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We show that a degenerate neutrino mass spectrum can be realized in the neutrino mass anarchy
hypothesis, if the neutrino Yukawa and right-handed neutrino mass matrices are given by the
Wishart matrix, i.e., products of N × 3 rectangular random matrices, whose eigenvalue distribution
tends to degenerate for large N. The mixing angle and charge-parity (CP) phase distributions are
determined by either the Haar measure of U(3) or that of SO(3). We study how large N is allowed to
be without tension with the observed neutrino mass squared differences and find that the predicted
value of mee can be within the reach of future 0νββ experiments especially for N on the high side of
the allowed range.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
overwhelmingly successful for decades, and the long-
sought Higgs boson, the last missing piece of the SM,
was finally discovered at the LHC [1,2]. Despite the great
success of the SM, there are many puzzles left unanswered;
one of them is the origin of the flavor structure.
While neutrinos are massless in the SM, atmospheric

and solar neutrino oscillation experiments revealed that
neutrinos have tiny but nonzero masses (see, e.g.,
Refs. [3,4] for the latest results). In particular, a mild mass
hierarchy and large mixing angles for the neutrino sector
are in sharp contrast with quarks and charged leptons. If we
are to understand the neutrino flavor structure based on
symmetry principles, it seems to require rather contrived
flavor models.1 The observed large mixing angles rather
suggest a structureless mass matrix for neutrinos, implying
that all the neutrino species have the same quantum
number.
The squared mass differences and mixing angles are

measured by various neutrino oscillation experiments
[6–11], the recent best-fit values for normal (inverted)
hierarchy are [3]

Δm2
21 ¼ 7.60 × 10−5 eV2;

jΔm2
31j ¼ 2.48ð2.38Þ × 10−3 eV2

sin2θ12 ¼ 0.323; sin2θ23 ¼ 0.567ð0.573Þ;
sin2θ13 ¼ 0.0234ð0.0240Þ; ð1Þ

and the favored value of the Dirac charge-parity (CP) phase
is around 3π=2. Besides the neutrino oscillation experi-
ments, further information can be obtained from the cosmic
microwave background (CMB) observations and the neu-
trinoless double beta decay (0νββ) experiments. In particu-
lar, the CMB observations by Planck, WMAP, and other
ground-based experiments set the upper limit on the sum of
the neutrino masses as

P
mi < 0.66 eV (95% C.L.) [12].

One of the attractive explanations for the observed large
neutrino mixing is the neutrino mass anarchy [13–16],
which gained momentum especially after the discovery of a
nonzero value of θ13 by the Daya-Bay experiment [6]. The
basic idea of the neutrino mass anarchy is simple. Suppose
that all the Yukawa couplings and/or right-handed neutrino
masses are determined by a UV theory, which has a
sufficiently large landscape of vacua. If each coupling is
allowed to take values of order unity in the landscape, the
Yukawa couplings and/or right-handed neutrino masses
may be modeled by some functions of random matrices.
Note that, as emphasized in Ref. [14], the neutrino mass
anarchy tells us nothing about the weighting functions,
and therefore, one has to choose an appropriate one to
evaluate the probability distribution of the neutrino masses.
The simplest and the most studied form is the linear
measure

h;M ∼ X; ð2Þ
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pattern of quarks and charged leptons based on symmetry
principles, a variety of flavor symmetries and charge assignments
are allowed. For an alternative approach without flavor symmetry,
see, e.g., Ref. [5].
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where the neutrino Yukawa matrix h as well as the right-
handed neutrino mass matrix M are proportional to 3 × 3
random matrices represented by X. Phenomenological and
cosmological aspects of the neutrino mass anarchy have
been studied; e.g., two of the present authors (K. S. J. and
F. T.) studied the implications of neutrino mass anarchy for
leptogenesis in Ref. [17], and it was also recently revisited
in Ref. [18]. See also Refs. [19–21] for phenomenological
study of the neutrino mass anarchy with a various number
of right-handed neutrinos.
In the neutrino mass anarchy hypothesis, the mixing

angle and CP phase distributions are determined by the
invariant Haar measure of the underlying symmetry group
such as U(3) or SO(3) [14], independently of the adopted
weighting function, and so, there are rather robust pre-
dictions. Interestingly, the observed large mixing angles
can be nicely explained in the neutrino mass anarchy [16].2

On the other hand, the neutrino mass spectrum depends
sensitively on the weighting functions. In the case of the
linear measure, normal mass hierarchy is highly favored
over the inverted or quasidegenerate one. In addition, the
observed mild hierarchy of the mass squared differences
can be nicely explained by the neutrino mass anarchy
together with the seesawmechanism [13,14]. The estimated
mee turned out to be too small to be detected by future 0νββ
experiments [17], but this result can be modified for more
general measure functions [24].3

In this article we study the next simplest possibility: the
neutrino Yukawa couplings and the right-handed neutrino
masses are given by the random matrix squared, or more
precisely, the Wishart matrices

h;M ∼ X†X or XTX; ð3Þ

where X represents N × 3 complex or real random matri-
ces. In general,N does not have to be equal to 3. ForN > 3,
the neutrino Yukawa and right-handed neutrino mass
matrices are given by products of rectangular matrices.
We shall see that the observed neutrino mass squared
differences can be explained for N ≲ 35. Interestingly, the
eigenvalue distribution of the Wishart matrix tends to be
degenerate for large N.4 Therefore, the quasidegenerate
neutrino mass spectrum can be realized in the neutrino
mass anarchy with the Wishart matrix if N ≫ 3, which

should be contrasted to the case of the linear measure (2).
We will discuss its implications for the 0νββ experiments.
We will also show that the mixing angle and CP phase
distributions of our scenario are determined by either the
Haar measure of U(3) or that of SO(3).
The rest of this article is organized as follows. In Sec. II

we first explain our setup and see how the neutrino mass
spectrum changes as the size of the rectangular matrices N
increases. Then we study the implication for the Dirac CP
phase and the 0νββ experiments. The last section is devoted
to discussion and conclusions.

II. NEUTRINO MASS ANARCHY

In this section, we consider the neutrino mass anarchy
based on the Wishart matrices as a simple extension of the
linear measure. We focus on the case of the Majorana
neutrino mass with the seesaw mechanism [25–28].5

A. Preliminaries

The seesaw Lagrangian is given by

L ¼ fijēRilj
~H þ hijN̄iljH þ 1

2
MijN̄iN̄j þ H:c:; ð4Þ

where l,Hð ~HÞ, eR, and N are, respectively, the left-handed
lepton doublet, the Higgs doublet [its SU(2) conjugate], the
right-handed charged leptons, and the right-handed neu-
trinos; fij, hij are Yukawa matrices for charged leptons and
neutrinos, respectively; and Mij represents the Majorana
mass matrix for right-handed neutrinos. The subscripts
represent the generation, i; j ¼ 1; 2; 3.
Let us first diagonalize the charged lepton Yukawa

matrix as

f ¼ U†
fRDeUfL ð5Þ

with

De ≡
0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CA; ð6Þ

where UfR and UfL are unitary matrices, and ye;μ;τð> 0Þ
denote the charged lepton Yukawa couplings.6 In the basis
where the charged lepton Yukawa matrix is diagonal, the
Lagrangian becomes

2See, however, Refs. [22,23] and references therein.
3Our analysis is different from Ref. [24] in which the adopted

measure is not applicable to the case of the seesaw mechanism
with neutrino mass anarchy.

4A similar behavior can be seen in the singular value
distributions of the n × 3 neutrino Yukawa matrix if one
introduces nð> 3Þ right-handed neutrinos [20]. However, the
eigenvalues of the n × nMajorana mass matrix obeying the linear
measure are more repulsive than in the case of the Wishart matrix.
Thus, while the resultant neutrino masses are also degenerate to
some extent for large n, the degeneracy is weaker than in the case
of the Wishart matrix.

5Our setup can be straightforwardly applied to the case of the
Dirac neutrino mass, and most of our results (except for the 0νββ)
will remain qualitatively valid. In particular, the quasidegenerate
spectrum can be realized.

6Throughout this article we do not try to interpret the charged
lepton mass hierarchy in our scheme because there could be
additional selection (anthropic) effects.
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L ¼ ðyαδαβÞēRαlβ
~H þ hiαN̄ilαH þ 1

2
MijN̄iN̄j þ H:c:;

ð7Þ
where α; β run over the lepton flavor indices ðe; μ; τÞ, and
we have defined

hiα ≡ hijðU†
fLÞjα; ð8Þ

lα ≡ ðUfLÞαili; ð9Þ

eRα ≡ ðUfRÞαieRi: ð10Þ

After the Higgs field acquires the vacuum expectation
value (VEV), one obtains the effective Lagrangian for
active neutrinos by integrating out the heavy right-handed
neutrinos,

Leff ¼ −
1

2
ðmνÞαβνανβ þ H:c:; ð11Þ

where να are the light left-handed neutrinos, and the
neutrino mass matrix is given by

ðmνÞαβ ¼ v2ðhTÞαiðM−1Þijhjβ ð12Þ

with v≃ 174 GeV being the VEV of the Higgs field. The
neutrino mass matrix mν is generically a complex-valued
symmetric matrix, and it can be diagonalized by a unitary
matrix UMNS as

mν ¼ U�
MNS

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CAU†

MNS: ð13Þ

Here m1, m2, and m3 are real and positive values with
m1 < m2 < m3. This numbering is for the normal hier-
archy, whereas in the inverted hierarchy case, one should
relabel them asm3 → m2,m2 → m1, andm1 → m3 in order
to compare our results with the observations (1). In fact,
however, mostly either normal or quasidegenerate (normal-
ordering) mass hierarchy is realized in our scheme, and so,
the inverted hierarchy case is practically negligible.
The neutrino oscillation experiments provide us with

only the squared mass differences, Δm2
ij ¼ m2

i −m2
j . To

compare our results with observations, we use the dimen-
sionless parameter R defined by the ratio of the squared
mass difference between the heaviest and the second
heaviest neutrinos to that between the second heaviest
and the lightest ones,

R ¼ Δm2
21

Δm2
32

ðnormalÞ or
Δm2

13

Δm2
21

ðinvertedÞ: ð14Þ

The observed value of R is given by R ∼ 1=30 for normal-
ordering hierarchy and R ∼ 30 for inverted hierarchy.
The neutrino mixing matrix UMNS can be expressed in

terms of the mixing angles, θij, with ði; jÞ ¼ ð1; 2Þ; ð2; 3Þ,
and (3,1), and the Dirac and Majorana CP phases, δ, α21,
and α31 after absorbing the unphysical phases by redefi-
nition of the fields, and it is conventionally written as

UMNS ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCA × diagð1; eiα212 ; eiα312 Þ; ð15Þ

where we abbreviate sin θij and cos θij as sij and cij,
respectively, and the mixing angles and the CP phases
satisfy θij ∈ ½0; π=2Þ and δ; α21; α31;∈ ½0; 2πÞ.

B. Neutrino mass anarchy based on the
Wishart matrices

In the neutrino mass anarchy hypothesis with the linear
measure, both hiα and Mij are taken to be proportional to
3 × 3 complex-valued (or real-valued) random matrices
[cf. Eq. (2)]. The unitary matrix UfL does not affect the
probability distributions of the mixing angles and the CP
phases, as they are fixed by the Haar measure of U(3)
[SO(3)]. This is the simplest possibility, but it remains
unknown how the randomness for these matrices is
originated in the landscape. In fact, there are various other
basis-independent choices for these matrices. Here we

consider the next-to-simplest setup, in which the neutrino
Yukawa matrix and the Majorana mass matrix consist of
products of random matrices,7

hij ¼
yν
N
ðF†FÞij; Mij ¼

M0

2N
ðG†GþGTG�Þij; ð16Þ

where F and G are N × 3 complex (or real) random
matrices of order unity, and yν andM0 represent the typical
neutrino Yukawa couplings and the right-handed neutrino
masses. For yν ¼ Oð1Þ, M0 ∼ 1015 GeV is suggested by
the neutrino oscillation experiments and the seesaw

7If the neutrino Yukawa couplings and the right-handed
neutrino masses are given by h ∼ FTF and M ∝ GTG, where
F and G are complex-valued N × 3 random matrices of order
unity, there is no degeneracy in the eigenvalues. We do not pursue
this case in this article.
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mechanism. Note that the above form of the neutrino
Yukawa couplings is given in the original basis, and one has
to multiply it with the unitary matrixUfL in the basis where
the charged lepton Yukawa matrix is diagonal [see Eq. (8)].
This, however, does not affect the final mixing and CP
phase distributions just as in the previous case.8

The above form of hij and Mij imply that they are given
by the so-calledWishart matrix. Specifically, wewill takeF
and G as a chiral Gaussian unitary (orthogonal) ensemble,
i.e., the Gaussian measure, where each element follows a
complex-valued (real-valued) Gaussian distribution with
zero mean and a variance of unity. In this case, the basis
independence is automatically assured [18]. The measure
for the eigenvalues (λi) of the complex and real Wishart
matrix composed of N × 3 random matrices are, respec-
tively, known as

Y3
i>j

jλi − λjj2
Y3
i¼1

λN−3
i dλi ðcomplexÞ;

Y3
i>j

jλi − λjj
Y3
i¼1

λðN−4Þ=2
i dλi ðrealÞ: ð17Þ

The first factor jλi − λjj represents the repulsive nature, and
this effect is (partially) canceled by the second factor λN−3

i

or λðN−4Þ=2
i . For large N, the eigenvalues of h andM tend to

be highly degenerate due to the second factor proportional

to λN−3
i or λðN−4Þ=2

i .9 As a result, the light neutrino masses

are also expected to be degenerate, which is difficult to
realize in the case of the linear measure. As we shall see,
however, N cannot be arbitrarily large because the pre-
dicted value of R tends to be too large compared to the
observed value, R ∼ 1=30, for large N.

C. Mass spectrum, mixing angles, and CP phases

We have performed numerical calculations of the neu-
trino mass anarchy based on the Wishart matrices.
Specifically, we have generated 106 N × 3 complex (real)
random matrices, F and G, to obtain the distributions of
neutrino masses, mixing angles, and CP violating phases.
The results are shown in Figs. 1 and 2 corresponding to the
complex and real Wishart matrices, respectively. We have
varied N as N ¼ 3 (solid red curves), N ¼ 10 (dashed
green curves), N ¼ 30 (dotted blue curves), and we have
set yν ¼ 1 and M0 ¼ 1015 GeV. Note that the distribution
of R in the right panel is independent of the choice of yν and
M0. For comparison, we show the results of the neutrino
anarchy with the linear measure as the small-dotted
magenta lines in each figure. One can see that the neutrino
mass distribution (Figs. 1 and 2) tends to be more
degenerate as N increases. The probability distribution
of R is suppressed at R > 1, implying that the inverted
hierarchy (R ∼ 30) is highly disfavored. Thus, the neutrino
mass hierarchy is either normal or quasidegenerate (normal
ordering) in the anarchy based on the Wishart matrices.
Figure 3 shows the mean value of R as a function of N

with 1 and 2σ error bands. It shows that the normal
hierarchy (R ∼ 1=30) is preferred over the inverted hier-
archy (R ∼ 30) and N is bounded from above as N ≲ 35

(N ≲ 70 for real Wishart matrices) in order to be consistent
with the observations. This implies that, even if one
considers the Wishart matrices, there is an upper bound
on the degeneracy of the neutrino masses. We will discuss
its implications for the 0νββ experiments in the next
subsection.

FIG. 1 (color online). Probability distributions of the neutrino masses (left) and R (right) for complex Wishart matrices are shown. The
solid red, dashed green, and dotted blue lines correspond to the cases with N ¼ 3, 10, and 30, respectively, while the magenta lines
represent the anarchy with the linear measure. Here we have taken yν ¼ 1 and M0 ¼ 1015 GeV.

8In general, any Yukawa matrix can be written as a product of a
Hermitian matrix and a unitary matrix by the polar decomposition
theorem. Here we consider a case where the Hermitian matrix is
of the Wishart-type random matrix.

9Instead of the Gaussian measure, one can adopt an arbitrary
basis independent measure for the Wishart matrix. For instance,
one may multiply ðtr½G†G�Þp with the measure. In this case, the
eigenvalue distributions are modified, but the eigenvalues remain
to be degenerate for large N as long as the measure contains
positive powers of the eigenvalues.
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We can also see from Fig. 4 that the mixing angle and
CP phase distributions are determined by the Haar measure
of U(3). If the random matrices F as well as the charged
lepton Yukawa matrix are taken to be real, the resultant

distribution is given by the Haar measure of SO(3). (The
right-handed neutrino mass matrix is real by construction.)
In this case the Majorana CP phases vanish, and the Dirac
CP phase δ takes a value of either 0 or π. We note that the

FIG. 2 (color online). Same as Fig. 1 but for real Wishart matrices.

FIG. 3 (color online). The mean value of R with 1σ (green region) and 2σ (yellow region) error as a function of N corresponding to
complex (left) and real (right) random matrices. The blue-shaded region represents the experimental value with 2σ uncertainty for the
normal hierarchy.

FIG. 4 (color online). Probability distributions of mixing angles (left) and CP violating phases (right). θij represents θ12, θ23, and θ13
and δCP represents δ, α21, and α31. The red squares and blue circles correspond to complex and real Wishart matrices, respectively, and
the magenta and cyan lines correspond to the U(3) and SO(3) Haar measures, respectively. We have taken N ¼ 30, but the distributions
are the same for a different value of N.
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currently favored value of δ is about 3π=2 according to
Ref. [4], which corresponds to sin2 2δ ¼ 0. Interestingly,
the U(3) Haar measure results in the probability distribution
of δ peaked at sin2 2δ ¼ 0.

D. Neutrinoless double beta decay

The Majorana nature of the neutrinos can be probed by
the 0νββ experiments, which is sensitive to mee defined by

mee ≡
����
X3
i¼1

ðUMNSÞ2eimi

����
¼ jm1ðc12c13Þ2 þm2ðs12c13Þ2eiα21 þm3s213e

iðα31−2δÞj:
ð18Þ

The current upper bound on mee by the GERDA experi-
ment using 76Ge reads [29]

mee ≲ ð0.2–0.4Þ eV ð90% C:L:Þ: ð19Þ

A similar bound was obtained by EXO-200 using 136Xe
[30], and a slightly better bound has been recently obtained
by the KamLAND-Zen experiment as [31]

mee ≲ ð0.14–0.28Þ eV ð90% C:L:Þ: ð20Þ

The next-generation experiment is expected to reach the
level of mee ≃ 0.01 eV [32].
We show the predicted range of mee in the mee-m1 plane

in Fig. 5 (complexWishart) and Fig. 6 (real Wishart), where
we have taken N ¼ 10 and 30. We have generated 107

Wishart matrices and extracted the subset satisfying the
observed R (within 2σ), and M0 is adjusted to realize the
best fit value of Δm2

21. The mixing angles are also adjusted
to the best fit values. The thick red (blue) lines are contours
of equal probability in which 68% (95%) of the data points
are contained. For comparison, we similarly show the

FIG. 5 (color online). Contours of probability distribution on themee-m1 plane for N ¼ 10 (left) and N ¼ 30 (right), where the mixing
angles are set to be the best-fit values. The red and blue contours correspond to 68% and 95% C.L., respectively, and for comparison, the
case of the linear measure is shown by the thin red and blue contours in the right panel. The black curves with various line types
correspond to the normal hierarchy for best fit values of the neutrino mass differences and mixing angles with vanishing CP phases;
ðeiα21 ; eiðα31−2δÞÞ ¼ ðþ1;þ1Þ, ðþ1;−1Þ, ð−1;þ1Þ, and ð−1;−1Þ from top to bottom atm1 ≳ 10−2 eV. The horizontal dashed (cyan) line
represents the sensitivity of a future experiment, while the shaded (magenta) region is excluded by the current experiments.

FIG. 6 (color online). Same as Fig. 5 but for real Wishart matrices. Here we have chosen the case of ðeiα21 ; eiðα31−2δÞÞ ¼ ðþ1;þ1Þ.
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prediction of the linear measure case as thin red (blue) lines
in the right panel of Fig. 5. The black lines with various line
types represent mee for best-fit values of the neutrino mass
differences and mixing angles with vanishing CP-violating
phases: ðeiα21 ; eiðα31−2δÞÞ ¼ ðþ1;þ1Þ, ðþ1;−1Þ, ð−1;þ1Þ,
and ð−1;−1Þ from top to bottom at m1 ≳ 10−2 eV. The
horizontal dashed (cyan) line represents the sensitivity of
the future experiment, while the shaded (magenta) region is
excluded by the current experiments. We also show the
statistical mean value of log10ðmee=eVÞ with 1 and 2σ
uncertainties as a function of N in Fig. 7. Since a
quasidegenerate mass spectrum is more likely for large
values of N, relatively large meeð≳0.01 eVÞ is realized
with a greater probability compared to the case of the linear
measure, and a larger fraction of the parameter space will be
accessible by the near future experiments. Note, however,
that, since N is bounded from above in order to be
consistent with observations, there is an upper bound on
the neutrino mass degeneracy. As a result, mee cannot be
arbitrarily large even in the case with the Wishart matrices
(i.e., mee≲ a few tens meV).

III. DISCUSSION AND CONCLUSIONS

In this article we have studied in detail the neutrino mass
anarchy hypothesis with the Wishart matrices, where the
neutrino Yukawa matrices and right-handed neutrino
masses are given by products of N × 3 random rectangular
matrices. The mixing angle and CP phase distributions are
determined by the Haar measure of U(3) or SO(3), depend-
ing on whether the Wishart matrices are complex or real.
Interestingly, for N ≫ 3, the eigenvalues of the Wishart
matrix tend to be confined in a narrow range. As a result,
compared to the case of the neutrino mass anarchy with
the linear measure, the neutrino mass spectrum becomes
more compressed; in particular, a quasidegenerate (normal-
ordering) neutrino mass spectrum can easily be realized

without resorting to introducing additional constraints
(such as successful leptogenesis [17,18]) or an ad hoc
choice of the weighting function. We have studied how
large N is allowed to be in order to give a reasonable fit to
the observed neutrino mass squared differences and found
that N is allowed to be as large as 35 for complex Wishart
matrices and 70 for real Wishart matrices. We have also
studied implications of our scenario for the 0νββ experi-
ment and have shown that the predicted mee can be within
the reach of the future experiments with a larger probability
than the case of the linear measure, especially if N is on the
high side of the allowed range.
Let us discuss if we can understand the structure of the

couplings based on symmetry principles. First let us regard
the random matrices F and G as moduli fields whose VEVs
can take various values determined by a UV theory. To be
specific we assume that all the couplings are real and impose
OðNÞ × Oð3Þ flavor symmetry, under which the ordinary
leptons and right-handed neutrinos transform as 1 × 3 while
F and G transform as N × 3. The lepton doublets and the
right-handed neutrinos are assumed to transform as 3 under
O(3). Then, the following combinations

FTF; GTG ð21Þ
are 3 × 3 matrices, which transform as bifundamental under
Oð3Þ. Once each component of F and G develops a nonzero
VEV, the above matrices give rise to the neutrino Yukawa
couplings and the Majorana masses. If the UV theory is
sufficiently complicated, the VEVs of F and G may be
modeled by random matrices. Thus, the above combination
FTF and GTG plays the same role of the simple random
matrix in the case of the linear measure. One can see that the
above setup is more complicated than in the case of the
linear measure.
In principle one can add a unit matrix to the Yukawa and

the right-handed neutrino matrices, satisfying the flavor

FIG. 7 (color online). The mean value of mee (red solid line) with 1σ (green) and 2σ (yellow) uncertainties as a function of N, for
complex (left) and real (right) random matrices. The horizontal dashed (magenta) line represents the sensitivity of a future experiment.
The blue point with an error bar represents the one for the linear measure with 1σ and 2σ uncertainties. (The position in the horizontal
axis is arbitrary.)
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symmetries. If the contribution of the unit matrix is
negligible compared to that of F and G, our results in
the text approximately remain unchanged in this case. On
the other hand, if the unit matrix contribution becomes
significant, the mass eigenvalues become more degenerate,
whereas the mixing angle distribution is still determined by
the SO(3) Haar measure.10

We would like to emphasize here that the above argu-
ment explains only the structure of the interactions, not the
reason why the measure is proportional to the random
matrix squared. The essence of the neutrino mass anarchy
hypothesis is the (statistical) equivalence between different
neutrino flavors, and it tells us nothing about the weighting
measure functions. The simplest and most studied function
is the linear measure, but there is no compelling reason to
choose this measure other than simplicity. In general, the
weighting measure could be some complicated function of
the random matrices. In this sense, our choice of the
measure is the next simplest possibility.
So far we have focused on the neutrino mixing, mass,

and CP phase distributions in the neutrino mass anarchy
with the Wishart matrices. It will be interesting to study
cosmological aspects of our scenario, especially in context
with leptogenesis, as an extension of the analysis of
Ref. [17]. In particular, in contrast to the case of the linear
measure, the right-handed neutrinos tend to be degenerate
in mass, leading to resonant leptogenesis [33]. The typical
mass difference scales as ðM2 −M1Þ=ðM2 þM1Þ∼ 1=

ffiffiffiffi
N

p
,

and so, we expect an enhancement of the lepton asymmetry
by a factor of 5 or so for N ¼ 30. If the value of N is
different between the neutrino Yukawa and right-handed
neutrino mass matrices, this factor may be even more
enhanced. We, however, expect that it is hard to realize the
enhancement by many orders of magnitude in our scenario
because the eigenvalues still repel each other even in the
limit of large N. This difficulty may be eased by allowing a
contribution proportional to the unit matrix. We leave the
detailed analysis of leptogenesis in this case for
future work.
As pointed out in Refs. [13,14], one can impose a flavor

symmetry without modifying the predictions for the light
neutrino masses: for instance, we can introduce a flavor
symmetry on the right-handed neutrinos. Then, while the
right-handed neutrinos are hierarchical due to the nontrivial
flavor charges, the light neutrinos remain degenerate.
We can consider a possibility that the neutrino Yukawa

and the right-handed neutrino mass matrices are given by a
more complicated function(s) of random matrices, such as
the Wishart matrices squared, and so on. Alternatively, one
may consider sparse random matrices. It may be interesting
to study these possibilities and their implications for the
neutrino masses and CP phases.
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