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We study the consequences of the Z, symmetry behind the y-7 universality in the neutrino mass matrix.
We then implement this symmetry in the type-I seesaw mechanism and show how it can accommodate all
sorts of lepton mass hierarchies and generate enough lepton asymmetry to interpret the observed baryon
asymmetry in the universe. We also show how a specific form of a high-scale perturbation is kept when
translated via the seesaw into the low scale domain, where it can accommodate the neutrino mixing data.
We finally present a realization of the high scale perturbed texture through the addition of matter and extra

exact symmetries.
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I. INTRODUCTION

Flavor symmetry is commonly used in model building
seeking to determine the nine free parameters characteriz-
ing the effective neutrino mass matrix M, namely the three
masses (m, m,, and m3), the three mixing angles (0,3, 65,
and 6,3), the two Majorana-type phases (p and o), and the
Dirac-type phase (8). Incorporating family symmetry at the
Lagrangian level leads generally to textures of specific
forms, and one may then study whether these specific
textures can accommodate the experimental data involving
the above-mentioned parameters ([1] and references
therein). The recent observation of a nonzero value for
0,5 from the T2K [2], MINOS [3], and Double Chooz [4]
experiments puts constraints on models based on flavor
symmetry (see Table I where the most recent updated
neutrino oscillation parameters are taken from [5]). In this
regard, recent, particularly simple, choices for discrete and
continuous flavor symmetry addressing the nonvanishing
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respects a (Z,)? symmetry [14], and we can define the p-t
symmetry by fixing one of the two Z,’s to express an
exchange between the second and third families, whereas
the second Z, factor is to be determined later by data or,
equivalently, by M, parameters. The whole (Z,)? sym-
metry might turn out to be a subgroup of a larger discrete
group imposed on the whole leptonic sector. In realizing
u-t symmetry we have two choices namely S_,S,, as
explained later, and thus we have two textures correspond-
ing to u-r symmetry. It is known that both of these textures

TABLE 1. Allowed 3o-ranges for the neutrino oscillation
parameters, mixing angles and mass-square differences, taken
from the global fit to neutrino oscillation data [5]. The quantities

om* and Am? are respectively defined as m3 —m? and

m3 — (m? + m3)/2, whereas R, denotes the phenomenologically

important quantity %. Normal and Inverted Hierarchies are

respectively denoted by NH and IH.

0,3 question were respectively worked out ([6] and refer-  Parameter Best fit 30 range
ences therein). The p-r symmetry [7,8] is enjoyed by many sm® (107 eV?) 754 6.99-8.18
popular mixing patterns such as tri-bimaximal mixing [9], |Am?| (1073 eV?) (NH) 243 223261
bimaximal mixing [10], hexagonal mixing [11], and |Am2| (10~ eV2) (IH) 238 2.19-2.56
scenarios of As mixing [12], and it was largely studied R, (NH) 0.0310 0.0268-0.0367
in the literature [13]. Any form of the neutrino mass matrix g (IH) 0.0317 0.0273-0.0374
61, (NH or IH) 33.71° 30.59°-36.80°
—_ o S 0,5 (NH) 8.80° 7.62°-9.89°
slaﬁhln@zeé‘;vtelllllclllty.ggu.egi) elasl:im@lctp.lt 0,5 (IH) 8.91° 7.67°-9.94°
hamzaoui cherif @uqam.ca 0, (NH) 4138 37.69°-5230°
Snasri @uacu.ac.ac 6,3 (IH) 38.07 38.07°-53.19
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lead to a vanishing 63 (with S_ achieving this in a less
natural way), and thus perturbations are needed to remedy
this situation [15]. In [16] we studied the perturbed -t
neutrino symmetry and found the four patterns, obtained by
disentangling the effects of the perturbations, to be phe-
nomenologically viable.

In this work, we reexamine the question of exact u-t
symmetry and implement it in a complete setup of the
leptonic sector. Then, within type-I seesaw scenarios, we
show the ability of exact symmetry to accommodate lepton
mass hierarchies. Upon studying its effect on leptogenesis
we find, in contrast to other symmetries studied in [6] and
[17], that it can account for it. The reason behind this fact is
that fixing just one Z, in y-v symmetry leaves one mixing
angle free, which can be adjusted differently in the
Majorana and Dirac neutrino mass matrices (Mp and
Mp), thus allowing for different diagonalizing matrices.
For the mixing angles and in order to accommodate data,
we introduce perturbations at the seesaw high scale and
study their propagations into the low scale effective
neutrino mass matrix. As in [16], we consider that the
perturbed texture arising at the high scale keeps its form
upon renormalization group (RG) running which, in
accordance with [18], does not affect the results in many
setups. As to the origin of the perturbations, we shall not
introduce explicitly symmetry breaking terms into the
Lagrangian [19], but rather follow [16], and enlarge the
symmetry with extra matter and then spontaneously break
the symmetry by giving vacuum expectation values (vev) to
the involved Higgs fields.

The plan of the paper is as follows. In Sec. II, we review
the standard notation for the neutrino mass matrix and the
definition of the y-r symmetry. In Secs. III and IV, we
introduce the two textures realizing the u-r symmetry
through S_ and S, respectively. We then specify our
analysis to the latter case (S, ), and in Sec. V we introduce
the type-I seesaw scenario. We address the charged lepton
sector in Sec. V. A, whereas we study the different neutrino
mass hierarchies in Sec. V. B, and in Sec. V. C, we study the
generation of lepton asymmetry. Sections VI and VII
examine the possible consequences for one particular
possible deviation from the exact p-z symmetry, where
we present the analytical study in the former section, while
the numerical study is given in the latter section. In
|

P = diag(e”, €', 1),
U= R23(023)R13(913)diag(1,e—i5, DRy(01,) =

cpcize’”
Vemns = UP =
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Sec. VIII we present a theoretical realization of the
perturbed texture. We end with discussion and summary
in Sec. IX.

II. NOTATIONS AND PRELIMINARIES

In the Standard Model (SM) of particle interactions,
there are three lepton families. The charged-lepton mass
matrix linking left-handed (LH) to their right-handed (RH)
counterparts is arbitrary, but can always be diagonalized by
a biunitary transformation:

m, 0 O
ViM(vi)y = 0 m, 0 [. (1)
0 0 m

T

Likewise, we can diagonalize the symmetric Majorana
neutrino mass matrix by just one unitary transformation,

my 0 0
VwiMyvr =0 m 0 [, (2)
0 0 ms

with m; (for i = 1,2, 3) real and positive.
The observed neutrino mixing matrix comes from the
mismatch between V! and V¥ in that

Vemns = (VIL)TVy- (3)

If the charged lepton mass eigenstates are the same as the
current (gauge) eigenstates, then V4 = 1 (the unity matrix)
and the measured mixing comes only from the neutrinos
Vemns = VY. We shall assume this saying that we are
working in the “flavor” basis. As we shall see, corrections
due to V! # 1 are expected to be of order of ratios of the
hierarchical charged lepton masses, which are small
enough to justify our assumption of working in the flavor
basis. However, one can treat these corrections as small
perturbations and embark on a phenomenological analysis
involving them [19].

We shall adopt the parametrization of [20], related to
other ones by simple relations [1], where the Vpyns i
given in terms of three mixing angles (6,, 6,3, 6,3) and
three phases (J, p, o), as follows:

C12€13 S12€13 S13
—C12823813 = S12C03€7"0  —=S12823813 4 Clpcpe™?  sycpy |
—C12C03813 + $1253€70  —8515C03813 — Cpas3eT? ex3eys
s1ac13€ 513
(512823813 + C1oc3e7?)e"  sp3c13 |, (4)

—i8\ ,ip
(=C12823813 = S1ac3e™) e

(—C12023813 + S12523€ ) e?

—i5
(=S12¢23813 — Cp83e™)e

io
C€23C13
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where R;;(6;;) is the rotation matrix in the (i, ) plane by angle 6;

parametrization, the third column of Vpyng is real.
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j» and s1, =sin6),.... Note that in this adopted

In this parametrization, and in the flavor basis, the neutrino mass matrix elements are given by

— 2 .2 2 2 .2 J2ie 2
M1 = mycyeze”™ + mysyycpz e + mssis,

_ 2 2 i(2p—5
M5 = my(=c13813¢2,523€27 — ¢ 13012512603 %)

X 2 2 . (205
+ M (—c13513575523€% + €13¢12512023€" 7)) + m3c1381350.

_ 2 2 i(2p—5
M3 = my(=c13813¢1,C03€"7 + C13C128 125038 (20=0))

2 2i [(20-5
+ 15 (=€ 1351353, 023€57 = €13¢12512523€"2770)) + m3c3513003,

_ 7 i(p—6))\2 ic i(6—56))\2 2 2
M,y = my(c12513523€" + €3512€"7 ™) + my (512813523 — €312/ ™) + m3cdysts,

_ ; i(p—5)\2 ; i(6—5)\2 2 2
M35 = my (12813003 — 53512€"7 )2 + my (512813003 + 5230126 O70) + mycdycdy.

_ 2 2 21 2 2 i(2p—0 2 2i(p—o6
M o3 = my (23503573677 + 513¢12812(€35 — 533) "%~ — 3350353, 09))

2 2 2 2
+ my(57,€23523573€77 + 513¢12512(553

2
+ m3s23c23c13.

This helps in viewing directly at the level of the mass matrix
that the effect of swapping the indices 2 and 3 corresponds
to the transformation 6,3 — 5 — 6,3 and 6 — 6 & #. Hence,
for a texture satisfying the y-7 symmetry, one can check the
correctness of any obtained formula by requesting it to be
invariant under the above transformation.

As said before, any form of M, satisfies a Z% symmetry.
This means that there are two commuting unitary Z, matrices
(squared to unity) (S, S,) which leave M, invariant,

S™,S =M,. (6)

For a nondegenerate mass spectrum, the form of the
Z,-matrix S is given by [17]

S = Vvdiag(+1, £1, £1)V¥F, (7)

where the two S§’s correspond to having, in
diag(+1, £1,+1), two pluses and one minus, the position
of which differs in the two S’s (the third Z, matrix,
corresponding to the third position of the minus sign, is
generated by multiplying the two S’s and noting that the form
invariance formula Eq. (6) is invariant under § — —S).

In practice, however, we follow a reversed path, in that if
we assume a ‘real” orthogonal Z, matrix (and hence
symmetric with eigenvalues £1) satisfying Eq. (6), then it
commutes with M, and so both matrices can be simulta-
neously diagonalized. Quite often, the form of S is simpler
than M, so one proceeds to solve the eigensystem problem
for S and to find a unitary diagonalizing matrix U:

U'SU = Diag(£1, £1, £1). (8)

— (3

2,)ei(20-9) 2

2i(6—6
— (23523Cr€ i(o ))

(5)

The conjugate matrix U* can “commonly” be identified
with, or related simply to, the matrix V satisfying Eq. 2).' In
this case, and in the flavor basis, the Vpyng would be
generally complex and equal to the one presented in Eq. (4).
Determining the eigenvectors of the S matrices helps thus to
determine the neutrino mixing and phase angles.

The p-7 symmetry is defined when one of the two Z,
matrices corresponds to switching between the second and
the third families. We have, up to a global irrelevant minus
sign [see again Eq. (6)], two choices, which would lead to
two textures at the level of M,,.

III. THE p-r SYMMETRY MANIFESTED
THROUGH S_: (M,,lz = My13 AND My22 = Ml/33)

The Z,-symmetry matrix is given by

1
S_=10
0

- O O

0
1. 9)
0

The invariance of M, under S_ [Eq. (6)] forces the
symmetric matrix M, to have a texture of the form

'In fact, as we shall see, starting from the general form of U
satisfying Eq. (8), one can determine (up to a diagonal phase
matrix) the unitary matrix U, which diagonalizes simultaneously
the two commuting Hermitian matrices S and M;M, so that
U\M;M, U, = Diag(m?, m3, m%) = D?. One can show then that
D? commutes with UjM,U,, which leads to the latter matrix
being diagonal. Fixing now the phases so that the latter diagonal
matrix becomes real makes U, play the role of V* in Eq. (2). One
then can use the freedom in rephasing the charged lepton fields to
force the adopted parametrization on Vpyns-
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Al/ BU Bl/
M,=|B, Cc, D,|. (10)
B, D, C,

The invariance of M, under S_ implies that S_ commutes
with both M, and M}, and thus also with the Hermitian
positive matrices M; M, and M, M;. One can easily find the
general form of the diagonalizing unitary matrix of S_ (up
to an arbitrary diagonal phase matrix). The matrix S_
has normalized eigenvectors {v; = (0,1/v/2,1/v/2)" v, =
(1,0,0)7, 3 = (0, 1/\/5, —1/\/§)T} corresponding, respec-
tively, to the eigenvalues (1, 1, —1). Since the eigenvalue 1
is twofold degenerate, then there is still freedom for a
unitary transformation defined by an angle ¢ and phase ¢ in
its eigenspace to get the new eigenvectors in the following
form:

v = —s(/,e"fvl + c,0,

Uy = ¢,ev; + 5,0,. (11)

We have three choices as to how we order the eigenvectors
forming the diagonalizing matrix U, and we chose the one
that would lead to “plausible” mixing angles falling in the
first quadrant. This choice for ordering the eigenvalues
turns out to be (1,—1,1), as we could check that the two
choices corresponding to the other two positions for the
eigenvalue (—1) lead upon identification with Vpyyng in
Eq. (4) to some mixing angles lying outside the first
quadrant, and the matrix U_ which diagonalizes S_ can
be cast into the form

Cyp 0 8¢
U_=[iy,03, 0] = | =s5,%/V2 1/V2 c,e/V2
—5,€5/V2 =1/V2 c,e/V2
(12)

One can single out of this general form the unitary matrix
that diagonalizes also the Hermitian positive matrix M; M,
with different positive eigenvalues. To simplify the result-
ing formulas, the matrix M;M, can be organized in a
concise form as

al/ bl/ bIJ
MM, = b ¢, 4, |. (13)
b, d, «c,

where a,, b,, c,, and d, are defined as follows:

al/:|Al/|2+2‘Bl/2’ bl/:A;;BIJ—'—B;jCU—’_B;;DU’
o =A+ B +]C,

(14)

> d,=[BJ*+CD,+DjC,.
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The diagonalization of M;M, through U_ fixes ¢ and
£ to be

2v2|b,|

tan(2q0)=c +d,—a

. E=Arg(by). (15)
Now and after having fixed ¢ and £ we have
UMM, U_=UT"M,M;U* =Diag(mi,m3,m3), (16)

where

mzza,,+c,,+d,,
! 2
mi=c,—d,
2_a,,+c,,+d,, 1
o v

S —d e+ 8b L (1)

1 2 2
+3\/ (@ = d =)+ 8D, P,

m

The above relations imply directly that UZM,U_
commutes with (UTM,U_)*, and hence also with the
product of these two matrices, which is a diagonal matrix:
UIM,U_(UIM,U_)* = UM, M;U*. Since we have a
nondegenerate spectrum amounting to different eigenval-
ues of M, M?, we deduce directly that U'M,U_ is
diagonal. Actually we get

UM, U_ = M>™, (18)
where M is a diagonal matrix whose entries are

MUY = A,ch = V25,€B, + (C, + D, )s}e*,
lez)zigg =C,—-D,
Diag _ 4 2 4 \/2s, i 2 i
M5 = Aysy + V2sy,6B, + (C, + D,)cje*. (19)
To extract the mixing and phase angles, we use the
freedom of multiplying U_ by a diagonal phase matrix Q =

Diag(e~P1, e='P2, ¢7iP3) to ensure real positive eigenvalues
for the mass matrix M, such that

(U-0)"M,(U_Q) = Diag(my.my.ms),  (20)

and we find that we should take
1 Diagy . _
pi = EArg(My”. ), i=1,2,3. (21)

However, we get now the following form for the
diagonalizing matrix U_Q:

113014-4
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cpeil 0 spe”'Ps
U_Q — _%sqsel(é_pl) ﬁ e_iPZ \/Lﬁc{/)el(‘f_lh)
_%s{/)el(g_pl) _%e_ipl \/Lic{/)el(f_p%)

(22)

To have the conjugate of this matrix in the same form as
the adopted parametrization of Vpyng in Eq. (4), where the
third column is real, we can make a phase change in the
charged lepton fields,
e — e_ip3e’ ﬂ — ei(é_pS)ﬂ’ T — e[(f_p3>1" (23)
so that we identify now the mixing and phase angles and
see that the u-z symmetry forces the following angles:
923 =T / 4,

01, =0, 013 = @,

1 Di Diagx
p = 5 Ar(MPREMPEE),

1 A .
o= EArg(zwy‘);;gzu’j;;‘g ), §=2m-¢& (24)
We can get, as phenomenology suggests, a small value for
05 assuming

|bu| < |Cu+du_au|’ (25)

and then the mass spectrum turns out to be

2

m?=~a,, ]

m; =c,—d,, mi~c,+d, (26)
Inverting these relations to express the mass parameters in
terms of the mass eigenvalues we get these simple direct
relations,

n2 — m3

2

2 m%—i—m%
a, ~ mj, csz,

d,~ (27)
It is remarkable that all kinds of mass spectra can be
accommodated by properly adjusting the parameters
a,,c,, and d, according to the relations in Eq. (27).
As to the mixing angles, we see that the value of 6,3 is
phenomenologically acceptable corresponding to maximal
atmospheric mixing, and the parameter b, can be
adjusted according to Eq. (25) to accommodate the small
mixing angle #,3. The phases are not of much concern
because so far there is no serious constraint on phases. It
seems that all things fit properly except the vanishing
value of the mixing angle 6, which is far from its
experimental value =33.7°.

One might argue that this symmetry pattern S_ might be
viable phenomenologically if we adopt an alternative
choice of ordering its eigenvalues and use the phase
ambiguity to put all mixing angles in the first quadrant.

PHYSICAL REVIEW D 91, 113014 (2015)

We have not done this, but rather we prefer to find a
phenomenologically viable symmetry leading directly to
mixing angles in the first quadrant. This can be carried out
in the second texture expressing the y-z symmetry materi-
alized through S, .

IV. THE p-r SYMMETRY MANIFESTED
THROUGH S : (M, 1, = -M,13 AND M,,, = M, 33)

The Z,-symmetry matrix is given by

-1

00
s,=10 0 1] (28)
0 1 0

The invariance of M, under S, [Eq. (6)] forces the
symmetric matrix M, to have a texture of the form

Av Bl/ _Bu
m,=| B, ¢, D, |. (29)
_Bu Du CI/

As before, S, commutes with M,, M; and thus
also with M; M, and M, M;. The normalized eigenvectors
of S, are {v, = (0,—=1/v2,1/v2)", v, = (1,0,0)7, 05 =
0,1/ Vv2,1/ \/E)T} corresponding, respectively, to the
eigenvalues {—1, —1, 1}. We would like to find the general
form (up to a diagonal phase matrix) of the unitary
diagonalizing matrix of S,. Since the eigenvalue —1 is
twofold degenerate, then there is still freedom for a
unitary transformation defined by an angle ¢ and phase &
in its eigenspace to get new eigenvectors in the following
form:

v = s,e7 v + ¢, 0y,

Uy = —c, e + 5,0;. (30)

Once again, the suitable choice of ordering the eigen-
vectors of S, which would determine the unitary matrix
U, diagonalizing S, in such a way that the mixing
angles fall all in the first quadrant, turns out to corre-
spond to the eigenvalues ordering {—1,—1,1}. Hence,
the matrix U, assumes the following form:

U, = [y, 0y, v3]

Cyp Sy 0
= | =s,e /N2 1/V2c,e7 1/V2 | (31)
s(/,e_’f/\/i —1/\/§c(pe"f 1/v2

The matrix M;M, has the form

113014-5
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a, bu bu
MM, =| b ¢, d, |, (32)
—bf dv Cy

where a,, b,, c,, and d, are defined as follows:

a, = |Av|2 + 2|Bv
Cy = |Bv|2 + |C1/|2 + |Dy
dv = _|Bv|2 + C;Dy + D;Cw (33)

27 bv :A;Bv"i_B:Cu_B;Dw
2

and its eigenvalues are given by

—d 1
m% = % + 5 \/(ab + dv - CD)Z + 8|bu|2v
—-d 1
m3 :M——\/(ay—i-db—cu)z—l-fﬂbu 2
2 2
m3 =c,+d,. (34)

The specific form of U, of Eq. (31) that diagonalizes
also the Hermitian matrix M;M,, which commutes with
S, corresponds to

2V2(b,|

tan(2(p):c S
v v v

As in the case of U_, one can prove that UL M, U, after
having fixed ¢ and ¢ according to Eq. (35), is diagonal

UTM, U, =M™ = Diag(M) ¥, M5 M5E). (36)
where

M?li?g = Aycé - \/Eszwe_’fBu +(C, - Dv)s?,,e_z’f,
M?zigg =A,s5+ \/iszq,e_’fB,, +(C, = D,)cie™,
MJE = C,+D,, (37)

while the squared modulus of these complex eigenvalues
are identified respectively with the squared mass m?, m3,
and m3 [the eigenvalues of M;M, in Eq. (34)].

Again, as was the case for the S_ pattern, we use the
freedom of multiplying U, by a diagonal phase matrix Q in

order that

(U.0)"™M, (U, Q) = Diag(m,, my, ms). (38)

Moreover, we rephase the charged lepton fields to make the
conjugate of (U,.Q) in the same form as the adopted
parametrization for Vpyng in Eq. (4), so as to identify the
mixing and phase angles. We find that the u-z symmetry
realized through S, entails the following:

PHYSICAL REVIEW D 91, 113014 (2015)

03 = m/4, 01, = @, 013 =0,
1 ia, 1 ia,
p= EArg(M?Hg), o= EArg(MyDzzg)’
o 1 Diag
5= EArg(My33 ) —¢&. (39)

These predictions are phenomenologically “almost” viable
(the nonvanishing value of 63 will be attributed to small
deviations from the exact symmetry), and furthermore do
not require a special adjustment for the parameters
a,, b, c, d, that can be of the same order, in contrast to
Eq. (25), and still accommodate the experimental value
of 912 = 33.7°

The various neutrino mass hierarchies can also be
produced as can be seen from Egs. (34) and (35) where
the three masses and the angle ¢ are given in terms of four
parameters a,, |b,|, c,, and d,. Therefore, one can solve the
four given equations to get a,, |b,|, c,, and d, in terms of
the masses and the angle ¢.

V. THE SEESAW MECHANISM AND THE S,
REALIZED p-t SYMMETRY

We impose now the y-z symmetry, defined by the matrix
S =S,, at the Lagrangian level within a model for the
leptons sector. Then, we shall invoke the type-I seesaw
mechanism to address the origin of the effective neutrino
mass matrix, with consequences on leptogenesis. The
procedure has already been done in [17] for other Z,
symmetries.

A. The charged lepton sector

We start with the part of the SM Lagrangian responsible
for giving masses to the charged leptons,

Ly =Y;Lipts, (40)
where the SM Higgs field ¢ and the RH leptons £ are

assumed to be singlet under S, whereas the LH leptons
transform in the fundamental representation of S,

L — S;;L;. (41)
Invariance under S implies

STy = v, (42)

and this forces the Yukawa couplings to have the form

0 0 O
Y=|a b c|, (43)
a b c

113014-6



NEUTRINO MIXING AND LEPTOGENESIS IN -7 ...

which leads, when the Higgs field acquires a vev v, to a
charged lepton squared mass matrix of the form

0 0 0
MM =v*[0 1 1 [(a®+|b>+|c[}). (44)
01 1

As the eigenvectors of M,M'}' are (0, 1/\/5, 1/\/§)T with
eigenvalue 202 (|a|? + |b|* + |c¢|?) and (0, 1/v/2, —=1/+/2)"
and (1,0,0)" with a degenerate eigenvalue O, then the
charged lepton mass hierarchy cannot be accommodated.
Moreover, the nontrivial diagonalizing matrix, illustrated
by noncanonical eigenvectors, means we are no longer in
the flavor basis. To remedy this, we introduce SM-singlet
scalar fields A; coupled to the lepton LH doublets through
the dimension-5 operator,

_ S

L, A

LipA 2. (45)

This way of adding extra SM singlets is preferred, for
suppressing flavor-changing neutral currents, rather than
having additional Higgs fields. Also, we assume the A;’s
transform under S as

A —s S;A (46)

=

Invariance under S implies
STer = fr9 Where (fr)zj = fijri (47)

and thus we have the following form:

AT B -B
fr=|E ¢ D | (48)
—-E D C

when the fields A; and the neutral component of the Higgs
field ¢° take vevs ((Ay) = &, v = (¢°)), we get a charged
lepton mass matrix,

_ Ufikr

(My);, = A Ok (49)
If 51, 62 < 53, then
_Bl _BZ _B3
(M), = ”{{” s=| D' D> D |, (50)
C! c? c

with f13j = —B], f23j = DJ, f33j = C] for ] = 1,2, 3. In
Ref. [17], a charged lepton matrix of exactly the same form

PHYSICAL REVIEW D 91, 113014 (2015)

was shown to represent the lepton mass matrix in the flavor
basis with the right charged lepton mass hierarchies,
assuming just the ratios of the magnitudes of the vectors
comparable to the lepton mass ratios.

B. Neutrino mass hierarchies

The effective light LH neutrino mass matrix is generated
through the seesaw mechanism formula

M, = M?Mg' M}, (51)

where the Dirac neutrino mass matrix M? comes from the
Yukawa term

gijl:ii’qu)*l/Rj’ (52)
upon the Higgs field acquiring a vev, whereas the sym-

metric Majorana neutrino mass matrix My comes from a
term (C is the charge conjugation matrix)

SR CT (M) g, (53)
We assume the RH neutrino to transform under S as
VRj = OjrVRrs (54)
and thus the § invariance leads to
S§TgS =g, STMRS = My. (55)

This forces the following textures:

Ap Bp -Bp
M?=wv| Ep Cp Dp [,
—-Ep Dp Cp
Arp  Br —Bgp
Mgp=Ag| Bx Cr Dp |, (56)
—Br Dp Cg

where the explicitly appearing scales A and v characterize,
respectively, the heavy RH Majorana neutrino masses and
the electroweak scale. Later, for numerical estimates, we
shall take Az and v to be, respectively, around 10'* GeV
and 175 GeV, so the scale characterizing the effective light
neutrino ]{—i would be around 0.3 eV. Throughout the work,
where there is no risk of confusion, these scales will not be
written explicitly in the formulas in order to simplify the

notations. The resulting effective matrix M, will have the
form of Eq. (29) with
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A, = [(Ck — Dx)AL — 4B(Cg + Dg)ApBp + 2Ax(C + Dg)Bp)/ det M,
B, = —(Cg + Dg){(Dp — Cp)BpAg + (Dg — Cr)EpAp + [Ap(Cp — Dp) +2BpEp|Bg}/ det My,
C, = {(AxCg — B%)D}, + [-2(AgDg + B%)Cp + 2Bx(Cg + Dg)Ep|Dp

+ (ARCg = Bz)Ch — 2Bg(Cg + DR)EpCp + ER(Ck — D)}/ det M,
D, = {—(AgDg + Bx)D}, + [-2(~=AgCr + Bx)Cp — 2B(Cg + Dg)Ep|Dp
— (AgDg + BR)Ch + 2Bg(Cr + Dg)EpCp — Ej(Ck — Dg)}/ det M,

det Mg = (Cg + Dg)[Ar(Cg — Dg) — 2B3].

(57)

Concerning the mass spectrum of the light neutrinos, it can be related to that of the RH neutrinos through the following
equation connecting the product of the square eigenmasses of M, to those of My and My:

det (M:M,) = det (MPMP)? det (MM g)™". (58)

As was the case for the effective neutrino squared mass matrix, we choose to write

ap bp —bp
MEMP = | by cp dp
—-bp dp cp
with
ap = |Ap|* + 2|Ep|%,
bp = ApBp + EpCp — EpDp,
¢p = |Bpl* +|Cp* +|Dp
dp = =|Bp|* + C,Dp + DjCp,

ag  br bg
M*RMR - b;} CR dR 5 (59)

_b?? dR CRr

ag = |Ag|* + 2|Bg|*
bR == A}EBR + B;CR - B;DR,
cg = |Bg|* + |Cr[* + [Dg|?,

dg = —|Bg|* + CixDg 4 D}Ck, (60)

so that one can write concisely the mass spectrum of M;M,, MyMp, and MP TM,? as

2

a +c —-d 1
{CD,R.D +dyrp> R D wRD_wRD 4 5 \/(%,R,D +d,rp—Corp)* + 8|bu,R.D|2}' (61)

The mass spectrum and its hierarchy type are determined by
the eigenvalues presented in Eq. (61). One of the simple
realizations which can be inferred from Eq. (58) is to adjust
the spectrum of MMy so as to follow the same kind of
hierarchy as M;M,. However, this does not necessarily
imply that M} M D will behave similarly. Also, this does not
exhaust all possible realizations producing the desired
hierarchy, and what is stated is just a mere simple possibility.

C. Leptogenesis

In this kind of models, the unitary matrix diagonalizing
My is not necessarily diagonalizing MP. In fact, the
Majorana and Dirac neutrino mass matrices have different
forms dictated by the S symmetry, and the angle ¢ in
Eq. (35) depends on the corresponding mass parameters.
This point is critical in generating lepton asymmetry, in
contrast to other symmetries [17] where no freedom was
left for the mixing angles leading to the same form on My
and MP with identical diagonalizing matrices. This is

important when computing the CP asymmetry induced
by the lightest RH neutrinos, say N;, since it involves
explicitly the unitary matrix diagonalizing M,

€]

m,
g o (G2 P (M)

= 2 4Dt yD
87 (MUTMu)llj=2,3 Rl

(62)

where F(x) is the function containing the one loop vertex
and self-energy corrections [21], and which, for a hierar-
chical heavy neutrinos mass spectrum far from almost
degenerate, is given by

F(x) = V|1

- X

+1—(1+x)1n<1+§>]. (63)

Assuming that there is a strong hierarchy among RH
neutrino masses with mg; <K mpg, < mg;, the CP asym-
metry can be approximated as
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Im{[(MDDTMIII))IZ}z}@
(MPTMY), mra

£ =—6x 1072 (64)

The matrix M? is the Dirac neutrino mass matrix in the
basis where the RH neutrinos are mass eigenstates,

MP = MPVF,. (65)

Here V; is the unitary matrix, defined up to a phase
diagonal matrix, that diagonalizes the symmetric matrix
Mp, and F is a phase diagonal matrix chosen such that the
eigenvalues of My are real and positive.

The generated baryon asymmetry can be written as

yp =8 : "B — 1.3 % 1073 x &, x W(ii, mg,),
MPimP
I’T’l _ ( v v )ll , (66)
Mg

where ng, ng, and s are the number densities of baryons,
antibaryons, and entropy, respectively, and )V is a dilution
factor that accounts for the washout of the total lepton
asymmetry due to the AL =1 inverse decays and the
lepton violating 2-2 scattering processes, and its value can
be determined by solving the Boltzmann equation.
However, analytical expressions for ¥V have been obtained
for the cases where (7> 1¢eV) and (1eV>m>1073eV),
known as the strong and the weak washout regimes,
respectively [22]. For instance, in the strong washout
regime (SW), W is approximated as

PHYSICAL REVIEW D 91, 113014 (2015)

In our case where the S symmetry imposes a particular
form on the symmetric M [Eq. (56)], we can take Vy as
being the rotation matrix U, of Eq. (31) corresponding to

2V2|bg| )

1
Oz = 7/4, Or12 = Qg = Etan‘l (c 2 —d
r—ag —dg

Or13 =0, &g = Arg(bg). (68)

As to the diagonal phase matrix, Fy=
Diag (e~ , e~ ¢7@) it can be chosen according to
Eq. (37) to be

1 . )
a; :§Arg[ARc§,R - \/§s2¢Re_’§RBR + (Cr — Dg) s, e7x],

1 . :
a = EArg[ARsz,R + V255, ¢ kB + (Cg — Dg)c2, e~ %],

1
a ZEArg(cR—f—dR). (69)

We assume here that the resulting mass spectrum of My via
the diagonalizing matrix VzF, is in increasing order;
otherwise, one needs to apply a suitable permutation on
the columns of the latter matrix in order to get this. Note
here that had the matrix Vj diagonalized M2, which would
have meant that N = V}M? Vr is diagonal, then we would

have reached a diagonal 1\71,? T]f/[f equaling a product of
diagonal matrices, and no leptogenesis,

MPTMP = F{(VEMY V) (ViMPVR)Fy = FNTNF,.

-3 1.2 70
WISW) ~ <10276V) . (67) (70)
In contrast, we get in our case
|
(M M7) 5 = e~ [~V2ex (ApB), + EpCly — EpDj)sg,, + V2e™ (A} Bp — EpDp + EjCp)
+ S44Co (=2|Bp* = |Cp|* = |Dp|* + 2|Ep|* + [Ap* + CpDp + D Cp)],
(M?TM?)IB =0,
(MY*MD),, = 2, (|Ap* + 2Ep|?) + 52, (2|Bp|* + |Cp|* + [Dp|* = CDp — CpD})
—V2s,,¢,,(ApBpes — EpDies + EpChes + He.). (71)

We see that (M,? MP )15 is complex in general, and the question is asked whether one can tune it to produce the correct CP
asymmetry. Clearly, the phase of (MP"MP),, would be the triggering factor in producing the baryon asymmetry. More

explicitly,

Im[(M;”MP) ] o sin [2(¢ + a; — ). (72)

where ¢ is the phase of the entry (ViMPVy),,.
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Considering that mg; < 10'* GeV and the Yukawa neutrino couplings are not too small compared to the one that makes
the seesaw mechanism more natural, which corresponds to 7z > 1073 eV, hence the baryon asymmetry can be expressed as

Mgy

1073 ¢

.
Yp=11x10"°(-L
8 x <0.1> (1013 GeV> ( i

V) 02 |:|<M1?TMI/D)12|

] sin2(¢p + a; — ay)] (73)

(MY"MP),,

with ri, = mp|/mpg,, which parametrizes how strong is the hierarchy of the RH neutrinos mass spectrum. If the matrix

elements (M,? TMf)11 and (M,? TME ), are of the same order, then, for i of the order of [L\—; = (.3 eV, we have

So, for hierarchical heavy RH neutrino mass spectrum and
with mp, > 10'3 GeV one can adjust the value of Majorana
phase difference (a; —a,) to obtain Yz equal to the
observed value [23].

The above estimate for the baryon asymmetry assumed
|(MPTMP) |/ (MPTMP),, ~ 1, and it is not generic by any
mean. However, from Eq. (73) it is clear that one can easily
obtain a value of Yjp that is in agreement with the
observation, corresponding to many other possible choices
for the values of the matrix elements of (M Dt pp D), and the
mass of the lightest RH neutrino [17].

VI. A POSSIBLE DEVIATION FROM THE pu-t
SYMMETRY THROUGH S, AND ITS
CONSEQUENCES

We saw that exact -t symmetry implied a vanishing
value for the mixing angle 0,5. Recent oscillation data
pointing to a small but nonvanishing value for this angle
suggest then a deviation on the exact symmetry texture in
order to account for the observed mixing. We showed in
[16] how “minimal” perturbed textures disentangling the
effects of the perturbations can account for phenomenol-
ogy. We shall consider now, within the scheme of the type-I
|

M,(1,1) = MY(1,1) + o?

mpg

r .
YB = (.35 x 10_9 <ﬁ> <m> Sin [2(¢ —+ a; — az)].

B2 (CrAg — B2
p(CrAR R)+a

(74)

|
seesaw, a specific perturbed texture imposed on Dirac
neutrino mass matrix M2 and parametrized by only one
small parameter a, and show how it can resurface on the
effective neutrino mass matrix M,, which is known to be
phenomenologically viable. We compute then the “per-
turbed” eigenmasses and mixing angles to first order in a,
whereas we address in the next section the question of
finding numerically a viable pattern for M? and M® leading
to M, consistent with the phenomenology. Thus, we
assume a perturbed MP? of the form

AD BD(I +a) _BD
MDD - ED CD DD (75)
—Ep Dp Cp

The small parameter « affects only one condition defining
the exact S-symmetry texture, and can be expressed as

(M), + (MD) 15

o =—
(M),

(76)

Applying the seesaw formula of Eq. (51) with M given by
Eq. (56) we get then

2B (Cg + Dg)(AgBp — BrAp)

det My

det My ’

BplAR(CrCp — DgDp) — By (Dp + Cp) — EpBg(Dg + Cy)]

M,(1,2) = M)(1,2) + a

M,(1.3) = M%(1.3) +a

det My ’

Bp|AR(CrDp — DrCp) — Bx(Dp + Cp) + EpBr(Dg + Cg)]

M,(2,2) = M(2.2) = M}(3.3) = M, (3.3),
M,(2.3) = M(2.3).

detMR ’

(77)

where MY is the “unperturbed” effective neutrino mass matrix (corresponding to @ = 0) and thus can be diagonalized by UY.

of Eq. (31) corresponding to the following angles,:

9(2)3 =r/4, 5

1 2/2|b9
9(1)2 = ¢" = —tan™! (Wi—do> ; 9(1)3 =0, and & = Arg(bg)'

(78)
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Here, the superscript 0 denotes quantities corresponding to
the unperturbed effective neutrino mass matrix MY.

The mass matrix M, can be organized in the following
form,

Au Bu(l +Z) _Bv
M,= | B,(1+%) C, D, |. (79
_Bu Du Cu

where the perturbation parameter y is given by

M)+ (M,)5
(MU)IB .

The two parameters y and « are generally complex and of
the same order provided we do not have unnatural
cancellations between the mass parameters of MP and
|

x= (80)

PHYSICAL REVIEW D 91, 113014 (2015)

Mp. Nevertheless and without loss of generality, a can be
made positive and real. Furthermore, as will be explained
later in our numerical investigation, @ can be adjusted to
have the same value as [y|.

To compute the new eigenmasses and mixing angles of
M, we write it in the following form working only to first
order in a:

M, = M)+ M, (81)
where the matrix M, is given as

;. app a3
Ma = a1 0 0 . (82)
(113 O 0

and the nonvanishing entries of M, are found to be

_ 2aBp(Cg + Dg)(AgBp — BRrAp)

(2401

El

det M
a0 — aBp[Ag(CrCp — DgDp) — Bx(Dp + Cp) — EpBg(Dg + Cg)]
12 detMR ’
a5 — aBplAg(CrDp = DrCp) = Bx(Dp + Cp) + EpBg(Dg + Cy)] (83)
13= .
detMR

Note here that M, (1, 1) gets distorted by terms of order a
and o. However, this will not “perturb” the relations
defining p-7 symmetry, which are expressed only through
M,(1,2),M,(1,3),M,(2,2), and M,(3,3).

We seek now a unitary matrix Q diagonalizing M; M,
and we write it in the form

0=U%1+1,), I.=| - 0 e, (84)

* *
-5 —e5 0

[

where /.. is an anti-Hermitian matrix due to the unitarity of

Q. Imposing the diagonalization condition on M;M,, and

knowing that U diagonalizes MY*MY?, we have

+ . Diag |2 Diag |2 Diag 2
Q"M;M,Q = Diag(IM,"[", [M,2° ", [M,35° ).
0F 1 70 0770 _ 1 0 Diag |2 0Diag |2 0Diag |2

UMy MUY = Diag(IM, =7 [M 5 [ [M 3575 7).
(85)

Keeping only terms up to first order in @, which is consistent

with aiming to compute /, up to this order in « and thus with
dropping higher orders of /., we get the condition

’

i.je{1.2.3}i# ). (0" M;M,Q),; = 0= [I.M)"* M), = (U (MY M, + MMO) U, (86)

One can solve analytically for €, €,, €5 to get

1 1 .
€] |2 {— 9_150[(0T3 —aj,) (DY) — C)) — AY (a3 — app) + 207, BY]cs,

(M S — My

V2

1 .
+ 2Re<0’71A8>5¢C¢ - 76150[@’13 - 0512)(D8* - Cg*) —Ag(a’{3 —aj,) + 20’1133*}%}7

1 .
€ ODiag 0Diag 2 { (13 + a12)AY + (CO + DY) (ai + aiy)]e,—e BY (ayp + 0613)%},

- 2
|My33 | _‘Myll

HSHN
\9)

1 .
€3 0Diag 0D 2 {_ (@13 + @AY + (€O + DY) (ais + aiy)]s,+e ™ BY (apy + 0513)%}’ (87)

N

= 2
|Mz/33 | _‘Mz/22
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and the resulting diagonal matrix M>™“¢ = QTM,Q is such that

Diag 0 Diag 2 i
M\ =M, +c(/,0a11 —\/Esq)oclpo(alz—am)e 50’
Diag _ 3 ,0Diag 2 _ig0
My =M™ + S + \/Es,,,oc(/,o(au - 0‘13)6 &,
Diag 0 Diag
Mv33 - MI/33 ’ (88)

where the diagonalized mass matrix entries M(y)lDliag, Mgzgiag, and M23D3iag can be inferred from those in Eq. (37) to be
0Di¢ i 0
MD”ldg = Agcéo - \/iszlﬂoe €BY + (€Y - DB)siOe 208"

0

M = ABS(ZPO +V2s5,0e7'BY + (CY — D)2y e ¥,

2
@
ODiag _ 0 0
Mz/33 - CD + Dv' (89)
Thus one can obtain the squared masses up to order a as

0Di 2 —1i * * % * * * *
my = [My"*" = \/ERe{e 150[(%3 —apy) (D) = C)) = A) (a3 — o) + 2‘1113(3]5(/)%} + 2R6[A90!1105) + (a7, — aj3)B).
0 Di —1 * * * * * * *
mj = |My221ag’2 + \/ERe{e 150[(0’13 —ap,)(D) = ) = A) (13 — a) + 207, BY]s, ¢, } + 2Re[Aday ¢, + (a7, — ai3) BY],
0 Diag 2
m3 = | M3 (90)
To extract the mixing and phase angles corresponding to Q = UY (1 + 1,.), the matrix Q should be multiplied by a
suitable diagonal phase matrix to ensure that the eigenvalues of M, are real and positive. Moreover, as mentioned before, the
charged lepton fields should be properly rephased in order that one can match the adopted parametrization in Eq. (4). Thus,

identifying Q, after having been multiplied by the diagonal phase matrix and made to have a third column of real values,
with the Vpyng One can get the perturbed mixing angles

o R 1|l + f:lo + €jt,0], i3 R |exc o +e38,0), try~ |1 — 2€2S¢o€_i50 + 2€3C¢0€_i§0 , (91)
and the perturbed phases
dm2m— & — Arg(€jc e +é€b).
p v m = Atgl(ey - eis) €36y + eis )] - Are(MIEMOTE),
0% 1= Argl(s, +ercy)(€ic, +eisg)] — 5 Ara(MPR DR, (92)

purpose, it is convenient to recast the effective neutrino

VII. NUMERICAL INVESTIGATION FOR THE light mass matrix, by using Egs. (2)—(5), into the form

DEVIATION FROM THE S -REALIZED pu-t
SYMMETRY 3

M vab —
j=1

UajUbjj’j’

The numerical investigation turns out to be quite subtle (93)

due to the huge number of involved parameters that
describe the relevant mass matrices and the possible  where A, 4,, and A5 are defined as

deviation. Therefore, we start by studying numerically

the perturbed mass matrix texture at the level of the A = me*r, dy = mye*®, =my.  (94)
effective light neutrino mass matrix, then, working back-

ward, we reconstruct the Dirac and Majorana neutrino mass ~ Then the texture characterized by the deviation y, where y
matrices together with the parameter . For our numerical ~ is a complex parameter equal to |y|e”, can be written as
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3

My, +My5(1+y) =0=
=

PHYSICAL REVIEW D 91, 113014 (2015)

[Uy;jUsj + (Uy;U35) (1 + x)]4; =0,

:> Alﬂl +A2/’{2 +A3/13 — 0,

3
My —Myz3=0= Z (UajUsj = U3;U35)4; = 0,

J=1

:> B]ﬂ] + Bzﬂ.z + 3313 — 0, (95)

where

A; = UyjUy + Uy U55(1 + ),

and B; = U%j - Ugj,

(no sum over j). (96)

Then the coefficients A and B can be written explicitly in terms of mixing angles and Dirac phase as

_ —id —id
Ay = —C0,,C0, (C9|2c923S913 — 50,,50,,€ l )(1 +Z) — €9, (091259235‘9]3 + 80,,C0,,€ l )’

_ _is _is
Ay = —50,,C0,, (s912c923s913 + Co,,50,,¢€ )(1 +I) ~ 50,,C0,; (s9|2s923S913 — €,,€0,,€ l )’

Az = S9|309236913(1 +)() + 56,,50,,C0,3>

_ —i5\2 —id
B, = (_69126923S913 + 56,,50,,€ ) - (c912s923s‘913 + 56,,Co,,€ ) ’

_ —i5\2
B, = (s‘912C923s'913 + €y, 56,,€ ) - (s912S923S913 — Cy,,C0,,€

2 2 2 2
€6,,C0,; ~ 50,015

B;

Assuming A3 # 0, Egs. (95) can be solved to yield A’s
ratios as

A A3By —A;B;
A3 ABy—AB;’

A A{B; — A3B
A2 _ A1D3 351 (98)
A3 AB—AB;
From the 1’s ratios, one can get exact results for the mass
ratios m; = Z—i and my; = Z—j as well as for the phases p and ¢

in terms of the mixing angles, the remaining Dirac phase 5, and
the parameter y. In addition, one can compute the expressions
for many phenomenologically relevant quantities such as

_ om?

Y |am?

’

2

s

—i5)2

97)

Here, R, characterizes the hierarchy of the solar and atmos-
pheric mass square differences, while the effective electron-
neutrino mass (m), and the effective Majorana mass term
(m),, are sensitive to the absolute neutrino mass scales and
can be respectively constrained from reactor nuclear experi-
ments on beta-decay kinematics and neutrinoless double-beta
decay. As to the mass “sum” parameter ., its upper bound can
be constrained from cosmological observations. As regards
the values of the nonoscillation parameters (m),, (m),,, and
2, we adopt the less conservative 2-o range, as reported in [24]
for (m), and X, and in [25] for (m),,,
(m), < 1.8 eV, ¥ <1.19eV,
(m),, < 0.34-0.78 eV. (100)

The exact expressions turn out to be cumbersome to be
presented, but for the sake of illustration, we state the
relevant expressions up to leading order in sy, as

2 . .
miz~ 1+ 2555012156, ’ My 1 — 215,555 ¥ (50,4 ’ PR 5+ 5550, (S0, Co, X" + l¥|co(=Cap,, + $20,,) = €20,,) ’
to, T T o, T
R ~ _% oS — S5t012S913 (89236923 |)(|2 + |Z|C€(_62923 + 326’23) - C2623) M2 — 2. _%
: s2912T ’ ’ 23 a S2912T ’
dsysslyls dsgsslyls
(m), ~ ms [1 | Hsosslelse, 9'3}, (m),, = mj {1 | Hsosslelsa, “’”], (101)
tr,, T tr,T1

113014-13



E.I. LASHIN et al.

where T is defined as

T = |;(|2s§23 + 2|y|cosq,, (50, (102)

- C923) +1- $20,;-
Our expansion in terms of sy . is justified since sq, is
typically small for phenomenological acceptable values
where the best fit for s, ~ 0.15. This kind of expansion in
terms of sy ., in the case of partial -t symmetry, has many
subtle properties that were fully discussed in [16], and there
is no need to repeat them here.

For the numerical generation of M, consistent with
those relations in Eq. (95), we vary 6,5, 65, and 6m?
within their allowed ranges at the 3-o level precision
reported in Table I, while 6,5 is varied in the range [43°,
47°] in order to keep it not far away from the value
predicted upon imposing exact p-r symmetry. The Dirac
phase 6 and the phase € are varied in their full ranges,
while the parameter |y| characterizing the small devia-
tion from the exact u-r symmetry is consistently kept
small satisfying |y| < 0.3. Scanning randomly the seven-
dimensional free parameter space (reading ‘“random”
values of 65, 6053,60,3,8,6m%,0,|y| in their prescribed
ranges), determining then the A,B’s coefficients
[Eq- (97)], and producing the mass ratios and
Majorana phases as determined by Egs. (98) allow us,
after computing the quantities of Eq. (99), to confront the
theoretical predictions of the texture versus the exper-
imental constraints in Table I, and then to figure out the
admissible 7-dim parameter space region. Knowing the
masses and the angles in the admissible region allows us
to reconstruct the whole neutrino mass matrix M, which,
as should be stressed, is based on numerical calculations
using the exact formulas in Egs. (98) and (99).

The resulting mass patterns are found to be classifiable
into three categories:

PHYSICAL REVIEW D 91, 113014 (2015)

(1) Normal hierarchy: characterized by m; < m, < mjy
and denoted by N satisfying numerically the
bound

m m
L2 207,

103
. (103)

(i1) Inverted hierarchy: characterized by m; < m; < m,
and denoted by I satisfying the bound
M M3 (104)
ms  m3

(iii) Degenerate hierarchy (meaning quasidegeneracy):
characterized by m; ~ m, =~ m; and denoted by D.
The corresponding numeric bound is taken to be

m m
0.7 < — <2<
msz sz

1.3. (105)

Moreover, we studied for each pattern the possibility of
having a singular (noninvertible) mass matrix characterized
by one of the masses (m; and m3) being equal to zero (the
data prohibit the simultaneous vanishing of two masses and
thus m, cannot vanish). It turns out that the violation of
exact u-z symmetry does not allow for the singular neutrino
mass matrix. The reason behind this is rather simple and
can be clariﬁed through examining the mass ratio expres-
sions 2 and m2 that, respectively, characterize the cases

my; = 0 and m3 = 0. The mass ratio expressions can be
evaluated in terms of A or B coefficients defined in Eq. (97)
and can also be related to R, leading to the following
results, for the case m; = 0,

e , H21CoCoy (50,5 +Coyy )+ 145200 59, (S2 )
xI*s5 ? 5 F2l1CoCoy (50,5 =Copy ) +1=520,5 So15 €01 013/

ny /
<= 14520, 505 ~+/R (106)
- ~ ~ v
ms 1=520,3 S0,5C0,5 T 0 s‘913 ) ’
By o 1
Bl R 7(1 + 219, 129,,¢559,,) + O(s5..)»
and for the case m; = 0,
Ap ~ 11— el ‘()23L;)zg65+V|[C',st'r)(S2023—Cznz3)+S0S5]—Csﬁzoz3 S013 0(.5‘2 )
Az el? ‘923+2|)(\003023 (S0y3=Coy3 ) +1=520,, 5015 €015 013/°
my ~ €5€20,35013 R
m— = ~ 5012 €01y (1=5203 ) + O(S'913 )’ ~1+ . (107)
1
Bl & 2 220y, CS0)3 2
’ B,| ~ 19, (1 + 56,,C0 + 0(5913)’
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%—2 for the case m; =0 should be - ) =5 :)22:

e 0 —I

The mass ratio

7
9

500 00

approximately equal to \/R,, which means that it should
be much less than one. The expression obtained from the
A’s, although it starts from O(sy,,), cannot be tuned to a
small value compatible with /R, for any admissible
values for the mixing angles. The mixing angle 6,5 plays
the decisive role in this failure for not being small
enough as Table I shows. Thus, there is no need to
examine the second expression derived from the B’s, and
we conclude the impossibility of having m; = 0 with an
approximate y-v symmetry. Regarding the case ms = 0,

the mass ratio Z—f should be approximately equal to (1 +

[2.8-4.6

[2.19-83
[175.6-17

3.4-4.33]
175.5-177.6

(119 — 178
[282.3-358

[181.5-248
[181.8-1
[355.6-3
182.4-184
[355.5-356

|

|

[-0.0390- — 0.0082]|J 0.01-0.2

%) and accordingly would be slightly greater than one.
Each one of the two available expressions providing the
mass ratio can be separately tuned to fit the desired value
within the admissible ranges for the mixing angles and

the Dirac phase 6. However, the compatibility of the two

. .. C:
expressions purports the condition, ﬁ ~R,,
23 23

which cannot be met for any admissible choice for
0,3. Our numerical study confirms this conclusion where
all the phenomenologically acceptable ranges for mixing
angles and Dirac phase are scanned, but no solutions
could be found satisfying the mass constraint expressed
in Egs. (106) and (107). Obviously, our conclusions
remain the same when we consider the exact u-t
symmetry corresponding to y = 0.

Regarding the nonsingular pattern, one can deduce
some restrictions concerning mixing angles and phase
just by considering the approximate expression for
R, as given in Eq. (102). The parameter R, must be
positive, nonvanishing (R, ~ 0.03) and its value at the
3 — o level is reported in Table I. This clearly requires
nonvanishing values for sq.,, 55 g and |y|. The
nonvanishing of sy = implies ;3 # 0, which is phenom-
enologically favorable, while the nonvanishing of s;
and sy excludes 0, z, and 2z for both 6 and 6. The
reported allowed range for @ and 6 in Table II confirms
these exclusions. The nonvanishing of |y| is naturally
expected; otherwise, there would not be a deviation
from exact p-tr symmetry. These conclusions remain
valid if one used the exact expression for R, instead of
the first order expression. Explicit computations of R,
using its exact expression reveal that 0,3 cannot be
exactly equal to j—otherwise, R, would be zero—but
nevertheless 6,3 can possibly stay very close to 4, and
this again is confirmed by the reported allowed values
for 6,5 in Table IL

For the sake of illustration, we show correlations
involving (m),, against 0, &, |y|, and J where J is the
Jarlskog rephasing invariant quantity which is given by
J = 50,,€0,,50,,C0,,50,,C5,, $in& [26]. The quantity (m)

[0.0232-0.0354]

[0.0196-0.0382]

[0.0064-0.0397]
[~0.0379- — 0.0168]| J 0.2-0.3

[~0.0349- — 0.0243]|J 0.15-0.2

[18.3-168.1]l) 0.0528 0.0452
[197.7-345.61] —0.3954 —0.3941
[230.7-326.22] —0.0495 —0.0453
[233.2-299.14] —0.0788 —0.0738

Normal hierarchy
[0.003-19.47]|J [11.04-35.59]|J [40.44-126.3]J 0.0339 0.0261

Inverted hierarchy
[12.68-22.76]| ) [62.73-127.9]|J 0.0659 0.0602

Degenerate hierarchy
[157.8-168.64]

0.55-31]|J
[154.4-179.45]
[144.9-169.34]

8]

0.003-14.12]J
3.35-10.76]J

ms

my
0.0529 0.0590

0, and MD22 _Mu33 =0

my

013
-9.94 -0.3955 -0.3955 -0.3960 [166.3—-179.89]

-9.87 —-0.0487 -0.0487 -0.0708 [160.2-179.72]

Various predictions of allowed ranges for one pattern violating the exact -t symmetry. All the angles (masses) are evaluated in degrees (eV).
-9.37 -0.0790 -0.0795 -0.0607 [169.8-176.8

623

[45.1-47]
[43,4378]) 7.66 0.0329 0.0329 0.0580

[46.61-47]
[43,43.31]J 7.66 0.0660 0.0666 0.0459

[43,449]) 7.67 0.0521

[46.38-47]

ee
is extremely important as a measure of neutrinoless
double beta decay and provides a clear signature for the
true nature of the neutrino. The nonvanishing value for

The pattern: M, + M,;3(1 + )

TABLE II.
01

30.98
-36.2
30.98
-36.11
30.99
-36.08
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TABLE III.  Numerically generated relevant parameters for M,, M, and MP. Light neutrino masses are evaluated in units of eV, Dirac neutrino masses in units of GeV, and
Majorana masses in units of 10'3 GeV. The angles are evaluated in degrees.
Degenerate hierarchy
Y B, C, D, AR Br Cr R D Bp Cp Dp Ep X a 01, [ Oy 013
0.8187 —0.0278 0.4165 0.3890 0.8188 —0.0297 0.4165 0.3890 0.8187 —0.0337 0.4165 0.3890 —0.0238 0.1089 0.1116 32.63 34.33 4449 9.44
+ 0.0085i —0.0300i —0.4094i +0.4097i + 0.0086i —0.0313i —0.4094i +0.4097i + 0.0086i —0.0232; —0.4093i + 0.4096i —0.0380i —0.0243i
0.8045 —0.0229 0.5365 0.2557 0.8046 —0.0248 0.5365 0.2557 0.8046 —0.0185 0.5365 0.2557 —0.0293 0.1960 0.1977 35.81 34.53 4433 9.64
—0.0260i +0.0331i +0.3771i —0.3780i —0.0259i + 0.0366i +0.3771i —0.3780i —0.0259i +0.0358i +0.3771i —0.3780i +0.0339i —0.0257i
0.5440 —0.0351 0.0152 0.5077 0.5441 -0.0376 0.0152 0.5077 0.5440 —-0.0320 0.0152 0.5076 —-0.0407 0.1558  0.1613 32.50 34.60 44.55 8.43
+0.0119i —0.0074i —0.1167i + 0.1169i +0.0118i —0.0087i —0.1167i +0.1169i + 0.0118i —0.0162i —0.1166i +0.1169i + 0.0002i + 0.0417i
v v P prer [ o m? m2 m‘i m nmy ms MR3 Mpg2 mgy Mpy mpy Mp3
42.36 42.76 1.69 231 176.94 178.04 0.2511 0.2517 0.2466 0.2515 0.2517 0.2465 8.22 8.21 8.06 144.22 143.23 140.96
142.75 142.72 0.68 1.23 175.93 176.79 0.2469 0.2475 0.2426 0.2473 0.2475 0.2424 8.0813 8.0735 7.9223 141.88 140.75 138.64
260.66 259.97 178.79 177.89 5.18 3.63 0.1671 0.1679 0.1601 0.1676 0.1678 0.1599 5.48 5.47 523 9637 95.15 91.50
Normal hierarchy
v B, C, D, Ap By Cp R D Bp Cp Dp Ep X a 01 @ Oy 0O
0.1287 0.0538 0.0485 0.1758 0.1297 0.0611 0.0485 0.1758 0.1294 0.0540 0.0485 0.1758 0.0609 0.2700 0.2707 35.75 33.03 46.94 7.86
—0.0021i +0.0038i —0.0115{ +0.0115i —0.0016i + 0.0040i —0.0115i +0.0115i —0.0016i +0.0001i —0.0115{ +0.0115i +0.0078i —0.0192i
0.1333 0.0480 0.0544 0.1689 0.1344 0.0553 0.0544 0.1689 0.1341 0.0486 0.0544 0.1689 0.0546 0.2985 0.2992 3544 32.62 46.87 8.08
—0.0148i +0.0104i —0.0355i +0.0353i —0.0142; +0.0115i —0.0355i +0.0353i —0.0143i + 0.0070i —0.0355i +0.0353i +0.0150i —0.0213i
0.1325 0.0488 0.0537 0.1716 0.1337 0.0562 0.0537 0.1716 0.1334 0.0494 0.0538 0.1715 0.0555 0.2978 0.2986 36.08 33.02 46.84 7.93
+ 0.0127i —0.0093i +0.0318i —0.0316i +0.0122i —0.0103i +0.0318i —0.0316/ + 0.0122i —0.0058i + 0.0317i —0.0316i —0.0140i + 0.0221i
v & P PP o o Wl? m% m(3’ m nmy ms mpga mgy MR3 Mpi Mpy  Np3
97.63 99.65 167.90 177.15 24.17 78.78 0.0457 0.0461 0.0687 0.0471 0.0479 0.0691 1.57 1.55 224 2771 25.82 39.24
82.97 84.76 166.26 175.94 19.23 99.86 0.0461 0.0465 0.0684 0.0474 0.0482 0.0688 1.58 1.55 223 2791 26.02 39.08
275.52 273.35 13.75 4.18 160.58 88.91 0.0460 0.0464 0.0690 0.0473 0.0481 0.0694 1.58 1.55 225 27.86 2594 3943
Inverted hierarchy
A, B, C, D, Ag Br Cr R D Bp Cp Dp Ep X a 01, P 033 013
0.2322 —0.0613 —0.0165 0.2113 0.2329 —-0.0674 —0.0165 0.2113 0.2326 —0.0617 -0.0164 0.2113 —0.0669 0.1960 0.1964 33.63 23.15 43.17 8.03
+0.0012i —0.0085i —0.0282i + 0.0283i +0.0016i —0.0090i —0.0282i +0.0283i +0.0016i —0.0046i —0.0282i +0.0283i —0.0131i —0.0129i
0.2158 —0.0600 —-0.0194 0.1987 0.2165 —0.0658 —0.0194 0.1987 0.2162 —0.0600 -0.0194 0.1987 —-0.0657 0.1909  0.1914 32.66 24.02 43.18 7.69
—0.0033i —0.0021i —0.0058;  +0.0058;  —0.0030i —0.0019i —0.0058;  +0.0058;  —0.0029i +0.0023i —0.0058;  +0.0058;  —0.0064i —0.0142i
0.2219 —0.0603 —-0.0200 0.2044 0.2226 —0.0663 —0.0200 0.2044 0.2223 —0.0602 —-0.0199 0.2043 —0.0664 0.1990  0.1995 35.68 24.00 43.16 7.93
—0.0043i —0.0002i +0.0003i —0.0004i —0.0040i +0.0001i +0.0003i —0.0004i —0.0039i + 0.0040i +0.0003i —0.0004i —0.0041i —0.0140i
o, Y P prer o o m) md md my 1y m; mp3 Mgy mgy Mp, Mmpy  Mp3
73.18 62.18 7.52 5.98 162.91 158.33 0.0758 0.0769 0.0597 0.0773 0.0778 0.0593 2.54 2.52 1.95 4475 43.14 34.10
76.62 67.45 6.86 5.94 160.97 157.89 0.0708 0.0719 0.0549 0.0723 0.0729 0.0546 2.38 2.35 1.79 4188 40.33 31.38
81.34 69.41 7.58 5.69 163.23 158.12 0.0726 0.0737 0.0565 0.0741 0.0746 0.0561 2.44 241 1.84 4291 4131 3227
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FIG. 1. The correlations of (m),, against 6, 5, |y
the correlations of mass ratios m,; and m,; against ms.

(m),,, if experimentally confirmed, will definitely estab-
lish the nature of the neutrino as being a Majorana
particle. But so far, no convincing experimental evi-
dence of the decay exists. Other important correlations
are also displayed for those involving the mass ratios
my, and m,; against ms, which could reveal the
hierarchy strength.

Figures 1(a) and 1(b) clearly reveal the allowed band
regions for both € and o, which are quite distinct in the
case of normal and inverted hierarchy, and in addition
they show also the excluded region around O and z. This
behavior can be mainly attributed to the constraint
imposed by the parameter R,. Figure 1(c) does not point
out any clear correlation between (m),, and |y|, but

, and J are depicted in the first four rows, whereas the last two rows are reserved for

remarkably one can realize that in the cases of inverted
and normal hierarchy the parameter |y| generally tends to
be larger than what is required to be in the quasidegen-
erate case. Regarding the correlation of (m),, against J
[Fig. 1(d)], it is, as expected, another manifestation of the
correlation (m),, against §, since in our investigation the
size of J is only controlled by § while it is apparently
insensitive to the other mixing angles. The values of
(m),, cannot attain the zero limit in all types of
hierarchy, which is evident from the graphs or explicitly
from the corresponding covered ranges in Table II. There
are some characteristic features for the possible hierar-
chies as can be observed from Figs. 1(e) and 1(f), and
which turn out to be crucial in deriving a simple formula
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for (m),,. First, the masses m; and m, are approximately
equal, as is clear in Fig. 1(f); second, the hierarchy is
mild in both normal and inverted cases, as is evident
from Fig. 1(e-N) and 1(e-I). The simple approximate
formula for (m),,, capturing the essential observed
features for all kinds of hierarchies, can be deduced,
assuming m; = m,, from Eq. (99) to be in the form

(e mmic3 /[1 = sy sin(p—o).  (108)
The formula clearly points out that the (m),, scale is of
the order of the scale of m;(~m,) as is confirmed from
the corresponding covered ranges stated in Table II.
The numerical generation for possible My and MP for a
given numerically generated M, proceeds through the
following routine. (Again, this does not exhaust all possible
MP MR leading to the given M,.) The first step consists in
assuming that M is “proportional” to M, but obeying exact
u-t symmetry. Thus the entries of M can be assumed to be

Ag = ARMIJII/UZ =A,
Bg = Ap(M,1; — M,13)/(20*) = B,,
CR = ARMD22/1]2 = Cw

Dr = ARMU23/U2 =D,. (109)
As said before, we took v, the electroweak scale character-
izing the Dirac neutrino, to be 175 GeV (around the top
quark mass), whereas Ay, the high energy scale character-
izing the heavy RH Majorana neutrino, is taken to be around
10'* GeV, so the scale characterizing the effective light
neutrino v>/Ag would be around 0.3 eV in agreement with
data. In the second step, we assume the equality of a and |y|.
Consequently, the system of five equations given by the
seesaw formula [Eq. (51)] applied to the symmetric matrix
M, with (M,,, = M,33) can then be solved for the five
unknowns residing in the Dirac mass matrix having the form
described in Eq. (75). We have solved this nonlinear system
of equations by iteration starting with the initial guess
(Ap = Ag,Bp = B, Cp = Cg, and Ep = Bp).

Having all parameters Ag,...,Dg, Ap,....Ep, and a
enables us to numerically produce the neutrino relevant
quantities. In Table III, we report for each possible type of
hierarchy three representative points containing all the
parameters describing M,, Mg, and MP. In addition, the
same table also contains the values of the mixing angles,
the phase angles, and the masses of the light neutrinos,
computed on the one hand according to the exact formulas
and on the other hand according to the perturbative formulas,
and the two ways of computing showed good agreement. We
did the perturbative calculations starting from (Mg, M?, a),
deduced in turn from M, and the corresponding y, by
computing M, [Eqgs. (83) and (82)] and M¥ [Eq. (81)] and
then deducing the €’s [Eq. (87)], followed by plugging them

PHYSICAL REVIEW D 91, 113014 (2015)

into the perturbative formulas for the mixing angles
[Eq. (91)], the phases [Eq. (92)], and the masses [Eq. (90)].

Furthermore, the eigenmasses for M and unperturbed
MP are as well reported in Table III. We note here that we
get an almost degenerate RH neutrino mass spectrum.
Actually, we get for the degenerate- and inverted-hierarchy
examples a mild hierarchy in the RH eigenmasses
(mpy < mpy, = mpg3), and so one would expect a scenario
where a considerable part of the CP asymmetry is due to
the decay of the lightest RH neutrino N. To estimate the
baryon asymmetry in these examples one can follow the
analysis of Sec. V. C but with caution considering that we
assumed there a strong hierarchy in the RH neutrino
eigenmasses leading often to the N,-dominated scenario.
On the other hand, we obtain for the normal-hierarchy
examples a mild hierarchy where the two lightest
RH neutrinos are the almost degenerate ones (mp;==
mpy < mpg3), and so we would expect a scenario where
the CP asymmetry is due to the decay of, at least, both N
and N,. Here, one should go beyond the hierarchical limit
assumed in Sec. V. C to estimate the baryon asymmetry. In
[27,28], analytical formulas for the baryon asymmetry,
corresponding to the case mpg; = mpy, K mg3, Wwere
obtained, and in [29] other approximate expressions, which
were shown [30] to agree well with the former ones, were
derived. Although the extrapolation from the almost-
degenerate two RH neutrinos case to the case of three
RH neutrinos of approximately similar masses may plau-
sibly be smooth regarding the fit to the Boltzmann
equations; however, we did not carry out the estimation
of the baryon asymmetry in Table III in any of the
numerical examples we had, as the precise calculations
go beyond the scope of the paper and the formulated
expressions are approximate, so one needs a more refined
analysis in order to draw conclusions. Nonetheless, we
have checked our assumption that the ¢’s [Egs. (87)] are far
smaller than 1 in accordance with them being perturbative
factors.

VIII. REALIZATION OF PERTURBED TEXTURE

As we saw, perturbed textures are needed in order to
account for phenomenology. We have two ways to seek
models for achieving these perturbations. The first method
consists of introducing a term in the Lagrangian which
breaks explicitly the symmetry [19], and then of expressing
the new perturbed texture in terms of this breaking term. The
second method is to keep assuming the exact symmetry, but
then we break it spontaneously by introducing new matter
and enlarging the symmetry. We follow here the second
approach in order to find a realization of the forms given in
Eq. (75) for M and in Eq. (56) for M, while assuring that
we work in the flavor basis. However, for the sake of
minimum added matter, we shall not force the most general
forms of My and Mp, but rather be content with special
forms of them leading to an effective mass matrix M, of the
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desired perturbed texture [Eq. (79)]. In [16] a realization was given for a perturbed texture corresponding to the S_ symmetry,
whereas here we treat the more phenomenologically motivated S, symmetry (we shall drop henceforth the + suffix). We
present two ways, not meant to be restrictive but rather should to be looked at as proof of existence tools, to get the three
required conditions of a perturbed M p, nonperturbed My, and diagonal M;M ; Both ways add new matter, but whereas the
first approach adds just a (Z,)? factor to the S symmetry while requiring some Yukawa couplings to vanish, the second
approach enlarges the symmetry to S x Zg but without the need to equate Yukawa couplings to zero by hand. Some “form
invariance” relations are in order:

A B -B
{M=M"YAN[ST-M-S=M]} & (M= B C D ||, (110)
-B D C )|
0 B B\]
{M=M")A[ST-M-S=-M]}& |[M=|B C 0 : (111)
B 0 -C/ |
A B -B
ST-M-S=M)< |M=| E C D ||, (112)
-E D C
0 B B
ST-M-S=-M|< M=|E C D |]. (113)
E -D -C

We denote L™ = (L, L,, L3) with L;’s, and (i = 1,2, 3) are the components of the ith family LH lepton doublets (we shall
adopt this notation of “vectors” in flavor space even for other fields, like /¢ the RH charged lepton singlets, vz the RH
neutrinos, etc.).

A. S xZ, x Z,-flavor symmetry

(1) Matter content and symmetry transformations
We have three SM-like Higgs doublets (¢;, i = 1, 2, 3), which would give mass to the charged leptons and another
three Higgs doublets (¢}, i = 1,2, 3) for the Dirac neutrino mass matrix. All the fields are invariant under Z} except
the fields ¢’ and vg, which are multiplied by —1, so that we assure that neither can ¢ contribute to M, nor can ¢’
contribute to M;. The fields transformations are as follows:

vp = diag(1, -1, -Dg, ¢ = diag(1, 1, —1)¢, (114)
Z, . Z, .. Z, ..
L — diag(1,-1,-1)L, [© — diag(1, 1,-1)I¢, ¢ — diag(1,-1,-1)¢, (115)
S S .
vg — Sug, ¢ — diag(1,1,-1)¢’, (116)
L-sL, S, g s, (117)

(i) Charged lepton mass matrix-flavor basis
The Lagrangian responsible for M, is given by

Ly = fiLipLC. (118)

The transformations under S and Z,, with the form invariance relations Eqs. (110)—(113), lead to

113014-19



E.I. LASHIN et al.

(iii)

PHYSICAL REVIEW D 91, 113014 (2015)

A 0 0 0 0 0 B -B
fM=1o ¢ p'|, M=o ¢ p*|, M= E 0o o0 |. (119
0 D' (! 0 D> ? -E> 0 0
where f{k is the (i, k)th entry of the matrix fU). Assuming (v; > v, v,) we get
0 0 -B B2 0 0
My=v| D' D> 0 |=MM =4 0 |[D? D-C|, (120)
cl 0 0 C-D |CP
where B = (0,0,-B%)7, D= (D',D?0)7, and A 0 0
C=(C',c*0), and' whe're' the dot product is Mp=| 0 cp Di |, (125)
defined as D - C = ) !=) D'C"*. Under the reason- 0 D. C
r Cr

able assumption that the magnitudes of the Yukawa
couplings come in ratios proportional to the lepton
mass ratios as |B|:|C|:|D|~m,:m,:u,, one can
show, as was done in [16], that the diagonalization of
the charged lepton mass matrix can be achieved by
infinitesimally rotating the LH charged lepton fields,
which justifies working in the flavor basis to a good
approximation.
Majorana neutrino mass matrix
The mass term is directly present in the
Lagrangian
Lr = MpijVriVg;- (121)
The invariance under Z), is trivially satisfied while
the one under S x Z, is more involved. The sym-
metry S constrains My to satisfy
STMRS = My, (122)
whereas the restrictions due to Z, are imprinted in
the bilinear of vg;vg; determining their transforma-
tions under Z, as

I -1 -1
I/Rl‘l/Rj’Z\‘zB: -1 1 1 s
-1 1 1

(123)

which means

z
URiVRj - Zz(VRiVRj) = BjjuriVRj (no sum).

(124)

Thus the symmetry through Egs. (110), (122), and
(123) entails that M would assume the following
form:

which is of the general form [Eq. (56)] with B = 0.
(iv) Dirac neutrino mass matrix
The Lagrangian responsible for the neutrino mass
matrix is

Lp=g5Liptwg;. where ¢ = icr™.  (126)

Because of the fields transformations under S and Z,
we get
STgk=12)g = g(k=12)
STgk=3)§ = —gk=3),
1 -1 -1
L 2| -1 1 1 |,
-1 1 1

(127)

where g(¥) is the matrix whose (i, j)th entry is the
Yukawa coupling gf‘j Then, the form invariance
relations [Egs. (110)—(113)] lead to

A0 0
dgV=10 ¢ D |,
0 D' (!
0 B -B
=& o o |,
- 0 0
0 B B
=1 0 o (128)
£ 0 0

Upon acquiring vevs (v}, i = 1,2,3) for the Higgs
fields (¢}), we get for the Dirac neutrino mass matrix
the form
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v} Al B>+ B - B + vy B
Mp = | ,E + 4 v, C! v, D! , (129)
—0hE* + V&3 v D! v, C!

which can be put into the form

Ap Bp(l+a) -Bp

—Ep Dp Cp
with
20483 20483
=_ 07 =_ 37 131
“ vy B — vy B3 P vhE* — 4 E3 (131)

If the vevs satisfy v} < v, and the Yukawa couplings are of the same order, then we get perturbative parameters
a,fp<1.

The deformations appearing in the Dirac mass matrix as described in Egs. (129)—-(131) would resurface in the
effective light neutrino mass matrix M, through the seesaw formula [Eq. (51)] with Mk given in Eq. (125). The
resulting deformations in M, can be described by two parameters,

M,(1,2) +M,(1,3)
M,(1,3) ’

M,(2,2) —M,(3,3)
M,(3,3)

¢ (132)

X=-

One can repeat now the analysis of the last subsection in order to compute y, £ in terms of a, f and other mass
parameters to get

a aAgBp(Cg — Dg)(Cp + Dp) + PApER(Ck — D%)
aAgBp(CrDp — DrCp) + BpAg(Dg + Cr)(Dp — Cp) — EpAp(Ck — D%)’

. P - 2)EH(Ch - D3)
AR[Cr(D}, + C}) —2CpDpDg] + E3(C — D7)

)(:

(133)

We note here that we do not get in general the desired pattern [Eq. (79)] corresponding to disentanglement of the
perturbations (£ = 0). However, for specific choices of Yukawa couplings, for e.g., £ = 0 leading to # = 0 and
hence £ = 0, we get this form, in which case M, is of the form of Eq. (75) and y of Eq. (133) would also be given by
Eq. (80) with B = 0.

B. S x Zg-flavor symmetry
Matter content and symmetry transformations
In addition to the left doublets (L;, i = 1,2, 3), the RH charged singlets (l;, J =1,2,3), the RH neutrinos (vg;,
Jj =1,2,3), and the SM-Higgs three doublets (¢;, i = 1,2, 3) responsible for the charged lepton masses, we have
now four Higgs doublets (¢, j = 1,2, 3,4) giving rise when acquiring a vev to Dirac neutrino mass matrix, and also

two Higgs singlet scalars (A, k = 1, 2) related to the Majorana neutrino mass matrix. We denote the octic root of the
unity by @ = e%. The fields transform as follows:

Lse, S 52 sy, (134)

Vp— Sug, @ —>diag(1,1,1,-1)¢/,  A—5A, (135)

L2 diag(1,—1,-DL, 1 Zsdiag(1,1,-1)F, ¢ 25 diag(1, -1, - 1), (136)
Vg N diag(w, 0*, ) vg, ¢ 2, diag(w, 0*, @’ , )¢/, AL diag(w®, *)A. (137)
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Note here that we have the following transformation rule for (}S’ = io, '™

¢’i>diag(1,1,l,—l)¢’, ¢’—x>diag(a)7,a)5,a),w5)¢’. (138)

(i) Charged lepton mass matrix-flavor basis
The symmetry restriction in constructing the charged lepton mass Lagrangian as given by Eq. (118) is similar to
what is obtained in the case of (S x Z, x Z}). The similarity originates from the fact that the charges assigned to the
fields (L, I°, ¢) corresponding to the factor Z, (of S x Z, x Z)) and that of Zg (of S x Zg) are the same. Thus we end
up, assuming again a hierarchy in the Higgs ¢’s fields vevs (v3 > v,, v1), with a charged lepton mass matrix
adjustable to be approximately in the flavor basis. Note also here that the symmetry forbids the term L ,-qb}cl;’ since we

have

7ogeZs Eq. (137) 7. T 4l cC T oalc
LR | =1 =1 1 | =7 R ks Liyls = Zg(Li15). (139)

(ii1) Dirac neutrino mass matrix
The Lagrangian responsible for the Dirac neutrino mass matrix is given by Eq. (126). By means of fields
transformations we have

0o @ o
STgk=123)5 — 4k=123), STglk=4)g — _glk=4), Lk Zl o o o |, (140)
o o o

where g(¥) is the matrix whose (i, j)th entry is the Yukawa coupling gf‘j Then, the form invariance relations impose
the following forms:

Al 0 0 0 B -B 0 0 0
dgV=(0o o o], ¢¥=]0 0 o0 |, ¢g¥=(0 & D[,
0 0 0 0 0 0 0 D
0 B* B
=10 0 o . (141)
0 0 0

When the Higgs fields (¢}) get vevs (v}, i = 1,2,3,4), we obtain

VAV B+ Bt —u| B + v, B
Mp=3=tgh =1 0 vy C? vy D3 , (142)
0 vy D? v,C?

which is of the form of Eq. (75) with Ep =0,

AD BD(I +(Z) _BD
MD - 0 CD DD N (143)
0 Dy Cp

where
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20/, 3*
L 144
* vhB2 — v, B* (144)

If the vevs satisfy ) < v, and the Yukawa couplings are of the same order, then we get a perturbative
parameter a < 1.
(iv) Majorana neutrino mass matrix
The mass term is generated from the Lagrangian

LR == hi-{jAkl/RiI/Rj. (145)
Under Zg we have the bilinear
0 ot o
VRilg;j ~ | @ @ —
ot 0 @
Lg = hi Awrivg) + 15,800 povey + 3 MoVgovs + 3, Agvrstgy + B33 Agvpstps. (146)

If we call 2(¥) the matrix whose (i, j)th entry is the coupling hfj then we have (the cross sign denotes a nonvanishing

entry)
x 0 0 0 0 O
M=o 0 o0f, H"WYP=[0 x x (147)
0 0 O 0 x X
Then the form invariance relations lead to
STh(k)S _ h(k), Egs. (110),(147)
ap 0 O 0O 0 O
M=10 0 o], KD =10 cp dg|. (148)
0 0 0 0 dr cg

Thus when the Higgs singlets A acquire vevs (A?, A9) we get the following form for Mg:

A?CIR 0 0
MR = 0 A(Q)CR Ang . (149)
0 Ang AgCR

which is of the form of Eq. (56) with B = 0. The analysis of the last subsection shows then that the deformation @ in M,
resurfaces as a “sole” perturbation y in M, which would get the desired form of Eq. (79) with y given by Eq. (80) after
putting B, = Ep =0,

— a(dR - CR)(CD + DD)
£ (Dp — Cp)(cg + dg) + alcgDp — dgCp) " (150)

Before ending this section, we would like to mention that having multiple Higgs doublets in our constructions might
display flavor-changing neutral currents. However, the effects are calculable, and in principle one can adjust the Yukawa
couplings so as to suppress processes like 4 — ey [31]. Moreover, the constructions are carried out at the seesaw high scale,
but the RG running effects are expected to be small when multiple Higgs doublets are present; and so we expect the
predictions of the symmetry will still be valid at low scale.
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IX. DISCUSSION AND SUMMARY

We studied the properties of the Z, symmetry behind the
u-t neutrino universality. We singled out the texture (S,)
that imposes naturally a maximal atmospheric mixing
0>3 = x/4 and vanishing 6;3. The remaining mixing angle
0., remains free, and the other Z, necessary to characterize
the neutrino mass matrix can be used to fix it at its
experimentally measured value (~33°). We showed how
the S, texture accommodates all the neutrino mass hier-
archies. Later, we implemented the S, symmetry in the
whole lepton sector and showed how it can accommodate
the charged lepton mass hierarchies with small mixing
angles of order of the “acute” charged lepton mass
hierarchies. We computed, within the type-I seesaw, the
CP asymmetry generated by the symmetry and found that
the phases of the RH Majorana fields may be adjusted to
produce enough baryon asymmetry. The fact that the u-z
symmetry does not determine fully the mixing angles, but
leaves 6, as a free parameter able to take different values
in Mp and Mp, is crucial for obtaining leptogenesis
within type-I seesaw scenarios. We found also that

PHYSICAL REVIEW D 91, 113014 (2015)

“complex-valued” perturbations on the Dirac neutrino mass
matrix can account for the correct neutrino mixing angles.

We carried out a complete numerical study to find
the phenomenologically acceptable M, respecting the
approximate S, and we generated the possible correspond-
ing My and MP. Crucially, we found in our numerical
scanning that no “real-valued” neutrino mass matrices can
account for the experimental constraints, and so one has to
take complex matrices from the outset. The perturbation at
the level of M, should also be complex in order to account
for phenomenology.

Finally, we presented a theoretical realization of the
perturbed Dirac mass matrix, where the symmetry is
broken spontaneously and the perturbation parameter
originates from ratios of different Higgs fields vevs.
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