invariant
under the parallel transport. Remarkably, it is made of two
parts, the topological (Diracian) Cμ which describes the
non-Abelian monopole as well as the nontopological
(Maxwellian) Aμ.
Moreover, we have

F̂μν ¼ ðFμν þHμνÞn̂ ¼ Gμνn̂;

Fμν ¼ ∂μAν − ∂νAμ;

Hμν ¼ ∂μCν − ∂νCμ; Cμ ¼ −
1

g
n̂1 · ∂μn̂2;

Gμν ¼ ∂μBν − ∂νBμ; Bμ ¼ Aμ þ Cμ: ð2Þ

This tells two things. First, F̂μν has only the Abelian
component. Second, F̂μν is made of two potentials, the
electric (nontopological) Aμ and magnetic (topological) Cμ.
Under the infinitesimal gauge transformation

δ~Aμ ¼
1

g
Dμ~α; δn̂i ¼ −~α × n̂i; ð3Þ

we have

δAμ ¼
1

g
n̂ · ∂μ~α; δCμ ¼ −

1

g
n̂ · ∂μ~α; ð4Þ

so that

δÂμ ¼
1

g
D̂μ~α; ðD̂μ ¼ ∂μ þ gÂμ×Þ: ð5Þ
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This tells that Âμ has the full SU(2) gauge degrees of
freedom, even though it is restricted.
From this we can construct RCD which has the full non-

Abelian gauge symmetry but is simpler than the QCD

LRCD ¼ −
1

4
F̂2
μν ¼ −

1

4
F2
μν

þ 1

2g
Fμνn̂ · ð∂μn̂ × ∂νn̂Þ −

1

4g2
ð∂μn̂ × ∂νn̂Þ2; ð6Þ

which describes the Abelian subdynamics of QCD. Since
RCD contains the non-Abelian monopole degrees explic-
itly, it provides an ideal platform for us to study the
monopole dynamics gauge independently.
With (1) we can recover the full QCD potential adding

the non-Abelian (colored) part ~Xμ [19–21]

~Aμ ¼ Âμ þ ~Xμ;

~Xμ ¼
1

g
n̂ ×Dμn̂; n̂ · ~Xμ ¼ 0: ð7Þ

Under the gauge transformation we have

δÂμ ¼
1

g
D̂μ~α; δ~Xμ ¼ −~α × ~Xμ: ð8Þ

This confirms that ~Xμ becomes gauge covariant. This is
the Abelian decomposition which decomposes the gluons
to the color neutral binding gluons and the colored valence
gluons gauge independently. This is known as Cho decom-
position, Cho-Duan-Ge (CDG) decomposition, or
Cho-Faddeev-Niemi (CFN) decomposition [47–50].
From (7) we have

~Fμν ¼ F̂μν þ D̂μ
~Xν − D̂ν

~Xμ þ g~Xμ × ~Xν: ð9Þ

With this we can express QCD by

LQCD ¼ −
1

4
~F2
μν ¼ −

1

4
F̂2
μν −

1

4
ðD̂μ

~Xν − D̂ν
~XμÞ2

−
g
2
F̂μν · ð~Xμ × ~XνÞ −

g2

4
ð~Xμ × ~XνÞ2: ð10Þ

This is the extended QCD (ECD) which confirms that QCD
can be viewed as RCD made of the binding gluons, which
has the colored valence gluons as its source [19–22].
We can express the Abelian decomposition of the gluons

given by (1) and (7) graphically. This is shown in Fig. 1,
where the gluons are decomposed to the binding gluons
and the valence gluons in (A), and the binding gluons are
decomposed further to the nontopological Maxwell partAμ

and the topological Dirac part Cμ in (B).
The Abelian decomposition of SU(3) QCD is a bit more

complicated, but is well known. Since SU(3) has rank two,

we have two Abelian subgroups in SU(3). Let n̂iði ¼
1; 2;…; 8Þ be the local orthonormal SU(3) basis. Clearly
we can choose the Abelian directions to be n̂3 ¼ n̂ and
n̂8 ¼ n̂0. Now make the Abelian projection by

Dμn̂ ¼ 0: ð11Þ

This automatically guarantees [51]

Dμn̂0 ¼ 0; n̂0 ¼ 1ffiffiffi
3

p n̂ � n̂; ð12Þ

where � denotes the d-product. This is because SU(3) has
two vector products, the antisymmetric f-product and the
symmetric d-product.
Solving (11), we have the following Abelian projection

which projects out two neutral binding gluons,

~Aμ → Âμ ¼ Aμn̂þ A0
μn̂0 −

1

g
n̂ × ∂μn̂ −

1

g
n̂0 × ∂μn̂0

¼
X
p

2

3
Âp
μ ; ðp ¼ 1; 2; 3Þ;

Âp
μ ¼ Ap

μ n̂p −
1

g
n̂p × ∂μn̂p ¼ Ap

μ þ Cpμ ;

A1
μ ¼ Aμ; A2

μ ¼ −
1

2
Aμ þ

ffiffiffi
3

p

2
A0
μ;

A3
μ ¼ −

1

2
Aμ −

ffiffiffi
3

p

2
A0
μ; n̂1 ¼ n̂;

n̂2 ¼ −
1

2
n̂þ

ffiffiffi
3

p

2
n̂0; n̂3 ¼ −

1

2
n̂ −

ffiffiffi
3

p

2
n̂0;

ð13Þ

where the sum is the sum of the Abelian directions of
three SU(2) subgroups made of ðn̂1; n̂2; n̂1Þ; ðn̂6; n̂7; n̂2Þ;
ðn̂4;−n̂5; n̂3Þ. Notice the factor 2=3 in front of Âp

μ in the
p-summation. This is because the three SU(2) binding
potentials are not independent.

FIG. 1. The Abelian decomposition of the gluons. The gluon is
decomposed to the binding gluon (kinked line) and the valence
gluon (straight line) in (a), and the binding gluon is further
decomposed to the Maxwell part (wiggly line) and Dirac part
(spiked line) in (b).
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From this we have the restricted field strength

F̂μν ¼
X
p

2

3
F̂p
μν; ð14Þ

which is made of two Abelian binding potentials. With this
we have the restricted QCD

LRCD ¼ −
X
p

1

6
ðF̂p

μνÞ2; ð15Þ

which has the full SU(3) gauge symmetry. This is because
the restricted potential, just as in SU(2), has the full gauge
degrees of freedom.
With (13) we have the Abelian decomposition of the

SU(3) gauge potential,

~Aμ ¼ Âμ þ ~Xμ ¼
X
p

�
2

3
Âp
μ þ ~Wp

μ

�
;

~Xμ ¼
X
p

~Wp
μ ;

~W1
μ ¼ X1

μn̂1 þ X2
μn̂2; ~W2

μ ¼ X6
μn̂6 þ X7

μn̂7;

~W3
μ ¼ X4

μn̂4 − X5
μn̂5: ð16Þ

Here again ~Xμ transforms covariantly, and can be decom-

posed to the three valence gluons ~Wp
μ of the SU(2)

subgroups. But unlike Âp
μ , they are mutually independent.

So we have two binding gluons and six (or three complex)
valence gluons in SU(3) QCD.
From (16) we have

D̂μ
~Xν ¼

X
p

D̂p
μ ~Wp

ν ; D̂p
μ ¼ ∂μ þ gÂp

μ×;

~Xμ × ~Xν ¼
X
p;q

~Wp
μ × ~Wq

ν ;

~Fμν ¼ F̂μν þ D̂μ
~Xν − D̂ν

~Xμ þ g~Xμ × ~Xν

¼
X
p

�
2

3
F̂p
μν þ ðD̂p

μ ~Wp
ν − D̂p

μ ~Wp
ν Þ
�

þ
X
p;q

~Wp
μ × ~Wq

ν ; ð17Þ

so that we have the following form of SU(3) ECD
[25,26]

L ¼ −
1

4
F̂2
μν −

1

4
ðD̂μ

~Xν − D̂ν
~XμÞ2 −

g
2
ðD̂μ

~Xν − D̂ν
~XμÞ · ð~Xμ × ~XνÞ −

g
2
F̂μν · ð~Xμ × ~XνÞ −

g2

4
ð~Xμ × ~XνÞ2

¼
X
p

�
−
1

6
ðF̂p

μνÞ2 − 1

4
ðD̂p

μ ~Wp
ν − D̂p

ν ~Wp
μ Þ2 −

g
2
F̂p
μν · ð ~Wp

μ × ~Wp
ν Þ
�
−
X
p;q

g2

4
ð ~Wp

μ × ~Wq
μÞ2

−
X
p;q;r

g
2
ðD̂p

μ ~Wp
ν − D̂p

ν ~Wp
μ Þ · ð ~Wq

μ × ~Wr
μÞ −

X
p≠q

g2

4
ðð ~Wp

μ × ~Wq
νÞ · ð ~Wq

μ × ~Wp
ν Þ þ ð ~Wp

μ × ~Wp
ν Þ · ð ~Wq

μ × ~Wq
νÞÞ: ð18Þ

This shows that the interactions in SU(3) QCD are more
complicated than the SU(2) QCD. But what is remarkable
about (18) is that it is Weyl symmetric, symmetric under the
permutation of the three SU(2) subgroups of SU(3).
We can easily add quarks in the Abelian decomposition,

Lq ¼
X
k

Ψ̄kðiγμDμ −mÞΨk

¼
X
k

�
Ψ̄kðiγμD̂μ −mÞΨk þ

g
2
~Xμ · Ψ̄kðγμ~tÞΨk

�

¼
X
p;k

�
Ψ̄p

k ðiγμD̂p
μ −mÞΨp

k þ
g
2
~Wp
μ · Ψ̄

p
k ðγμ~τpÞΨp

k

�
;

D̂μ ¼ ∂μ þ
g
2i
~t · Âμ; D̂p

μ ¼ ∂μ þ
g
2i
~τp · Âp

μ ; ð19Þ

where m is the mass, k and p denote the flavor and color
of the quarks, and Ψp

k represents the three SU(2) quark

doublets [i.e., (r, b), (b, g), and (g, r) doublets] of the
(r, b, g) quark triplet.
From this it becomes obvious that the binding gluons and

the valence gluons play different roles. So from now on we
will call the binding gluon the “neuron” (or “neuton”) and
the valence gluon the “chromon” (or “coloron”).
To assign the color to the chromons, let ðr; g; bÞ be the

colors of three quarks. Then the colors of the six chromons
are given by ðrb̄; bḡ; gr̄; r̄b; b̄g; ḡrÞ, which we denote for
simplicity by ðR; B;G; R̄; B̄; ḠÞ. This is schematically
shown in Fig. 2.
We can show how the Abelian decomposition refines

QCD interaction graphically. This is shown in Fig. 3. In (A)
the three-point QCD gluon vertex is decomposed to two
vertices made of one neuron and two chromons and three
chromons. In (B) the four-point gluon vertex is decom-
posed to three vertices made of one neuron and three
chromons, two neurons and two chromons, and four
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chromons. In (C) the quark-gluon vertex is decomposed to
the quark-neuron vertex and quark-chromon vertex.
Notice that here (and in the following figures) the

neurons are expressed by the wiggly lines (Maxwell part).
This is because the monopole potential (Dirac part) makes
the condensation, so that in the perturbative regime (inside
the hadrons) it does not contribute to the Feynman dia-
grams. Also here three-point vertex made of three neurons
or two neurons and one chromon, and four-point vertex
made of three or four neurons are forbidden by the
conservation of color. Moreover, the quark-neuron inter-
action does not change the quark color, but the quark-
chromon interaction changes the quark color.
An important implication of Fig. 3 is that there are two

types of gluon jets, the neuron jet and chromon jet. In
principle we can test this experimentally by studying the
gluon jets. Experiments can tell the difference between the
photon-quark jet from the gluon-quark jet. If so, by (re-)
analyzing the gluon-gluon jets and/or gluon-quark jets
more carefully we could confirm that indeed there are
two types of gluon jets. Experimental confirmation of this

is very important, because this could endorse the existence
of two types of gluons.
Our analysis tells that, although the Abelian decom-

position does not change QCD, it makes many hidden
structures of QCD explicit. First, it tells that RCD is
responsible for the confinement, because the valence
gluons (being colored) have to be confined [27,28]. So
it makes the Abelian dominance obvious.
Second, it allows us to prove that the monopole is

responsible for the area law in the Wilson loop integral.
Indeed implementing (11) on lattice, two lattice QCD
groups (the SNU-KU and KEK-CU groups) independently
performed a truly gauge independent lattice calculation,
and showed that the monopole is responsible for the
confinement [29–32]. The SNU-KU result is shown in
Fig. 4, which shows that the full gauge potential, the
restricted potential, and the monopole potential all produce
the linear confining potential in Wilson loop integral. This
assures that we only need the monopole potential for the
confining force.
Moreover, the Abelian decomposition enlarges and

doubles the gauge symmetry to the classical and the
quantum gauge symmetries, because it automatically puts
QCD in the background field formalism [52,53]. So the
neurons and the chromons have independent gauge free-
doms. This keeps both neurons and chromons massless.
Third, it reduces the complicated non-Abelian gauge

symmetry to a simple discrete symmetry called the color
reflection invariance. To see this, consider the rotation of
basis called the color reflection in SU(2) QCD

ðn̂1; n̂2; n̂Þ → ðn̂1;−n̂2;−n̂Þ: ð20Þ

Obviously this is a gauge transformation, so that this must
remain a symmetry of QCD. On the other hand, the
isometry condition (1) does not change under (20). This
means that, after we select the Abelian direction n̂ we have
two different but gauge equivalent Abelian decompositions
related by the color reflection.

FIG. 3. The decomposition of vertices in SU(3) QCD. The three
and four point gluon vertices are decomposed in (a) and (b), and
the quark gluon vertices are decomposed in (c). Notice that here
(and in the following) the neurons are represented by wiggly lines
and the chromons are represented by straight lines.

β

∞
∞
∞

FIG. 4 (color online). The lattice QCD calculation which
establishes the monopole dominance in Wilson loop. Here the
black, red, and blue slopes are obtained with the full potential, the
restricted potential, and the monopole potential, respectively.

FIG. 2. The color assignment of quarks and chromons. The
x-axis and y-axis represent the λ3 and λ8 quantum numbers.
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What makes the color reflection symmetry so important
is that it is the only remaining symmetry of the full gauge
symmetry left over, after we make the Abelian decom-
position [20,21]. So the color reflection invariance plays the
role of the non-Abelian gauge invariance after we have
chosen the Abelian direction. This greatly simplifies the
implementation of the gauge invariance to calculate the
QCD effective action [25,26].
In the constant monopole background the effective

action is given by

Leff ¼ −
X
p

�
H2

p

3
þ 11g2

48π2
H2

p

�
ln
gHp

μ2
− c

��
: ð21Þ

where Hpðp ¼ 1; 2; 3Þ are the monopole background of
three SU(2) subgroups. The corresponding effective poten-
tial has the true minimum at

hH1i ¼ hH2i ¼ hH3i ¼
μ2

g
exp

�
−
16π2

11g2
þ 3

4

�
: ð22Þ

The effective potential is shown in Fig. 5. This demon-
strates the monopole condensation which generates the
desired mass gap in QCD.
For the constant chromo-electric background we have

the following effective action

Leff ¼
X
p

�
E2
p

3
þ 11g2

48π2
E2
p

�
ln
gEp

μ2
− c

�
− i

11g2

96π
E2
p

�
:

Notice that it has the imaginary part which is negative. This
is very important, because this tells that the chromo-electric
background induces the pair annihilation of chromons
[25,26,33–35].
To summarize, the Abelian decomposition tells that

QCD has two gluons which play different roles.
Perturbatively (in terms of the Feynman diagrams) the
neurons play the role of the photon and the chromons play

the role of (massless) charged vector fields, in QED.
Nonperturbatively, however, (the monopole part of) the
neurons become the confining agents. In contrast,
the chromons become the confined prisoners. Without
the Abelian decomposition we cannot tell this difference
because all gluons are treated on equal footing.

III. GLUEBALLS AND ODDBALLS

The fact that the chromons become gauge covariant tells
that they could form glueballs. For example, we can have
the gḡ or ggg color singlet glueballs made of chromons
which could be called the “chromoballs.”
Since we have six gauge covariant chromons

(Rμ; Bμ; Gμ; R̄μ; B̄μ; Ḡμ), we can construct low-lying color
singlet glueballs with two (gḡ) chromons whose wave
functions are symmetric under the exchange

jgḡi ¼ jRμR̄νi þ jBμB̄νi þ jGμḠνiffiffiffi
3

p : ð23Þ

The low-lying gḡ glueball states classified by ð2Sþ1ÞLJ are
shown in Table I. In the table we have listed the possible
candidates of the glueballs based on the PDG data, but we
emphasize that they are by no means certain.
Actually the number of the glueball states depends on

how many degrees the chromons have. If we assume the
chromons to be massless they have only transversal
degrees, but if we assume them massive they also have
the longitudinal degrees. Here we have assumed that they
acquire the (constituent) mass after the confinement sets in.
But ultimately experiments should determine how many
degrees the chromons have.
Similarly we can construct low-lying color singlet glue-

balls with three chromons,

jgggid ¼
P

ðRGBÞjRμBνGρiffiffiffi
6

p ;

jgggif ¼
P

½RGB�jRμBνGρiffiffiffi
6

p ; ð24Þ

FIG. 5 (color online). The effective potential of SU(3) QCD.

TABLE I. The possible quantum numbers for low-lying glue-
balls made of two chromons.

ð2Sþ1ÞLJ JPC possible candidates

1S0 0þþ f0ð500Þ; f0ð980Þ
5S2 2þþ f2ð1950Þ
3P0 0−þ ηð1295Þ; ηð1405Þ; ηð1475Þ
3P1 1−þ ???
3P2 2−þ η2ð1645Þ
1D2 2þþ Regge recurrence of 1S0
5D0 0þþ f0ð1500Þ
5D1 1−þ ???
5D2 2þþ Regge recurrence of 5S2
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where the sums in ggg are the totally symmetric (the
d-product) and the totally antisymmetric (the f-product)
combination of three colors.
With this one can figure out the possible ggg chromoball

states. The exact enumeration of three chromon bound
states depends on the binding potential, but in a simple shell
model one can construct the low-lying ggg chromoball
states [6]. This is shown in Table II. In general the ggg
glueballs are expected to be heavier than the gg glueballs,
because they have more chromons.
At this point one might wonder if the neurons could also

form bound states. Certainly from the group theoretic point
of view we could construct color singlet states with two or
three neurons. This, however, does not guarantee that
dynamically the neurons can make bound states. Since
they carry no color charge the interaction among them
should be very weak, so that they are not likely to form
bound states.
To clarify this point, consider the photons in QED.

Clearly they interact among themselves through the elec-
tron loops, but obviously they do not form bound states.
Here the situation is very similar, because the neurons in
QCD are exactly like the photons in QED. To amplify this
point we show the possible interactions among neurons in
Fig. 6. This is precisely the photon interaction of QED
made of the charged vector field.
From this we may conclude that the neurons do not make

bound states. Indeed the Feynman diagram tells that, if such

a bound state exists at all in QCD, it could be interpreted as
a bound state of two quarkoniums.
This should be compared with the possible Feynman

diagram of the chromoball interactions shown in Fig. 7.
The contrast between the two Feynman diagrams are
unmistakable. We emphasize that, without the Abelian
decomposition, it would have been very difficult to see this
difference.
The above analysis tells that there must be a large

number of glueballs. But experimentally we do not have
many candidates of them. As we have remarked, one reason
is that these glueballs may not exist as mass eigenstates,

TABLE II. The possible quantum numbers for low-lying glueballs made of three chromons. Here S, A, and M mean symmetric,
antisymmetric, and mixed symmetries, and d and f mean (totally symmetric) d-product and (totally antisymmetric) f-product of three
chromons.

Configuration space spin color L S JPC

ð1sÞ3 S S d 0 1, 3 1−−; 3−−

S A f 0 0 0−þ

ð1sÞ2ð1pÞ S S d 1 1, 3 ð0; 1; 2Þþ−; ð2; 3; 4Þþ−

S A f 1 0 1þþ
M M d 1 1, 2 ð0; 1; 2Þþ−; ð1; 2; 3Þþ−

M M f 1 1, 2 ð0; 1; 2Þþþ; ð1; 2; 3Þþþ

ð1sÞð1pÞ2 S S d 0,2 1, 3 ð1; 2; 3; 4; 5Þ−−
S A f 0,2 0 0−þ; 2−þ
M M d 0,2 1, 2 ð0; 1; 2; 3; 4Þ−−
M M f 0,2 1, 2 ð0; 1; 2; 3; 4Þ−þ
M M d 1 1, 2 ð0; 1; 2; 3Þ−−
M M f 1 1, 2 ð0; 1; 2; 3Þ−þ
A S d 1 1, 3 ð0; 1; 2; 3; 4Þ−þ
A A f 1 0 1−−

ð1sÞ2ð2sÞ S S d 0 1, 3 1−−; 3−−

S A f 0 0 0−þ
M M d 0 1, 2 ð1; 2Þ−−
M M f 0 1, 2 ð1; 2Þ−þ

ð1sÞ2ð1dÞ S S d 2 1, 3 ð1; 2; 3; 4; 5Þ−−
S A f 2 0 2−þ
M M f 2 1, 2 ð0; 1; 2; 3; 4Þ−−
M M f 2 1, 2 ð0; 1; 2; 3; 4Þ−þ

FIG. 6. The possible Feynman diagrams of the neuron
interaction. Two neuron binding is shown in (a), and three
neuron binding is shown in (b).
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because they could mix with qq̄ states. So it is very
important to discuss the glueball-quarkonium mixing to
identify these glueballs.
Another reason is that the chromoballs (unlike the

quarkoniums) have an intrinsic instability, because they
tend to annihilate each other in strong chromo-electric field
[25,26]. This is due to the anti-screening and asymptotic
freedom [38,39].
We can estimate the glueball partial decay width coming

from this instability. According to the QCD one-loop
effective action (23) the chromon annihilation probability
per unit volume per unit time is given by

ΓA ¼
X
p

11g2

96π
Ē2
p ×

4π

3Λ3
QCD

; ð25Þ

where the sum is on three SU(2) subgroups and Ēp is the
average chromo-electric field of each subgroup inside the
glueballs. Now, if we choose αs ≃ 0.4, ΛQCD ≃ 339 MeV
(for three quark flavors), and Ēp ≃ ðg=πÞΛ2

QCD we have
ΓA ≃ 398 MeV [17]. But notice that with ΛQCD≃
200 MeV, we have ΓA ≃ 235 MeV [54].
Of course this is a rough estimate, but notice that this is

the partial decay width we expect from the asymptotic
freedom, in addition to the “normal” hadronic decay width.
This strongly implies that in general the glueballs (in
particular excited ones) are expected to be quite unstable.
As we have remarked this could be one of the reasons why
there are so few candidates of glueballs experimentally.
Although the glueballs in general mix with the quarko-

niums, in particular cases the pure glueballs could exist [6].
This is because some of the gḡ glueballs have the quantum
number JPC which qq̄ cannot have. In the quark model the
qq̄ states in the natural spin-parity series P ¼ ð−1ÞJ must
have spin one, and hence CP ¼ þ1. So the mesons with
natural spin-parity and CP ¼ −1 (e.g., 0−−; 0þ−; 1−þ; 2þ−,
etc.) are forbidden. But the gḡ or ggg glueballs could have
these quantum states. In fact, the ggg glueballs, unlike qq̄,
could have all possible JPC.

So these particular glueballs carrying the quantum
numbers which qq̄ cannot have cannot mix with the
quarkoniums, and they are called the “oddballs” [6]. The
low-lying oddballs become important because they could
be observed as pure glueball states. Table III summarizes
the possible JPC for the qq̄, gḡ, and ggg states. From this we
can say definitely that any of the low-lying 0þ−; 0−−; 1−þ,
or 2þ− meson states must be pure glueballs. This could
provide crucial information for us to search for the pure
glueballs.
The above analysis tells that the identification of the

glueballs may not be simple. To identify these glueball
states we have to compare the theoretical prediction with
the experimental data. In the Appendix we show two tables,
the one which provides the standard quark model inter-
pretation of the low-lying mesons and the other which
contains the light isosinglet mesons which cannot easily be
identified as qq̄ states, from PDG data [17].

IV. GLUEBALL-QUARKONIUM MIXING

To identify the glueballs we have to study their mixing
with the quarkoniums. But before we discuss the mixing, it
is worth discussing the qq̄ octet-singlet mixing in the quark
model first.
The qq̄ binding energy may come from two orthogonal

processes, the exchange and annihilation processes. Let us
assume [24]

huūjHjuūiEx ¼ hdd̄jHjdd̄iEx ¼ E;

hss̄jHjss̄iEx ¼ E0 ¼ Eþ Δ;

hq0q̄0jHjqq̄iAn ¼ A; ðfor all q; q0Þ: ð26Þ

Now with

j8i ¼ juūi þ jdd̄i − 2jss̄iffiffiffi
6

p ;

j1i ¼ juūi þ jdd̄i þ jss̄iffiffiffi
3

p ; ð27Þ

FIG. 7. The possible Feynman diagrams which bind the
chromons. Two chromon binding is shown in (a), three chromon
binding is shown in (b).

TABLE III. The possible quantum numbers for low-lying the
qq̄, gḡ, and ggg states.

State qq̄ gḡ ggg State qq̄ gḡ ggg

State qq̄ gḡ ggg State qq̄ gḡ ggg
0þþ O O O 2þþ O O O
0þ− X X O 2þ− X X O
0−þ O O O 2−þ O O O
0−− X X O 2−− O X O
1þþ O O O 3þþ O O O
1þ− O X O 3þ− O X O
1−þ X O O 3−þ X O O
1−− O X O 3−− O X O
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we may obtain the following mass matrix for the qq̄ which
describes the octet-singlet mixing,

M2 ¼
� h8jHj8i h8jHj1i
h1jHj8i h1jHj1i

�

¼
�
Eþ 2

3
Δ −

ffiffi
2

p
3
Δ

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A

�
: ð28Þ

Notice that Δ-term is responsible for the mixing.
From this we have the mass eigenvalues

m2
� ¼ 1

2
½ðE0 þ Eþ 3AÞ �D�;

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0 − E − AÞ2 þ 8A2

q
: ð29Þ

Notice that (when A is positive) the eigenvalues m2
� must

satisfy m2
− < E and E0 < m2þ. This tells us that the

annihilation contribution has a tendency to make the mass
splitting larger, which seems to be the case in reality.
Now we can discuss the glueball-quarkonium mixing.

The possible Feynman diagrams for the mixing is shown
in Fig. 8. From this it is clear that the mixing takes place
not just between the quarkoniums and glueballs but also
between the gg and ggg glueballs, directly or through the
virtual states made of neurons.
To proceed, let jGi be the glueball state which mixes

with two quarkonium states j8i; j1i and consider the mass
matrix of ðj8i; j1i; jGiÞ,

M ¼

0
B@

a b 0

b c d

0 d e

1
CA; ð30Þ

whose eigenvalues are given by λi. In this case the mixing
matrix U which transforms the unphysical states to the
physical states ðjm1i; jm2i; jm3iÞ and diagonalizesM to D
is given by [24]

D ¼ UMU† ¼ diagðλ1; λ2; λ3Þ;

U ¼

0
BBB@

bðλ1−eÞ
dðλ1−aÞ α1;

λ1−e
d α1; α1

bðλ2−eÞ
dðλ2−aÞ α2;

λ2−e
d α2; α2

bðλ3−eÞ
dðλ3−aÞ α3;

λ3−e
d α3 α3

1
CCCA;

αi ¼
d

ðλi − eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð b

λi−a
Þ2 þ ð d

λi−e
Þ2

q : ð31Þ

Moreover, we have the sum rules

aþ cþ e ¼ λ1 þ λ2 þ λ3;

acþ ceþ ea − b2 − d2 ¼ λ1λ2 þ λ2λ3 þ λ3λ1;

ace − b2e − d2a ¼ λ1λ2λ3: ð32Þ

Notice that αi determines the gluon content of physical
states.
The gluon content of the physical states has important

implication. For example, this allows us to predict the
relative branching ratios of ψ to γX decays among the
physical states. This is because the ψ decay process to
ordinary noncharming physical states is the Okubo-Zweig-
Iizuka (OZI) suppressed process which can only be made
possible through the gluons.
So, except for the kinematic phase factor, the glue

content of the physical states determines the radiative
decay branching ratios. This means that for the S wave
decay (i.e., for 0þþ and 2þþ) we have

R

�
ψ → γXk

ψ → γXi

�
¼

�
αk
αi

�
2
�
m2

ψ −m2
k

m2
ψ −m2

i

�
3

; ð33Þ

but for the P wave decay (i.e., for 0−þ) we expect to have

R

�
ψ → γXk

ψ → γXi

�
¼

�
αk
αi

�
2
�
m2

ψ −m2
k

m2
ψ −m2

i

�
5

; ð34Þ

where the last term is the kinematic phase space factor. So
the gluon content of the physical states can explain the
underlying dynamics of the OZI rule.
Of course the idea of the glueball-quarkonium mixing

has been suggested many times before [6,55,56]. But the
clear picture of the mixing was lacking because the
constituent gluons were not well defined. The quark and
chromon model allows us to discuss the mixing without any
ambiguity [24].

V. EXAMPLES OF MIXING:
NUMERICAL ANALYSIS

To discuss the mixing notice that, among the five low-
lying gḡ states (1S0; 5S2; 3P0; 3P1; 3P2 states) in Table I
there are three glueball states (i.e., 0þþ; 2þþ, and

FIG. 8. The possible glueball-quarkonium mixing diagrams.
The mixing of glueballs made of two and three chromons with
quarkoniums are shown in (a) and (b).
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0−þ states) which can easily mix with the low-lying
quarkonium states. So in this section we will restrict
ourselves to the mixing of these glueball states with the
corresponding isosinglet qq̄ states below 2 GeV—with the
light quarks u, d, and s only—for simplicity.
In this approximation the mass matrix of the mixing can

be written as

M2 ¼

0
BB@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν

0 ν G

1
CCA: ð35Þ

It has five parameters, but we can fix E and Δ from the qq̄
octet-singlet mixing. So we need three inputs to fix the
mass matrix completely.
There are different ways to fix the mass matrix. One way

is to choose two predominantly qq̄ states, or simply to
choose two lowest mass eigenstates, from PDG. With this
we could treat G as a free parameter, and find (if possible)
the best fit for G which could explain the PDG data. In this
case we can replace Gwith the chromon constituent mass μ
writing G ¼ 4μ2, since G represents the mass of two
chromons.
Another way to fix the mass matrix is to notice that in

this approximation we may assume

hq0q̄0jHjqq̄iAn ≃ hq0q̄0jggihggjqq̄i: ð36Þ

So, instead of varying μ we could impose the condition
3A ¼ ν2 to fix the mass matrix. But this requirement could
be too stringent, and we will not require this in this paper.
We emphasize the clarity of our mixing mechanism

presented by the quark and chromon model. All terms in
(35) have clear physical meaning. For example, we can
draw the Feynman diagram which represents the isosinglet-
glueball mixing parameter ν, and could in principle
calculate it theoretically.
With this we can predict the mass of the third state,

calculate the quark and gluon contents of the physical
states, and the relative branching ratios of the ψ radiative
decay to the physical states in each channel (in terms of μ if
necessary).
With this strategy we now can discuss the

glueball-quarkonium mixing in each channel separately.
According to PDG the low-lying iso-singlet physical
states in the 0þþ and 2þþ channels below 2 GeV
are f0ð500Þ; f0ð980Þ; f0ð1370Þ; f0ð1500Þ; f0ð1710Þ and
f2ð1270Þ; f20ð1525Þ; f2ð1950Þ. In the 0−þ channel we
have ηð548Þ; η0ð958Þ; ηð1295Þ; ηð1405Þ; ηð1475Þ and
ηð1760Þ [17]. These are the subjects of our analysis in
the following.

A. 0þþ channel

In this channel one would normally assume a0ð980Þ to
be the isotriplet partner of the isosinglet qq̄ and choose

E ¼ a20; a0 ¼ a0ð980Þ;
Δ ¼ 2ðK2 − a20Þ; K ¼ K�

0ð1430Þ: ð37Þ

This seems natural because a0ð980Þ which is supposed to
be made of u and d quarks is lighter than K�

0ð1430Þ made
of s quark.
On the other hand PDG interprets a0ð980Þ [as well as

f0ð500Þ and f0ð980Þ] to be a meson-meson bound state,
and suggests the following choice [17]

E ¼ a20; a0 ¼ a0ð1450Þ;
Δ ¼ 2ðK2 − a20Þ; K ¼ K�

0ð1430Þ: ð38Þ

This looks somewhat strange because this implies that the
qq̄ state made of uþ d quark is heavier (or at least not
lighter) than the qq̄ state made of the s quark.
Clearly the numerical analysis of the mixing will depend

very much on which input we use, and it is not clear which
view is correct. But here we will simply adopt the PDG
suggestion and use (38) as the input in our analysis.
With this we have three undetermined parameters in the

mass matrix. To fix them we may choose two physical
states from PDG, and vary the chromon mass μ as an
independent parameter. But here we have five physical
states, f0ð500Þ; f0ð980Þ; f0ð1370Þ; f0ð1500Þ, and
f0ð1710Þ below 2 GeV. Since the identity of f0ð500Þ
and f0ð980Þ are not clear we will choose f0ð1500Þ and
f0ð1710Þ as the input. In this case we obtain Table IV.
Notice that we have calculated ζ ¼ ν2=A to see how good is
the constraint 3A ¼ ν2 in this approximation.
The numerical result suggests that the mass of the

third state is around 1400 MeV which is predominantly
a ss̄ state, which we could interpret to be f0ð1370Þ.
Interestingly, the physical contents of two other states
depend very much on the value of the chromon mass μ.
When the mass is around 760 MeV, f0ð1500Þ become
predominantly the glue state. But as the chromon mass
increases to 860 MeV, it becomes a uþ d state and
f0ð1710Þ quickly becomes the glue state.
So when the chromon mass is around 760 MeV the

above result appears to be in agreement with the suggestion
of PDG, which lists f0ð1370Þ and f0ð1710Þ as the qq̄ states
[17]. But here again the qq̄ state made of s quark becomes
lighter than the qq̄ state made of uþ d. This, of course, is
due to the input (38).
In principle we could determine the chromon mass with

our prediction of the relative ratio of the ψ radiative decay.
Unfortunately at the moment PDG has no experimental
data available for us to do this.
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B. 2þþchannel

In this channel we have three physical states below
2 GeV, f2ð1270Þ, f20ð1525Þ, and f2ð1950Þ. Of course, we
also have f2ð1430Þ, f2ð1565Þ, f2ð1640Þ, f2ð1810Þ, and
f2ð1910Þ, but we will not consider them here because PDG
does not classify them as established states. On the other
hand the fact that there are so many candidates of 2þþ states
implies that we need more caution to analyze this channel.
Now, we can choose

E ¼ a22; a2 ¼ a2ð1320Þ;
Δ ¼ 2ðK�2 − a22Þ; K� ¼ K�ð1430Þ; ð39Þ

as the input and vary the chromon mass μ as a free
parameter. In this case we have three possibilities to choose
two input states from f2ð1270Þ, f20ð1525Þ, and f2ð1950Þ.
With f2ð1270Þ and f2ð1950Þ as the input, we obtain

Table V. Notice that when μ≃ 760 MeV, we have m3 ≃
1; 470 MeV which could be identified as f0ð1525Þ. In this
case f2ð1270Þ becomes a mixture of uþ d and glue states,
and f2ð1950Þ becomes a mixture of uþ d, s and glue
states. But the third physical state f0ð1525Þ becomes
predominantly an ss̄ state.
But when the chromon mass μ becomes around

860 MeV, f2ð1270Þ becomes predominantly uþ d state
and the third state f20ð1525Þ becomes predominantly ss̄
state. This is in line with the PDG suggestion, which
interprets f2ð1270Þ and f20ð1525Þ as the qq̄ states [17].

Experimentally, PDG shows

J=Ψ → γf2ð1270Þ≃ ð1.43� 0.11Þ × 10−3

J=Ψ → γf20ð1525Þ≃ ð4.5þ 0.7 − 0.4Þ × 10−4;

which implies

Rðf20ð1525Þ=f2ð1270ÞÞ≃ 0.31� 0.05: ð40Þ

Remarkably this agrees excellently with our prediction in
Table V, when the chromon mass becomes 860 MeV. So all
in all the mixing in this channel seems to work very well,
although we certainly need a more careful analysis.

C. 0−þ channel

In this channel we have six physical states below 2 GeV,
ηð548Þ; η0ð958Þ; ηð1295Þ; ηð1405Þ; ηð1475Þ, and ηð1760Þ.
But here we need a special attention because of the
expected difficulties [the Uð1Þ problem, PCAC, etc.] in
this channel. Moreover, Table II tells that there is ð1sÞ3ggg
glueball state which can mix with the other states.
So we generalize the mixing matrix to the 4 × 4 matrix

M2 ¼

0
BBB@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν ν0

0 ν G ϵ

0 ν0 ϵ G0

1
CCCA ð41Þ

TABLE IV. The predicted mass of the third physical state, the quark and glue component (the probability) of the physical states, and
the relative radiative decay ratios for fixed values of the gluon mass μ in the 0þþ channel. Here we choose f0ð1500Þ and f0ð1710Þ as the
input.

m1 ¼ f0ð1500Þ m2 ¼ f0ð1710Þ m3

μ A ν ζ m3 uþ d s g uþ d s g uþ d s g Rðm2=m1Þ Rðm3=m1Þ
0.76 0.27 0.18 0.12 1.40 0.07 0.00 0.93 0.73 0.20 0.07 0.19 0.80 0.00 0.00 0.05
0.78 0.23 0.31 0.42 1.40 0.26 0.01 0.73 0.59 0.16 0.25 0.15 0.83 0.02 0.02 0.14
0.80 0.18 0.36 0.69 1.39 0.44 0.01 0.54 0.45 0.12 0.43 0.11 0.87 0.02 0.05 0.59
0.82 0.14 0.35 0.90 1.39 0.62 0.02 0.36 0.30 0.08 0.62 0.09 0.90 0.01 0.07 1.26
0.84 0.09 0.29 0.92 1.39 0.79 0.02 0.18 0.15 0.04 0.80 0.05 0.93 0.01 0.09 3.26
0.86 0.04 0.07 0.12 1.39 0.96 0.03 0.01 0.01 0.00 0.99 0.03 0.97 0.00 0.12 85.71

TABLE V. The numerical analysis of the mixing in the 2þþ channel, with f2ð1270Þ and f2ð1950Þ as the input.

m1 ¼ f2ð1270Þ m2 ¼ f2ð1950Þ m3

μ A ν ζ m3 uþ d s g uþ d s g uþ d s g Rðm2=m1Þ Rðm3=m1Þ
0.76 0.39 0.95 2.33 1.47 0.40 0.00 0.60 0.35 0.36 0.29 0.25 0.64 0.11 0.19 0.15
0.78 0.35 0.99 2.78 1.47 0.46 0.01 0.53 0.33 0.33 0.34 0.22 0.66 0.12 0.25 0.18
0.80 0.31 1.01 3.26 1.48 0.52 0.01 0.47 0.30 0.30 0.40 0.18 0.69 0.12 0.33 0.21
0.82 0.28 1.02 3.79 1.48 0.58 0.01 0.41 0.27 0.27 0.46 0.15 0.72 0.13 0.43 0.24
0.84 0.24 1.02 4.38 1.49 0.64 0.01 0.36 0.24 0.24 0.52 0.13 0.75 0.12 0.57 0.27
0.86 0.20 0.99 5.06 1.49 0.69 0.01 0.30 0.20 0.21 0.59 0.10 0.78 0.11 0.76 0.30
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to include the ggg state. This has eight parameters, but we
may express G and G0 by the chromon mass μ and put
G ¼ 4μ2 and G0 ¼ 9μ2. This reduces the number of the
parameters to seven.
Now, with

E ¼ π2; π ¼ πð140Þ;
Δ ¼ 2ðK2 − π2Þ; K ¼ Kð498Þ; ð42Þ

as the input we have to fix five more parameters. To do that
we may impose the condition ν0 ¼ 3=2ν, because ν and ν0
represent two and three gluon couplings to the isosinglet
qq̄. With this we can choose three physical states as the
input and vary the chromon mass μ to predict the mass of
the fourth physical state.
We could also try the condition 3A ¼ ν2 þ ν02, assuming

hq0q̄0jHjqq̄iAn ≃ hq0q̄0jggihggjqq̄i
þ hq0q̄0jgggihgggjqq̄i: ð43Þ

But again this constraint could be too stringent.
Now, if we choose η0ð958Þ; ηð1405Þ and ηð1760Þ as the

input, we obtain Table VI. Notice that here we have two sets
of solution, because the 4 × 4 mixing involves quadratic
equation.
In this analysis the mass of the fourth physical state

becomes around 550MeV, which could be interpreted to be
ηð548Þ. The result shows that the physical contents of
ηð1405Þ and ηð1760Þ depend very much on the mass of the
gluon. On the other hand here ηð548Þ is a mixture of uþ d
and s, but η0ð958Þ becomes predominantly a gg glue state.
This is problematic and not in line with PDG, which
interprets η0ð958Þ as predominantly a qq̄ state.

Moreover, experimentally we have [17]

J=Ψ → γη0ð958Þ≃ ð5.15� 0.16Þ × 10−3;

J=Ψ → γηð548Þ≃ ð1.104� 0.034Þ × 10−3;

so that we expect

Rðηð548Þ=η0ð958ÞÞ≃ 0.21� 0.01: ð44Þ

But Table VI implies that this is very small

Rðηð548Þ=η0ð958ÞÞ≃ 0.01: ð45Þ

This does not agree with PDG. This again is because the
numerical analysis interprets η0ð958Þ to be predominantly a
glue state.
We could choose different input. But with ηð548Þ,

η0ð958Þ, and ηð1760Þ as the input we obtain very similar
results. In this case the fourth physical state becomes
ηð1405Þ, and η0ð958Þ remains predominantly a two chro-
mon bound state. So we have the same problem.
In this section we have discussed the numerical analysis

of the quark gluon mixing in three channels 0þþ, 2þþ, and
0−þ below 2 GeV based on our quark and chromon model.
Clearly the numerical result is inconclusive and should be
viewed as preliminary.
In the 0þþ and 2þþ channels the numerical results seem

to work, but in the 0−þ channel it has problem. On the other
hand we emphasize that the above numerical analysis is not
intended to provide a perfect mixing. Obviously it is a
rough approximation which is expected to have uncertainty
of at least 20 to 30%.
There are many reasons the above analysis cannot be

perfect. First of all, the mixing discussed here neglected
many things. For example, we have neglected the light

TABLE VI. The numerical analysis of the mixing in the 0−þ channel. Here we choose η0ð958Þ, ηð1405Þ, and ηð1760Þ as the input.
m1 ¼ η0ð958Þ m2 ¼ ηð1405Þ m3 ¼ ηð1760Þ m4

μ m4 uþ d s 2g 3g uþ d s 2g 3g uþ d s 2g 3g uþ d s 2g 3g

0.50 0.55 0.02 0.03 0.93 0.02 0.13 0.11 0.05 0.72 0.43 0.30 0.01 0.26 0.43 0.57 0.00 0.00
0.50 0.55 0.01 0.01 0.96 0.03 0.16 0.13 0.01 0.70 0.41 0.28 0.04 0.27 0.43 0.57 0.00 0.00
0.52 0.54 0.04 0.07 0.85 0.04 0.20 0.17 0.13 0.50 0.31 0.22 0.01 0.46 0.45 0.54 0.00 0.00
0.52 0.55 0.00 0.01 0.92 0.07 0.29 0.25 0.01 0.45 0.26 0.18 0.07 0.48 0.44 0.56 0.00 0.00
0.54 0.54 0.06 0.12 0.76 0.06 0.26 0.22 0.23 0.28 0.20 0.14 0.00 0.66 0.47 0.52 0.01 0.00
0.54 0.54 0.00 0.00 0.88 0.11 0.44 0.37 0.01 0.19 0.11 0.08 0.11 0.70 0.45 0.55 0.00 0.00

μ m4 Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ A ν ϵ

0.50 0.55 0.12 0.06 0.004 0.84 0.34 −0.07
0.50 0.55 0.46 0.13 0.003 0.84 0.30 0.28
0.52 0.54 0.03 0.08 0.006 0.75 0.40 −0.13
0.52 0.55 0.44 0.33 0.004 0.75 0.31 0.47
0.54 0.54 0.00 0.10 0.009 0.66 0.42 −0.20
0.54 0.54 0.26 0.64 0.003 0.66 0.24 0.64
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hybrid qq̄g states which could influence the mixing very
much. Moreover, the mixing depends on the input param-
eters, but there are many ways to choose the input. So we
have to have a more thorough numerical analysis.
Nevertheless, our mixing analysis confirms the

following. First, our quark and chromon model provides
a conceptually simple way to identify the glueballs.
Second, the mixing influences the physical contents of
hadrons very much. This makes the mixing analysis more
important.
An important outcome of the analysis is that the

constituent mass of the chromon is around several hundred
MeV. This seems to agree with the lattice result [13,14].

VI. HYBRIDS

The quark and chromon model predicts the hybrid
hadrons made of quark and chromon. Clearly we can
construct color singlet qq̄g mesons with one color octet
chromon and a qq̄ octet. Similarly we can have qqqg
baryonswith one chromon and a qqq octet. So these hybrids
must exist.
Of course, similar hybrid hadrons or multi-quark

hadrons have also been proposed before [7,8]. But our
model provides a unique picture of hybrid hadrons which is
different from the other models of hybrids or multi-quark
hadrons. In particular, it has unambiguous predictions and
can in principle easily be distinguished from the other
existing hybrids and/or multi-quark models.
To understand this, notice that on the surface our qq̄g

hybrid mesons might look very similar to qqq̄ q̄ states,
because the chromon in qq̄g could be replaced by a qq̄
octet. However, there is a clear difference between the tetra-
quark states and our qq̄g hybrids. Obviously the qq̄ forms
octet and singlet, but our chromon has no singlet compo-
nent. So the spectrum (i.e., the number of states) that they
predict is different. In other words our hybrid model
predicts less physical states.
Similarly our qqqg hybrid baryons could be misidenti-

fied as qqqqq̄ penta-quark states. But again the group
theoretic structure of the two models is different. This
confirms that the hybrids predicted by our quark and
chromon model is different from other hybrids or multi-
quark models. This means that by studying the spectrum we
can tell which model is correct.
An important difference of these hybrids from the

glueballs is that the hybrids have no intrinsic instability.
This is because the chromon in qq̄g and qqqg hadrons is
stable, since there is noway that it can annihilate. So, unlike
the glueballs, these hybrids are expected to have typical
hadronic decay width.
What is really remarkable about our hybrid hadrons is

that it is based on the quark and chromon model. It is a
straightforward generalization of the quark model which
comes from the existence of the valence gluons, and the
physics behind it is as simple as the quark model. This

simplicity translates to the clarity of the prediction. The
predictions are straightforward and unambiguous. So we
can easily qualify or disqualify the model experimentally.
This is a most important feature of our hybrid model.
The remaining task is to identify the hybrid hadrons. Of

course, PDG has already accumulated enough data which
could be interpreted as hybrid hadrons and/or multi-quark
hadrons. For example, there are quitemany low-lyingmesons
which cannot be easily explained by the quark model, and
some of them could be interpreted as a qq̄g hybrid. So we
have to analyze these data carefully to find which model can
correctly explain these data. This taskwill be tedious and time
consuming, but certainly worthwhile to do.
The XYZ particles might be interesting candidates of

the hybrids [57,58]. These particles have been interpreted
as tetra-quarks mesons or meson-meson molecular bound
states, but it would be worthwhile to see if they could also
be understood as the qq̄g hybrids.
Aswehave remarked, thehybridhadronscan influence the

quarkonium-glueballmixing significantly. Sounderstanding
these hybrids is very important in the analysis of the mixing.

VII. MONOBALL: VACUUM FLUCTUATION
OF MONOPOLE CONDENSATON

QCD generates the monopole condensation (more pre-
cisely the monopole-antimonopole pair condensation)
which induces the dimensional transmutation and creates
the mass gap. If so, one may ask what (if any) is the
observable consequence of the monopole condensation.
The answer could be the monoball.
To understand this, consider the ordinary superconductor

in QED. It is well known that the Bardeen-Cooper-
Schrieffer (BCS) superconductivity is characterized by
two scales, the correlation length of the Cooper pair and
the penetration length of the magnetic field. Field theo-
retically they are represented by two composite fields, a
(complex) scalar field for the Cooper pair and a (massive)
vector field for the confined magnetic field. And the
existence of these modes are the consequence of the
BCS superconductivity.
So in QCD we may expect a similar consequence of

the monopole condensation. Naively we might think that
the monopole condensation creates two mass scales, the
correlation length of the monopole-antimonopole pairs and
the penetration length of the chromo-electric flux. This
suggests that the monopole condensation could induce two
physical states, one 0þþ and one 1þþ vacuum fluctuation
modes [20,21].
However, the confinement in QCD is not exactly dual to

the superconductivity in QED. First of all, in QED the
magnetic field to be confined is generated by the electric
current, not by the magnetic charge. But in QCD
the colored flux to be confined comes from the color
charge, not the chromo-magnetic current. Second, in
superconductor the Cooper pair has electric charge but
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the monopole-antimonopole pair in QCD obviously has no
chromo-magnetic charge.
Third, in the superconductor the magnetic field is

actually screened by the supercurrent, not confined by
the Cooper pair. But in QCD the chromo-electric field is
confined by the monopole-antimonopole pair. In other
words, it is not the monopole supercurrent which provides
the confinement. QCD has no monopole supercurrent.
Fourth, the chromo-electric flux is described by the
Coulomb (i.e., scalar) potential, not by the vector potential,
in QCD. But in superconductor the magnetic field is
described by the vector potential.
Finally, in the superconductor the Higgs mechanism takes

place. The Landau-Ginzburg theory of superconductivity is
a classic example of Higgs mechanism, where the sponta-
neous symmetry breaking generates the massive vector field
which screens the magnetic field. But in QCD there is no
spontaneous symmetry breaking. It is the dynamical sym-
metry breaking which generates the confinement. This tells
us that the confinement mechanism in QCD is not exactly
dual to the Meissner effect. They are different.
In particular, this implies that the penetration length in

QCD could be represented by a scalar field, not by a spin-
one field. This is because the chromo-electric field is
described by the Coulomb (i.e., scalar) potential. This
strongly suggests that both the correlation length and the
penetration length in QCD must be represented by the
scalar mode. In other words, there might be no 1þþ vacuum
fluctuation mode in QCD.
The remaining question is if the two scalar modes are

different or not. In principle they could be different, but as we
have shown in (22) the monopole condensation generates
only onemass scale. This, togetherwith the fact thatQCDhas
only one scaleΛQCD, strongly suggests that they are the same.
From this we may conclude that the monopole con-

densation could have only one 0þþ vacuum fluctuation
mode which could naturally be called the magnetic glueball
or simply the monoball. Clearly this fluctuation mode must
be different from the glueballs made of the chromons
because this characterizes the monopole condensation.
The importance of the monoball is that this represents the

monopole condensation, so that the experimental verifica-
tion of this monoball can be interpreted as the confirmation
of the monopole condensation. This makes the experimen-
tal identification of the monoball a most urgent issue
in QCD.
Ultimately, however, the nature of the monopole con-

densation (and the number of the vacuum fluctuation
modes) should be determined by experiment, and it could
well be that the monopole condensation has no vacuum
fluctuation mode at all. To understand this possibility
consider the Dirac sea, the vacuum of Dirac’s theory of
electron. It has vacuum bubbles made of electron-positron
pairs, but is not the electron-positron pair condensation and
apparently has no fluctuation mode.

So, if the QCD vacuum is like the Dirac sea, there will be
no vacuum fluctuation and thus no monoball. At the
moment it is not clear if the QCD vacuum is similar to
Dirac sea, and only experiments can tell whether the nature
of the QCD vacuum is different from the Dirac sea or not.
This makes the experimental confirmation of the monoball
more interesting.
One might ask if there is any candidate of the monoball.

Actually PDG has several isoscalar 0þþ states, in particular
f0ð500Þ and f0ð980Þ, which do not fit well in the quark
model. It would be very interesting to find which of them (if
at all) could be interpreted as the monoball.
Finally, it goes without saying that this vacuum fluc-

tuation (if exists) could influence our analysis of the mixing
in the 0þþ channel. This is another complication we have to
keep in mind in discussing the mixing.

VIII. DISCUSSIONS

In this paper we have discussed the hadron spectrum of
the ECD obtained from the Abelian decomposition of
QCD. Although ECD is mathematically identical to QCD,
it makes the hidden dynamical structures of QCD explicit.
In particular, it assures the existence of two types of gluons
and generalizes the quark model to the quark and chro-
mon model.
To compare this with other glueball models, consider the

bag model which identifies the glueball as the colored field
confined in a bag. In this picture the glueballs are made of
infinite number of gluons in the form of the gluon field, so
that there is no constituent gluon (i.e., a finite number of
gluons) which make up the glueballs.
In contrast in the constituent model the glueballs are

made of the constituent gluons. To bind the constituent
gluons, however, we certainly need the binding gluons (i.e.,
the gluon field). Unfortunately this model does not tell us
how to distinguish the binding gluons from the constituent
gluons.
The Abelian decomposition tells us how to resolve this

difficulty. It tells that there are indeed two types of gluons
which play different roles, and naturally generalizes the
quark model to the quark and chromon model. This
provides a new picture of glueballs made of chromons.
Moreover, this predicts new hybrid hadronic states which
are made of quarks and chromons.
One of the main problems in hadron spectroscopy has

been the identification of the glueballs. This identification
is not simple for the following reasons. First, the glueballs
have intrinsic instability which comes from the asymptotic
freedom and antiscreening. Moreover, the glueballs in
general may not exist as mass eigenstates because of the
mixing with quarkoniums and other light hybrid mesons.
In this paper we have discussed how to identify them by

discussing the glueball-quarkonium mixing in the numerical
analysis. Clearly the mixing discussed here is a rough
approximation, because it neglects the hybrids made of
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qq̄g which could influence the mixing. Besides, the analysis
depends on the input parameters, and there are many pos-
sibilities of choosing the inputwhichwedid not discuss in this
paper. Nevertheless it tells us that the quark and chromon
model provides a new picture of glueball-quarkoniummixing
which can be easily tested by experiments.
In 0þþ channel, our analysis is in line with (or at least not

in contradiction with) PDG interpretation. It implies that
f0ð1500Þ could be predominantly the glue state. But here
we must know which one, a0ð980Þ or a0ð1450Þ, we should
treat as the isotriplet partner of the isosinglet qq̄ which
mixes with the glueball. This is a very sensitive question,
because the numerical analysis depends very much on this.
PDG suggests a0ð1450Þ to be the isotriplet partner. But this
seems against the common sense, because K�

0ð1430Þ made
of ss̄ becomes lighter than a0ð1450Þ. Clearly this issue
remains to be settled.
Moreover, in this channel f0ð500Þ and f0ð980Þ have

been puzzling [17]. For example, f0ð500Þ has unusually
broad width, and has been the subject of a large number of
theoretical works. It has been suggested to be a tetra-quark
state or KK̄ molecules [44,45,59,60]. Unfortunately our
analysis does not reveal much about their content.
In 2þþ channel our analysis could explain the physical

content of f2ð1270Þ, f20ð1525Þ, and f2ð1950Þ quite well.
In particular it could predict the relative ratio of the Ψ
radiative decay. This is remarkable. But we have to keep in
mind that there are many other so-called unconfirmed
physical states below 2 GeV in this channel, and they have
to be studied more carefully.
Finally in 0−þ channel, our mixing analysis was prob-

lematic. It implies that η0ð958Þ is predominantly two glue
state, but this view is against the PDG suggestion. On the
other hand, it is well known that this channel has a long
history of problems, and even the origin of the octet-singlet
mixing in this channel has not been completely understood
yet. Moreover, the existence of a light glueball made of
three chromons makes the situation worse. So it is natural

that our mixing analysis is least successful. To clarify these
complications we certainly need a more thorough analysis.
Independent of the details, however, we emphasize the

conceptual simplicity and clarity of the quark and chromon
model. ECD makes QCD simple by decomposing it to the
restricted part which describes the core dynamics of QCD
and the valence part which represents the colored source of
QCD. This provides the clear picture of the glueballs and
hybrid hadrons. Moreover, this provides a clear picture of
the glueball-quarkonium mixing.
In particular, ECD allows us to demonstrate the

monopole condensation, more precisely the monopole-
antimonopole pair condensation [25,26]. In this paper
we have discussed how to verify this monopole condensa-
tion experimentally by searching for the monoball, the 0þþ
vacuum fluctuation of the monopole condensation.
The monoball, if exist, could have mass around ΛQCD.

This implies that f0ð500Þ could be the monoball candidate.
Of course, at the moment it is not clear if this is the case.
But the search for the monoball should be treated as one
of the most important issue in QCD, because this could
confirm the monopole condensation in QCD.
The main purpose of this paper was to provide the

general framework of the glueball-quarkonium mixing
mechanism. We hope to provide a more complete numeri-
cal mixing analysis in a separate publication [61].
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TABLE VII. Suggested qq̄ quark model interpretation of the light meson states from PDG. In the table the classification of the 0þþ
mesons is supposed to be tentative.

I ¼ 1 I ¼ 1
2

I ¼ 0 I ¼ 0 I ¼ 0 I ¼ 0

1 2sþ1lJ JPC ud̄; ūd; ðdd̄ − uūÞ= ffiffiffi
2

p
us̄; ds̄; d̄s; ūs f0 f cc̄ bb̄

1 1S0 0−þ π K ηð548Þ η0ð958Þ ηcð2984Þ ηbð9398Þ
1 3S1 1−− ρð770Þ K�ð892Þ ϕð1020Þ ωð782Þ J=ψð3097Þ Υð9460Þ
1 1P1 1þ− b1ð1235Þ K1B

† h1ð1380Þ h1ð1170Þ hcð3525Þ hbð9899Þ
1 3P0 0þþ a0ð1450Þ K�

0ð1430Þ f0ð1710Þ f0ð1370Þ χc0ð3415Þ χb0ð9859Þ
1 3P1 1þþ a1ð1260Þ K1A

† f1ð1420Þ f1ð1285Þ χc1ð3511Þ χb1ð9893Þ
1 3P2 2þþ a2ð1320Þ K�

2ð1430Þ f20ð1525Þ f2ð1270Þ χc2ð3556Þ χb2ð9912Þ
1 1D2 2−þ π2ð1670Þ K2ð1770Þ† η2ð1870Þ η2ð1645Þ
1 3D1 1−− ρð1700Þ K�ð1680Þ ωð1650Þ ψð3770Þ
1 3D2 2−− K2ð1820Þ
1 3D3 3−− ρ3ð1690Þ K�

3ð1780Þ ϕ3ð1850Þ ω3ð1670Þ
2 3S1 1−− ρð1450Þ K�ð1410Þ ϕð1680Þ ωð1420Þ
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APPENDIX: ADDITIONAL INFORMATION

In the Appendix we summarize some useful data for our analysis in Tables VII and VIII from the Particle Data Group
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[1] H. Fritzsch and P. Minkowski, Nuovo Cimento 30A, 393
(1975).

[2] P. G. O. Freund and Y. Nambu, Phys. Rev. Lett. 34, 1645
(1975).

[3] J. Kogut, D. Sinclair, and L. Susskind, Nucl. Phys. B114,
199 (1976).

[4] R. L. Jaffe and K. Johnson, Phys. Lett. 60B, 201(1976).
[5] P. Roy and T. Walsh, Phys. Lett. 78B, 62 (1978).
[6] J. Coyne, P. Fishbane, and S. Meshkov, Phys. Lett 91B, 259

(1980).
[7] M. Chanowitz, Phys. Rev. Lett. 46, 981 (1981).
[8] K. Ishikawa, Phys. Rev. Lett. 46, 978 (1981).
[9] J. Cornwall and A. Soni, Phys. Lett. 120B, 431 (1983).

[10] C. Amsler and N. Tornqvist, Phys. Rep. 389, 61 (2004).
[11] V. Mathieu, N. Kochelev, and V. Vento, Int. J. Mod. Phys. E

18, 1 (2009).
[12] W. Ochs, J. Phys. G, 40, 043001 (2013).
[13] G. S.Bali, K. Schilling,A.Hulsebos,A. C. Irving,C.Michael,

and P.W. Stephenson, Phys. Lett. B 309, 378 (1993).
[14] C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509

(1999).
[15] W. Lee and D. Weingarten, Phys. Rev. D 61, 014015 (1999).

[16] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[17] K. Olive et al. (Particle Data Group), Rev. Part. Phys., Chin.

Phys. C 38, 090001 (2014).
[18] J. Dudek et al., Eur. Phys. J. A 48, 187 (2012).
[19] Y. M. Cho, Phys. Rev. D 21, 1080 (1980).
[20] Y. M. Cho, Phys. Rev. Lett. 46, 302 (1981).
[21] Y. M. Cho, Phys. Rev. D 23, 2415 (1981).
[22] W. S. Bae, Y. M. Cho, and S.W. Kimm, Phys. Rev. D 65,

025005 (2001).
[23] Y. S. Duan and M. L. Ge, Scientia Sinica 11,1072 (1979).
[24] Y. M. Cho and S. H. Ie, Proc. Coll. Nat. Sci. 14, 27 (1989).
[25] Y. M. Cho, Franklin H. Cho, and J. H. Yoon, Phys. Rev. D

87, 085025 (2013).
[26] Y. M. Cho, Int. J. Mod. Phys. A 29, 1450013 (2014).
[27] Y. M. Cho, Phys. Rev. D 62, 074009 (2000).
[28] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).
[29] S. Kato, K. Kondo, T. Murakami, A. Shibata, T. Shinohara,

and S. Ito, Phys. Lett. B 632, 326 (2006).
[30] S. Ito, S. Kato, K. Kondo, T. Murakami, A. Shibata, and

T. Shinohara, Phys. Lett. B 645, 67 (2007).
[31] N. Cundy, Y. M. Cho, W. Lee, and J. Leem, Phys. Lett. B

729, 192 (2014).

TABLE VIII. Low-lying isosinglet mesons which do not fit easily in the quark model listed by PDG.
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