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I provide a calculation at full two-loop order of the complex pole squared mass of the W boson in the
Standard Model in the pure MS renormalization scheme, with Goldstone boson mass effects resummed.
This approach is an alternative to earlier ones that use on-shell or hybrid renormalization schemes. The
renormalization scale dependence of the real and imaginary parts of the resulting pole mass is studied. Both
deviate by about �4 MeV from their median values as the renormalization scale is varied from 50 to
200 GeV, but the theory error is likely larger. A surprising feature of this scheme is that the two-loop QCD
correction has a larger scale dependence, but a smaller magnitude, than the two-loop non-QCD correction,
unless the renormalization scale is chosen very far from the top-quark mass.
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I. INTRODUCTION

The discovery [1,2] of the 125 GeV Higgs boson h at the
Large Hadron Collider (LHC) has completed the minimal
Standard Model of electroweak symmetry breaking. Since
the LHC has also not discovered any superpartners or other
new fundamental particles, it is now more motivated than
ever to perform precision analyses of the masses and
interactions of the known particles of the completed theory.
This paper concerns the complex pole mass [3–9] of the W
boson,

sWpole ≡M2
W − iΓWMW ð1:1Þ

calculated at two-loop order.
There have already been many studies [11–37] that

calculate contributions to the physical W-boson mass,
including all two-loop order contributions and some
QCD-enhanced effects at three- and four-loop order
besides. (These are reviewed in Refs. [35,36], for example.)
Indeed, the accuracy of the most advanced of these
calculations exceeds that of the present paper when it
comes to predicting the W-boson mass in terms of other
measured quantities. However, the existing calculations
have been done in on-shell or hybrid MS=on-shell schemes,
or use expansions in small squared-mass ratios, as in the
case of Refs. [25,26]. In this paper, I will provide a
calculation that does not employ mass ratio expansions
and uses a “pure” MS scheme, which means that the
complete set of input parameters consists of only the
renormalized running MS quantities

v; g; g0; λ; yt; g3 ð1:2Þ

at a given renormalization scaleQ. Here, vðQÞ is defined to
be the minimum of the radiatively corrected effective
potential in Landau gauge, which is now known to full

two-loop order [38] with three-loop contributions at leading
order in g3 and yt [39], with Goldstone boson mass
contributions resummed [40,41]. This allows v to be traded
for the Higgs squared-mass parameter m2ðQÞ. The
normalizations of v;m2, and λ are such that the Higgs
potential is

V ¼ m2Φ†Φþ λðΦ†ΦÞ2 ð1:3Þ

and hΦi ¼ v=
ffiffiffi
2

p
, with a canonically normalized Higgs

doublet field Φ.
In principle, the input parameters should also include the

other quark and lepton Yukawa couplings, but these make
only a very small difference in the present paper, as
discussed below. In the pure MS scheme approach, all
of the complex pole masses and other observables, such as
the Fermi decay constants, are outputs, to be computed in
terms of the quantities in Eq. (1.2). In practice, global fits to
data may be used to obtain the relationship. In this paper,
the input parameters of Eq. (1.2) are all understood to be in
the full nondecoupled (six-quark) Standard Model theory.
Note that if the renormalization scale Q is chosen between
MW and Mt, the largest logarithms encountered in the
calculations of the physical masses of W;Z; h; t will be at
most lnðM2

t =M2
WÞ ≈ 1.5.

It has been argued that the experimental vector boson
masses MV;exp as measured at colliders are related to the
complex pole mass quantities by approximately [5,6,42]

M2
V;exp ¼ M2

V þ Γ2
V: ð1:4Þ

Numerically, this amounts to MW;exp ≈MW þ 27 MeV in
the case of the W boson, assuming the Standard Model
prediction for the width. Here, M2

V is the real part of the
complex pole of the propagator, while M2

V;exp corresponds
to what is sometimes called the “on-shell” mass. In the
following, I will refer to MW rather than MW;exp. The
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current experimental value [43] is MW;exp ¼ 80.385�
0.015 GeV.
At the present time, the pure MS scheme is not quite

competitive in numerical accuracy with the on-shell or
hybrid schemes for the W-boson mass calculation
(although it is for the Higgs boson mass, which has been
obtained to two-loop order with the leading three-loop
corrections [44,45]). However, as the technology for loop
calculations improves, it is quite possible that this will
change. As a matter of opinion, I find the modular approach
of the pure MS scheme to be conceptually simpler, and it
can be easily extended to include contributions from new
particles beyond the Standard Model, and the methods used
can even be applied to other vector bosons (such as aW0) in
different theories. In any case, there is hopefully some value
in being able to compare different schemes for the Standard
Model observables, given their importance.

II. W-BOSON COMPLEX POLE MASS
AT TWO-LOOP ORDER

In this section, I describe the calculation of theW-boson
complex pole mass. The calculation reported here is
restricted to Landau gauge, because only in that gauge
has the effective potential been evaluated to full two-loop
order with leading three-loop corrections, and this is
necessary to obtain the relationship between the Higgs
vacuum expectation value (VEV) and the Lagrangian
squared-mass parameter used implicitly in the calculation
below. However, the complex pole mass [3–9] is a physical
observable. It is therefore independent of the gauge-fixing
parameters [10], as well as renormalization-group invariant.
In order to obtain the W-boson complex pole mass, one

first obtains, in terms of bare parameters in the regulated
theory in d ¼ 4 − 2ϵ dimensions, the transverse self-energy
function

ΠðsÞ ¼ 1

16π2
Πð1ÞðsÞ þ 1

ð16π2Þ2Π
ð2ÞðsÞ: ð2:1Þ

This is obtained by constructing the W-boson self-energy
functionΠWW

μν ðsÞ from the sumof all one-particle-irreducible
two-point Feynman diagrams, and then contracting
with ðημν − pμpν=p2Þ=ðd − 1Þ, where pμ is the external
momentum and s ¼ −p2, using a metric with Euclidean or
(−, þ, þ, þ) signature. Factors of 1=ð16π2Þl are used to
signify the loop order l. Rather than including counterterm
diagrams separately, it is more convenient and efficient to
do the calculation in terms of the bare quantities: the VEV
vB and the bare Higgs squared-mass parameter m2

B, and the
couplings gB, g0B, and λB, ytB, g3B, and then rewrite the
results in terms of the MS quantities.
The finite, renormalization-group invariant, and gauge-

fixing invariant complex pole squared mass can be written
at two-loop order:

sWpole ¼ WB þ 1

16π2
Πð1ÞðWBÞ

þ 1

ð16π2Þ2 ½Π
ð2ÞðWBÞ þ Πð1Þ0ðWBÞΠð1ÞðWBÞ�;

ð2:2Þ
where WB ¼ g2Bv

2
B=4. The bare quantities are then elimi-

nated in favor of the MS renormalized parameters using

v2B ¼ μ−2ϵv2
�
1þ 1

16π2
cϕ1;1
ϵ

þ 1

ð16π2Þ2
�
cϕ2;2
ϵ2

þ cϕ2;1
ϵ

�
þ…

�
;

ð2:3Þ

gB ¼ μϵ
�
gþ 1

16π2
cg1;1
ϵ

þ 1

ð16π2Þ2
�
cg2;2
ϵ2

þ cg2;1
ϵ

�
þ…

�
;

ð2:4Þ

g0B ¼ μϵ
�
g0 þ 1

16π2
cg

0
1;1

ϵ
þ…

�
; ð2:5Þ

λB ¼ μ2ϵ
�
λþ 1

16π2
cλ1;1
ϵ

þ…

�
; ð2:6Þ

m2
B ¼ m2 þ 1

16π2
cm

2

1;1

ϵ
þ…; ð2:7Þ

ytB ¼ μϵ
�
yt þ

1

16π2
cyt1;1
ϵ

þ…

�
; ð2:8Þ

g3B ¼ μϵ½g3 þ…� ð2:9Þ

to obtain sWpole in terms of the renormalized parameters.
Here μ is the dimensional regularization scale. The MS
renormalization scale Q is related to it by

Q2 ¼ 4πe−γEμ2; ð2:10Þ

where γE is the Euler-Mascheroni constant. The counter-
term coefficients were listed, in exactly the same conven-
tions as in this paper, in Ref. [44], except for

cg2;1 ¼
35

24
g5 þ 3g3g23 þ

3

8
g3g02 −

3

8
g3y2t ; ð2:11Þ

cg2;2 ¼
361

96
g5: ð2:12Þ

All of these counterterm coefficients can be obtained from
the two-loop beta functions and scalar anomalous dimen-
sion found in Refs. [38,46–49]; see for example the
discussion surrounding Eqs. (4.5)–(4.14) of Ref. [39].
The procedure for the rest of the calculation is quite

similar to that in Ref. [44], to which the reader is therefore
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referred for some more details, in a (perhaps futile) attempt
to avoid triggering the arXiv’s self-plagiarism detector. The
Tarasov algorithm [50] is used to reduce the two-loop
integrals to a basis set. The program TARCER [51] that is
often used for this purpose was apparently unable to handle
a few of the necessary reductions in a finite time, so I wrote
a new MATHEMATICA program REDTINT implementing the
Tarasov algorithm. (This program will be publicly released
soon.) After expansion in ϵ ¼ ð4 − dÞ=2, the Tarasov basis
integrals were then written in terms of a set of basis
integrals defined and described in detail in Refs. [52,53].
The one-loop basis integrals are

AðxÞ; Bðx; yÞ; ð2:13Þ

and the two-loop basis integral list is

Iðx; y; zÞ; Sðx; y; zÞ; Tðx; y; zÞ;
T̄ð0; x; yÞ; Uðx; y; z; uÞ; Mðx; y; z; u; vÞ: ð2:14Þ
The arguments x; y;… are squared masses, and
B; S; T; T̄; U;M also each have an implicit dependence
on the external momentum invariant s ¼ −p2, while
A;B; I; S; T; T̄; U have an implicit dependence on the
renormalization scale Q. The computer program TSIL

[53] can then be used for the efficient numerical evaluation
of these basis integrals. TSIL uses Runge-Kutta integration
of differential equations similar to that suggested in
Ref. [54], and also includes relevant analytical results
found in Refs. [52,55–61].
After writing bare quantities in terms of MS quantities

and expanding in ϵ, the tree-level squared-mass arguments
of the basis integrals used in the final result are

W ¼ g2v2=4; ð2:15Þ

Z ¼ ðg2 þ g02Þv2=4; ð2:16Þ

t ¼ y2t v2=2; ð2:17Þ
h ¼ 2λv2; ð2:18Þ

and 0 for photons and gluons. As in [44], the Goldstone
boson squared masses are eliminated by using the condition
for the minimization of the effective potential after resum-
mation,

m2þ λv2 ¼ 1

16π2

�
2Ncy2t AðtÞ− 3λAðhÞ− g2

2
½3AðWÞþ 2W�

−
g2þ g02

4
½3AðZÞþ 2Z�

�
þ…; ð2:19Þ

as explained in Sec. 4 of Ref. [40] (see also [41,62]). The
same relation is used to eliminate m2 from the tree-level
Higgs boson squared mass, which appears as h rather than
H ¼ m2 þ 3λv2. In a future three-loop calculation of theW
(or Z) pole mass, the two-loop version of Eq. (2.19) should
be used; this can be found in Eqs. (4.18)–(4.20)
of Ref. [40].
The two-loop W-boson squared pole mass is thus

obtained, after finally taking ϵ → 0, as

sWpole ¼ M2
W − iΓWMW

¼ W þ 1

16π2
Δð1Þ

W þ 1

ð16π2Þ2 ½Δ
ð2Þ;QCD
W þ Δð2Þ;non-QCD

W �;

ð2:20Þ

where the right-hand side is a function of v; g; g0; λ; yt;
g3; Q, with all propagator masses expressed as W;Z; h; t,
or 0. The list of one-loop basis integrals used is

Ið1Þ ¼ fAðhÞ; AðtÞ; AðWÞ; AðZÞ; Bð0; 0Þ; Bð0; hÞ; Bð0; tÞ;
Bð0; ZÞ; Bðh; tÞ; Bðh;WÞ; Bðt; ZÞ; BðW;ZÞg; ð2:21Þ

while the list of necessary two-loop basis integrals is

Ið2Þ ¼ fIð0; 0; hÞ; Ið0; 0; tÞ; Ið0; 0;WÞ; Ið0; 0; ZÞ; Ið0; h;WÞ; Ið0; h; ZÞ; Ið0; t;WÞ; Ið0;W; ZÞ; Iðh; h; hÞ; Iðh; t; tÞ;
Iðh;W;WÞ; Iðh; Z; ZÞ; Iðt; t; ZÞ; IðW;W; ZÞ; Sðh; h;WÞ; Sðh;W; ZÞ; Sðt; t;WÞ; SðW;Z; ZÞ; Tðh; 0; 0Þ;
Tðh; 0; tÞ; Tðh; 0;WÞ; Tðh;W; ZÞ; Tðt; 0; 0Þ; Tðt; 0; hÞ; Tðt; 0; ZÞ; TðW; 0; 0Þ; TðZ; 0; 0Þ; TðZ; 0; tÞ; TðZ; 0;WÞ;
TðZ; h;WÞ; T̄ð0; h;WÞ; T̄ð0;W; ZÞ; Uð0; t; 0;WÞ; Uð0; t; h; tÞ; Uð0; t; t; ZÞ; Uðh;W; 0; 0Þ; Uðh;W; 0; tÞ;
Uðh;W; h;WÞ; Uðh;W;W; ZÞ; UðW; 0; t; tÞ; UðW; h; h; hÞ; UðW; h; t; tÞ; UðW; h;W;WÞ; UðW; h; Z; ZÞ;
UðW;Z; 0; 0Þ; UðW;Z; h; ZÞ; UðW;Z; t; tÞ; UðW;Z;W;WÞ; UðZ;W; 0; 0Þ; UðZ;W; 0; tÞ; UðZ;W; h;WÞ;
UðZ;W;W; ZÞ;Mð0; 0; 0; 0; 0Þ;Mð0; 0; 0; 0; ZÞ;Mð0; 0; 0;W; 0Þ;Mð0; 0; t; t; 0Þ;Mð0; 0; t; t; ZÞ;
Mð0; 0; t;W; 0Þ;Mð0; t;W; 0; tÞ;Mð0;W; 0; Z; 0Þ;Mð0;W; t; h; tÞ;Mð0;W; t; Z; tÞ;Mð0;W;W; 0;WÞ;
Mð0;W;W; h;WÞ;Mð0;W;W; Z;WÞ;Mð0; Z; t;W; 0Þ;Mðh; h;W;W; hÞ;Mðh;W;W; h;WÞ;
Mðh;W;W; Z;WÞ;Mðh; Z;W;W; ZÞ;MðW;W; Z; Z; hÞ;MðW;Z; Z;W;WÞg: ð2:22Þ
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In each of the B, S, T, T̄, U, and M integrals, the external momentum invariant is the tree-level squared mass, s ¼ W.
The one-loop contribution to the pole mass is

Δð1Þ
W ¼ g2

�
NcjVtbj2fðb; t;WÞ þ ½NcðnQ − jVtbj2Þ þ nL�fð0; 0;WÞ þ

�
1

4
−

h
12W

�
AðhÞ

þ
�
4W
Z

þ hþ Z
12W

− 3

�
AðWÞ þ

�
2W
Z

−
2

3
−

Z
12W

�
AðZÞ þ

�
4W2

Z
þ 17W − 4Z

3
−

Z2

12W

�
BðW;ZÞ

þ
�
h
3
−

h2

12W
−W

�
Bðh;WÞ − 4W2

Z
þ 64W

9
þ hþ Z

6

�
; ð2:23Þ

where

Nc ¼ nQ ¼ nL ¼ 3 ð2:24Þ

are the numbers of colors, quark doublets, and lepton doublets in the Standard Model, respectively, and the fermion-loop
function is

fðx; y; sÞ ¼ 1

6s
f½ðx − yÞ2 þ sðxþ yÞ − 2s2�Bðx; yÞ þ ðx − y − 2sÞAðxÞ þ ðy − x − 2sÞAðyÞg þ ðs − 3x − 3yÞ=9; ð2:25Þ

and the bottom-quark mass and jVtbj2 dependence have been included. The lighter quark and lepton masses can also be
restored in the obvious way, by changing the 0 arguments of the function f in Eq. (2.23) and introducing additional
Cabibbo-Kobayashi-Maskawa (CKM) mixing factors. Fortunately, however, the difference made by nonzero masses of
b; τ; c;… and the presence of CKMmixing (assuming CKM unitarity and Vtb ¼ 0.99914 [43]) is less than about 1 MeV in
bothMW and ΓW for 50 GeV < Q < 200 GeV, and is much less for Q in the middle of that range, so those effects will be
neglected for simplicity below.
Note that one-loop contributions involving Bð0; 0Þ, Bð0; ZÞ, and Bð0; hÞ cancel when the 0 arguments correspond to

Goldstone bosons and unphysical modes of the vector bosons in Landau gauge. This and similar cancellations in the two-
loop order part (mentioned below) are useful checks, as noncancellation of such terms would have implied imaginary parts
of the complex pole squared mass that do not correspond to any real decay mode of the W boson.
The two-loop QCD contribution is also simple enough to be written on a few lines in terms of the basis functions:

Δð2Þ;QCD
W ¼ g23g

2

�
N2

c − 1

24

�
½−4ðt −WÞ2ð2þ t=WÞMð0; 0; t; t; 0Þ þ 8ðt − 2WÞð1þ t=WÞTðt; 0; 0Þ − ð10tþ 8WÞBð0; tÞ2

− ð36t=W þ 56þ 16W=tÞAðtÞBð0; tÞ þ ð30t2=W þ 42t − 12WÞBð0; tÞ
− ð40=W þ 24=tÞAðtÞ2 þ ð30t=W þ 84ÞAðtÞ − 39W þ 17t=2 − ðnQ − 1ÞWf31þ 12Bð0; 0Þ
þ 8WMð0; 0; 0; 0; 0Þg�: ð2:26Þ

The remaining, non-QCD, two-loop contributions are much more complicated, involving a large number of terms. The form
of the result is1

Δð2Þ;non-QCD
W ¼

X
i

cð2Þi Ið2Þi þ
X
j≤k

cð1;1Þj;k Ið1Þj Ið1Þk þ
X
j

cð1Þj Ið1Þj þ cð0Þ: ð2:27Þ

The coefficients cð2Þi and cð1;1Þj;k and cð1Þj and cð0Þ are given in electronic form in an ancillary file coefficients.txt
provided with the arXiv source for this article. These coefficients are written exclusively in terms of the quantities
W;Z; t; h; v2 [by using Eqs. (2.15)–(2.18) to eliminate g; g0; yt, and λ], as well as the fixed parameters Nc, nQ, and nL. The
latter can each be set equal to 3 in the Standard Model, but are kept general for checking purposes, and to tag the fermion-
loop contributions.

1Of the 78 coefficients cð1;1Þj;k for products of one-loop integrals, 42 vanish.
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It should be noted that the coefficients in the expression
of the pole mass in terms of the basis integrals are not
unique. This is because different basis integrals are related
by special identities that hold when the squared-mass
arguments are not generic. These identities include
Eqs. (A.15)–(A.21) of Ref. [44], and Eqs. (A.14),
(A.15), and (A.17)–(A.20) in Ref. [63].
When setting s → W in Eq. (2.20), one encounters

singular behavior in individual terms, associated with
photon lines attached to a W-boson propagator. In general,
such potentially singular terms should cancel in the com-
plex pole mass [24]. They are dealt with here by using
expansions such as2

Bð0;WÞ ¼ 1 − AðWÞ=W
þ ðs −WÞ½1þ AðWÞ=W − lnðW − sÞ�=W
þ ðs −WÞ2½−1 − AðWÞ=W
þ lnðW − sÞ�=W2 þOðs −WÞ3 ð2:28Þ

with lnðxÞ≡ lnðx=Q2Þ. Similar expansions of two-loop
basis functions that have thresholds or pseudothresholds at
s ¼ W are carried out using the differential equations listed
in Sec. IV of Ref. [52], using methods similar to those
found in [64]. After doing so, all pole and logarithmic
singularities in s −W that are found in individual Feynman
diagrams cancel in the total Eq. (2.20), an important check.
Several other helpful checks were performed on the

calculation. First, single and double poles in ϵ cancel in
sWpole. This cancellation relies on agreement between the
counterterms cXl;n (for X ¼ v; g; g0; λ; yt; g3) as extracted
from the β functions and Higgs scalar anomalous dimen-
sion in the literature, and the coefficients of divergent parts
of the loop integrations performed here. Second, I checked
that logarithms of G ¼ m2 þ λ2v2 cancel. This is required
for the absence of spurious imaginary parts that could occur
when the renormalization scale is chosen so that G < 0,
and spurious divergences that could occur forG ¼ 0. Third,
I checked the absence of spurious imaginary parts of sWpole;
note that ΓW must be identically 0 in the case nQ ¼ 1,
nL ¼ 0, because in the Standard Model the W boson can
only decay to lighter fermion doublets. This checks
cancellations between diagrams with Goldstone boson
propagators and the corresponding Landau gauge vector
propagator parts with poles at 0 squared mass. Fourth, I
checked that in each of the formal3 limits that the quantities
W, Z, t, h, 4W − h, 4Z − h, 4t − Z, t −W, tþW − Z, or
tþW − h vanish, and the whole expression for sWpole is
finite and well behaved, even though many of the individ-
ual two-loop coefficients in Eqs. (2.23), (2.26), and (2.27)

are singular in one or more of those limits. This again
reflects nontrivial relations between different basis integrals
when squared-mass arguments are not generic. Finally, the
result for sWpole was analytically checked to be renormaliza-
tion-group invariant through terms of two-loop order. In
principle, this should be equivalent to the check of
cancellation of 1=ϵ poles, but in practice it tests many
intermediate steps of the calculation. This check is
written as

0 ¼ Q
d
dQ

sWpole ¼
�
Q

∂
∂Q − γϕv

∂
∂vþ

X
X

βX
∂
∂X

�
sWpole;

ð2:29Þ
where X ¼ fg; g0; λ; yt; g3g, and γϕ is the anomalous
dimension of the Higgs field. It uses the derivatives of
basis integrals with respect to the implicit argument Q
given in Eqs. (4.7)–(4.13) of Ref. [52], and derivatives of
the one-loop basis integrals with respect to squared-mass
arguments given for example in Eqs. (A.5) and (A.6) of
Ref. [44]. It also uses the beta functions and scalar
anomalous dimension given in Refs. [38,46–49]. A corre-
sponding numerical check of renormalization scale invari-
ance is performed in the next section.

III. NUMERICAL RESULTS

The numerical computation of sWpole given by
Eqs. (2.20)–(2.27) is accomplished using the program
TSIL [53]. This requires only 13 calls of the function
TSIL_Evaluate (which uses the Runge-Kutta solution
of coupled differential equations to obtain multiple basis
integral functions simultaneously) as well as relatively fast
evaluations of the integrals for which analytic formulas in
terms of polylogarithms are known and incorporated
in TSIL.
For purposes of illustration, consider a benchmark set of

input data:

vðMtÞ ¼ 246.647 GeV; ð3:1Þ

gðMtÞ ¼ 0.647550; ð3:2Þ

g0ðMtÞ ¼ 0.358521; ð3:3Þ

λðMtÞ ¼ 0.12597; ð3:4Þ

ytðMtÞ ¼ 0.93690; ð3:5Þ

g3ðMtÞ ¼ 1.1666; ð3:6Þ

where Q ¼ Mt ¼ 173.34 GeV is the input renormalization
scale. The top Yukawa coupling and strong coupling
constant were taken from Ref. [65] version 4, and the
electroweak gauge couplings were taken from Ref. [36].

2Equation (2.28) is used to eliminate Bð0;WÞ everywhere, ex-
plaining its absence in Eqs. (2.21) and (2.23).

3None of these limits are close to being realized in the real
world.
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The VEV vðMtÞ, which should minimize the radiatively
corrected effective potential in the scheme used here, has
also been chosen to approximately reproduce the exper-
imental value of the Z-boson physical mass, using a
separate calculation (similar to the present one, and also
in the pure MS scheme) that I plan to report on soon. The
Higgs self-coupling λ was simultaneously chosen so as to
also obtain a Higgs pole mass ofMh ¼ 125.09 GeV, using
the calculation of [44] as implemented in the program SMH

[45], at an optimal renormalization scale Q ¼ 160 GeV.
However, in the absence of a true global fit to the available
data, it is important to emphasize that the benchmark
parameters chosen here should be viewed as illustrative,
rather than as a prediction of MW .
The results for the renormalization scale dependences of

MW and ΓW obtained from sWpole ¼ M2
W − iΓWMW , in

various approximations, are shown in Figs. 1 and 2. To
make the graphs, the input parameters v; g; g0; λ; yt; g3 are
run, using three-loop beta functions [66,67], from the input
scale Mt to the scale Q on the horizontal axis, and sWpole is
recomputed at that scale. In the idealized case,MW and ΓW
would be independent ofQ if computed to sufficiently high
order in perturbation theory.
In Fig. 1, the (green) dotted line is the tree-level resultW,

which shows a severe scale dependence, due to the running
of g and v. This is still large, but reduced, in the one-loop

result given by the (red) short-dashed line. The majority of
the remaining scale dependence is eliminated by including
the QCD part of the two-loop result from Eq. (2.26) as
shown in the (blue) long-dashed line. The (black) solid line
shows the full two-loop result. Note that despite the large
scale dependence of the two-loop QCD correction, it is
actually smaller than the two-loop non-QCD correction in
magnitude except for Q≲ 85 GeV, where the effect of
lnðtÞ starts to become large. The two-loop non-QCD
correction is of order 40 MeV, but is seen to have a quite
mild scale dependence.
In Fig. 2 the (red) short-dashed line shows the running of

ΓW computed at one-loop order. Adding in the two-loop
QCD contribution, as shown by the (blue) long-dashed line,
is a significant effect, but does not eliminate the scale
dependence, which is mostly due to the electroweak one-
loop renormalization-group running of g and v. However,
including the two-loop non-QCD corrections to sWpole
greatly ameliorates the scale dependence, as it captures
and compensates for most of the effect of running of g
and v.
For the range 50 GeV < Q < 200 GeV, the deviations

of MW and ΓW from their median values are both about
�4 MeV. ForMW, this is shown in closeup as the solid line
in Fig. 3. While this gives some lower bound on the
remaining theory error (not counting the parametric errors
in the inputs v; g; g0; λ; yt; g3), it is always questionable to
assume a direct relationship between scale dependence and
theory error. For another handle on the theory error,
consider the following exercise. In the top/bottom one-
loop contribution, the running top mass t is used in
propagators in the pure MS scheme. However, once the
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FIG. 2 (color online). The width ΓW of the W boson, obtained
from the complex pole squared mass sWpole ¼ M2

W − iΓWMW , as in
Fig. 1. The (red) short-dashed line is the one-loop result, the
(blue) long-dashed line is the result from the one-loop and two-
loop QCD contribution, and the (black) solid line is the full two-
loop order result.
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FIG. 1 (color online). The mass MW of the W boson, obtained
from the complex pole squared mass sWpole ¼ M2

W − iΓWMW , as a
function of the renormalization scale Q at which sWpole is
computed, in various approximations. The (green) dotted line
is the tree-level result W, the (red) short-dashed line is the
one-loop result, the (blue) long-dashed line is the result from the
one-loop and two-loop QCD contribution, and the (black) solid
line is the full two-loop order result. The input parameters
v; g; g0; λ; yt; g3 are obtained at the scale Q by three-loop
renormalization-group running, starting from Eqs. (3.1)–(3.6).
Note that the usual Breit-Wigner mass MW;exp is about 27 MeV
larger than MW .
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result has been obtained, one can expand t about any other
value, for example the top-quark pole mass T. Doing so for
the one-loop contribution only is sensible, since t only
appears in propagators, not vertex couplings, in the one-
loop order W-boson self-energy. The relevant expansion is

fð0; t;WÞ ¼ fð0; T;WÞ þ ðt − TÞ½AðTÞ − 2W

þ ðT þWÞBð0; TÞ�=2W þOðt − TÞ2: ð3:7Þ

If this expansion is extended to, say, fourth order in t − T,
then the results are easily checked to be nearly indistin-
guishable from the original fð0; t;WÞ without expansion.
However, terminating the expansion at linear order in t − T,
as in Eq. (3.7), can be considered an alternative consistent
two-loop order result, if t − T is treated as formally of one-
loop order. This version of MW is shown as the dashed line
in Fig. 3. It clearly has a worse scale dependence,
particularly at larger Q, where T − t becomes large. This
suggests that the �4 MeV scale dependence of the original
(solid line) pure MS calculation may be at least partly a
fortunate accident. The two curves agree near
Q ¼ 77 GeV, where the running top-quark mass t equals
the physical mass T.

IV. OUTLOOK

In this paper I have reported the results for the complex
pole mass of the W boson in the Standard Model in the
pure MS scheme, with the vacuum expectation value
defined as the minimum of the Landau gauge effective
potential taken as one of the input parameters. The
organization of input and output parameters is quite

different from previous works that use the on-shell scheme
or hybrid MS=on-shell schemes. The state-of-the-art com-
putations in these schemes, see respectively e.g. [31,36]
and references therein, probably both attain a better theory
error than the pure MS scheme, for now. Moreover, a direct
comparison of numerical results will need at least the
corresponding results for the Z boson, which I hope to
report on soon. Both results will then be incorporated into a
publicly available computer code together with the Higgs
boson mass code from [44,45].
References [25,26] and the very recent Ref. [37]

(which appeared as the present paper was being finished)
also used the pure MS scheme to compute the complex pole
mass of the W boson. However, attempts at direct com-
parison are complicated4 by the fact that these papers used a
different definition of the VEV, namely v2tree ¼ −m2=λ,
rather than v that minimizes the full radiatively corrected
effective potential as made here (and, for example,
Refs. [36,44]5). The choice of using vtree requires including
nontrivial tadpole diagrams, unlike the choice of expanding
around v where the sum of Higgs tadpole diagrams
(including the tree-level tadpole) simply vanishes. This
means that already at one-loop order, the expressions
appear different. Compared to Δð1Þ

W =ð16π2Þ in Eq. (2.23)
of the present paper, the sum of the bosonic contributions in
Eq. (B.2) of Ref. [25] and the fermionic contributions in
(B.2) of Ref. [26] differ by

g2

16π2h

�
−2NctAðtÞ þ

3

4
hAðhÞ þ 3WAðWÞ þ 2W2

þ 3

2
ZAðZÞ þ Z2

�
: ð4:1Þ

This is simply because the tree-level terms are also differ-
ent, namely g2v2=4 in the present paper and g2v2tree=4 in
Refs. [25,26,37]. To one-loop order accuracy, the two
expressions for the pole mass can easily be checked to
be the same, by using Eq. (2.19) above, but establishing the
connection at two-loop order would require a somewhat
nontrivial reexpansion using the two-loop relation between
v2tree and v2.
Note that, in general, expanding around vtree rather than

v has the effect of making the perturbative expansion
parameter be Ncy4t =16π2λ, rather than the usual
Ncy2t =16π2, for the terms leading in the top mass. This
can be seen in the presence of the first term in Eq. (4.1); in
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FIG. 3. Closeup of the scale dependence of the massMW of the
W boson, obtained from the complex pole squared mass
sWpole ¼ M2

W − iΓWMW , as in Fig. 1. The solid line is the full
two-loop order result, while the dashed line is the same, but after
expanding the MS mass t (in the one-loop part only) about T ¼
ð173.34 GeVÞ2 to first order, using Eq. (3.7).

4Also, Refs. [25,26] use expansions in 1=4 − sin2 θW and Z=h
and Z=t (in the notation of the present paper), which further
increases the difficulty in making a direct comparison.

5However, Ref. [36] uses the Feynman gauge instead of the
Landau gauge, so the VEV referred to in that paper will also not
be the same thing as v in the present paper. Note that using v
requires choosing a gauge-fixing prescription; choosing the
Landau gauge has the advantage that the effective potential is
much simpler.
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contrast, there is no g2tAðtÞ=h term in Eq. (2.23). As
mentioned above as one of the checks, at two-loop order
there is also no behavior like t3=h2 or t2=h (or any other

pole singularity in h, or W, or Z) in Δð2Þ;non-QCD
W in

Eq. (2.27). As another example, see the discussion sur-
rounding Eqs. (4.34)–(4.40) in Ref. [40], where the terms
of order ðy4t =16π2λÞl in the relation between vtree and v are
explicitly identified for loop orders l ¼ 1; 2; 3 in the limit
y2t ≫ λ in the case g ¼ g0 ¼ 0. Not surprisingly, expanding
around the radiatively corrected VEV leads to faster
convergence than expanding around the tree-level VEV,
at least formally, although both expansions should con-
verge given enough loop orders, since Ncy4t =16π2λ is still
numerically small.
It would clearly be useful to include the three-loop

contributions to W and Z complex pole masses in the pure
MS scheme, so that theory errors can be made

unambiguously much smaller than all relevant experimen-
tal errors. Here it should be remarked that it is not at all
obvious that the parametrically QCD-enhanced contribu-
tions at three-loop order will be the largest, especially
considering that this was not the case at two-loop order. A
possible scenario is that the QCD-enhanced contributions
will have the largest renormalization scale dependence, but
not the largest magnitude, since this is what happened at
two-loop order. It seems feasible to eventually include all
three-loop contributions to sWpole in the pure MS scheme,
although to do so without using mass expansions or
approximations may require developing new methods for
treating three-loop self-energy contributions.
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