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We study the consequences of the Z2 symmetry behind the μ-τ universality in the neutrino mass matrix.
We then implement this symmetry in the type-I seesaw mechanism and show how it can accommodate all
sorts of lepton mass hierarchies and generate enough lepton asymmetry to interpret the observed baryon
asymmetry in the universe. We also show how a specific form of a high-scale perturbation is kept when
translated via the seesaw into the low scale domain, where it can accommodate the neutrino mixing data.
We finally present a realization of the high scale perturbed texture through the addition of matter and extra
exact symmetries.
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I. INTRODUCTION

Flavor symmetry is commonly used in model building
seeking to determine the nine free parameters characteriz-
ing the effective neutrino mass matrixMν, namely the three
masses (m1; m2, and m3), the three mixing angles (θ23; θ12,
and θ13), the two Majorana-type phases (ρ and σ), and the
Dirac-type phase (δ). Incorporating family symmetry at the
Lagrangian level leads generally to textures of specific
forms, and one may then study whether these specific
textures can accommodate the experimental data involving
the above-mentioned parameters ([1] and references
therein). The recent observation of a nonzero value for
θ13 from the T2K [2], MINOS [3], and Double Chooz [4]
experiments puts constraints on models based on flavor
symmetry (see Table I where the most recent updated
neutrino oscillation parameters are taken from [5]). In this
regard, recent, particularly simple, choices for discrete and
continuous flavor symmetry addressing the nonvanishing
θ13 question were respectively worked out ([6] and refer-
ences therein). The μ-τ symmetry [7,8] is enjoyed by many
popular mixing patterns such as tri-bimaximal mixing [9],
bimaximal mixing [10], hexagonal mixing [11], and
scenarios of A5 mixing [12], and it was largely studied
in the literature [13]. Any form of the neutrino mass matrix

respects a ðZ2Þ2 symmetry [14], and we can define the μ-τ
symmetry by fixing one of the two Z2’s to express an
exchange between the second and third families, whereas
the second Z2 factor is to be determined later by data or,
equivalently, by Mν parameters. The whole ðZ2Þ2 sym-
metry might turn out to be a subgroup of a larger discrete
group imposed on the whole leptonic sector. In realizing
μ-τ symmetry we have two choices namely S−; Sþ, as
explained later, and thus we have two textures correspond-
ing to μ-τ symmetry. It is known that both of these textures

TABLE I. Allowed 3σ-ranges for the neutrino oscillation
parameters, mixing angles and mass-square differences, taken
from the global fit to neutrino oscillation data [5]. The quantities
δm2 and Δm2 are respectively defined as m2

2 −m2
1 and

m2
3 − ðm2

1 þm2
2Þ=2, whereas Rν denotes the phenomenologically

important quantity δm2

jΔm2j. Normal and Inverted Hierarchies are

respectively denoted by NH and IH.

Parameter Best fit 3σ range

δm2 (10−5 eV2) 7.54 6.99–8.18
jΔm2j (10−3 eV2) (NH) 2.43 2.23–2.61
jΔm2j (10−3 eV2) (IH) 2.38 2.19–2.56
Rν (NH) 0.0310 0.0268–0.0367
Rν (IH) 0.0317 0.0273–0.0374
θ12 (NH or IH) 33.71° 30.59°–36.80°
θ13 (NH) 8.80° 7.62°–9.89°
θ13 (IH) 8.91° 7.67°–9.94°
θ23 (NH) 41.38° 37.69°–52.30°
θ23 (IH) 38.07° 38.07°–53.19°
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lead to a vanishing θ13 (with S− achieving this in a less
natural way), and thus perturbations are needed to remedy
this situation [15]. In [16] we studied the perturbed μ-τ
neutrino symmetry and found the four patterns, obtained by
disentangling the effects of the perturbations, to be phe-
nomenologically viable.
In this work, we reexamine the question of exact μ-τ

symmetry and implement it in a complete setup of the
leptonic sector. Then, within type-I seesaw scenarios, we
show the ability of exact symmetry to accommodate lepton
mass hierarchies. Upon studying its effect on leptogenesis
we find, in contrast to other symmetries studied in [6] and
[17], that it can account for it. The reason behind this fact is
that fixing just one Z2 in μ-τ symmetry leaves one mixing
angle free, which can be adjusted differently in the
Majorana and Dirac neutrino mass matrices (MR and
MD), thus allowing for different diagonalizing matrices.
For the mixing angles and in order to accommodate data,
we introduce perturbations at the seesaw high scale and
study their propagations into the low scale effective
neutrino mass matrix. As in [16], we consider that the
perturbed texture arising at the high scale keeps its form
upon renormalization group (RG) running which, in
accordance with [18], does not affect the results in many
setups. As to the origin of the perturbations, we shall not
introduce explicitly symmetry breaking terms into the
Lagrangian [19], but rather follow [16], and enlarge the
symmetry with extra matter and then spontaneously break
the symmetry by giving vacuum expectation values (vev) to
the involved Higgs fields.
The plan of the paper is as follows. In Sec. II, we review

the standard notation for the neutrino mass matrix and the
definition of the μ-τ symmetry. In Secs. III and IV, we
introduce the two textures realizing the μ-τ symmetry
through S− and Sþ, respectively. We then specify our
analysis to the latter case (Sþ), and in Sec. V we introduce
the type-I seesaw scenario. We address the charged lepton
sector in Sec. V. A, whereas we study the different neutrino
mass hierarchies in Sec. V. B, and in Sec. V. C, we study the
generation of lepton asymmetry. Sections VI and VII
examine the possible consequences for one particular
possible deviation from the exact μ-τ symmetry, where
we present the analytical study in the former section, while
the numerical study is given in the latter section. In

Sec. VIII we present a theoretical realization of the
perturbed texture. We end with discussion and summary
in Sec. IX.

II. NOTATIONS AND PRELIMINARIES

In the Standard Model (SM) of particle interactions,
there are three lepton families. The charged-lepton mass
matrix linking left-handed (LH) to their right-handed (RH)
counterparts is arbitrary, but can always be diagonalized by
a biunitary transformation:

Vl
LMlðVl

RÞ† ¼

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CA: ð1Þ

Likewise, we can diagonalize the symmetric Majorana
neutrino mass matrix by just one unitary transformation,

Vν†MνVν� ¼

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CA; ð2Þ

with mi (for i ¼ 1; 2; 3) real and positive.
The observed neutrino mixing matrix comes from the

mismatch between Vl and Vν in that

VPMNS ¼ ðVl
LÞ†Vν: ð3Þ

If the charged lepton mass eigenstates are the same as the
current (gauge) eigenstates, then Vl

L ¼ 1 (the unity matrix)
and the measured mixing comes only from the neutrinos
VPMNS ¼ Vν. We shall assume this saying that we are
working in the “flavor” basis. As we shall see, corrections
due to Vl

L ≠ 1 are expected to be of order of ratios of the
hierarchical charged lepton masses, which are small
enough to justify our assumption of working in the flavor
basis. However, one can treat these corrections as small
perturbations and embark on a phenomenological analysis
involving them [19].
We shall adopt the parametrization of [20], related to

other ones by simple relations [1], where the VPMNS is
given in terms of three mixing angles ðθ12; θ23; θ13Þ and
three phases (δ; ρ; σ), as follows:

P ¼ diagðeiρ; eiσ; 1Þ;

U ¼ R23ðθ23ÞR13ðθ13Þdiagð1; e−iδ; 1ÞR12ðθ12Þ ¼

0
B@

c12c13 s12c13 s13
−c12s23s13 − s12c23e−iδ −s12s23s13 þ c12c23e−iδ s23c13
−c12c23s13 þ s12s23e−iδ −s12c23s13 − c12s23e−iδ c23c13

1
CA;

VPMNS ¼ UP ¼

0
B@

c12c13eiρ s12c13eiσ s13
ð−c12s23s13 − s12c23e−iδÞeiρ ð−s12s23s13 þ c12c23e−iδÞeiσ s23c13
ð−c12c23s13 þ s12s23e−iδÞeiρ ð−s12c23s13 − c12s23e−iδÞeiσ c23c13

1
CA; ð4Þ
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where RijðθijÞ is the rotation matrix in the ði; jÞ plane by angle θij, and s12 ≡ sin θ12…. Note that in this adopted
parametrization, the third column of VPMNS is real.
In this parametrization, and in the flavor basis, the neutrino mass matrix elements are given by

Mν11 ¼ m1c212c
2
13e

2iρ þm2s212c
2
13e

2iσ þm3s213;

Mν12 ¼ m1ð−c13s13c212s23e2iρ − c13c12s12c23eið2ρ−δÞÞ
þm2ð−c13s13s212s23e2iσ þ c13c12s12c23eið2σ−δÞÞ þm3c13s13s23;

Mν13 ¼ m1ð−c13s13c212c23e2iρ þ c13c12s12s23eið2ρ−δÞÞ
þm2ð−c13s13s212c23e2iσ − c13c12s12s23eið2σ−δÞÞ þm3c13s13c23;

Mν22 ¼ m1ðc12s13s23eiρ þ c23s12eiðρ−δÞÞ2 þm2ðs12s13s23eiσ − c23c12eiðσ−δÞÞ2 þm3c213s
2
23;

Mν33 ¼ m1ðc12s13c23eiρ − s23s12eiðρ−δÞÞ2 þm2ðs12s13c23eiσ þ s23c12eiðσ−δÞÞ2 þm3c213c
2
23;

Mν23 ¼ m1ðc212c23s23s213e2iρ þ s13c12s12ðc223 − s223Þeið2ρ−δÞ − c23s23s212e
2iðρ−δÞÞ

þm2ðs212c23s23s213e2iσ þ s13c12s12ðs223 − c223Þeið2σ−δÞ − c23s23c212e
2iðσ−δÞÞ

þm3s23c23c213: ð5Þ

This helps in viewing directly at the level of the mass matrix
that the effect of swapping the indices 2 and 3 corresponds
to the transformation θ23 → π

2
− θ23 and δ → δ� π. Hence,

for a texture satisfying the μ-τ symmetry, one can check the
correctness of any obtained formula by requesting it to be
invariant under the above transformation.
As said before, any form of Mν satisfies a Z2

2 symmetry.
This means that there are two commuting unitary Z2 matrices
(squared to unity) (S1; S2) which leave Mν invariant,

STMνS ¼ Mν: ð6Þ

For a nondegenerate mass spectrum, the form of the
Z2-matrix S is given by [17]

S ¼ Vνdiagð�1;�1;�1ÞVν†; ð7Þ

where the two S’s correspond to having, in
diagð�1;�1;�1Þ, two pluses and one minus, the position
of which differs in the two S’s (the third Z2 matrix,
corresponding to the third position of the minus sign, is
generated bymultiplying the two S’s and noting that the form
invariance formula Eq. (6) is invariant under S → −S).
In practice, however, we follow a reversed path, in that if

we assume a “real” orthogonal Z2 matrix (and hence
symmetric with eigenvalues �1) satisfying Eq. (6), then it
commutes with Mν, and so both matrices can be simulta-
neously diagonalized. Quite often, the form of S is simpler
than Mν, so one proceeds to solve the eigensystem problem
for S and to find a unitary diagonalizing matrix ~U:

~U†S ~U ¼ Diagð�1;�1;�1Þ: ð8Þ

The conjugate matrix ~U� can “commonly” be identified
with, or related simply to, the matrix V satisfying Eq. (2).1 In
this case, and in the flavor basis, the VPMNS would be
generally complex and equal to the one presented in Eq. (4).
Determining the eigenvectors of the S matrices helps thus to
determine the neutrino mixing and phase angles.
The μ-τ symmetry is defined when one of the two Z2

matrices corresponds to switching between the second and
the third families. We have, up to a global irrelevant minus
sign [see again Eq. (6)], two choices, which would lead to
two textures at the level of Mν.

III. THE μ-τ SYMMETRY MANIFESTED
THROUGH S−: (Mν12 ¼ Mν13 AND Mν22 ¼ Mν33)

The Z2-symmetry matrix is given by

S− ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð9Þ

The invariance of Mν under S− [Eq. (6)] forces the
symmetric matrix Mν to have a texture of the form

1In fact, as we shall see, starting from the general form of ~U
satisfying Eq. (8), one can determine (up to a diagonal phase
matrix) the unitary matrix ~U0 which diagonalizes simultaneously
the two commuting Hermitian matrices S and M�

νMν so that
~U†
0M

�
νMν

~U0 ¼ Diagðm2
1; m

2
2; m

2
3Þ ¼ D2. One can show then that

D2 commutes with ~UT
0Mν

~U0, which leads to the latter matrix
being diagonal. Fixing now the phases so that the latter diagonal
matrix becomes real makes ~U0 play the role of V� in Eq. (2). One
then can use the freedom in rephasing the charged lepton fields to
force the adopted parametrization on VPMNS.
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Mν ¼

0
B@

Aν Bν Bν

Bν Cν Dν

Bν Dν Cν

1
CA: ð10Þ

The invariance ofMν under S− implies that S− commutes
with both Mν and M�

ν, and thus also with the Hermitian
positive matricesM�

νMν andMνM�
ν. One can easily find the

general form of the diagonalizing unitary matrix of S− (up
to an arbitrary diagonal phase matrix). The matrix S−
has normalized eigenvectors fv1¼ð0;1= ffiffiffi

2
p

;1=
ffiffiffi
2

p ÞT;v2¼
ð1;0;0ÞT;v3¼ð0;1= ffiffiffi

2
p

;−1=
ffiffiffi
2

p ÞTg corresponding, respec-
tively, to the eigenvalues ð1; 1;−1Þ. Since the eigenvalue 1
is twofold degenerate, then there is still freedom for a
unitary transformation defined by an angle φ and phase ξ in
its eigenspace to get the new eigenvectors in the following
form:

v̄1 ¼ −sφeiξv1 þ cφv2;

v̄2 ¼ cφeiξv1 þ sφv2: ð11Þ

We have three choices as to how we order the eigenvectors
forming the diagonalizing matrix U, and we chose the one
that would lead to “plausible” mixing angles falling in the
first quadrant. This choice for ordering the eigenvalues
turns out to be ð1;−1; 1Þ, as we could check that the two
choices corresponding to the other two positions for the
eigenvalue (−1) lead upon identification with VPMNS in
Eq. (4) to some mixing angles lying outside the first
quadrant, and the matrix U− which diagonalizes S− can
be cast into the form

U− ¼ ½v̄1; v3; v̄2� ¼

0
B@

cφ 0 sφ

−sφeiξ=
ffiffiffi
2

p
1=

ffiffiffi
2

p
cφeiξ=

ffiffiffi
2

p

−sφeiξ=
ffiffiffi
2

p
−1=

ffiffiffi
2

p
cφeiξ=

ffiffiffi
2

p

1
CA:

ð12Þ

One can single out of this general form the unitary matrix
that diagonalizes also the Hermitian positive matrix M�

νMν

with different positive eigenvalues. To simplify the result-
ing formulas, the matrix M�

νMν can be organized in a
concise form as

M�
νMν ¼

0
@

aν bν bν
b�ν cν dν
b�ν dν cν

1
A; ð13Þ

where aν, bν, cν, and dν are defined as follows:

aν ¼ jAνj2 þ 2jBνj2; bν ¼ A�
νBν þB�

νCν þB�
νDν;

cν ¼ jAνj2 þ jBνj2 þ jCνj2; dν ¼ jBνj2 þC�
νDν þD�

νCν:

ð14Þ

The diagonalization of M�
νMν through U− fixes φ and

ξ to be

tan ð2φÞ ¼ 2
ffiffiffi
2

p jbνj
cν þ dν − aν

; ξ ¼ Argðb�νÞ: ð15Þ

Now and after having fixed φ and ξ we have

U†
−M�

νMνU−¼UT
−MνM�

νU�
−¼Diagðm2

1;m
2
2;m

2
3Þ; ð16Þ

where

m2
1 ¼

aν þ cν þ dν
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaν − dν − cνÞ2 þ 8jbνj2

q
;

m2
2 ¼ cν − dν;

m2
3 ¼

aν þ cν þ dν
2

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaν − dν − cνÞ2 þ 8jbνj2

q
: ð17Þ

The above relations imply directly that UT
−MνU−

commutes with ðUT
−MνU−Þ�, and hence also with the

product of these two matrices, which is a diagonal matrix:
UT

−MνU−ðUT
−MνU−Þ� ¼ UT

−MνM�
νU�

−. Since we have a
nondegenerate spectrum amounting to different eigenval-
ues of MνM�

ν, we deduce directly that UT
−MνU− is

diagonal. Actually we get

UT
−MνU− ¼ MDiag

ν ; ð18Þ

where MDiag
ν is a diagonal matrix whose entries are

MDiag
ν11 ¼ Aνc2φ −

ffiffiffi
2

p
s2φeiξBν þ ðCν þDνÞs2φe2iξ;

MDiag
ν22 ¼ Cν −Dν;

MDiag
ν33 ¼ Aνs2φ þ

ffiffiffi
2

p
s2φeiξBν þ ðCν þDνÞc2φe2iξ: ð19Þ

To extract the mixing and phase angles, we use the
freedom of multiplyingU− by a diagonal phase matrixQ ¼
Diagðe−ip1 ; e−ip2 ; e−ip3Þ to ensure real positive eigenvalues
for the mass matrix Mν such that

ðU−QÞTMνðU−QÞ ¼ Diagðm1; m2; m3Þ; ð20Þ

and we find that we should take

pi ¼
1

2
ArgðMDiag

νii Þ; i ¼ 1; 2; 3: ð21Þ

However, we get now the following form for the
diagonalizing matrix U−Q:
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U−Q ¼

0
BB@

cϕe−ip1 0 sϕe−ip3

− 1ffiffi
2

p sϕeiðξ−p1Þ 1ffiffi
2

p e−ip2 1ffiffi
2

p cϕeiðξ−p3Þ

− 1ffiffi
2

p sϕeiðξ−p1Þ − 1ffiffi
2

p e−ip2 1ffiffi
2

p cϕeiðξ−p3Þ

1
CCA:

ð22Þ

To have the conjugate of this matrix in the same form as
the adopted parametrization of VPMNS in Eq. (4), where the
third column is real, we can make a phase change in the
charged lepton fields,

e → e−ip3e; μ → eiðξ−p3Þμ; τ → eiðξ−p3Þτ; ð23Þ

so that we identify now the mixing and phase angles and
see that the μ-τ symmetry forces the following angles:

θ23 ¼ π=4; θ12 ¼ 0; θ13 ¼ φ;

ρ ¼ 1

2
ArgðMDiag

ν11 MDiag�
ν33 Þ;

σ ¼ 1

2
ArgðMDiag

ν22 MDiag�
ν33 Þ; δ ¼ 2π − ξ: ð24Þ

We can get, as phenomenology suggests, a small value for
θ13 assuming

jbνj ≪ jcν þ dν − aνj; ð25Þ

and then the mass spectrum turns out to be

m2
1 ≈ aν; m2

2 ¼ cν − dν; m2
3 ≈ cν þ dν: ð26Þ

Inverting these relations to express the mass parameters in
terms of the mass eigenvalues we get these simple direct
relations,

aν ≈m2
1; cν ≈

m2
2 þm2

3

2
; dν ≈

m2
3 −m2

2

2
: ð27Þ

It is remarkable that all kinds of mass spectra can be
accommodated by properly adjusting the parameters
aν; cν, and dν according to the relations in Eq. (27).
As to the mixing angles, we see that the value of θ23 is
phenomenologically acceptable corresponding to maximal
atmospheric mixing, and the parameter bν can be
adjusted according to Eq. (25) to accommodate the small
mixing angle θ13. The phases are not of much concern
because so far there is no serious constraint on phases. It
seems that all things fit properly except the vanishing
value of the mixing angle θ12 which is far from its
experimental value ≃33.7°.
One might argue that this symmetry pattern S− might be

viable phenomenologically if we adopt an alternative
choice of ordering its eigenvalues and use the phase
ambiguity to put all mixing angles in the first quadrant.

We have not done this, but rather we prefer to find a
phenomenologically viable symmetry leading directly to
mixing angles in the first quadrant. This can be carried out
in the second texture expressing the μ-τ symmetry materi-
alized through Sþ.

IV. THE μ-τ SYMMETRY MANIFESTED
THROUGH Sþ: (Mν12 ¼ −Mν13 AND Mν22 ¼ Mν33)

The Z2-symmetry matrix is given by

Sþ ¼

0
B@

−1 0 0

0 0 1

0 1 0

1
CA: ð28Þ

The invariance of Mν under Sþ [Eq. (6)] forces the
symmetric matrix Mν to have a texture of the form

Mν ¼

0
B@

Aν Bν −Bν

Bν Cν Dν

−Bν Dν Cν

1
CA: ð29Þ

As before, Sþ commutes with Mν, M�
ν and thus

also with M�
νMν and MνM�

ν. The normalized eigenvectors
of Sþ are fv1 ¼ ð0;−1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p ÞT; v2 ¼ ð1; 0; 0ÞT; v3 ¼
ð0; 1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p ÞTg corresponding, respectively, to the
eigenvalues f−1;−1; 1g. We would like to find the general
form (up to a diagonal phase matrix) of the unitary
diagonalizing matrix of Sþ. Since the eigenvalue −1 is
twofold degenerate, then there is still freedom for a
unitary transformation defined by an angle φ and phase ξ
in its eigenspace to get new eigenvectors in the following
form:

v̄1 ¼ sφe−iξv1 þ cφv2;

v̄2 ¼ −cφe−iξv1 þ sφv2: ð30Þ

Once again, the suitable choice of ordering the eigen-
vectors of Sþ, which would determine the unitary matrix
Uþ diagonalizing Sþ in such a way that the mixing
angles fall all in the first quadrant, turns out to corre-
spond to the eigenvalues ordering f−1;−1; 1g. Hence,
the matrix Uþ assumes the following form:

Uþ ¼ ½v̄1; v̄2; v3�

¼

0
B@

cφ sφ 0

−sφe−iξ=
ffiffiffi
2

p
1=

ffiffiffi
2

p
cφe−iξ 1=

ffiffiffi
2

p

sφe−iξ=
ffiffiffi
2

p
−1=

ffiffiffi
2

p
cφe−iξ 1=

ffiffiffi
2

p

1
CA: ð31Þ

The matrix M�
νMν has the form
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M�
νMν ¼

0
B@

aν bν bν
b�ν cν dν
−b�ν dν cν

1
CA; ð32Þ

where aν, bν, cν, and dν are defined as follows:

aν ¼ jAνj2 þ 2jBνj2; bν ¼ A�
νBν þ B�

νCν − B�
νDν;

cν ¼ jBνj2 þ jCνj2 þ jDνj2;
dν ¼ −jBνj2 þ C�

νDν þD�
νCν; ð33Þ

and its eigenvalues are given by

m2
1 ¼

aν þ cν − dν
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaν þ dν − cνÞ2 þ 8jbνj2

q
;

m2
2 ¼

aν þ cν − dν
2

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaν þ dν − cνÞ2 þ 8jbνj2

q
;

m2
3 ¼ cν þ dν: ð34Þ

The specific form of Uþ of Eq. (31) that diagonalizes
also the Hermitian matrix M�

νMν, which commutes with
Sþ, corresponds to

tan ð2φÞ ¼ 2
ffiffiffi
2

p jbνj
cν − aν − dν

; ξ ¼ ArgðbνÞ: ð35Þ

As in the case of U−, one can prove that UTþMνUþ, after
having fixed φ and ξ according to Eq. (35), is diagonal

UTþMνUþ ¼ MDiag
ν ¼ DiagðMDiag

ν11 ;MDiag
ν22 ;MDiag

ν33 Þ; ð36Þ

where

MDiag
ν11 ¼ Aνc2φ −

ffiffiffi
2

p
s2φe−iξBν þ ðCν −DνÞs2φe−2iξ;

MDiag
ν22 ¼ Aνs2φ þ

ffiffiffi
2

p
s2φe−iξBν þ ðCν −DνÞc2φe−2iξ;

MDiag
ν33 ¼ Cν þDν; ð37Þ

while the squared modulus of these complex eigenvalues
are identified respectively with the squared mass m2

1, m
2
2,

and m2
3 [the eigenvalues of M�

νMν in Eq. (34)].
Again, as was the case for the S− pattern, we use the

freedom of multiplyingUþ by a diagonal phase matrixQ in
order that

ðUþQÞTMνðUþQÞ ¼ Diagðm1; m2; m3Þ: ð38Þ

Moreover, we rephase the charged lepton fields to make the
conjugate of ðUþQÞ in the same form as the adopted
parametrization for VPMNS in Eq. (4), so as to identify the
mixing and phase angles. We find that the μ-τ symmetry
realized through Sþ entails the following:

θ23 ¼ π=4; θ12 ¼ φ; θ13 ¼ 0;

ρ ¼ 1

2
ArgðMDiag

ν11 Þ; σ ¼ 1

2
ArgðMDiag

ν22 Þ;

δ ¼ 1

2
ArgðMDiag

ν33 Þ − ξ: ð39Þ

These predictions are phenomenologically “almost” viable
(the nonvanishing value of θ13 will be attributed to small
deviations from the exact symmetry), and furthermore do
not require a special adjustment for the parameters
aν; bν; cν; dν that can be of the same order, in contrast to
Eq. (25), and still accommodate the experimental value
of θ12 ≃ 33.7°.
The various neutrino mass hierarchies can also be

produced as can be seen from Eqs. (34) and (35) where
the three masses and the angle φ are given in terms of four
parameters aν; jbνj; cν, and dν. Therefore, one can solve the
four given equations to get aν; jbνj; cν, and dν in terms of
the masses and the angle φ.

V. THE SEESAW MECHANISM AND THE Sþ
REALIZED μ-τ SYMMETRY

We impose now the μ-τ symmetry, defined by the matrix
S ¼ Sþ, at the Lagrangian level within a model for the
leptons sector. Then, we shall invoke the type-I seesaw
mechanism to address the origin of the effective neutrino
mass matrix, with consequences on leptogenesis. The
procedure has already been done in [17] for other Z2

symmetries.

A. The charged lepton sector

We start with the part of the SM Lagrangian responsible
for giving masses to the charged leptons,

L1 ¼ YijL̄iϕlc
j ; ð40Þ

where the SM Higgs field ϕ and the RH leptons lc
j are

assumed to be singlet under S, whereas the LH leptons
transform in the fundamental representation of S,

Li ⟶ SijLj: ð41Þ

Invariance under S implies

STY ¼ Y; ð42Þ

and this forces the Yukawa couplings to have the form

Y ¼

0
B@

0 0 0

a b c

a b c

1
CA; ð43Þ
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which leads, when the Higgs field acquires a vev v, to a
charged lepton squared mass matrix of the form

MlM
†
l ¼ v2

0
B@

0 0 0

0 1 1

0 1 1

1
CAðjaj2 þ jbj2 þ jcj2Þ: ð44Þ

As the eigenvectors of MlM
†
l are ð0; 1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p ÞT with
eigenvalue 2v2ðjaj2 þ jbj2 þ jcj2Þ and ð0; 1= ffiffiffi

2
p

;−1=
ffiffiffi
2

p ÞT
and ð1; 0; 0ÞT with a degenerate eigenvalue 0, then the
charged lepton mass hierarchy cannot be accommodated.
Moreover, the nontrivial diagonalizing matrix, illustrated
by noncanonical eigenvectors, means we are no longer in
the flavor basis. To remedy this, we introduce SM-singlet
scalar fields Δk coupled to the lepton LH doublets through
the dimension-5 operator,

L2 ¼
fikr
Λ

L̄iϕΔklc
r: ð45Þ

This way of adding extra SM singlets is preferred, for
suppressing flavor-changing neutral currents, rather than
having additional Higgs fields. Also, we assume the Δk’s
transform under S as

Δi ⟶ SijΔj: ð46Þ
Invariance under S implies

STfrS ¼ fr; where ðfrÞij ¼ fijr; ð47Þ

and thus we have the following form:

fr ¼

0
B@

Ar Br −Br

Er Cr Dr

−Er Dr Cr

1
CA; ð48Þ

when the fields Δk and the neutral component of the Higgs
field ϕ° take vevs ðhΔki ¼ δk; v ¼ hϕ°iÞ, we get a charged
lepton mass matrix,

ðMlÞir ¼
vfikr
Λ

δk: ð49Þ

If δ1; δ2 ≪ δ3, then

ðMlÞir ≃ vfi3r
Λ

δ3 ≃
0
B@

−B1 −B2 −B3

D1 D2 D3

C1 C2 C3

1
CA; ð50Þ

with f13j ¼ −Bj, f23j ¼ Dj, f33j ¼ Cj for j ¼ 1; 2; 3. In
Ref. [17], a charged lepton matrix of exactly the same form

was shown to represent the lepton mass matrix in the flavor
basis with the right charged lepton mass hierarchies,
assuming just the ratios of the magnitudes of the vectors
comparable to the lepton mass ratios.

B. Neutrino mass hierarchies

The effective light LH neutrino mass matrix is generated
through the seesaw mechanism formula

Mν ¼ MD
ν M−1

R MDT
ν ; ð51Þ

where the Dirac neutrino mass matrix MD
ν comes from the

Yukawa term

gijL̄iiτ2Φ�νRj; ð52Þ

upon the Higgs field acquiring a vev, whereas the sym-
metric Majorana neutrino mass matrix MR comes from a
term (C is the charge conjugation matrix)

1

2
νTRiC

−1ðMRÞijνRj: ð53Þ

We assume the RH neutrino to transform under S as

νRj ⟶ SjrνRr; ð54Þ

and thus the S invariance leads to

STgS ¼ g; STMRS ¼ MR: ð55Þ

This forces the following textures:

MD
ν ¼ v

0
B@

AD BD −BD

ED CD DD

−ED DD CD

1
CA;

MR ¼ ΛR

0
B@

AR BR −BR

BR CR DR

−BR DR CR

1
CA; ð56Þ

where the explicitly appearing scalesΛR and v characterize,
respectively, the heavy RH Majorana neutrino masses and
the electroweak scale. Later, for numerical estimates, we
shall take ΛR and v to be, respectively, around 1014 GeV
and 175 GeV, so the scale characterizing the effective light
neutrino v2

ΛR
would be around 0.3 eV. Throughout the work,

where there is no risk of confusion, these scales will not be
written explicitly in the formulas in order to simplify the
notations. The resulting effective matrix Mν will have the
form of Eq. (29) with
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Aν ¼ ½ðC2
R −D2

RÞA2
D − 4BRðCR þDRÞADBD þ 2ARðCR þDRÞB2

D�= detMR;

Bν ¼ −ðCR þDRÞfðDD − CDÞBDAR þ ðDR − CRÞEDAD þ ½ADðCD −DDÞ þ 2BDED�BRg= detMR;

Cν ¼ fðARCR − B2
RÞD2

D þ ½−2ðARDR þ B2
RÞCD þ 2BRðCR þDRÞED�DD

þ ðARCR − B2
RÞC2

D − 2BRðCR þDRÞEDCD þ E2
DðC2

R −D2
RÞg= detMR;

Dν ¼ f−ðARDR þ B2
RÞD2

D þ ½−2ð−ARCR þ B2
RÞCD − 2BRðCR þDRÞED�DD

− ðARDR þ B2
RÞC2

D þ 2BRðCR þDRÞEDCD − E2
DðC2

R −D2
RÞg= detMR;

detMR ¼ ðCR þDRÞ½ARðCR −DRÞ − 2B2
R�: ð57Þ

Concerning the mass spectrum of the light neutrinos, it can be related to that of the RH neutrinos through the following
equation connecting the product of the square eigenmasses of Mν to those of MD and MR:

det ðM�
νMνÞ ¼ det ðMD†

ν MD
ν Þ2 det ðM�

RMRÞ−1: ð58Þ
As was the case for the effective neutrino squared mass matrix, we choose to write

MD†
ν MD

ν ¼

0
B@

aD bD −bD
b�D cD dD
−b�D dD cD

1
CA; M�

RMR ¼

0
B@

aR bR bR
b�R cR dR
−b�R dR cR

1
CA; ð59Þ

with
aD ¼ jADj2 þ 2jEDj2; aR ¼ jARj2 þ 2jBRj2;
bD ¼ A�

DBD þ E�
DCD − E�

DDD; bR ¼ A�
RBR þ B�

RCR − B�
RDR;

cD ¼ jBDj2 þ jCDj2 þ jDDj2; cR ¼ jBRj2 þ jCRj2 þ jDRj2;
dD ¼ −jBDj2 þ C�

DDD þD�
DCD; dR ¼ −jBRj2 þ C�

RDR þD�
RCR; ð60Þ

so that one can write concisely the mass spectrum of M�
νMν, M�

RMR, and MD†
ν MD

ν as

�
cν;R;D þ dν;R;D;

aν;R;D þ cν;R;D − dν;R;D
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaν;R;D þ dν;R;D − cν;R;DÞ2 þ 8jbν;R;Dj2

q �
: ð61Þ

The mass spectrum and its hierarchy type are determined by
the eigenvalues presented in Eq. (61). One of the simple
realizations which can be inferred from Eq. (58) is to adjust
the spectrum of M�

RMR so as to follow the same kind of
hierarchy as M�

νMν. However, this does not necessarily
imply thatMD†

ν MD
ν will behave similarly. Also, this does not

exhaust all possible realizations producing the desired
hierarchy, and what is stated is just a mere simple possibility.

C. Leptogenesis

In this kind of models, the unitary matrix diagonalizing
MR is not necessarily diagonalizing MD

ν . In fact, the
Majorana and Dirac neutrino mass matrices have different
forms dictated by the S symmetry, and the angle φ in
Eq. (35) depends on the corresponding mass parameters.
This point is critical in generating lepton asymmetry, in
contrast to other symmetries [17] where no freedom was
left for the mixing angles leading to the same form on MR

and MD
ν with identical diagonalizing matrices. This is

important when computing the CP asymmetry induced
by the lightest RH neutrinos, say N1, since it involves
explicitly the unitary matrix diagonalizing MR,

ε1 ¼
1

8πv2
1

ð ~MD†
ν

~MD
ν Þ11

X
j¼2;3

Imf½ð ~MD†
ν

~MD
ν Þ1j�2gF

�
m2

Rj

m2
R1

�
;

ð62Þ

where FðxÞ is the function containing the one loop vertex
and self-energy corrections [21], and which, for a hierar-
chical heavy neutrinos mass spectrum far from almost
degenerate, is given by

FðxÞ ¼ ffiffiffi
x

p �
1

1 − x
þ 1 − ð1þ xÞ ln

�
1þ 1

x

��
: ð63Þ

Assuming that there is a strong hierarchy among RH
neutrino masses with mR1 ≪ mR2 ≪ mR3, the CP asym-
metry can be approximated as
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ε1 ≃ −6 × 10−2
Imf½ð ~MD†

ν
~MD
ν Þ12�2g

v2ð ~MD†
ν

~MD
ν Þ11

mR1

mR2
: ð64Þ

The matrix ~MD
ν is the Dirac neutrino mass matrix in the

basis where the RH neutrinos are mass eigenstates,

~MD
ν ¼ MD

ν VRF0: ð65Þ

Here VR is the unitary matrix, defined up to a phase
diagonal matrix, that diagonalizes the symmetric matrix
MR, and F0 is a phase diagonal matrix chosen such that the
eigenvalues of MR are real and positive.
The generated baryon asymmetry can be written as

YB ≔
nB − nB̄

s
≃ 1.3 × 10−3 × ε1 ×Wð ~m;mR1Þ;

~m ¼ ð ~MD†
ν

~MD
ν Þ11

mR1
; ð66Þ

where nB; nB̄, and s are the number densities of baryons,
antibaryons, and entropy, respectively, and W is a dilution
factor that accounts for the washout of the total lepton
asymmetry due to the ΔL ¼ 1 inverse decays and the
lepton violating 2-2 scattering processes, and its value can
be determined by solving the Boltzmann equation.
However, analytical expressions for W have been obtained
for the cases where ( ~m>1 eV) and (1 eV> ~m>10−3 eV),
known as the strong and the weak washout regimes,
respectively [22]. For instance, in the strong washout
regime (SW), W is approximated as

WðSWÞ ≃
�
10−3 eV

2 ~m

�
1.2

: ð67Þ

In our case where the S symmetry imposes a particular
form on the symmetric MR [Eq. (56)], we can take VR as
being the rotation matrix Uþ of Eq. (31) corresponding to

θR23 ¼ π=4; θR12 ¼ φR ¼ 1

2
tan−1

�
2

ffiffiffi
2

p jbRj
cR − aR − dR

�
;

θR13 ¼ 0; ξR ¼ ArgðbRÞ: ð68Þ

As to the diagonal phase matrix, F0 ¼
Diagðe−iα1 ; e−iα2 ; e−iα3Þ, it can be chosen according to
Eq. (37) to be

α1 ¼
1

2
Arg½ARc2φR

−
ffiffiffi
2

p
s2φR

e−iξRBRþðCR−DRÞs2φR
e−2iξR �;

α2 ¼
1

2
Arg½ARs2φR

þ
ffiffiffi
2

p
s2φR

e−iξRBRþðCR−DRÞc2φR
e−2iξR �;

α3 ¼
1

2
ArgðcRþdRÞ: ð69Þ

We assume here that the resulting mass spectrum ofMR via
the diagonalizing matrix VRF0 is in increasing order;
otherwise, one needs to apply a suitable permutation on
the columns of the latter matrix in order to get this. Note
here that had the matrix VR diagonalizedMD

ν , which would
have meant that N ¼ V†

RM
D
ν VR is diagonal, then we would

have reached a diagonal ~MD†
ν

~MD
ν equaling a product of

diagonal matrices, and no leptogenesis,

~MD†
ν

~MD
ν ¼ F†

0ðV†
RM

D†
ν VRÞðV†

RM
D
ν VRÞF0 ¼ F†

0N
†NF0:

ð70Þ

In contrast, we get in our case

ð ~MD†
ν

~MD
ν Þ12 ¼ eiðα1−α2Þ½−

ffiffiffi
2

p
eiξRðADB�

D þ EDC�
D − EDD�

DÞs2φR
þ

ffiffiffi
2

p
e−iξRðA�

DBD − E�
DDD þ E�

DCDÞ
þ sφR

cφR
ð−2jBDj2 − jCDj2 − jDDj2 þ 2jEDj2 þ jADj2 þ C�

DDD þD�
DCDÞ�;

ð ~MD†
ν

~MD
ν Þ13 ¼ 0;

ð ~MD†
ν

~MD
ν Þ11 ¼ c2φR

ðjADj2 þ 2jEDj2Þ þ s2φR
ð2jBDj2 þ jCDj2 þ jDDj2 − C�

DDD − CDD�
DÞ

−
ffiffiffi
2

p
sφR

cφR
ðADB�

De
iξR − EDD�

De
iξR þ EDC�

De
iξR þ H:c:Þ: ð71Þ

We see that ð ~MD†
ν

~MDÞ12 is complex in general, and the question is asked whether one can tune it to produce the correct CP
asymmetry. Clearly, the phase of ð ~MD†

ν
~MD
ν Þ12 would be the triggering factor in producing the baryon asymmetry. More

explicitly,

Im½ðM†D
ν MD

ν Þ12�2 ∝ sin ½2ðϕþ α1 − α2Þ�; ð72Þ

where ϕ is the phase of the entry ðV†
RM

D
ν VRÞ12.
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Considering that mR1 < 1014 GeV and the Yukawa neutrino couplings are not too small compared to the one that makes
the seesaw mechanism more natural, which corresponds to ~m > 10−3 eV, hence the baryon asymmetry can be expressed as

YB ≃ 1.1 × 10−9
�
r12
0.1

��
mR1

1013 GeV

��
10−3 eV

~m

�
0.2
�jðMD†

ν MD
ν Þ12j

ðMD†
ν MD

ν Þ11

�2
sin ½2ðϕþ α1 − α2Þ� ð73Þ

with r12 ¼ mR1=mR2, which parametrizes how strong is the hierarchy of the RH neutrinos mass spectrum. If the matrix

elements ðMD†
ν MD

ν Þ11 and ðMD†
ν MD

ν Þ12 are of the same order, then, for ~m of the order of v2
ΛR

≃ 0.3 eV, we have

YB ≃ 0.35 × 10−9
�
r12
0.1

��
mR1

1013 GeV

�
sin ½2ðϕþ α1 − α2Þ�: ð74Þ

So, for hierarchical heavy RH neutrino mass spectrum and
withmR1 > 1013 GeV one can adjust the value of Majorana
phase difference ðα1 − α2Þ to obtain YB equal to the
observed value [23].
The above estimate for the baryon asymmetry assumed

jðMD†
ν MD

ν Þ12j=ðMD†
ν MD

ν Þ11 ∼ 1, and it is not generic by any
mean. However, from Eq. (73) it is clear that one can easily
obtain a value of YB that is in agreement with the
observation, corresponding to many other possible choices
for the values of the matrix elements of ðMD†

ν MD
ν Þ, and the

mass of the lightest RH neutrino [17].

VI. A POSSIBLE DEVIATION FROM THE μ-τ
SYMMETRY THROUGH Sþ AND ITS

CONSEQUENCES

We saw that exact μ-τ symmetry implied a vanishing
value for the mixing angle θ13. Recent oscillation data
pointing to a small but nonvanishing value for this angle
suggest then a deviation on the exact symmetry texture in
order to account for the observed mixing. We showed in
[16] how “minimal” perturbed textures disentangling the
effects of the perturbations can account for phenomenol-
ogy. We shall consider now, within the scheme of the type-I

seesaw, a specific perturbed texture imposed on Dirac
neutrino mass matrix MD

ν and parametrized by only one
small parameter α, and show how it can resurface on the
effective neutrino mass matrix Mν, which is known to be
phenomenologically viable. We compute then the “per-
turbed” eigenmasses and mixing angles to first order in α,
whereas we address in the next section the question of
finding numerically a viable pattern forMD

ν andMR leading
to Mν consistent with the phenomenology. Thus, we
assume a perturbed MD

ν of the form

MD
ν ¼

0
B@

AD BDð1þ αÞ −BD

ED CD DD

−ED DD CD

1
CA: ð75Þ

The small parameter α affects only one condition defining
the exact S-symmetry texture, and can be expressed as

α ¼ −
ðMD

ν Þ12 þ ðMD
ν Þ13

ðMD
ν Þ13

: ð76Þ

Applying the seesaw formula of Eq. (51) withMR given by
Eq. (56) we get then

Mνð1; 1Þ ¼ M0
νð1; 1Þ þ α2

B2
DðCRAR − B2

RÞ
detMR

þ α
2BDðCR þDRÞðARBD − BRADÞ

detMR
;

Mνð1; 2Þ ¼ M0
νð1; 2Þ þ α

BD½ARðCRCD −DRDDÞ − B2
RðDD þ CDÞ − EDBRðDR þ CRÞ�
detMR

;

Mνð1; 3Þ ¼ M0
νð1; 3Þ þ α

BD½ARðCRDD −DRCDÞ − B2
RðDD þ CDÞ þ EDBRðDR þ CRÞ�
detMR

;

Mνð2; 2Þ ¼ M0
νð2; 2Þ ¼ M0

νð3; 3Þ ¼ Mνð3; 3Þ;
Mνð2; 3Þ ¼ M0

νð2; 3Þ; ð77Þ
whereM0

ν is the “unperturbed” effective neutrino mass matrix (corresponding to α ¼ 0) and thus can be diagonalized byU0þ
of Eq. (31) corresponding to the following angles,:

θ023 ¼ π=4; θ012 ¼ φ0 ¼ 1

2
tan−1

�
2

ffiffiffi
2

p jb0νj
c0ν − a0ν − d0ν

�
; θ013 ¼ 0; and ξ0 ¼ Argðb0νÞ: ð78Þ
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Here, the superscript 0 denotes quantities corresponding to
the unperturbed effective neutrino mass matrix M0

ν.
The mass matrix Mν can be organized in the following

form,

Mν ¼

0
B@

Aν Bνð1þ χÞ −Bν

Bνð1þ χÞ Cν Dν

−Bν Dν Cν

1
CA; ð79Þ

where the perturbation parameter χ is given by

χ ¼ −
ðMνÞ12 þ ðMνÞ13

ðMνÞ13
: ð80Þ

The two parameters χ and α are generally complex and of
the same order provided we do not have unnatural
cancellations between the mass parameters of MD

ν and

MR. Nevertheless and without loss of generality, α can be
made positive and real. Furthermore, as will be explained
later in our numerical investigation, α can be adjusted to
have the same value as jχj.
To compute the new eigenmasses and mixing angles of

Mν, we write it in the following form working only to first
order in α:

Mν ¼ M0
ν þMα; ð81Þ

where the matrix Mα is given as

Mα ¼

0
B@

α11 α12 α13

α12 0 0

α13 0 0

1
CA; ð82Þ

and the nonvanishing entries of Mα are found to be

α11 ¼
2αBDðCR þDRÞðARBD − BRADÞ

detMR
;

α12 ¼
αBD½ARðCRCD −DRDDÞ − B2

RðDD þ CDÞ − EDBRðDR þ CRÞ�
detMR

;

α13 ¼
αBD½ARðCRDD −DRCDÞ − B2

RðDD þ CDÞ þ EDBRðDR þ CRÞ�
detMR

: ð83Þ

Note here that Mνð1; 1Þ gets distorted by terms of order α
and α2. However, this will not “perturb” the relations
defining μ-τ symmetry, which are expressed only through
Mνð1; 2Þ;Mνð1; 3Þ;Mνð2; 2Þ, and Mνð3; 3Þ.
We seek now a unitary matrix Q diagonalizing M�

νMν,
and we write it in the form

Q ¼ U0þð1þ IϵÞ; Iϵ ¼

0
B@

0 ϵ1 ϵ2

−ϵ�1 0 ϵ3

−ϵ�2 −ϵ�3 0

1
CA; ð84Þ

where Iϵ is an anti-Hermitian matrix due to the unitarity of
Q. Imposing the diagonalization condition on M�

νMν, and
knowing that U0þ diagonalizes M0�

ν M0
ν, we have

Q†M�
νMνQ ¼ DiagðjMDiag

ν11 j2; jMDiag
ν22 j2; jMDiag

ν33 j2Þ;
U0†

þM0�
ν M0

νU0þ ¼ DiagðjM0Diag
ν11 j2; jM0Diag

ν22 j2; jM0Diag
ν33 j2Þ:

ð85Þ
Keeping only terms up to first order in α, which is consistent
with aiming to compute Iϵ up to this order in α and thus with
dropping higher orders of Iϵ, we get the condition

i; j ∈ f1; 2; 3g; i ≠ j; ðQ†M�
νMνQÞij ¼ 0 ⇒ ½Iϵ;M0Diag�

ν M0Diag
ν �ij ¼ ½U0†

þ ðM0�
ν Mα þM�

αM0
νÞU0þ�ij: ð86Þ

One can solve analytically for ϵ1, ϵ2, ϵ3 to get

ϵ1 ¼
1

jM0Diag
ν22 j2 − jM0Diag

ν11 j2
�

1ffiffiffi
2

p e−iξ
0 ½ðα�13 − α�12ÞðD0

ν − C0
νÞ − A0�

ν ðα13 − α12Þ þ 2α�11B
0
ν�c2φ

þ 2Reðα�11A0
νÞsφcφ −

1ffiffiffi
2

p eiξ
0 ½ðα13 − α12ÞðD0�

ν − C0�
ν Þ − A0

νðα�13 − α�12Þ þ 2α11B0�
ν �s2φ

�
;

ϵ2 ¼
1

jM0Diag
ν33 j2 − jM0Diag

ν11 j2
�

1ffiffiffi
2

p ½ðα13 þ α12ÞA0�
ν þ ðC0

ν þD0
νÞðα�13 þ α�12Þ�cφ−eiξ

0

B0�
ν ðα12 þ α13Þsφ

�
;

ϵ3 ¼
1

jM0Diag
ν33 j2 − jM0Diag

ν22 j2
�

1ffiffiffi
2

p ½ðα13 þ α12ÞA0�
ν þ ðC0

ν þD0
νÞðα�13 þ α�12Þ�sφþe−iξ

0

B0�
ν ðα12 þ α13Þcφ

�
; ð87Þ
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and the resulting diagonal matrix MDiag
ν ¼ QTMνQ is such that

MDiag
ν11 ¼ M0Diag

ν11 þ c2
φ0α11 −

ffiffiffi
2

p
sφ0cφ0ðα12 − α13Þe−iξ0 ;

MDiag
ν22 ¼ M0Diag

ν22 þ s2
φ0α11 þ

ffiffiffi
2

p
sφ0cφ0ðα12 − α13Þe−iξ0 ;

MDiag
ν33 ¼ M0Diag

ν33 ; ð88Þ

where the diagonalized mass matrix entries M0Diag
ν11 , M0Diag

ν22 , and M0Diag
ν33 can be inferred from those in Eq. (37) to be

M0Diag
ν11 ¼ A0

νc2φ0 −
ffiffiffi
2

p
s2φ0e−iξ

0

B0
ν þ ðC0

ν −D0
νÞs2φ0e−2iξ

0

;

M0Diag
ν22 ¼ A0

νs2φ0 þ
ffiffiffi
2

p
s2φ0e−iξ

0

B0
ν þ ðC0

ν −D0
νÞc2φ0e−2iξ

0

;

M0Diag
ν33 ¼ C0

ν þD0
ν: ð89Þ

Thus one can obtain the squared masses up to order α as

m2
1 ¼ jM0Diag

ν11 j2 −
ffiffiffi
2

p
Refe−iξ0 ½ðα�13 − α�12ÞðD0

ν − C0
νÞ − A0�

ν ðα13 − α12Þ þ 2α�11B
0
ν�sφcφg þ 2Re½A0

να
�
11c

2
φ þ ðα�12 − α�13ÞB0

ν�;
m2

2 ¼ jM0Diag
ν22 j2 þ

ffiffiffi
2

p
Refe−iξ0 ½ðα�13 − α�12ÞðD0

ν − C0
νÞ − A0�

ν ðα13 − α12Þ þ 2α�11B
0
ν�sφcφg þ 2Re½A0

να
�
11c

2
φ þ ðα�12 − α�13ÞB0

ν�;
m2

3 ¼ jM0Diag
ν33 j2: ð90Þ

To extract the mixing and phase angles corresponding to Q ¼ U0þð1þ IϵÞ, the matrix Q should be multiplied by a
suitable diagonal phase matrix to ensure that the eigenvalues ofMν are real and positive. Moreover, as mentioned before, the
charged lepton fields should be properly rephased in order that one can match the adopted parametrization in Eq. (4). Thus,
identifying Q, after having been multiplied by the diagonal phase matrix and made to have a third column of real values,
with the VPMNS one can get the perturbed mixing angles

t12 ≈ tφ0

				1þ ϵ1
tφ0

þ ϵ�1tφ0

				; t13 ≈ jϵ2cφ0 þ ϵ3sφ0 j; t23 ≈ j1 − 2ϵ2sφ0e−iξ
0 þ 2ϵ3cφ0e−iξ

0 j; ð91Þ

and the perturbed phases

δ ≈ 2π − ξ0 − Argðϵ�1cφ0e−iξ
0 þ ϵ�2Þ;

ρ ≈ π − Arg½ðcφ0 − ϵ�1sφ0Þðϵ�2cφ0 þ ϵ�3sφ0Þ� − 1

2
ArgðMDiag

ν33 MDiag�
ν11 Þ;

σ ≈ π − Arg½ðsφ0 þ ϵ1cφ0Þðϵ�2cφ0 þ ϵ�3sφ0Þ� − 1

2
ArgðMDiag

ν33 MDiag�
ν22 Þ: ð92Þ

VII. NUMERICAL INVESTIGATION FOR THE
DEVIATION FROM THE Sþ-REALIZED μ-τ

SYMMETRY

The numerical investigation turns out to be quite subtle
due to the huge number of involved parameters that
describe the relevant mass matrices and the possible
deviation. Therefore, we start by studying numerically
the perturbed mass matrix texture at the level of the
effective light neutrino mass matrix, then, working back-
ward, we reconstruct the Dirac and Majorana neutrino mass
matrices together with the parameter α. For our numerical

purpose, it is convenient to recast the effective neutrino
light mass matrix, by using Eqs. (2)–(5), into the form

Mν ab ¼
X3
j¼1

UajUbjλj; ð93Þ

where λ1, λ2, and λ3 are defined as

λ1 ¼ m1e2iρ; λ2 ¼ m2e2iσ; λ3 ¼ m3: ð94Þ
Then the texture characterized by the deviation χ, where χ
is a complex parameter equal to jχjeiθ, can be written as
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Mν12 þMν13ð1þ χÞ ¼ 0 ⇒
X3
j¼1

½U1jU2j þ ðU1jU3jÞð1þ χÞ�λj ¼ 0;

⇒ A1λ1 þ A2λ2 þ A3λ3 ¼ 0;

Mν22 −Mν33 ¼ 0 ⇒
X3
j¼1

ðU2jU2j −U3jU3jÞλj ¼ 0;

⇒ B1λ1 þ B2λ2 þ B3λ3 ¼ 0; ð95Þ

where

Aj ¼ U1jU2j þU1jU3jð1þ χÞ; and Bj ¼ U2
2j − U2

3j; ðno sum over jÞ: ð96Þ

Then the coefficients A and B can be written explicitly in terms of mixing angles and Dirac phase as

A1 ¼ −cθ12cθ13ðcθ12cθ23sθ13 − sθ12sθ23e
−iδÞð1þ χÞ − cθ12cθ13ðcθ12sθ23sθ13 þ sθ12cθ23e

−iδÞ;
A2 ¼ −sθ12cθ13ðsθ12cθ23sθ13 þ cθ12sθ23e

−iδÞð1þ χÞ − sθ12cθ13ðsθ12sθ23sθ13 − cθ12cθ23e
−iδÞ;

A3 ¼ sθ13cθ23cθ13ð1þ χÞ þ sθ13sθ23cθ13 ;

B1 ¼ ð−cθ12cθ23sθ13 þ sθ12sθ23e
−iδÞ2 − ðcθ12sθ23sθ13 þ sθ12cθ23e

−iδÞ2;
B2 ¼ ðsθ12cθ23sθ13 þ cθ12sθ23e

−iδÞ2 − ðsθ12sθ23sθ13 − cθ12cθ23e
−iδÞ2;

B3 ¼ c2θ23c
2
θ13

− s2θ23c
2
θ13
: ð97Þ

Assuming λ3 ≠ 0, Eqs. (95) can be solved to yield λ’s
ratios as

λ1
λ3

¼ A3B2 − A2B3

A2B1 − A1B2

;
λ2
λ3

¼ A1B3 − A3B1

A2B1 − A1B2

: ð98Þ

From the λ’s ratios, one can get exact results for the mass
ratiosm13 ≡ m1

m3
andm23 ≡ m2

m3
aswell as for the phases ρ and σ

in termsof themixingangles, the remainingDiracphaseδ, and
the parameter χ. In addition, one can compute the expressions
for many phenomenologically relevant quantities such as

Rν≡ δm2

jΔm2j ; Σ¼
X3
i¼1

mi; hmie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðjVeij2m2
i Þ

vuut ;

hmiee¼ jm1V2
e1þm2V2

e2þm3V2
e3j ¼ jMν11j: ð99Þ

Here, Rν characterizes the hierarchy of the solar and atmos-
pheric mass square differences, while the effective electron-
neutrino mass hmie and the effective Majorana mass term
hmiee are sensitive to the absolute neutrino mass scales and
can be respectively constrained from reactor nuclear experi-
ments on beta-decay kinematics and neutrinoless double-beta
decay. As to themass “sum” parameterΣ, its upper bound can
be constrained from cosmological observations. As regards
the values of the nonoscillation parameters hmie, hmiee, and
Σ,we adopt the less conservative 2-σ range, as reported in [24]
for hmie and Σ, and in [25] for hmiee,

hmie < 1.8 eV; Σ < 1.19 eV;

hmiee < 0.34–0.78 eV: ð100Þ
The exact expressions turn out to be cumbersome to be

presented, but for the sake of illustration, we state the
relevant expressions up to leading order in sθ13 as

m13 ≈ 1þ 2sδsθjχjsθ13
tθ12T

; m23 ≈ 1 −
2tθ12sδsθjχjsθ13

T
; ρ ≈ δþ sδsθ13ðsθ23cθ23 jχj2 þ jχjcθð−c2θ23 þ s2θ23Þ − c2θ23Þ

tθ12T
;

Rν ≈ −
8sδsθjχjsθ13

s2θ12T
; σ ≈ δ −

sδtθ12sθ13ðsθ23cθ23 jχj2 þ jχjcθð−c2θ23 þ s2θ23Þ − c2θ23Þ
T

; m2
23 −m2

13 ≈ −
8sδsθjχjsθ13

s2θ12T
;

hmie ≈m3

�
1þ 4sθsδjχjsθ13

t2θ12T

�
; hmiee ≈m3

�
1þ 4sθsδjχjsθ13

t2θ12T1

�
; ð101Þ
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where T is defined as

T ¼ jχj2s2θ23 þ 2jχjcθsθ23ðsθ23 − cθ23Þ þ 1 − s2θ23 : ð102Þ

Our expansion in terms of sθ13 is justified since sθ13 is
typically small for phenomenological acceptable values
where the best fit for sθ13 ≈ 0.15. This kind of expansion in
terms of sθ13 , in the case of partial μ-τ symmetry, has many
subtle properties that were fully discussed in [16], and there
is no need to repeat them here.
For the numerical generation of Mν consistent with

those relations in Eq. (95), we vary θ12, θ13, and δm2

within their allowed ranges at the 3-σ level precision
reported in Table I, while θ23 is varied in the range [43°,
47°] in order to keep it not far away from the value
predicted upon imposing exact μ-τ symmetry. The Dirac
phase δ and the phase θ are varied in their full ranges,
while the parameter jχj characterizing the small devia-
tion from the exact μ-τ symmetry is consistently kept
small satisfying jχj ≤ 0.3. Scanning randomly the seven-
dimensional free parameter space (reading “random”
values of θ12; θ23; θ13; δ; δm2; θ; jχj in their prescribed
ranges), determining then the A;B’s coefficients
[Eq. (97)], and producing the mass ratios and
Majorana phases as determined by Eqs. (98) allow us,
after computing the quantities of Eq. (99), to confront the
theoretical predictions of the texture versus the exper-
imental constraints in Table I, and then to figure out the
admissible 7-dim parameter space region. Knowing the
masses and the angles in the admissible region allows us
to reconstruct the whole neutrino mass matrix Mν which,
as should be stressed, is based on numerical calculations
using the exact formulas in Eqs. (98) and (99).
The resulting mass patterns are found to be classifiable

into three categories:

(i) Normal hierarchy: characterized by m1 < m2 < m3

and denoted by N satisfying numerically the
bound

m1

m3

<
m2

m3

< 0.7: ð103Þ

(ii) Inverted hierarchy: characterized by m3 < m1 < m2

and denoted by I satisfying the bound

m2

m3

>
m1

m3

> 1.3: ð104Þ

(iii) Degenerate hierarchy (meaning quasidegeneracy):
characterized by m1 ≈m2 ≈m3 and denoted by D.
The corresponding numeric bound is taken to be

0.7 <
m1

m3

<
m2

m3

< 1.3: ð105Þ

Moreover, we studied for each pattern the possibility of
having a singular (noninvertible) mass matrix characterized
by one of the masses (m1 and m3) being equal to zero (the
data prohibit the simultaneous vanishing of two masses and
thus m2 cannot vanish). It turns out that the violation of
exact μ-τ symmetry does not allow for the singular neutrino
mass matrix. The reason behind this is rather simple and
can be clarified through examining the mass ratio expres-
sions m2

m3
and m2

m1
that, respectively, characterize the cases

m1 ¼ 0 and m3 ¼ 0. The mass ratio expressions can be
evaluated in terms of A or B coefficients defined in Eq. (97)
and can also be related to Rν leading to the following
results, for the case m1 ¼ 0,

m2

m3

¼

8>>>>>>>>><
>>>>>>>>>:

			 A3

A2

			 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχj2c2θ23þ2jχjcθcθ23 ðsθ23þcθ23 Þþ1þs2θ23
jχj2s2θ23þ2jχjcθcθ23 ðsθ23−cθ23 Þþ1−s2θ23

r
sθ13

sθ12cθ12
þOðs2θ13Þ;

≈
ffiffiffiffiffiffiffiffiffiffiffi
1þs2θ23
1−s2θ23

r
sθ13

sθ12cθ12
þOðsθ13 jχjÞ;			 B3

B2

			 ≈ 1
c2θ12

ð1þ 2tθ12t2θ23cδsθ13Þ þOðs2θ13Þ;

9>>>>>>>>>=
>>>>>>>>>;

≈
ffiffiffiffiffi
Rν

p
; ð106Þ

and for the case m3 ¼ 0,

m2

m1

¼

8>>>>>>>><
>>>>>>>>:

			 A1

A2

			 ≈ 1 − jχj2sθ23cθ23cδþjχj½cδcθðs2θ23−c2θ23 Þþsθsδ�−cδc2θ23
jχj2s2θ23þ2jχjcθsθ23 ðsθ23−cθ23 Þþ1−s2θ23

sθ13
sθ12cθ12

þOðs2θ13Þ;

≈ 1þ cδc2θ23 sθ13
sθ12cθ12 ð1−s2θ23 Þ

þOðsθ13 jχjÞ;			 B1

B2

			 ≈ t2θ12

�
1þ 2t2θ23cδsθ13

sθ12cθ12

�
þOðs2θ13Þ;

9>>>>>>>>=
>>>>>>>>;

≈ 1þ Rν
2
: ð107Þ
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The mass ratio m2

m3
for the case m1 ¼ 0 should be

approximately equal to
ffiffiffiffiffi
Rν

p
, which means that it should

be much less than one. The expression obtained from the
A’s, although it starts from Oðsθ13Þ, cannot be tuned to a
small value compatible with

ffiffiffiffiffi
Rν

p
for any admissible

values for the mixing angles. The mixing angle θ13 plays
the decisive role in this failure for not being small
enough as Table I shows. Thus, there is no need to
examine the second expression derived from the B’s, and
we conclude the impossibility of having m1 ¼ 0 with an
approximate μ-τ symmetry. Regarding the case m3 ¼ 0,
the mass ratio m2

m1
should be approximately equal to ð1þ

Rν
2
Þ and accordingly would be slightly greater than one.

Each one of the two available expressions providing the
mass ratio can be separately tuned to fit the desired value
within the admissible ranges for the mixing angles and
the Dirac phase δ. However, the compatibility of the two
expressions purports the condition,

c2θ23
2s2θ23 ð1−s2θ23 Þ

≈ Rν,

which cannot be met for any admissible choice for
θ23. Our numerical study confirms this conclusion where
all the phenomenologically acceptable ranges for mixing
angles and Dirac phase are scanned, but no solutions
could be found satisfying the mass constraint expressed
in Eqs. (106) and (107). Obviously, our conclusions
remain the same when we consider the exact μ-τ
symmetry corresponding to χ ¼ 0.
Regarding the nonsingular pattern, one can deduce

some restrictions concerning mixing angles and phase
just by considering the approximate expression for
Rν as given in Eq. (102). The parameter Rν must be
positive, nonvanishing (Rν ≈ 0.03) and its value at the
3 − σ level is reported in Table I. This clearly requires
nonvanishing values for sθ13, sδ, sθ, and jχj. The
nonvanishing of sθ13 implies θ13 ≠ 0, which is phenom-
enologically favorable, while the nonvanishing of sδ
and sθ excludes 0, π, and 2π for both δ and θ. The
reported allowed range for θ and δ in Table II confirms
these exclusions. The nonvanishing of jχj is naturally
expected; otherwise, there would not be a deviation
from exact μ-τ symmetry. These conclusions remain
valid if one used the exact expression for Rν instead of
the first order expression. Explicit computations of Rν

using its exact expression reveal that θ23 cannot be
exactly equal to π

4
—otherwise, Rν would be zero—but

nevertheless θ23 can possibly stay very close to π
4
, and

this again is confirmed by the reported allowed values
for θ23 in Table II.
For the sake of illustration, we show correlations

involving hmiee against θ, δ, jχj, and J where J is the
Jarlskog rephasing invariant quantity which is given by
J ¼ sθ12cθ12sθ23cθ23sθ13c

2
θ13

sin δ [26]. The quantity hmiee
is extremely important as a measure of neutrinoless
double beta decay and provides a clear signature for the
true nature of the neutrino. The nonvanishing value for TA
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TABLE III. Numerically generated relevant parameters for Mν, MR, and MD
ν . Light neutrino masses are evaluated in units of eV, Dirac neutrino masses in units of GeV, and

Majorana masses in units of 1013 GeV. The angles are evaluated in degrees.

Degenerate hierarchy
Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 φ θ23 θ13
0.8187

þ 0.0085i
−0.0278
− 0.0300i

0.4165
− 0.4094i

0.3890
þ 0.4097i

0.8188
þ 0.0086i

−0.0297
− 0.0313i

0.4165
− 0.4094i

0.3890
þ 0.4097i

0.8187
þ 0.0086i

−0.0337
− 0.0232i

0.4165
− 0.4093i

0.3890
þ 0.4096i

−0.0238
− 0.0380i

0.1089
− 0.0243i

0.1116 32.63 34.33 44.49 9.44

0.8045
− 0.0260i

−0.0229
þ 0.0331i

0.5365
þ 0.3771i

0.2557
− 0.3780i

0.8046
− 0.0259i

−0.0248
þ 0.0366i

0.5365
þ 0.3771i

0.2557
− 0.3780i

0.8046
− 0.0259i

−0.0185
þ 0.0358i

0.5365
þ 0.3771i

0.2557
− 0.3780i

−0.0293
þ 0.0339i

0.1960
− 0.0257i

0.1977 35.81 34.53 44.33 9.64

0.5440
þ 0.0119i

−0.0351
− 0.0074i

0.0152
− 0.1167i

0.5077
þ 0.1169i

0.5441
þ 0.0118i

−0.0376
− 0.0087i

0.0152
− 0.1167i

0.5077
þ 0.1169i

0.5440
þ 0.0118i

−0.0320
− 0.0162i

0.0152
− 0.1166i

0.5076
þ 0.1169i

−0.0407
þ 0.0002i

0.1558
þ 0.0417i

0.1613 32.50 34.60 44.55 8.43

δν δ0ν ρexa ρper σexa σper m0
1 m0

2 m0
3

m1 m2 m3 mR3 mR2 mR1 mD1 mD2 mD3

42.36 42.76 1.69 2.31 176.94 178.04 0.2511 0.2517 0.2466 0.2515 0.2517 0.2465 8.22 8.21 8.06 144.22 143.23 140.96
142.75 142.72 0.68 1.23 175.93 176.79 0.2469 0.2475 0.2426 0.2473 0.2475 0.2424 8.0813 8.0735 7.9223 141.88 140.75 138.64
260.66 259.97 178.79 177.89 5.18 3.63 0.1671 0.1679 0.1601 0.1676 0.1678 0.1599 5.48 5.47 5.23 96.37 95.15 91.50

Normal hierarchy
Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 φ θ23 θ13
0.1287

− 0.0021i
0.0538
þ 0.0038i

0.0485
− 0.0115i

0.1758
þ 0.0115i

0.1297
− 0.0016i

0.0611
þ 0.0040i

0.0485
− 0.0115i

0.1758
þ 0.0115i

0.1294
− 0.0016i

0.0540
þ 0.0001i

0.0485
− 0.0115i

0.1758
þ 0.0115i

0.0609
þ 0.0078i

0.2700
− 0.0192i

0.2707 35.75 33.03 46.94 7.86

0.1333
− 0.0148i

0.0480
þ 0.0104i

0.0544
− 0.0355i

0.1689
þ 0.0353i

0.1344
− 0.0142i

0.0553
þ 0.0115i

0.0544
− 0.0355i

0.1689
þ 0.0353i

0.1341
− 0.0143i

0.0486
þ 0.0070i

0.0544
− 0.0355i

0.1689
þ 0.0353i

0.0546
þ 0.0150i

0.2985
− 0.0213i

0.2992 35.44 32.62 46.87 8.08

0.1325
þ 0.0127i

0.0488
− 0.0093i

0.0537
þ 0.0318i

0.1716
− 0.0316i

0.1337
þ 0.0122i

0.0562
− 0.0103i

0.0537
þ 0.0318i

0.1716
− 0.0316i

0.1334
þ 0.0122i

0.0494
− 0.0058i

0.0538
þ 0.0317i

0.1715
− 0.0316i

0.0555
− 0.0140i

0.2978
þ 0.0221i

0.2986 36.08 33.02 46.84 7.93

δν δ0ν ρexa ρper σexa σper m0
1 m0

2 m0
3

m1 m2 m3 mR2 mR1 mR3 mD1 mD2 mD3

97.63 99.65 167.90 177.15 24.17 78.78 0.0457 0.0461 0.0687 0.0471 0.0479 0.0691 1.57 1.55 2.24 27.71 25.82 39.24
82.97 84.76 166.26 175.94 19.23 99.86 0.0461 0.0465 0.0684 0.0474 0.0482 0.0688 1.58 1.55 2.23 27.91 26.02 39.08
275.52 273.35 13.75 4.18 160.58 88.91 0.0460 0.0464 0.0690 0.0473 0.0481 0.0694 1.58 1.55 2.25 27.86 25.94 39.43

Inverted hierarchy
Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 φ θ23 θ13
0.2322

þ 0.0012i
−0.0613
− 0.0085i

−0.0165
− 0.0282i

0.2113
þ 0.0283i

0.2329
þ 0.0016i

−0.0674
− 0.0090i

−0.0165
− 0.0282i

0.2113
þ 0.0283i

0.2326
þ 0.0016i

−0.0617
− 0.0046i

−0.0164
− 0.0282i

0.2113
þ 0.0283i

−0.0669
− 0.0131i

0.1960
− 0.0129i

0.1964 33.63 23.15 43.17 8.03

0.2158
− 0.0033i

−0.0600
− 0.0021i

−0.0194
− 0.0058i

0.1987
þ 0.0058i

0.2165
− 0.0030i

−0.0658
− 0.0019i

−0.0194
− 0.0058i

0.1987
þ 0.0058i

0.2162
− 0.0029i

−0.0600
þ 0.0023i

−0.0194
− 0.0058i

0.1987
þ 0.0058i

−0.0657
− 0.0064i

0.1909
− 0.0142i

0.1914 32.66 24.02 43.18 7.69

0.2219
− 0.0043i

−0.0603
− 0.0002i

−0.0200
þ 0.0003i

0.2044
− 0.0004i

0.2226
− 0.0040i

−0.0663
þ 0.0001i

−0.0200
þ 0.0003i

0.2044
− 0.0004i

0.2223
− 0.0039i

−0.0602
þ 0.0040i

−0.0199
þ 0.0003i

0.2043
− 0.0004i

−0.0664
− 0.0041i

0.1990
− 0.0140i

0.1995 35.68 24.00 43.16 7.93

δν δ0ν ρexa ρper σexa σper m0
1 m0

2 m0
3

m1 m2 m3 mR3 mR2 mR1 mD1 mD2 mD3

73.18 62.18 7.52 5.98 162.91 158.33 0.0758 0.0769 0.0597 0.0773 0.0778 0.0593 2.54 2.52 1.95 44.75 43.14 34.10
76.62 67.45 6.86 5.94 160.97 157.89 0.0708 0.0719 0.0549 0.0723 0.0729 0.0546 2.38 2.35 1.79 41.88 40.33 31.38
81.34 69.41 7.58 5.69 163.23 158.12 0.0726 0.0737 0.0565 0.0741 0.0746 0.0561 2.44 2.41 1.84 42.91 41.31 32.27
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hmiee, if experimentally confirmed, will definitely estab-
lish the nature of the neutrino as being a Majorana
particle. But so far, no convincing experimental evi-
dence of the decay exists. Other important correlations
are also displayed for those involving the mass ratios
m12 and m23 against m3, which could reveal the
hierarchy strength.
Figures 1(a) and 1(b) clearly reveal the allowed band

regions for both θ and δ, which are quite distinct in the
case of normal and inverted hierarchy, and in addition
they show also the excluded region around 0 and π. This
behavior can be mainly attributed to the constraint
imposed by the parameter Rν. Figure 1(c) does not point
out any clear correlation between hmiee and jχj, but

remarkably one can realize that in the cases of inverted
and normal hierarchy the parameter jχj generally tends to
be larger than what is required to be in the quasidegen-
erate case. Regarding the correlation of hmiee against J
[Fig. 1(d)], it is, as expected, another manifestation of the
correlation hmiee against δ, since in our investigation the
size of J is only controlled by δ while it is apparently
insensitive to the other mixing angles. The values of
hmiee cannot attain the zero limit in all types of
hierarchy, which is evident from the graphs or explicitly
from the corresponding covered ranges in Table II. There
are some characteristic features for the possible hierar-
chies as can be observed from Figs. 1(e) and 1(f), and
which turn out to be crucial in deriving a simple formula

100 200 300

0.1

0.2

0.3

θ    (a−D)
m

ee

100 200 300

0.03

0.035

0.04

0.045

θ   (a−N)
44 45 46

0.062
0.064
0.066
0.068

0.07
0.072

θ   (a−I)

100 200 300

0.1

0.2

0.3

δ    (b−D)

m
ee

100 200 300

0.03

0.035

0.04

0.045

δ   (b−N)
100 150 200 250

0.062
0.064
0.066
0.068

0.07
0.072

δ    (b−I)

0.05 0.1 0.15

0.1

0.2

0.3

|χ|    (c−D)

m
ee

0.22 0.24 0.26 0.28

0.03

0.035

0.04

0.045

|χ|  (c−N)
0.15 0.16 0.17 0.18 0.19

0.062
0.064
0.066
0.068

0.07
0.072

|χ|   (c−I)

−0.02 0 0.02

0.1

0.2

0.3

J    (d−D)

m
ee

−0.02 0 0.02

0.03

0.035

0.04

0.045

J   (d−N)
−0.02 0 0.02

0.062
0.064
0.066
0.068

0.07
0.072

J    (d−I)

0.1 0.2 0.3

0.8

1

1.2

m
3
   (e−D)

m
23

0.06 0.065 0.07

0.6
0.62
0.64
0.66
0.68

m
3
   (e−N)

0.05 0.055 0.06

1.35

1.4

1.45

m
3
   (e−I)

0.1 0.2 0.3

1.002
1.004
1.006
1.008

1.01
1.012

m
3
  (f−D)

m
21

0.06 0.065 0.07
1.015

1.02

1.025

1.03

1.035

m
3
  (f−N)

0.05 0.055 0.06
1.006

1.007

1.008

m
3
  (f−I)

FIG. 1. The correlations of hmiee against θ, δ, jχj, and J are depicted in the first four rows, whereas the last two rows are reserved for
the correlations of mass ratios m23 and m21 against m3.
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for hmiee. First, the masses m1 and m2 are approximately
equal, as is clear in Fig. 1(f); second, the hierarchy is
mild in both normal and inverted cases, as is evident
from Fig. 1(e-N) and 1(e-I). The simple approximate
formula for hmiee, capturing the essential observed
features for all kinds of hierarchies, can be deduced,
assuming m1 ≈m2, from Eq. (99) to be in the form

hmiee ≈m1c2θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − s22θ12sin

2ðρ − σÞ�
q

: ð108Þ

The formula clearly points out that the hmiee scale is of
the order of the scale of m1ð≈m2Þ as is confirmed from
the corresponding covered ranges stated in Table II.
The numerical generation for possible MR and MD

ν for a
given numerically generated Mν proceeds through the
following routine. (Again, this does not exhaust all possible
MD

ν ;MR leading to the given Mν.) The first step consists in
assuming thatMR is “proportional” toMν but obeying exact
μ-τ symmetry. Thus the entries of MR can be assumed to be

AR ¼ ΛRMν11=v2 ¼ Aν;

BR ¼ ΛRðMν11 −Mν13Þ=ð2v2Þ ≈ Bν;

CR ¼ ΛRMν22=v2 ¼ Cν;

DR ¼ ΛRMν23=v2 ¼ Dν: ð109Þ

As said before, we took v, the electroweak scale character-
izing the Dirac neutrino, to be 175 GeV (around the top
quark mass), whereas ΛR, the high energy scale character-
izing the heavy RHMajorana neutrino, is taken to be around
1014 GeV, so the scale characterizing the effective light
neutrino v2=ΛR would be around 0.3 eV in agreement with
data. In the second step, we assume the equality of α and jχj.
Consequently, the system of five equations given by the
seesaw formula [Eq. (51)] applied to the symmetric matrix
Mν with (Mν22 ¼ Mν33) can then be solved for the five
unknowns residing in the Dirac mass matrix having the form
described in Eq. (75). We have solved this nonlinear system
of equations by iteration starting with the initial guess
(AD ¼ AR; BD ¼ BR; CD ¼ CR, and ED ¼ BR).
Having all parameters AR;…; DR, AD;…; ED, and α

enables us to numerically produce the neutrino relevant
quantities. In Table III, we report for each possible type of
hierarchy three representative points containing all the
parameters describing Mν, MR, and MD

ν . In addition, the
same table also contains the values of the mixing angles,
the phase angles, and the masses of the light neutrinos,
computed on the one hand according to the exact formulas
and on the other hand according to the perturbative formulas,
and the twoways of computing showed good agreement. We
did the perturbative calculations starting from (MR;MD

ν ; α),
deduced in turn from Mν and the corresponding χ, by
computing Mα [Eqs. (83) and (82)] and M0

ν [Eq. (81)] and
then deducing the ϵ’s [Eq. (87)], followed by plugging them

into the perturbative formulas for the mixing angles
[Eq. (91)], the phases [Eq. (92)], and the masses [Eq. (90)].
Furthermore, the eigenmasses for MR and unperturbed

MD
ν are as well reported in Table III. We note here that we

get an almost degenerate RH neutrino mass spectrum.
Actually, we get for the degenerate- and inverted-hierarchy
examples a mild hierarchy in the RH eigenmasses
(mR1 ≤ mR2 ≃mR3), and so one would expect a scenario
where a considerable part of the CP asymmetry is due to
the decay of the lightest RH neutrino N1. To estimate the
baryon asymmetry in these examples one can follow the
analysis of Sec. V. C but with caution considering that we
assumed there a strong hierarchy in the RH neutrino
eigenmasses leading often to the N1-dominated scenario.
On the other hand, we obtain for the normal-hierarchy
examples a mild hierarchy where the two lightest
RH neutrinos are the almost degenerate ones (mR1≃
mR2 ≤ mR3), and so we would expect a scenario where
the CP asymmetry is due to the decay of, at least, both N1

and N2. Here, one should go beyond the hierarchical limit
assumed in Sec. V. C to estimate the baryon asymmetry. In
[27,28], analytical formulas for the baryon asymmetry,
corresponding to the case mR1 ≃mR2 ≪ mR3, were
obtained, and in [29] other approximate expressions, which
were shown [30] to agree well with the former ones, were
derived. Although the extrapolation from the almost-
degenerate two RH neutrinos case to the case of three
RH neutrinos of approximately similar masses may plau-
sibly be smooth regarding the fit to the Boltzmann
equations; however, we did not carry out the estimation
of the baryon asymmetry in Table III in any of the
numerical examples we had, as the precise calculations
go beyond the scope of the paper and the formulated
expressions are approximate, so one needs a more refined
analysis in order to draw conclusions. Nonetheless, we
have checked our assumption that the ϵ’s [Eqs. (87)] are far
smaller than 1 in accordance with them being perturbative
factors.

VIII. REALIZATION OF PERTURBED TEXTURE

As we saw, perturbed textures are needed in order to
account for phenomenology. We have two ways to seek
models for achieving these perturbations. The first method
consists of introducing a term in the Lagrangian which
breaks explicitly the symmetry [19], and then of expressing
the new perturbed texture in terms of this breaking term. The
second method is to keep assuming the exact symmetry, but
then we break it spontaneously by introducing new matter
and enlarging the symmetry. We follow here the second
approach in order to find a realization of the forms given in
Eq. (75) for MD and in Eq. (56) for MR, while assuring that
we work in the flavor basis. However, for the sake of
minimum added matter, we shall not force the most general
forms of MR and MD, but rather be content with special
forms of them leading to an effective mass matrixMν of the
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desired perturbed texture [Eq. (79)]. In [16] a realization was given for a perturbed texture corresponding to the S− symmetry,
whereas here we treat the more phenomenologically motivated Sþ symmetry (we shall drop henceforth the þ suffix). We
present two ways, not meant to be restrictive but rather should to be looked at as proof of existence tools, to get the three
required conditions of a perturbed MD, nonperturbed MR, and diagonal MlM

†
l . Both ways add new matter, but whereas the

first approach adds just a ðZ2Þ2 factor to the S symmetry while requiring some Yukawa couplings to vanish, the second
approach enlarges the symmetry to S × Z8 but without the need to equate Yukawa couplings to zero by hand. Some “form
invariance” relations are in order:

fðM ¼ MTÞ ∧ ½ST ·M · S ¼ M�g ⇔

2
64M ¼

0
B@

A B −B
B C D

−B D C

1
CA
3
75; ð110Þ

fðM ¼ MTÞ ∧ ½ST ·M · S ¼ −M�g ⇔

2
64M ¼

0
B@

0 B B

B C 0

B 0 −C

1
CA
3
75; ð111Þ

½ST ·M · S ¼ M� ⇔

2
64M ¼

0
B@

A B −B
E C D

−E D C

1
CA
3
75; ð112Þ

½ST ·M · S ¼ −M� ⇔

2
64M ¼

0
B@

0 B B

E C D

E −D −C

1
CA
3
75: ð113Þ

We denote LT ¼ ðL1; L2; L3Þ with Li’s, and ði ¼ 1; 2; 3Þ are the components of the ith family LH lepton doublets (we shall
adopt this notation of “vectors” in flavor space even for other fields, like lc the RH charged lepton singlets, νR the RH
neutrinos, etc.).

A. S × Z2 × Z0
2-flavor symmetry

(i) Matter content and symmetry transformations
We have three SM-like Higgs doublets (ϕi, i ¼ 1; 2; 3), which would give mass to the charged leptons and another

three Higgs doublets (ϕ0
i, i ¼ 1; 2; 3) for the Dirac neutrino mass matrix. All the fields are invariant under Z0

2 except
the fields ϕ0 and νR, which are multiplied by −1, so that we assure that neither can ϕ contribute to MD nor can ϕ0
contribute to Ml. The fields transformations are as follows:

νR ⟶
Z2 diagð1;−1;−1ÞνR; ϕ0 ⟶

Z2 diagð1;−1;−1Þϕ0; ð114Þ

L⟶
Z2 diagð1;−1;−1ÞL; lc ⟶

Z2 diagð1; 1;−1Þlc; ϕ⟶
Z2 diagð1;−1;−1Þϕ; ð115Þ

νR ⟶
S

SνR; ϕ0 ⟶
S

diagð1; 1;−1Þϕ0; ð116Þ

L⟶
S

SL; lc ⟶
S

lc; ϕ⟶
S

Sϕ: ð117Þ

(ii) Charged lepton mass matrix-flavor basis
The Lagrangian responsible for Ml is given by

L2 ¼ fjikL̄iϕklcj : ð118Þ

The transformations under S and Z2, with the form invariance relations Eqs. (110)–(113), lead to
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fð1Þ ¼

0
B@

A1 0 0

0 C1 D1

0 D1 C1

1
CA; fð2Þ ¼

0
B@

A2 0 0

0 C2 D2

0 D2 C2

1
CA; fð3Þ ¼

0
B@

0 B3 −B3

E3 0 0

−E3 0 0

1
CA; ð119Þ

where fjik is the ði; kÞth entry of the matrix fðjÞ. Assuming (v3 ≫ v1; v2) we get

Ml ¼ v3

0
B@

0 0 −B3

D1 D2 0

C1 C2 0

1
CA ⇒ MlM

†
l ¼ v23

0
B@

jBj2 0 0

0 jDj2 D ·C

0 C ·D jCj2

1
CA; ð120Þ

where B ¼ ð0; 0;−B3ÞT , D ¼ ðD1; D2; 0ÞT , and
C ¼ ðC1; C2; 0ÞT , and where the dot product is
defined as D · C ¼ P

i¼3
i¼1D

iCi�. Under the reason-
able assumption that the magnitudes of the Yukawa
couplings come in ratios proportional to the lepton
mass ratios as jBj∶jCj∶jDj ∼me∶mμ∶μτ, one can
show, as was done in [16], that the diagonalization of
the charged lepton mass matrix can be achieved by
infinitesimally rotating the LH charged lepton fields,
which justifies working in the flavor basis to a good
approximation.

(iii) Majorana neutrino mass matrix
The mass term is directly present in the

Lagrangian

LR ¼ MRijνRiνRj: ð121Þ

The invariance under Z0
2 is trivially satisfied while

the one under S × Z2 is more involved. The sym-
metry S constrains MR to satisfy

STMRS ¼ MR; ð122Þ

whereas the restrictions due to Z2 are imprinted in
the bilinear of νRiνRj determining their transforma-
tions under Z2 as

νRiνRj ∼
Z2 B ¼

0
B@

1 −1 −1
−1 1 1

−1 1 1

1
CA; ð123Þ

which means

νRiνRj ⟶
Z2 Z2ðνRiνRjÞ ¼ BijνRiνRj ðno sumÞ:

ð124Þ

Thus the symmetry through Eqs. (110), (122), and
(123) entails that MR would assume the following
form:

MR ¼

0
B@

AR 0 0

0 CR DR

0 DR CR

1
CA; ð125Þ

which is of the general form [Eq. (56)] with BR ¼ 0.
(iv) Dirac neutrino mass matrix

The Lagrangian responsible for the neutrino mass
matrix is

LD ¼ gkijL̄i
~ϕ 0kνRj; where ~ϕ 0 ¼ iσ2ϕ0�: ð126Þ

Because of the fields transformations under S and Z2

we get

STgðk¼1;2ÞS ¼ gðk¼1;2Þ ;

STgðk¼3ÞS ¼ −gðk¼3Þ;

L̄iνRj ∼
Z2

0
B@

1 −1 −1
−1 1 1

−1 1 1

1
CA; ð127Þ

where gðkÞ is the matrix whose ði; jÞth entry is the
Yukawa coupling gkij. Then, the form invariance
relations [Eqs. (110)–(113)] lead to

gð1Þ ¼

0
B@

A1 0 0

0 C1 D1

0 D1 C1

1
CA;

gð2Þ ¼

0
B@

0 B2 −B2

E2 0 0

−E2 0 0

1
CA;

gð3Þ ¼

0
B@

0 B3 B3

E3 0 0

E3 0 0

1
CA: ð128Þ

Upon acquiring vevs (v0i, i ¼ 1; 2; 3) for the Higgs
fields (ϕ0

i), we get for the Dirac neutrino mass matrix
the form
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MD ¼

0
B@

v01A
1 v02B

2 þ v03B
3 −v02B2 þ v03B

3

v02E
2 þ v03E

3 v01C
1 v01D

1

−v02E2 þ v03E
3 v01D

1 v01C
1

1
CA; ð129Þ

which can be put into the form

MD ¼

0
B@

AD BDð1þ αÞ −BD

EDð1þ βÞ CD DD

−ED DD CD

1
CA; ð130Þ

with

α ¼ 2v03B
3

v02B
2 − v03B

3
; β ¼ 2v03E

3

v02E
2 − v03E

3
: ð131Þ

If the vevs satisfy v03 ≪ v02 and the Yukawa couplings are of the same order, then we get perturbative parameters
α; β ≪ 1.
The deformations appearing in the Dirac mass matrix as described in Eqs. (129)–(131) would resurface in the

effective light neutrino mass matrix Mν through the seesaw formula [Eq. (51)] with MR given in Eq. (125). The
resulting deformations in Mν can be described by two parameters,

χ ≡ −
Mνð1; 2Þ þMνð1; 3Þ

Mνð1; 3Þ
; ξ≡Mνð2; 2Þ −Mνð3; 3Þ

Mνð3; 3Þ
: ð132Þ

One can repeat now the analysis of the last subsection in order to compute χ; ξ in terms of α; β and other mass
parameters to get

χ ¼ −
αARBDðCR −DRÞðCD þDDÞ þ βADEDðC2

R −D2
RÞ

αARBDðCRDD −DRCDÞ þ BDARðDR þ CRÞðDD − CDÞ − EDADðC2
R −D2

RÞ
;

ξ ¼ βðβ − 2ÞE2
DðC2

R −D2
RÞ

AR½CRðD2
D þ C2

DÞ − 2CDDDDR� þ E2
DðC2

R −D2
RÞ

: ð133Þ

We note here that we do not get in general the desired pattern [Eq. (79)] corresponding to disentanglement of the
perturbations (ξ ¼ 0). However, for specific choices of Yukawa couplings, for e.g., E3 ¼ 0 leading to β ¼ 0 and
hence ξ ¼ 0, we get this form, in which caseMD is of the form of Eq. (75) and χ of Eq. (133) would also be given by
Eq. (80) with BR ¼ 0.

B. S × Z8-flavor symmetry

(i) Matter content and symmetry transformations
In addition to the left doublets (Li, i ¼ 1; 2; 3), the RH charged singlets (lcj , j ¼ 1; 2; 3), the RH neutrinos (νRj,

j ¼ 1; 2; 3), and the SM-Higgs three doublets (ϕi, i ¼ 1; 2; 3) responsible for the charged lepton masses, we have
now four Higgs doublets (ϕ0

j, j ¼ 1; 2; 3; 4) giving rise when acquiring a vev to Dirac neutrino mass matrix, and also
two Higgs singlet scalars (Δk, k ¼ 1; 2) related to the Majorana neutrino mass matrix. We denote the octic root of the
unity by ω ¼ e

iπ
4. The fields transform as follows:

L⟶
S

SL; lc ⟶
S

lc; ϕ⟶
S

Sϕ; ð134Þ

νR ⟶
S

SνR; ϕ0 ⟶
S

diagð1; 1; 1;−1Þϕ0; Δ⟶
S

Δ; ð135Þ

L⟶
Z8

diagð1;−1;−1ÞL; lc ⟶
Z8

diagð1; 1;−1Þlc; ϕ⟶
Z8

diagð1;−1;−1Þϕ; ð136Þ

νR ⟶
Z8 diagðω;ω3;ω3ÞνR; ϕ0 ⟶

Z8 diagðω;ω3;ω7;ω3Þϕ0; Δ⟶
Z8 diagðω6;ω2ÞΔ: ð137Þ
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Note here that we have the following transformation rule for ~ϕ 0 ≡ iσ2ϕ0�:

~ϕ 0 ⟶
S

diagð1; 1; 1;−1Þ ~ϕ 0; ~ϕ 0 ⟶
Z8 diagðω7;ω5;ω;ω5Þ ~ϕ 0: ð138Þ

(ii) Charged lepton mass matrix-flavor basis
The symmetry restriction in constructing the charged lepton mass Lagrangian as given by Eq. (118) is similar to

what is obtained in the case of (S × Z2 × Z0
2). The similarity originates from the fact that the charges assigned to the

fields (L; lc;ϕ) corresponding to the factor Z2 (of S × Z2 × Z0
2) and that of Z8 (of S × Z8) are the same. Thus we end

up, assuming again a hierarchy in the Higgs ϕ’s fields vevs (v3 ≫ v2; v1), with a charged lepton mass matrix
adjustable to be approximately in the flavor basis. Note also here that the symmetry forbids the term L̄iϕ

0
kl

c
j since we

have

L̄ilcj ∼
Z8

0
B@

1 1 −1
−1 −1 1

−1 −1 1

1
CA ⇒

Eq: ð137Þ
∄i; j; k∶ L̄iϕ

0
kl

c
j ¼ Z8ðL̄iϕ

0
kl

c
jÞ: ð139Þ

(iii) Dirac neutrino mass matrix
The Lagrangian responsible for the Dirac neutrino mass matrix is given by Eq. (126). By means of fields

transformations we have

STgðk¼1;2;3ÞS ¼ gðk¼1;2;3Þ; STgðk¼4ÞS ¼ −gðk¼4Þ; L̄iνRj ∼
Z8

0
B@

ω ω3 ω3

ω5 ω7 ω7

ω5 ω7 ω7

1
CA; ð140Þ

where gðkÞ is the matrix whose ði; jÞth entry is the Yukawa coupling gkij. Then, the form invariance relations impose
the following forms:

gð1Þ ¼

0
B@

A1 0 0

0 0 0

0 0 0

1
CA; gð2Þ ¼

0
B@

0 B2 −B2

0 0 0

0 0 0

1
CA; gð3Þ ¼

0
B@

0 0 0

0 C3 D3

0 D3 C3

1
CA;

gð4Þ ¼

0
B@

0 B4 B4

0 0 0

0 0 0

1
CA: ð141Þ

When the Higgs fields (ϕ0
i) get vevs (v

0
i, i ¼ 1; 2; 3; 4), we obtain

MD ¼ Σk¼4
k¼1v

0
kg

ðkÞ ¼

0
B@

v01A
1 v02B

2 þ v04B
4 −v01B2 þ v04B

4

0 v03C
3 v03D

3

0 v03D
3 v03C

3

1
CA; ð142Þ

which is of the form of Eq. (75) with ED ¼ 0,

MD ¼

0
B@

AD BDð1þ αÞ −BD

0 CD DD

0 DD CD

1
CA; ð143Þ

where
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α ¼ 2v04B
4

v02B
2 − v04B

4
: ð144Þ

If the vevs satisfy v04 ≪ v02 and the Yukawa couplings are of the same order, then we get a perturbative
parameter α ≪ 1.

(iv) Majorana neutrino mass matrix
The mass term is generated from the Lagrangian

LR ¼ hkijΔkνRiνRj: ð145Þ

Under Z8 we have the bilinear

νRiνRj ∼
Z8

0
B@

ω2 ω4 ω4

ω4 ω6 ω6

ω4 ω6 ω6

1
CA⇒Eq: ð137Þ

LR ¼ h111Δ1νR1νR1 þ h222Δ2νR2νR2 þ h223Δ2νR2νR3 þ h232Δ2νR3νR2 þ h233Δ2νR3νR3: ð146Þ

If we call hðkÞ the matrix whose ði; jÞth entry is the coupling hkij, then we have (the cross sign denotes a nonvanishing
entry)

hð1Þ ¼

0
B@

× 0 0

0 0 0

0 0 0

1
CA; hð2Þ ¼

0
B@

0 0 0

0 × ×

0 × ×

1
CA: ð147Þ

Then the form invariance relations lead to

SThðkÞS ¼ hðkÞ;⇒
Eqs: ð110Þ;ð147Þ

hð1Þ ¼

0
B@

aR 0 0

0 0 0

0 0 0

1
CA; hð2Þ ¼

0
B@

0 0 0

0 cR dR
0 dR cR

1
CA: ð148Þ

Thus when the Higgs singlets Δ acquire vevs ðΔ0
1;Δ0

2Þ we get the following form for MR:

MR ¼

0
B@

Δ0
1aR 0 0

0 Δ0
2cR Δ0

2dR
0 Δ0

2dR Δ0
2cR

1
CA; ð149Þ

which is of the form of Eq. (56) with BR ¼ 0. The analysis of the last subsection shows then that the deformation α in MD
resurfaces as a “sole” perturbation χ in Mν which would get the desired form of Eq. (79) with χ given by Eq. (80) after
putting BR ¼ ED ¼ 0,

χ ¼ αðdR − cRÞðCD þDDÞ
ðDD − CDÞðcR þ dRÞ þ αðcRDD − dRCDÞ

: ð150Þ

Before ending this section, we would like to mention that having multiple Higgs doublets in our constructions might
display flavor-changing neutral currents. However, the effects are calculable, and in principle one can adjust the Yukawa
couplings so as to suppress processes like μ → eγ [31]. Moreover, the constructions are carried out at the seesaw high scale,
but the RG running effects are expected to be small when multiple Higgs doublets are present; and so we expect the
predictions of the symmetry will still be valid at low scale.
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IX. DISCUSSION AND SUMMARY

We studied the properties of the Z2 symmetry behind the
μ-τ neutrino universality. We singled out the texture (Sþ)
that imposes naturally a maximal atmospheric mixing
θ23 ¼ π=4 and vanishing θ13. The remaining mixing angle
θ12 remains free, and the other Z2 necessary to characterize
the neutrino mass matrix can be used to fix it at its
experimentally measured value (∼33°). We showed how
the Sþ texture accommodates all the neutrino mass hier-
archies. Later, we implemented the Sþ symmetry in the
whole lepton sector and showed how it can accommodate
the charged lepton mass hierarchies with small mixing
angles of order of the “acute” charged lepton mass
hierarchies. We computed, within the type-I seesaw, the
CP asymmetry generated by the symmetry and found that
the phases of the RH Majorana fields may be adjusted to
produce enough baryon asymmetry. The fact that the μ-τ
symmetry does not determine fully the mixing angles, but
leaves θ12 as a free parameter able to take different values
in MR and MD, is crucial for obtaining leptogenesis
within type-I seesaw scenarios. We found also that

“complex-valued” perturbations on the Dirac neutrino mass
matrix can account for the correct neutrino mixing angles.
We carried out a complete numerical study to find

the phenomenologically acceptable Mν respecting the
approximate Sþ, and we generated the possible correspond-
ing MR and MD

ν . Crucially, we found in our numerical
scanning that no “real-valued” neutrino mass matrices can
account for the experimental constraints, and so one has to
take complex matrices from the outset. The perturbation at
the level of Mν should also be complex in order to account
for phenomenology.
Finally, we presented a theoretical realization of the

perturbed Dirac mass matrix, where the symmetry is
broken spontaneously and the perturbation parameter
originates from ratios of different Higgs fields vevs.
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