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We investigate the Glauber-gluon effect on the B → ππ and ρρ decays, which is introduced via a
convolution of a universal Glauber phase factor with transverse-momentum-dependent meson wave
functions in the kT factorization theorem. For an appropriate parametrization of the Glauber phase, it is
observed that a transverse-momentum-dependent wave function for the pion (ρ meson) with a weak
(strong) falloff in parton transverse momentum kT leads to significant (moderate) modification of the
B0 → π0π0 (B0 → ρ0ρ0) branching ratio: the former (latter) is enhanced (reduced) by about a factor of 2
(15%). This observation is consistent with the dual role of the pion as a massless Nambu-Goldstone boson
and as a qq̄ bound state, which requires a tighter spatial distribution of its leading Fock state relative to
higher Fock states. The agreement between the theoretical predictions and the data for all the B → ππ
and ρ0ρ0 branching ratios is then improved simultaneously, and it is possible to resolve the B → ππ
puzzle.
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I. INTRODUCTION

The large observed B0 → π0π0 branching ratio has been
known as a puzzle in two-body hadronic B meson decays,
whose data1 [2],

BðB0→π0π0Þ¼

8>><
>>:
ð1.83�0.21�0.13Þ×10−6 ðBABARÞ;
ð0.90�0.12�0.10Þ×10−6 ðBelleÞ;
ð1.17�0.13Þ×10−6 ðHFAGÞ;

ð1Þ

show discrepancy with the predictions obtained in
the perturbative QCD (PQCD) [3] and QCD-improved
factorization (QCDF) [4] approaches. In resolving
this puzzle, one must consider the constraint from the
B0 → ρ0ρ0 data,

BðB0 → ρ0ρ0Þ¼

8>><
>>:
ð0.92�0.32�0.14Þ×10−6 ðBABARÞ;
ð1.02�0.30�0.15Þ×10−6 ðBelleÞ;
ð0.97�0.24Þ×10−6 ðHFAGÞ;

ð2Þ

which, similar to the B0 → π0π0 ones, are dominated
by the color-suppressed tree amplitude C. We have
carefully investigated the B → ππ puzzle in the PQCD
approach based on the kT factorization theorem [3,5] by
calculating the subleading contributions to the amplitude
C. It was found that the next-to-leading-order (NLO)
contributions from the vertex corrections, the quark loops
and the magnetic penguin increased C, and accordingly,
they increased the B0 → π0π0 branching ratio from the
leading-order (LO) value 0.12 × 10−6 to 0.29 × 10−6 [6].
At the same time, these NLO corrections increased the
B0 → ρ0ρ0 branching ratio from the LO value 0.33 × 10−6

to 0.92 × 10−6 [7], which is consistent with the data in
Eq. (2). Although the latest updates [8] of the B → ππ
analysis in the PQCD formalism have included all
currently known NLO contributions, in particular, those
to the B → π transition form factors [9], the agreement
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1The latest measurement of BðB0 → π0π0Þ ¼ ð0.90� 0.12�

0.10Þ × 10−6 with 6.7σ was released by the Belle Collaboration at
ICHEP2014 [1].

PHYSICAL REVIEW D 91, 114019 (2015)

1550-7998=2015=91(11)=114019(11) 114019-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.114019
http://dx.doi.org/10.1103/PhysRevD.91.114019
http://dx.doi.org/10.1103/PhysRevD.91.114019
http://dx.doi.org/10.1103/PhysRevD.91.114019


between the theoretical predictions and the data is still
not satisfactory. That is, the B0 → ρ0ρ0 data can be easily
understood in PQCD [7] and QCDF [10], but the B0 →
π0π0 data cannot.
The different phenomenological implication of the

B → ππ and ρρ data has been noticed in the viewpoint
of isospin triangles [11], which stimulated the proposal of a
new isospin amplitude with I ¼ 5=2 for the latter. It has
been argued [12] that the final-state interaction [13,14]
could enhance the B0 → π0π0 branching ratio through the
ρρ → ππ chain. The B0 → ρ0ρ0 branching ratio was not
affected, since the ππ → ρρ chain is less important due to
the smaller B → ππ branching ratios. However, the
ρρ → ρρ chain via the t-channel ρ-meson exchange was
not taken into account in the above analysis. In fact, the
ρ-ρ-ρ coupling is identical to the ρ-π-π coupling in
the chiral limit [15], whose inclusion will increase the
B0 → ρ0ρ0 branching ratio, and overshoot the data.
Besides, the ρρ → ππ chain is expected to enhance the
B0 → πþπ− branching ratio, which already saturates the
data in the factorization theorems [4,6]. Possible new
physics signals from the B → ππ decays have been dis-
cussed in [16–18]. Similarly, a new-physics mechanism
employed to resolve the B → ππ puzzle usually contributes
to the B → ρρ decays, and is strongly constrained. It has
been elaborated [7] that there is no satisfactory resolution in
the literature: the subleading corrections in the factorization
theorems [4,6,7,10,19] do not survive the constraints from
the B → ρρ data, and other resolutions are data fitting, such
as those by means of the jet function in the soft-collinear
effective theory [20] and the model-dependent final-state
interaction [12–14,21].
It is crucial to explore any mechanism that could lead

to different color-suppressed tree amplitudes in the
B0 → π0π0 and ρ0ρ0 decays, and to examine whether it
can resolve the B → ππ puzzle. We have identified a new
type of infrared divergence called the Glauber gluons [22],
from higher-order corrections to the spectator diagrams in
two-body hadronic B meson decays [23]. These residual
divergences were observed in the kT factorization theorem
for complicated inclusive processes, such as hadron hadro-
production [22]. They also appear in the kT factorization for
B → M1M2 decays, with theM2 meson being emitted from
the weak vertex, which are dominated by contributions
from the end-point region of meson momentum fractions.
The all-order summation of the Glauber gluons, coupling
the M2 meson and the B → M1 transition form factor,
generates a phase factor written as the expectation value of
two transversely separated lightlike path-ordered Wilson
lines [24]. It is noticed that the Glauber factor constructed
in [24] is similar to the transverse-momentum broadening
factor for an energetic parton propagating through quark-
gluon plasma [25,26]. The phase factor associated withM2

modifies the interference between the spectator diagrams
for C. We postulated that only the Glauber effect from a

pion is significant, due to its special role as a pseudo
Nambu-Goldstone (NG) boson and as a qq̄ bound state
simultaneously [27]. It was then demonstrated that by
tuning the Glauber phase, the magnitude of C was
increased, and the B0 → π0π0 branching ratio could reach
1.0 × 10−6 [23]. A thorough analysis of B → M1M2 decays
has been carried out recently, and the Glauber gluons
coupling the M1 meson and the B → M2 system were also
found [28]. The resultant phase factor modifies the inter-
ference between the enhanced C and the color-allowed tree
amplitude T. It turns out that the NLO PQCD prediction for
the Bþ → πþπ0 branching ratio, which receives contribu-
tions from both T and C, also becomes closer to the data.
However, the Glauber phase in [23,28] was treated as a

free parameter, so it is not clear how important this phase
could be. The postulation on the uniqueness of the pion
relative to other mesons is also lacking quantitative support.
According to [23], the Glauber phase factor is universal,
depends on the transverse momenta lT of Glauber gluons,
and appears in a convolution with decay amplitudes in the
kT factorization theorem. Therefore, the universal phase
factor produces different Glauber effects through convo-
lutions with the distinct transverse-momentum-dependent
(TMD) meson wave functions. To verify this conjecture, we
parametrize the universal phase factor associated with the
M1 andM2 mesons as a function of the variable b conjugate
to lT , which denotes the transverse separation between
the two lightlike Wilson lines mentioned above [24]. The
convolutions of this phase factor with the TMD pion and ρ
meson wave functions proposed in [29], which exhibit a
weaker falloff and a stronger falloff in the parton transverse
momentum kT , respectively, indicate that the Glauber effect
is indeed more significant in the B → ππ decays than in the
B → ρρ decays. This observation is consistent with the dual
role of the pion as a massless NG boson and as a qq̄ bound
state, which requires a tighter spatial distribution of its
leading Fock state relative to higher Fock states [27]. The
predicted B0 → π0π0 and Bþ → πþπ0 branching ratios in
NLO PQCD then reach 0.61 × 10−6 from 0.29 × 10−6

and 4.45 × 10−6 from 3.35 × 10−6, respectively. The
B0 → πþπ− branching ratio decreases from 6.19 × 10−6

to 5.39 × 10−6. Employing the same framework, we obtain
the B0 → ρ0ρ0 branching ratio slightly reduced from
1.06 × 10−6 to 0.89 × 10−6. It is obvious that the agreement
between the NLO PQCD predictions and the data is greatly
improved for all the above modes.
We establish the kT factorization of the B → ππ and ρρ

decays including the Glauber phase factors associated with
the M1 and M2 mesons in Sec. II. Section III contains the
parametrizations of the universal Glauber phase factor, and
of the intrinsic kT dependencies of the pion and ρ meson
wave functions. Numerical results together with theoretical
uncertainties in our calculations are presented. Section IV is
the conclusion.
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II. FACTORIZATION FORMULAS

In this section we derive the PQCD factorization for-
mulas for the BðPBÞ → M1ðP1ÞM2ðP2Þ decay, in which the
Glauber-gluon effect is taken into account. The B meson,
M1 meson, and M2 meson momenta are labeled by
PB, P1, and P2, respectively, for which we choose
PB ¼ ðPþ

B ; P
−
B; 0TÞ with Pþ

B ¼ P−
B ¼ mB=

ffiffiffi
2

p
, mB being

the B meson mass, and P1 (P2) in the plus (minus)
direction. The parton four-momenta k, k1, and k2 are
carried by the spectator of the B meson, by the spectator
of the M1 meson, and by the valence quark of the M2

meson, respectively, as labeled in Fig. 1. Specifically, we
keep k− ¼ xP−

B, k
þ
1 ¼ x1P

þ
1 , k

−
2 ¼ x2P−

2 , and transverse
components in hard kernels for b-quark decays. For the
detailed analysis of the Glauber divergences associated
with the M1 and M2 mesons, refer to Ref. [28].

A. Glauber gluons from M2 meson

We formulate the amplitude from Fig. 1(a) for the
B → M1M2 decay in the presence of the Glauber diver-
gences, in which the hard gluon is exchanged on the right,
and the Glauber gluon is exchanged on the left as shown in
Fig. 2(a). The spectator propagator on the Bmeson side can
be approximated by the eikonal propagator proportional to
−1=ðl− þ iϵÞ as l is collinear to P2, which contains an
imaginary piece iπδðl−Þ. The propagators of the valence
antiquark and quark, with the momenta P2−k2−kþk1− l
and k2 þ l, respectively, generate poles on the opposite
half-planes of lþ as l− ¼ 0. That is, the contour integration
over lþ does not vanish, and the Glauber gluon with the

invariant mass −l2T contributes a logarithmic infrared
divergence

R
d2lT=l2T around lT → 0. Since a Glauber

gluon is spacelike, and we are analyzing exclusive proc-
esses, no real gluon emissions, such as the rung gluons in
the Balitsky-Fadin-Kuraev-Lipatov ladder [30], are con-
sidered. Including the additional Glauber divergences,
we propose the Wilson links described in Fig. 3 for the
modifiedM2 meson wave function, which are motivated by
the observation made in [31]: it runs from z2 to plus infinity
along the nþ direction, along the transverse direction to
infinity and then back to z1T (the transverse coordinate of
the spectator quark in the M1 meson), from plus infinity to
minus infinity along nþ at the transverse coordinate z1T ,
along the transverse direction to infinity and then back to
the zero transverse coordinate, and at last back to the origin
from minus infinity at the zero transverse coordinate.
Moving the Wilson link, which runs from plus infinity
to minus infinity along nþ, to z1T → ∞, we obtain the
standardM2 meson wave function [31] without the Glauber
divergences. This Wilson link at the finite transverse
coordinate z1T leads to the δðl−Þ function.
The modified M2 meson wave function depends

on two transverse coordinates z1T and z2T , denoted as
ϕG
2 ðz1T; z2TÞ, where the dependence on zþ2 has been sup-

pressed. It has been shown that the Glauber gluon in the
B → M1M2 decay can be further factorized from the M2

meson in the dominant kinematic region, and summed to all
orders into a phase factor Gðz1T − zTÞ. We then have the
convolution

ϕG
2 ðz1T;z2TÞ¼

Z
d2zTGðz1T −zTÞϕ̄2ðzT;z2T þzTÞ; ð3Þ

where the definition for the two-coordinate wave function
ϕ̄2ðzT; z2TÞ, similar to that in [24], will be given in Eq. (8)
below. The Wilson lines of Gðz1T − zTÞ contain the
longitudinal piece, which runs from minus infinity to plus
infinity in the direction n− ¼ ð0; 1; 0TÞ at the transverse
coordinate zT [24], in addition to the longitudinal piece at
the transverse coordinate z1T in Fig. 3. The above Wilson
links are similar to that constructed for the jet quenchingFIG. 1. LO spectator diagrams for the B → M1M2 decay.

FIG. 2 (color online). NLO spectator diagrams for the
B → M1M2 decay that contain the Glauber divergences associ-
ated with the M2 meson. Other NLO diagrams with the Glauber
divergences can be found in [23].

FIG. 3 (color online). Wilson links for the modified wave
function ϕG

2 .
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parameter in [26], which is defined as the average trans-
verse momentum squared with respect to the original
direction of motion that a highly energetic parton picks
up, while traveling through a nuclear medium. If the
Glauber factor contributes only a constant phase, Eq. (3)
reduces to [24]

ϕG
2 ðz1T; z2TÞ ≈ expðiSe2Þ

Z
d2zTϕ̄2ðzT; z2T þ zTÞ;

≡ expðiSe2Þϕ2ðz2TÞ; ð4Þ

where ϕ2ðz2TÞ denotes the standard M2 meson wave
function. The approximation in Eq. (4) with the constant
Glauber phase has been adopted in [23,28].
We route the transverse loopmomentum lT of theGlauber

gluon through the hard gluon, the valence antiquark of the
M2 meson, and the valence quark of the M2 meson in
Fig. 1(a). Regarding the Glauber gluon, the valence quark,
and thevalence antiquark as the partons of theM2meson,we
assign −lT , k2T , and −k2T þ lT to them, respectively. That
is, the set of the Glauber gluon, the valence quark, and the
valence antiquark does not carry net transverse momenta.
The corresponding amplitude is modified into

Z
d2kT

ð2πÞ2
d2k1T

ð2πÞ2
d2k2T

ð2πÞ2
Z

d2lT
ð2πÞ2 ϕBðkTÞϕ1ðk1TÞϕ̄2ðk2T;−k2T þ lTÞG2ðlTÞHaðkT;k1T;k2T; lTÞ; ð5Þ

where the convolution in momentum fractions has been suppressed, and ϕB, ϕ1, andHa denote the Bmeson wave function,
theM1mesonwave function, and the hard b-quark decay kernel, respectively. TheGlauber factorG2ðlTÞ inmomentum space
appears as an additional convolution piece in the PQCD factorization formula for Fig. 1(a).
The virtual gluon and the virtual quark in the hard kernel Ha have the transverse momenta kT þ lT − k1T and

k1T − k2T − kT , respectively. We apply the variable changes k1T − lT → k1T and k2T − lT → k2T , such that lT flows
through the spectator quark in the M1 meson, the valence quark in the M1 meson, and the valence quark in the M2 meson.
Then the lT dependence disappears from the hard kernel, and Eq. (5) becomes

Z
d2kT

ð2πÞ2
d2k1T

ð2πÞ2
d2k2T

ð2πÞ2
Z

d2lT
ð2πÞ2 ϕBðkTÞϕ1ðk1T þ lTÞϕ̄2ðk2T þ lT;−k2TÞG2ðlTÞHaðkT;k1T;k2TÞ: ð6Þ

We perform the Fourier transformation of Eq. (6) by employing

ϕ1ðk1T þ lTÞ ¼
Z

d2b1 exp½iðk1T þ lTÞ · b1�ϕ1ðb1Þ; ð7Þ

ϕ̄2ðk2T þ lT;−k2TÞ ¼
Z

d2b0
2d

2b2 exp½iðk2T þ lTÞ · b0
2� exp½−ik2T · ð−b2 − b1 − b0Þ�ϕ̄2ðb0

2;b2 þ b1 þ b0Þ; ð8Þ

G2ðlTÞ ¼
Z

d2b0 expðilT · b0Þ exp½iSðb0Þ�; ð9Þ

where the phase factor exp½iSðb0Þ� is a consequence of the all-order summation of Glauber gluons in b0 space [24]. Working
out the integration over lT and b0

2, and adopting

Haðb1;b2Þδð2Þðb − b1Þ ¼
Z

d2kT

ð2πÞ2
d2k1T

ð2πÞ2
d2k2T

ð2πÞ2 expðikT · bþ ik1T · b1 þ ik2T · b2ÞHaðkT;k1T;k2TÞ; ð10Þ

we obtain the PQCD factorization formula with the Glauber effect from the M2 meson being included,

Z
d2b1d2b2d2b0ϕBðb1Þϕ1ðb1Þϕ̄2ðb1 þ b0;b2 þ b1 þ b0Þ exp½iSðb0Þ�Haðb1;b2Þ: ð11Þ

For Fig. 1(b) with the hard gluon being exchanged on the left, we derive

Z
d2b1d2b2d2b0ϕBðb1Þϕ1ðb1Þϕ̄2ðb2 þ b1 þ b0;b1 þ b0Þ exp½−iSðb0Þ�Hbðb1;b2Þ: ð12Þ
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Note the negative phase in the factor exp½−iSðb0Þ�, which is
attributed to the Glauber gluons emitted by the valence
antiquark of the M2 meson. Equations (11) and (12) imply
that the Glauber effect gives a strong phase to each
spectator diagram for the color-suppressed tree amplitude.
It is equivalent to route lT through the B meson wave
function in Fig. 1, under which the same factorization
formulas will be attained.

B. Glauber gluons from M1 meson

We then include the Glauber gluons associated with the
M1 meson, starting from Fig. 1(a). Some NLO diagrams
that produce these types of Glauber divergences are
displayed in Fig. 4. We route the transverse loop momen-
tum lT of the Glauber gluon in Fig. 4(a) through the hard
gluon, the valence antiquark of the M2 meson, and the
valence quark of the M1 meson. The spectator propagator
on the B meson side can be approximated by the eikonal
propagator proportional to −1=ðlþ þ iϵÞ as l is collinear to
P1, which contains an imaginary piece iπδðlþÞ. The above
routing of l clearly indicates that the propagators of the
valence antiquark ofM2 and the valence quark ofM1, with
the momenta P2 − k2 − kþ k1 − l and P1 − k1 þ l, respec-
tively, generate poles on the opposite half-planes of l− as
lþ ¼ 0. That is, the contour integration over l− does not
vanish, and the Glauber gluon with the invariant mass −l2T
contributes a logarithmic infrared divergence as lT → 0.
Similarly, the all-order summation of the Glauber

divergences leads to a phase factor G1ðlTÞ associated with
the M1 meson. The above explanation applies to the
Glauber divergence in Fig. 4(b), and its all-order summa-
tion gives the same phase factor G1ðlTÞ. The reason is
obvious from Fig. 4, where the Glauber gluon always
attaches to the spectator in the B meson and the valence
quark in the M1 meson.
Assume that the Glauber gluons from theM1 meson and

the M2 meson carry the transverse momenta l1T and l2T ,
respectively. The above transverse momenta are routed
through the mesons, instead of through the hard kernel, so
that the hard kernel has the same expression as in the LO
PQCD approach: l1T flows through the valence quark and
the valence antiquark of the M2 meson, and l2T flows
through the M1 meson and then through the valence quark
of the M2 meson. The resultant amplitude is written as

Aa ¼
Z

d2kT

ð2πÞ2
d2k1T

ð2πÞ2
d2k2T

ð2πÞ2
Z

d2l1T
ð2πÞ2

d2l2T
ð2πÞ2 ϕBðkTÞϕ̄1ðk1T þ l2T;−k1T − l1T − l2TÞ

× ϕ̄2ðk2T þ l1T þ l2T;−k2T − l1TÞG1ðl1TÞG2ðl2TÞHaðkT;k1T;k2TÞ: ð13Þ

The Fourier transformations

G1ðl1TÞ ¼
Z

d2bs1 expðil1T · bs1Þ exp ½−iSðbs1Þ�; ð14Þ

for the Glauber factor, and

ϕBðkTÞ ¼
Z

d2bB expðikT · bBÞϕBðbBÞ; ð15Þ

ϕ̄1ðk1T þ l2T;−k1T − l1T − l2TÞ

¼
Z

d2b0
1d

2b1 exp½iðk1T þ l2TÞ · b0
1� exp½−iðk1T þ l1T þ l2TÞ · ðb0

1 − b1Þ�ϕ̄1ðb0
1;b

0
1 − b1Þ; ð16Þ

ϕ̄2ðk2T þ l1T þ l2T;−k2T − l1TÞ

¼
Z

d2b0
2d

2b2 exp½iðk2T þ l1T þ l2TÞ · b0
2� exp½−iðk2T þ l1TÞ · ðb0

2 − b2Þ�ϕ̄2ðb0
2;b

0
2 − b2Þ; ð17Þ

FIG. 4 (color online). NLO spectator diagrams for the B →
M1M2 decay that contain the Glauber divergences associated
with the M1 meson. Other NLO diagrams with the Glauber
divergences are referred to [28].
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for the meson wave functions are then inserted into
Eq. (13). Note that the Glauber phases associated with
M1 and M2 differ by a sign for Fig. 1(a) as shown in
Eqs. (9) and (14) [28].
We collect the exponents depending on l1T and l2T ,

integrate them over l1T and l2T , and obtain the δ functions

δð2Þðbs1 − b0
1 þ b1 þ b2Þ and δð2Þðbs2 þ b1 þ b0

2Þ, respec-
tively. The next step is to perform the integration over b0

1

and b0
2 according to the above δ functions, which lead to

b0
1 ¼ bs1 þ b1 þ b2 and b0

2 ¼ −bs2 − b1. For the kT , k1T ,
and k2T integrations, we still have Eq. (10), namely,
bB ¼ b1. At last, we derive

Aa ¼
Z

d2b1d2b2

Z
d2bs1d2bs2ϕBðb1Þϕ̄1ðbs1 þ b1 þ b2;bs1 þ b2Þ

× ϕ̄2ðbs2 þ b1;bs2 þ b1 þ b2Þ exp ½−iSðbs1Þ þ iSðbs2Þ�Haðb1;b2Þ;

¼
Z

d2b1d2b2

Z
d2bs1d2bs2ϕ̄Bðb1Þϕ̄1ðbs1 þ b1;bs1Þ

× ϕ̄2ðbs2;bs2 þ b2Þ exp ½−iSðbs1 − b2Þ þ iSðbs2 − b1Þ�Haðb1;b2Þ: ð18Þ

To arrive at the second expression, the variable changes bs1 þ b2 → bs1 and bs2 þ b1 → bs2 have been employed.
For Fig. 1(b) with the hard gluon exchanged on the left, we route l1T through the valence quark and the valence antiquark

of the M2 meson, and route l2T through the M1 meson and then through the valence antiquark of the M2 meson. The
resultant amplitude is factorized into

Ab ¼
Z

d2kT

ð2πÞ2
d2k1T

ð2πÞ2
d2k2T

ð2πÞ2
Z

d2l1T
ð2πÞ2

d2l2T
ð2πÞ2 ϕBðkTÞϕ̄1ðk1T þ l2T;−k1T − l1T − l2TÞ

× ϕ̄2ðk2T − l1T;−k2T þ l1T þ l2TÞG1ðl1TÞG2ðl2TÞHbðkT;k1T;k2TÞ: ð19Þ

The Fourier transformations are then applied with Eq. (17) being replaced by

ϕ̄2ðk2T − l1T;−k2T þ l1T þ l2TÞ

¼
Z

d2b0
2d

2b2 exp½iðk2T − l1TÞ · b0
2� exp½−iðk2T − l1T − l2TÞ · ðb0

2 − b2Þ�ϕ̄2ðb0
2;b

0
2 − b2Þ; ð20Þ

and we have the factorization formula

Ab ¼
Z

d2b1d2b2

Z
d2bs1d2bs2ϕ̄Bðb1Þϕ̄1ðbs1 þ b1;bs1Þ

× ϕ̄2ðbs2 þ b2;bs2Þ exp ½−iSðbs1 − b2Þ − iSðbs2 − b1Þ�Hbðb1;b2Þ: ð21Þ

The Glauber phases for theM1 meson have the same sign in
Aa andAb as explained before. The expressions of the hard
kernels Ha and Hb from Figs. 1(a) and 1(b), respectively,
corresponding to various tree and penguin operators, can be
found in Ref. [23].

III. NUMERICAL ANALYSIS

Recently, there were four works [28,32–34] devoted to
the resolution of the B → ππ puzzle by enhancing the
amplitude C:
(a) In Ref. [28], Li and Mishima treated the Glauber

phases as free parameters in the B → ππ decays, and
postulated that they vanish in the B → ρρ decays.
When the phases associated with the M1 and M2

mesons are both chosen as −π=2 in the former, the

spectator amplitudes in the NLO PQCD formalism
increase, and the B0 → π0π0 branching ratio becomes
as large as 1.2 × 10−6.

(b) In Ref. [32], Qiao et al. significantly lowered the scale
for the hard spectator interactions to the so-called
optimal scale QH

1 ∼ 0.75 GeV in the QCDF approach
following the principle of maximum conformality, and
found the B0 → π0π0 branching ratio as large as
0.98þ0.28

−0.32 × 10−6. To justify this resolution, it is crucial
to examine how the B0 → ρ0ρ0 branching ratio is
modified in the same analysis.

(c) In Ref. [33], Chang et al. adopted large parameters ρH
and ϕH for the spectator amplitudes, as well as large
parameters ρA and ϕA for the nonfactorizable annihi-
lation ones in the QCDF framework in order to fit the
Bu;d → ππ; πK and KK̄ data. As a consequence of the
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data fitting, they obtained extremely large B0 → π0π0

branching ratios 1.67þ0.33
−0.30 ×10−6 and 2.13þ0.43

−0.38 × 10−6

corresponding to different scenarios.
(d) In Ref. [34], Cheng et al. got the large color-

suppressed tree amplitudes C around 0.5e−i65° and
0.6e−i80° directly through global fits to the data, where
the former arose only from the Bu;d → ππ; πK and KK
data, while the latter came from all the available
Bu;d → PP data. These color-suppressed tree ampli-
tudes resulted in the large B0 → π0π0 branching ratios
1.43� 0.55 × 10−6 and 1.88� 0.42 × 10−6, respec-
tively, in the framework of flavor SUð3Þ symmetry.

The experimentally observed pattern BrðBþ → πþπ0Þ >
BrðB0 → πþπ−Þ > BrðB0 → π0π0Þ is also produced in
Refs. [28,32]. The question on why the color-suppressed
tree amplitudes are so different in the B → ππ and B → ρρ
decays remains to be answered.
In this section we attempt to answer this question by

quantitatively estimating the different Glauber effects in the
B → ππ and ρρ decays based on the PQCD factorization
formulas in Eqs. (18) and (21). As stated before, the
Glauber factor is universal, namely, independent of
the final-state hadrons, because it has been factorized
from the decay processes. Nevertheless, the Glauber effect
is not universal, as it appears through the convolution
with the TMD wave functions ϕ̄1ðbs1 þ b1;bs1Þ and
ϕ̄2ðbs2 þ b2;bs2Þ, which possess different intrinsic b

dependencies for the pion and the ρ meson. It will be
demonstrated that the model wave function in [29] serves
the purpose of revealing sufficiently distinct Glauber effects
on the B0 → π0π0 and B0 → ρ0ρ0 branching ratios.

A. Parametrizations

The intrinsic kT dependence of a TMD meson wave
function is usually parametrized through the factor [29,35]

M2 ¼ k2T þm2

x
þ k2T þm2

1 − x
; ð22Þ

where m ¼ mu ¼ md denotes the constituent quark mass,
and x denotes the parton momentum fraction. Below we
shall drop m2 for simplicity. In the collinear factorization
theorem one integrates a TMD wave function over kT to
obtain a distribution amplitude. Assume that the intrinsic kT
dependence appears in a Gaussian form [36],

ϕMðkTÞ ¼
π

2β2M
exp

�
−
M2

8β2M

�
ϕMðxÞ
xð1 − xÞ ; ð23Þ

where βM is a shape parameter forM ¼ π and ρ, and ϕMðxÞ
denotes the standard twist-2 and twist-3 light-cone distri-
bution amplitudes. Regarding the first (second) kT in
Eq. (22) as the transverse momentum carried by the valence
quark (antiquark) of the momentum fraction x (1 − x), the
modified wave function is written as

ϕ̄Mðb0;bÞ≡
Z

d2k0
T

ð2πÞ2
d2kT

ð2πÞ2 expð−ik
0
T · b0Þ expð−ikT · bÞϕ̄Mðk0

T;kTÞ;

¼ 2β2M
π

ϕMðxÞ exp ½−2β2Mxb02 − 2β2Mð1 − xÞb2�: ð24Þ

Our goal is to find a function SðbÞ, such that the Glauber
effect is large (small) for M ¼ π (M ¼ ρ). The similar
Glauber factor, describing the medium effect [25] in
Relativistic Heavy Ion Collider physics, respects the
normalization Sð0Þ ¼ 0 [25]. If SðbÞ increases with b
monotonically, the real piece cos½SðbÞ� takes values in
both the first and second quadrants for finite b, so its
contributions from these two quadrants cancel each other.
The contribution from the third quadrant, i.e., from large b,
may not be important due to the suppression of the
exponential in Eq. (24). The imaginary piece sin½SðbÞ�
remains positive in the first and second quadrants, such that
its effect always exists and becomes small only in the trivial
case with SðbÞ → 0. Therefore, a monotonic function for
SðbÞ, which tends to enhance both the B0 → π0π0 and ρ0ρ0

branching ratios, is not preferred. A polynomial function or
a sinusoidal function can provide an oscillatory SðbÞ in b.
Because the large b region is suppressed, we can simply
parametrize SðbÞ by a sinusoidal function

SðbÞ ¼ rπ sinðpbÞ; ð25Þ

where the tunable parameters r and p govern the magnitude

and the frequency of the oscillation, and should take the

same values for the pion and the ρ meson due to the

universality of the Glauber factor.

B. Numerical results

The following B meson wave function [3,5] is employed
in the numerical analysis,

ϕBðx; bÞ ¼ NBx2ð1 − xÞ2 exp
�
−
1

2

�
xmB

ωB

�
2

−
ω2
Bb

2

2

�
;

ð26Þ

with the coefficient NB being determined through the
normalization condition
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Z
1

0

dxϕBðx; b ¼ 0Þ ¼ fB
2

ffiffiffiffiffiffiffiffi
2Nc

p : ð27Þ

We take the distribution amplitudes

ϕA
π ðxÞ ¼

6fπ
2

ffiffiffiffiffiffiffiffi
2Nc

p xð1 − xÞ
�
1þ 3

2
aπ2ð5ð2x − 1Þ2 − 1Þ þ 15

8
aπ4ð1 − 14ð2x − 1Þ2 þ 4ð2x − 1Þ4Þ

�
;

ϕP
π ðxÞ ¼

fπ
2

ffiffiffiffiffiffiffiffi
2Nc

p
�
1þ 1

2

�
30η3 −

5

2
ρ2π

�
ð3ð2x − 1Þ2 − 1Þ

−
3

8

�
η3ω3 þ

9

20
ρ2πð1þ 6aπ2Þ

�
ð3 − 30ð2x − 1Þ2 þ 35ð2x − 1Þ4Þ

�
; ð28Þ

ϕT
π ¼ fπ

2
ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2xÞ
�
1þ 6

�
5η3 −

1

2
η3ω3 −

7

20
ρ2π −

3

5
ρ2πaπ2

�
ð1 − 10xþ 10x2Þ

�
; ð29Þ

for the pion [37], and

ϕρðxÞ ¼
3fρffiffiffi
6

p xð1 − xÞ
�
1þ 3

2
a∥2ρð5ð2x − 1Þ2 − 1Þ

�
; ð30Þ

ϕT
ρ ðxÞ ¼

3fTρffiffiffi
6

p xð1 − xÞ
�
1þ 3

2
a⊥2ρð5ð2x − 1Þ2 − 1Þ

�
; ð31Þ

ϕt
ρðxÞ¼

3fTρ
2

ffiffiffi
6

p ð2x−1Þ2; ϕs
ρðxÞ¼−

3fTρ
2

ffiffiffi
6

p ð2x−1Þ; ð32Þ

ϕv
ρðxÞ¼

3fρ
8

ffiffiffi
6

p ð1þð2x−1Þ2Þ; ϕa
ρðxÞ¼−

3fρ
4

ffiffiffi
6

p ð2x−1Þ;

ð33Þ
for the ρ meson [7,38]. The Glauber factor is introduced
only to the dominant longitudinal-polarization contribution
in the B0 → ρ0ρ0 decay. This treatment makes sense,
since the Glauber effect is moderate in this mode as shown
later.
Before evaluating the B → ππ and ρ0ρ0 branching ratios,

we explain the determination of the parameters βπ and βρ in
the TMD pion and ρmeson wave functions in Eq. (23). The
parameter βπ around 0.40 GeV has been widely adopted in
the literature (see for example Ref. [36]). Due to the
suppression from the additional intrinsic kT dependence,
we lower the shape parameter ωB of the B meson wave
function from 0.40 GeV [6] to 0.37 GeV to maintain the
NLO PQCD result for the B → π transition form factor
FB→π
0 . The parameter βρ is not as well constrained as βπ ,

and we find βρ ∼ βπ=3 in order to maintain the NLO PQCD

result for the B → ρ form factor AB→ρ
0 . These values of βπ

and βρ imply that the pion (ρmeson) wave function exhibits
a weaker (stronger) falloff in the parton transverse momen-
tum kT . This behavior is consistent with the dual role of the

pion as a massless NG boson and as a qq̄ bound state,
which requires a tighter spatial distribution of its leading
Fock state relative to higher Fock states [27]. It has
been confirmed that the NLO PQCD results for all the
B → ππ and ρρ decay rates are roughly reproduced with the
above parameters, the coefficients aπ2 ¼ 0.115� 0.115,
aρ;∥2 ¼ 0.10� 0.10, aρ;⊥2 ¼ 0.20� 0.20, aπ4 ¼ −0.015,
η3 ¼ 0.015, ω3 ¼ −3, and ρπ ¼ mπ=mπ

0 with the chiral
enhancement factor mπ

0 ¼ 1.3 GeV [6], and the ρ meson
decay constants fρ ¼ 0.216 GeV and fTρ ¼ 0.165GeV [39].
As listed in the column NLO of Table I, the NLO PQCD

results for the B0 → π0π0 and Bþ → πþπ0 branching ratios
without the Glauber effect are much lower than the data,
while those of the B0 → πþπ− and ρ0ρ0 decays overshoot
the central values of the data. We then implement the
Glauber effect and carefully scan the r and p dependencies
of the B0 → π0π0 branching ratio. Two sets of parameters
are selected, r ∼ 0.47, p ∼ −0.632 GeV and r ∼ 0.60,
p ∼ 0.544 GeV, which give the largest B0 → π0π0 branch-
ing ratios 0.62 × 10−6 and 0.61 × 10−6, respectively. For
the former, the B0 → πþπ−, Bþ → πþπ0 and B0 → ρ0ρ0

branching ratios are found to be 5.90 × 10−6, 3.88 × 10−6,
and 1.07 × 10−6, respectively, which deviate from the data.
For the latter, we obtain the B0 → πþπ−, Bþ → πþπ0 and
B0 → ρ0ρ0 branching ratios 5.39 × 10−6, 4.45 × 10−6, and
0.89 × 10−6, respectively, presented in the column NLOG
of Table I. These outcomes show the preferred tendency:
the B0 → πþπ− and B0 → ρ0ρ0 branching ratios decrease
by 13% and 16%, respectively, while the Bþ → πþπ0 and
B0 → π0π0 ones increase by 33% and a factor of 2.1,
respectively. The B0 → πþπ− branching ratio does not
change much, since it is dominated by the color-allowed
tree amplitude T, which is less sensitive to the Glauber
effect. The ratio of the enhancement factor for the B0 →
π0π0 mode over the reduction factor for the B0 → ρ0ρ0
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mode is about 2.5, close to the ratio 3 derived in Ref. [28],
where the Glauber effect is assumed to be negligible in the
B0 → ρ0ρ0 decay. Varying the shape parameter ωB of the B
meson wave function and the Gegenbauer moments aπ;ρ2 of
the pion and ρ meson, we estimate the theoretical uncer-
tainties in our formalism given in Table I. One can see that

all our predictions for the branching ratios in the NLO
PQCD formalism with the Glauber effect match the data
better.
To have a clear idea of the Glauber effect, we present the

amplitudes AðB0 → π0π0Þ and AðB0 → ρ0ρ0Þ (in units of
10−2 GeV3) from Figs. 1(a) and 1(b),

Aa;bðB0 → π0π0Þ ¼
�
11.86 − i9.04; −7.13þ i6.18; ðNLOÞ;
10.80 − i7.25; 7.67 − i3.42; ðNLOGÞ; ð34Þ

Aa;bðB0 → ρ0ρ0Þ ¼
�−42.44þ i24.42; 28.88 − i18.07; ðNLOÞ;
−5.78þ i4.32; −3.61 − i3.23; ðNLOGÞ; ð35Þ

respectively, associated with the four-fermion operator O2

(they are not the full spectator amplitudes). Equation (34)
indicates that the result of Fig. 1(a) varies a bit because of
the approximate cancellation of the Glauber phases asso-
ciated with the M1 and M2 mesons, as shown in Eq. (18).
The result of Fig. 1(b) is modified by the Glauber effect
significantly with a sign flip, in agreement with what was
found in Ref. [28]. It is obvious that the destructive
interference between Figs. 1(a) and 1(b) has been turned
into a constructive one for the B0 → π0π0 decay. The
consequence is that their sum changes from 5.53e−i0.54 ×
10−2 GeV3 in the NLO PQCD approach to 21.33e−i0.52 ×
10−2 GeV3 in the NLO PQCD approach with the Glauber
effect. As for the B0 → ρ0ρ0 decay, the broad distribution
of the ρmeson wave function in b space allows cancellation
to occur, which is attributed to the oscillation of the Glauber
phase factor. This is the reason why each amplitude from
Figs. 1(a) and 1(b) reduces as shown in Eq. (35). However,
the sum of the two amplitudes does not change much
relative to the change in the B0 → π0π0 case. We have
examined the sensitivity of the B0 → ρ0ρ0 branching ratio
to r and p and confirmed that the predicted branching ratio
is quite stable as long as p > 0.5 GeV, varying within only
5%. It is likely that the leading Fock state of the pion is tight
enough to reveal the Glauber effect from the oscillatory
phase factor, while other hadrons with broad spatial
distributions cannot. We might have found plausible

explanations for the dynamical origin of the Glauber phase
and for the unique role of the pion mentioned before.

IV. CONCLUSION

In this paper we have performed the model estimate of
the Glauber effects in the B → ππ and ρρ decays in the
PQCD approach based on the kT factorization theorem. The
Glauber phase factor, arising from the factorization and all-
order summation of the Glauber gluons for two-body
hadronic B meson decays, is universal as shown in our
previous work. Despite being universal, the Glauber
factor does make distinct impacts on the B0 → π0π0 and
B0 → ρ0ρ0 branching ratios through its convolution with
the TMD pion and ρ meson TMD wave functions with
different intrinsic kT dependencies. It was noticed that the
pion (ρ meson) wave function exhibiting a weak (strong)
falloff in kT serves the purpose. These behaviors are
consistent with the dual role of the pion as a massless
NG boson and as a qq̄ bound state, which requires a tighter
spatial distribution of its leading Fock state relative to
higher Fock states. It has been pointed out that the tight
leading Fock state of the pion may be able to reveal the
Glauber effect from the oscillatory phase factor as para-
metrized in Eq. (25), while other hadrons with broad spatial
distributions cannot.
We have demonstrated that the B0 → π0π0 branching

ratio is enhanced by a factor of 2.1, reaching 0.61 × 10−6,

TABLE I. Branching ratios from the NLO PQCD formalism in units of 10−6, in which NLO (NLOG) denotes the
results without (with) the Glauber effect.

Modes Data [1,2] NLO NLOG

B0 → πþπ− 5.10� 0.19 6.19þ2.09
−1.48 ðωBÞþ0.38

−0.34 ðaπ2Þ 5.39þ1.86
−1.31 ðωBÞþ0.28

−0.25 ðaπ2Þ
Bþ → πþπ0 5.48þ0.35

−0.34 3.35þ1.08
−0.77 ðωBÞþ0.23

−0.22 ðaπ2Þ 4.45þ1.38
−0.99 ðωBÞþ0.39

−0.36 ðaπ2Þ
B0 → π0π0 0.90� 0.16 0.29þ0.11

−0.07 ðωBÞþ0.03
−0.02 ðaπ2Þ 0.61þ0.16

−0.12 ðωBÞþ0.14
−0.12 ðaπ2Þ

B0 → ρ0ρ0 0.97� 0.24 1.06þ0.29
−0.21 ðωBÞþ0.19

−0.16 ðaρ2Þ 0.89þ0.26
−0.18 ðωBÞþ0.13

−0.10 ðaρ2Þ
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while the B0 → ρ0ρ0 one remains around 0.89 × 10−6,
down by only 16%. This observation supports the fact
that the Glauber effect from the pion can be more
significant, as postulated in [23,28]. The B0 → πþπ−

(Bþ → πþπ0) branching ratio is modified into
5.39 × 10−6, decreasing by 13% (4.45 × 10−6, increasing
by 33%), such that the consistency between the NLO
PQCD predictions and the data is improved for all the
modes. The above changes are due to the facts that the
Glauber phase enhances the color-suppressed tree ampli-
tude by turning the destructive interference between the LO
spectator diagrams into a constructive one, and that it also
modifies the interference between the color-suppressed and
color-allowed tree amplitudes. We stress that the B → ππ
puzzle must be resolved by resorting to a mechanism that
can differentiate the pion from other mesons, and that the

Glauber gluons should be one of the most crucial
mechanisms.
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