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On the basis of the representation of the generalized structure of nucleons a new model of the hadron
interaction at high energies is presented. A new t dependence of the generalized parton distributions is
obtained from the comparative analysis of different sets of the parton distribution functions, based on the
description of the entire set of experimental data for the electromagnetic form factors of the proton and
neutron. Taking into account the different moments of the generalized parton distributions of the hadron,
quantitative descriptions of all existing experimental data of the proton-proton and proton-antiproton elastic
scatterings from

ffiffiffi
s

p ¼ 9.8 GeV to 8 TeV, including the Coulomb range and large momentum transfers up
to −t ¼ 15 GeV2, are obtained with a few free high-energy fitting parameters. The real part of the hadronic
elastic scattering amplitude is determined only through the complex s that satisfies the dispersion relations.
The negligible contributions of the hard Pomeron and the presence of the non-small contributions of the
maximal Odderon are obtained. The non-dying form of the spin-flip amplitude is examined as well. The
structures of the Born term and unitarized scattering amplitude are analyzed. It is shown that the black disk
limit for the elastic scattering amplitude is not reached at LHC energies. Predictions for LHC energies
are made.
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I. INTRODUCTION

The exploration of the dynamics of the strong interaction
processes at high energies is a topical problem of the
modern physics of elementary particles, and has been
considered in the framework of different approaches using
various models of the structure of hadrons and the
dynamics of their interactions. Different models for the
description of the hadron interaction at large distances have
been developed. They are based on the general quantum
field theory principles (analyticity, unitarity, and so on).
The relativistic models of high-energy scattering based on
the quasipotential approach [1,2] occupy an important
place among them. Here, the hypothesis about the existence
of the local smooth quasipotential that gives an adequate
description of high-energy scattering processes is essential.
In the region of small angles of scattering the eikonal
approach can be used as a consequence of the smoothness
of the quasipotential [3]. The smoothness of the quasipo-
tential is related to the dynamics of two-particle interactions
and means that at high energies the hadrons behave as loose
extended objects with finite dimensions.
The elastic hadron-hadron scattering plays an important

role in the investigation of the strong interaction. For the
description of the interaction at small distances there is the
exact theory—QCD—but for the interaction at large dis-
tances (which is the basis for the elastic scattering at small
angles) calculations in the framework of QCD are impos-
sible at present. These two domains are tightly connected

with the experimental determination of the parameters of
the elastic scattering and are very important for the
development of the modern strong interaction theory [4].
The basic properties of the nonperturbative strong

interaction—the total cross section, the slope of the
diffraction peak, and the parameter ρðs; tÞ (the ratio of
the real and imaginary parts of the scattering amplitude)—
can only be measured in the region of small angles. Their
values are connected, on the one hand, with the large-scale
structure of hadrons and, on the other hand, with the first
principles which lead to the theorems regarding the
behavior of the scattering amplitudes at asymptotic ener-
gies [5,6].
There are indeed many different models for the descrip-

tion of hadron elastic scattering at small angles [7,8]. They
lead to different predictions for the structure of the
scattering amplitude at asymptotic energies, where the
diffraction processes can display complicated features
[9]. This especially concerns the asymptotic unitarity
bound connected with the black disk limit [10] and the
influence of the saturation regime on the differential cross
sections [11].
In the Chow-Yang model [12,13] it was assumed that the

hadron interaction is proportional to the overlapping of the
matter distribution of the hadrons, and Wu and Yang [12]
suggested that the matter distribution is proportional to the
charge distribution of the hadron. Many models used the
electromagnetic form factors of the hadron but, for the most
part, they changed its form to describe the experimental
data, as was done in the famous Bourrely-Soffer-Wu
(BSW) model [14]. The parameters of the obtained form*selugin@theor.jinr.ru
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factor are determined by the fit of the differential cross
sections. The authors noted that the form factor is “para-
meterized like an electromagnetic form factor, as two poles,
and the slowly varying function reflects the approximate
proportionality between the charge density and hadronic
matter distribution inside a proton.”
In Ref. [15], it was proposed that the hadron form factor is

proportional to the matter distribution. The matter distribu-
tions in the hadron are tightly connected with the energy-
momentum tensor [16]. In Ref. [17], it was noted that “the
gravitational form factors are related to the matrix elements
of the energy-momentum tensor in a hadronic state, thus
providing the distribution of matter within the hadron.” The
recent picture of hadron structure is determined by the
general parton distributions (GPDs) [18,19] which include
the parton distribution functions (PDFs). The first and
second moments of the GPDs give two hadron form factors.
Before the introduction of GPDs a similar representation

for the scattering amplitude was used in the work of
Sanielevici and Valin [20],

Kpðq2Þ ¼
1

3

Z
1

0

dxx½2LU
p ðxÞTU

p ð~kÞ þ 2LD
p ðxÞTD

p ð~kÞ:

Here the function LU;D
p ðxÞ represents the parton distribu-

tions and TU;D
p ð~kÞ represents the transfer momentum

dependence. Note that the whole structure of the amplitude
corresponds to the second moment of the GPDs.
Usually, models of high-energy hadron interactions

include different kinds of leading Reggeons: one or a
few Pomerons (including the soft and hard Pomerons), the
Odderons with an intercept equal to the Pomeron (maximal
Odderon) or with an intercept close to (or less than) unity,
and sometimes the spin-flip amplitude. The effect of the
hard-Pomeron contribution on the elastic differential cross
sections is very important for understanding the properties
of QCD in the nonperturbative regime [21]. Note that
ρðs; tÞ of the hard Pomeron is essentially larger than ρðs; tÞ
of the soft Pomeron. In Ref. [22], it was suggested that such
a contribution can explain the preliminary result of the
TOTEM Collaboration [23] on the elastic proton-proton
differential cross sections.
In our high-energy general structure (HEGS) model [24],

the real part of the hadronic amplitude is determined only
through the complex s that satisfies the cross-symmetric
relation. In the framework of the model, the quantitative
description of all existing experimental data at 52.8 ≤ffiffiffi
s

p
≤ 1960 GeV, including the Coulomb range and

large momentum transfers (0.0008 ≤ jtj ≤ 9.75 GeV2), is
obtained with only three high-energy fitting parameters.
Predictions of the model at 7 TeV and the preliminary data
of the TOTEM Collaboration are found to coincide well. In
Ref. [25], the contribution of the hard Pomeron in elastic
scattering at small angles and high energies was examined.
It was found that such a contribution is invisible in the

existing experimental data, including the new data from the
LHC. The same result was obtained in Ref. [26].
In the framework of the model, only the Born term of the

scattering amplitude is introduced. Then the whole scatter-
ing amplitude is obtained as a result of the unitarization
procedure of the hadron Born term, which is then summed
with the Coulomb term. The Coulomb-hadron interference
phase is also taken into account. The essential aspect of the
model is that both parts of the Born term of the scattering
amplitude have a positive sign, and the diffraction structure
is determined by the unitarization procedure.
Now we present the extended variant of the HEGS

model [24], based on the assumption that the hadron
interaction is sensitive to the GPDs, whose moments can
be represented in the form of two different distributions:
charge and matter. Hence, this model used the exact
electromagnetic and matter form factors determined by
one function—the GPDs. Both of the form factors are
independent of the fitting procedure of the differential cross
sections of the elastic hadron scattering.Note that the formof
the GPDs is determined, on the one hand, by the deep
inelastic processes, and on the other hand, by the measure of
the electromagnetic form factor from the electron-nucleon
elastic scattering. We support this picture with a good
description of the experimental data in the Coulomb-hadron
interference region and at large momentum transfer at high
energies using one amplitude with a few free parameters.
The differential cross sections of nucleon-nucleon elastic

scattering can be written as the sum of different helicity
amplitudes:

dσ
dt

¼ 2π

s2
ðjΦ1j2 þ jΦ2j2 þ jΦ3j2 þ jΦ4j2 þ 4jΦ5j2Þ: ð1Þ

The total helicity amplitudes can be written as Φiðs; tÞ ¼
Fh
i ðs; tÞ þ Fem

i ðs; tÞeφðs;tÞ, where Fh
i ðs; tÞ comes from the

strong interactions, Fem
i ðs; tÞ comes from the electromag-

netic interactions, and φðs; tÞ is the interference phase
factor between the electromagnetic and strong interactions
[27–29].
The structure of the paper is as follows. First, in Sec. II

the basis of the first variant of the HEGS model is briefly
discussed.
In Sec. III, the hadron form factors are analyzed using the

new form of the GPDs that takes into account two forms of
the PDFs, which give the best descriptions of the electro-
magnetic form factors of the proton and neutron. As a
result, the new forms of the electromagnetic and matter
form factors are obtained.
Section IV is devoted to the study of all existing

experimental data of the proton-proton and proton-
antiproton elastic scatterings from

ffiffiffi
s

p ¼ 9.8 GeV to
8 TeV (including the Coulomb range and large momentum
transfers up to −t ¼ 15 GeV2) in the framework of the
model with a few free high-energy fitting parameters.
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In Sec. V, the structure of the elastic hadron scattering
amplitude obtained in the framework of the model is
analyzed. First, the Born term of the scattering amplitude
is discussed using its cross-even and cross-odd parts sepa-
rately. Then the obtained overlapping function is considered
in the impact-parameter representation. Finally, the full form
of the scattering amplitude, obtained after integration over
the impact parameter, is considered. In particular, we
examine the energy and momentum-transfer dependence
of the slope of the scattering amplitude using the Born term
and the full term of the scattering amplitude. Finally, the
obtained results and a comparison with other models and
some predictions of our model are discussed in Sec. VI.

II. THE HEGS MODEL

The model is based on the representation that at high
energies the hadron interaction in the nonperturbative
regime is determined by the Reggenized-gluon exchange.
The cross-even part of this amplitude can have two non-
perturbative parts: the possible standard Pomeron P2g, and
the cross-even part of three nonperturbative gluons P3g.
The interaction of these two objects is proportional to two
different form factors of the hadron. This is the main
assumption of the model. Of course, we cannot be certain
of the origin of the second term of the scattering amplitude.
However, in any case, it has the cross-even properties, a
positive sign, and the slope is the same as for the Odderon.
The second important assumption is that we chose the slope
of the second term to be 4 times smaller than the slope of
the first term. All terms have the same intercept.
The form factors are determined by the GPDs of the

hadron [30]. The first form factor, corresponding to the first
momentum of the GPDs, is the standard electromagnetic
form factor, GðtÞ. The second form factor is determined by
the second momentum of the GPDs, AðtÞ. The parameters
and t dependence of the GPDs are determined by the
standard parton distribution functions, i.e., by experimental
data on deep inelastic scattering and the electromagnetic
form factors (see Ref. [31]).
The electromagnetic form factors can be represented as

the first moments of the GPDs with ξ ¼ 0,

F1ðtÞ ¼
Z

1

0

dx
X
u;d

Hqðx; tÞ;

F2ðtÞ ¼
Z

1

0

dx
X
u;d

Eqðx; tÞ: ð2Þ

In Ref. [31] the t dependence of the GPDs in the form

Hqðx; tÞ ¼ qðxÞnf exp
�
aþ

ð1 − xÞ2
xm

t

�
;

Eqðx; tÞ ¼ qðxÞsf exp
�
a−

ð1 − xÞ2
xm

t

�
ð3Þ

was researched. The function qðxÞ was chosen at the same
scale μ2 ¼ 1 as in Ref. [32], which is based on the
MRST2002 global fit [33].
For ξ ¼ 0 one has the second moment of the GPDs,

Z
1

0

dxx
X
u;d

½Hðx; tÞ � Eðx; tÞ� ¼ AhðtÞ � BhðtÞ: ð4Þ

The integration of the second moment of the GPDs over
x gives the momentum-transfer representation of the
form factor. It was approximated by the dipole form [24]
AðtÞ ¼ L4

2=ðL2
2 − tÞ2.

Hence, the Born term of the elastic hadron amplitude can
be written as

FBorn
h ðs; tÞ ¼ h1G2ðtÞFaðs; tÞð1þ r1=ŝ0.5Þ

þ h2A2ðtÞFbðs; tÞð1þ r2=ŝ0.5Þ; ð5Þ

where Faðs; tÞ and Fbðs; tÞ have the standard Regge form

Faðs; tÞ ¼ ŝϵ1eBðsÞt; Fbðs; tÞ ¼ ŝϵ1eBðsÞ=4t: ð6Þ

The slope of the scattering amplitude has a logarithmic
dependence on the energy, BðsÞ ¼ α0 lnðŝÞ, with α0 ¼
0.24 GeV−2 and ŝ ¼ se−iπ=2=s0, where s0 ¼ 1 GeV2.
The final elastic hadron scattering amplitude is obtained
after unitarization of the Born term. So, first we have to
calculate the eikonal phase,

χðs; bÞ ¼ i
Z

d2qei~b·~qFBorn
h ðs; q2Þ; ð7Þ

and then obtain the final hadron scattering amplitude,

Fhðs; tÞ ¼ is
Z

bJ0ðbqÞΓðs; bÞdb; ð8Þ

with

Γðs; bÞ ¼ 1 − exp½χðs; bÞ�: ð9Þ

The model has only three high-energy fitting parameters
and two low-energy parameters, which reflect some small
contribution coming from the different low-energy terms.
We take all existing experimental data in the energy

range 52.8≤
ffiffiffi
s

p
≤1960GeV and the region of the momen-

tum transfer 0.0008 ≤ −t ≤ 9.75 GeV2 of the elastic differ-
ential cross sections of proton-proton and proton-antiproton
data [34]. So we include the whole Coulomb-hadron
interference region where the experimental errors are
remarkably small.
As a result, one obtains

P
χ2i =N ≃ 1.8, where N ¼ 975

is the number of experimental points. Note that the
parameters of the model are energy independent. The
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energy dependence of the scattering amplitude is deter-
mined only by the single intercept and the logarithmic
dependence on s of the slope.
In the framework of this model the quantitative des-

cription of all existing experimental data at 52.8 ≤
ffiffiffi
s

p
≤

1960 GeV, including the Coulomb range and large
momentum transfers (0.0008 ≤ jtj ≤ 9.75 GeV2), is
obtained with only three high-energy fitting parameters.
Hence, the model is very sensitive to any additional
contribution.

III. GPDS AND FORM FACTORS
OF THE NUCLEON

Further development of the model requires careful
analysis of the momentum transfer form of the GPDs
and a properly chosen form for the PDFs. In Ref. [35], an
analysis of more than 24 different PDFs was performed. We
slightly complicated the form of the GPDs in comparison
with Eq. (4), but it is the simplest one compared to other
works (for example, Ref. [36]):

Huðx; tÞ ¼ qðxÞunfe2aH
ð1−xÞ2þϵu

ðx0þxÞm t;

H⌈
dðx; tÞ ¼ qðxÞdnfe2aHð1þϵ0Þðð1−xÞ

1þϵd
ðx0þxÞm Þt; ð10Þ

Euðx; tÞ ¼ qðxÞufle2aE
ð1−xÞ2þϵu

ðx0þxÞm t;

E⌈
dðx; tÞ ¼ qðxÞdfle2aEð1þϵ0Þðð1−xÞ

1þϵd
ðx0þxÞm Þt; ð11Þ

where qðxÞu;dfl ¼ qðxÞu;dnf ð1. − xÞz1;z2 .
A complex analysis of the corresponding description of

the electromagnetic form factors of the proton and neutron
using the different PDF sets (24 cases) was carried out.
These PDFs include the leading-order, next-to-leading-
order, and next-to-next-to-leading-order determinations
of the parton distribution functions. They used different
forms of the x dependence of the PDFs. The analysis was
carried out with different forms of the t dependence of the
GPDs. The minimum number of free parameters was six
and the maximum was ten.
To obtain the form factors, we have to integrate over x in

the whole range 0–1. Hence, the form of the x dependence
of a PDF affects the form and size of the form factor. But
the PDF sets are determined from the inelastic processes
only in some region of x, which is only approximated to
x ¼ 0 and x ¼ 1. Some PDFs have a polynomial form of x
with a different power. Some others have an exponential
dependence on x. As a result, the behavior of the PDFs,
when x → 0 or x → 1, can influence the form of the
calculated form factors.
The sets of experimental data are presented in Table I.

The sets of data have various corrections and different
methods which take into account the systematic errors. So

we take into account only the statistical errors. On the basis
of this analysis we calculated the electromagnetic form
factors of the proton and neutron (using the isotopic
symmetry). Then we carried out the fit of these calculations
and obtained the parameters of the electromagnetic [GðtÞ]
and matter [AðtÞ] form factors.
The results of the fitting procedure with different

numbers of free parameters for the whole set of PDFs
are presented in Fig. 1. We found that the best description
was given by the PDFs from Refs. [65,66]. In this case, the
increase in the number of free parameters leads to a small
decrease in χ2. This means that the x dependence of the
PDFs corresponds sufficiently well to the u and d distri-
butions in the nucleon to reproduce the electromagnetic
form factors. Note that these PDFs use a special power
dependence on x. The most stable results (i.e., a minimum
dependence on the number of free parameters with a
minimum of χ2) are obtained with the PDFs ABKM09
[65] and ABM12 [66] (see Table II).
The obtained form factors for the proton and neutron are

shown in Fig. 2 and Fig. 3. The form factors practically
coincide for both PDFs used. In Fig. 2, our results are
compared with the other model calculations for F1ðtÞ. It
should be noted that the experimental data for large t were

TABLE I. Experimental data of the electromagnetic form
factors.

N points Proton References

111 Gp
E [37–43]

196 Gp
M [37,39,40,44–46]

[38,43]
87 μGp

E=G
p
M [38,39,44,47–49]

neutron
13 Gn

E [50–56]
[57,58]

38 Gn
M [59–63]

6 μGn
E=G

n
M [52,64]

FIG. 1. The sum of χ2i of the descriptions of the proton and
neutron electromagnetic form factors by different PDFs over an
increasing number of free parameters [Eqs. (10) and (11)].
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obtained by the Rosenbluth method, and our calculations
and the calculation in Ref. [36] differ slightly from the
experimental data at large t, but they practically coincide
with each other. The ratio of μGE=GM for the proton and
neutron cases is presented in Fig. 3. Our calculations
reproduce the data obtained by the polarization method
quite well.
On the basis of our GPDs with the ABM12 PDFs [66],

quðxÞ ¼ 4.649903x−0.288ð1. − xÞ3.637
x0.593x−3.607x

2þ3.718x3 ; ð12Þ

qdðxÞ ¼ 3.424394x−0.259ð1. − xÞ5.123
x1.122x−2.984x

2

; ð13Þ

we calculated the hadron form factors using numerical
integration,

F1ðtÞ ¼
Z

1

0

dx

�
2

3
quðxÞe2αHtð1.−xÞ2þϵu =ðx0þxÞm

−
1

3
qdðxÞe2αHtð1.−xÞ1þϵd =ððx0þxÞmÞ

�
; ð14Þ

and then by fitting these integral results with the standard
dipole form with some additional parameters for F1ðtÞ,

F1ðtÞ ¼
4mp − μt

4mp − t
1

ð1þ q=a1 þ q2=a22 þ q3=a33Þ2
: ð15Þ

The matter form factor

AðtÞ ¼
Z

1

0

xdx½quðxÞe2αHtð1.−xÞ2þϵu =ðx0þxÞm

þ qdðxÞe2αHtð1.−xÞ1þϵd=ððx0þxÞmÞ� ð16Þ

is fitted by the simple dipole form

AðtÞ ¼ Λ4

ðΛ2 − tÞ2 : ð17Þ

TABLE II. The fitting parameters of the GPDs with flavor dependence.

ϵu ϵd ϵ0 m αH αE x0 zu zd χ2þ4p=χ
2
0

Model �0.02 �0.01 �0.01 �0.01 �0.03 �0.07 �0.002 �0.03 �0.03

ABKM09 0.11 0.2 0.09 0.42 0.45 0.57 0.004 0.67 −1.88 0.91
ABM12 0.13 0.04 0.13 0.41 0.47 0.60 0.002 0.54 −2.06 0.89

FIG. 2. Proton Dirac form factor multiplied by t2 (the hard,
dotted, long-dashed, and short-dashed lines correspond to our
calculations with PDFs Al12, Stoller01, Rad04, and Kroll,
respectively).

FIG. 3. The model description of the ratio of the electromag-
netic form factors (top) for the proton μpG

p
E=G

p
M and (bottom) for

the neutron μnGn
E=G

n
M.
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The results of the integral calculations and the fitting
procedure are shown in Fig. 4. Our description is valid
up to a large momentum transfer with the following
parameters: a1¼16.7, a22¼0.78, a33¼12.5, and Λ2¼1.6.
These form factors will be used in our model of the proton-
proton and proton-antiproton elastic scattering.

IV. EXTENSION OF THE HEGS MODEL

The obtained form factors differ slightly from those used
in our previous work [24]. Hence, we have to make a new
fit of high-energy data, including now the new data of the
TOTEM Collaboration [8,67]. As was noted in our pre-
vious work, the model also describes low-energy data
qualitatively. Now we include in our fitting procedure
additional experimental data on the pp and pp̄ elastic
scattering up to 8 TeV ≥

ffiffiffi
s

p
≥ 9.8 GeV. As a result, the

amount of experimental data increases by a factor of 3.5
(from 980 to 3416). This gives us many experimental high-
precision data points at small momentum transfer, includ-
ing the Coulomb-hadron interference region where the
experimental errors are remarkably small. Hence, we can
check our model construction where the real part is
determined only by the complex representation of

ŝ ¼ s=s0 expð−iπ=2Þ. We do not include the data on the
total cross sections σtotðsÞ and ρðsÞ, as their values were
obtained from the differential cross sections, especially in
the Coulomb-hadron interference region. Including such
data decreases χ2, but it would be double counting in our
opinion. We also do not include the interpolated and
extrapolated data of Amaldi [68], and only include their
original experimental data.
As in the old version of the model, we take into account

only the statistical errors in the standard fitting procedure.
The systematic errors are taken into account by the addi-
tional normalization coefficient which is the same for every
row of the experimental data. It essentially decreases the
space of the possible form of the scattering amplitude. Of
course, it is necessary to control the sizes of the normali-
zation coefficients so that they do not introduce an addi-
tional energy dependence. As we will see later (Tables III
and IV), the distribution of the coefficients has the correct
statistical properties and does not lead to a visible addi-
tional energy dependence.
Such a simple form of the scattering amplitude in the

huge region of energy requires careful determination of the
slope of the scattering amplitude. As was noted in Ref. [7],
analytic S-matrix theory, perturbative quantum chromody-
namics, and the data require that Regge trajectories be
nonlinear complex functions [69,70]. The Pomeron

FIG. 4. The fit of the form factors of the proton: (top) the
electromagnetic form factor GðtÞ [Eq. (15)] and (bottom) the
matter form factor AðtÞ [Eq. (17)]. The circles are the moments of
the GPDs (shown only every tenth point).

TABLE III. The proton-proton elastic scattering at small t.
ffiffiffi
s

p
, GeV tmin, GeV tmax, GeV N

P
Nχ

2
P

Nχ
2=N nk (norm)

9.0 0.00193 0.04328 19 14.4 0.72 1.041
9.3 0.01268 0.1147 28 21 0.75 1.019
9.8 0.00115 0.115 64 87.6 1.35 1.013
9.8 0.0026 0.12 23 31.0 1.37 1.074
9.9 0.00063 0.0306 73 81.1 1.11 1.014
10.6 0.00079 0.01529 45 68.0 1.39 1.026
12.3 0.00066 0.02928 58 46.9 0.81 1.018
13.76 0.0023 0.0388 73 84.9 1.16 1.023
13.76 0.035 0.095 7 2.5 0.36 1.029
16.83 0.0022 0.0392 68 76.9 1.13 1.006
19.42 0.00066 0.0315 69 79.5 1.15 0.996
19.42 0.035 0.095 7 12.2 1.74 1.008
19.42 0.0206 0.12 42 19.9 0.47 1.038
21.7 0.022 0.039 64 50.1 0.78 0.996
22.2 0.0005 0.02978 64 55.6 0.87 1.007
23.5 0.00037 0.0102 30 58.5 1.95 1.008
23.8 0.0022 0.0388 60 69.1 1.15 1.001
23.9 0.00066 0.0316 66 76.5 1.16 0.988
27.4 0.00047 0.02579 61 66.1 1.08 0.987
30.6 0.016 0.11 48 53.1 1.10 1.005
30.8 0.0005 0.0176 31 75.7 2.36 1.009
44.7 0.00099 0.01856 40 51. 1.16 1.004
52.8 0.00107 0.05546 35 53.2 1.52 1.016
62.3 0.00543 0.05122 23 31.7 1.38 1.005
7000. 0.00515 0.356 84 173.4 2.04 0.943
7000. 0.006 0.36 40 31.4 0.77 1.0
8000. 0.028 0.195 30 20 0.7 0.9
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trajectory has threshold singularities, the lowest one being
due to the two-pion exchange, required by t-channel
unitarity [71]. This threshold singularity appears in differ-
ent forms in various models (see Ref. [7]).
In the present model, a small additional term is intro-

duced into the slope which reflects some possible small
nonlinear properties of the intercept. As a result, the slope is
taken in the form

Bðs; tÞ ¼ ðα1 þ kqe−kq
2LnðŝtÞÞLnðŝÞ: ð18Þ

This form leads to the standard form of the slope as t → 0
and t → ∞. Note that our additional term at large energies
has a similar form as an additional term to the slope coming
from the π loop examined in Ref. [71] and recently in
Ref. [72]. The basic Born amplitudes were taken in the old
form [Eqs. (5) and (6)] with fixed α1 ¼ 0.24 GeV−2 and
Δ ¼ 0.11. Taking into account the Mandelstam region of
the analyticity scattering amplitude for the 2 → 2 scattering
process sþ uþ t ¼ 4m2

p, we take s0 ¼ 4m2
p where mp is

the mass of the proton.
Then, as we intend to describe sufficiently low energies,

possible Odderon contributions were taken into account:

Foddðs; tÞ ¼ �hoddA2ðtÞFbðs; tÞ; ð19Þ

where hodd ¼ ih3t=ð1 − r20tÞ.
Just as we supposed in the previous variant of the HEGS

model that Fbðs; tÞ corresponds to the cross-even part of the
three gluon exchange, our Odderon contribution is also
connected with the matter form factor AðtÞ. Our ansatz for
the Odderon slightly differs from the cross-even part by
some kinematic function. The form of the Odderon work-
ing in all t has the same behavior as the cross-even part at
larger momentum transfer, of course with different signs for
proton-proton and proton-antiproton reactions. It has a
large preasymptotic part, and as a result, such a preasymp-
totic part of the cross-even part is practically not felt.
Hence, the Born term of the elastic hadron amplitude can
now be written as

FBorn
h ðs; tÞ ¼ h1F2

1ðtÞFaðs; tÞð1þ r1=ŝ0.5Þ
þ h2A2ðtÞFbðs; tÞ
� hoddA2ðtÞFbðs; tÞð1þ r2=ŝ0.5Þ; ð20Þ

where Faðs; tÞ and Fbðs; tÞ are the same as in the previous
variant of the model [see Eq. (6)].
The analysis of the hard Pomeron contribution in the

framework of the model [25] shows that such a contribution
is not felt. For the most part, the fitting procedure requires a
negative additional hard Pomeron contribution. We repeat
the analysis of Ref. [25] in the present model and obtain
practically the same results. Hence, we do not include the
hard Pomeron in the model.
At large t our model calculations are extended up to

−t ¼ 15 GeV2. We added a small contribution from the
energy-independent part of the spin-flip amplitude in a
form similar to that proposed in Ref. [73],

Fsfðs; tÞ ¼ hsfq3F2
1ðtÞe−Bsfq2 : ð21Þ

It has two additional free parameters. Of course, at lower
energy we need to take into account the energy-dependent
parts of the spin-flip amplitudes. However, this requires
including additional polarization data in our examination
which essentially complicates the picture. This is beyond
the scope of this paper. Such a contribution can be made in
future works. The model is very simple from the viewpoint
of the number of fitting parameters and functions. There are
no artificial functions or any cuts which bound the separate
parts of the amplitude by some region of momentum
transfer.

V. ANALYSIS AND RESULTS

We included 3416 experimental points in our analysis in
the energy region 9.8 GeV ≤

ffiffiffi
s

p
≤ 8 TeV and in the

region of momentum transfer 0.000375 ≤ jtj ≤ 15 GeV2.
The experimental data of the proton-proton and proton-
antiproton elastic scattering are included in 92 separate
rows of 32 experiments [34], including recent data from the
TOTEM Collaboration at

ffiffiffi
s

p ¼ 8 TeV [67]. The whole
Coulomb-hadron interference region, where the experi-
mental errors are remarkably small, was included in our
examination of the experimental data (see Tables III
and IV).
In the fitting procedure we calculated the minimum inP
N
i¼1 χ

2
i related to the statistical errors σ2i . The systematic

errors are taken into account by the additional normaliza-
tion coefficient nk for the k series (the experiment) of
experimental data,

χ2 ¼
XN
i¼1

nkEk
i ðs; tÞ − Tiðs; tÞ
σ2i ðs; tÞ

; ð22Þ

TABLE IV. The proton-antiproton elastic scattering at small t.
ffiffiffi
s

p
, GeV tmin, GeV tmax, GeV N

P
Nχ

2
P

Nχ
2=N nk (norm)

11.54 0.0375 0.5 13 11.5 0.88 0.983
13.76 0.035 0.095 7 7.4 1.06 0.966
19.42 0.035 0.095 7 7.3 1.05 1.220
30.4 0.00067 0.01561 28 28.8 1.03 0.974
52.6 0.00097 0.03866 28 24.5 0.875 0.987
52.8 0.0109 0.0479 43 49.9 1.16 0.933
62.3 0.00632 0.03821 43 55.8 1.3 0.996
541. 0.000875 0.11875 99 164.7 1.65 unnorm
546. 0.00225 0.03475 66 83.7 1.25 1.004
546.6 0.026 0.078 14 13.86 1.0 1.002
1800. 0.0339 0.285 28 28.8 1.03 1.024
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where Tiðs; tÞ are the theory predictions, including the
hadronic and electromagnetic parts of the scattering ampli-
tude, and nkEiðs; tÞ are the data points allowing a shift by
the systematical error of the k experiment (see, for example,
Refs. [74,75].
In the region of small momentum transfer the systematic

errors are on the order of 2–5. For the most part, the
additional normalization is in the region 0.95–1.05. At
large momentum transfer the order of the systematical
errors is 10–20%. In this case, the additional normalization
is situated in the region 0.8–1.2. Of course, if one sums the
systematic and statistical errors,

P
χ2=N decreases but it

will give some additional space for changing the form of
the scattering amplitude.
Our complete fit of 3416 experimental data points in the

energy range 9.8 ≤
ffiffiffi
s

p
≤ 8000 GeV and the region of

momentum transfer 0.000375 ≤ −t ≤ 14.75 GeV2 givesP
N
i¼1χ

2
i =N¼1.28, with the parameters h1 ¼ 0.82; h2 ¼

0.31; hodd ¼ 0.14; k0 ¼ 0.16, and r20 ¼ 3.82, and the low-
energy parameters hsf ¼ 0.05; R1 ¼ 53.7, and R2 ¼ 4.45.
Obviously, for such a huge energy region we have a very

small number of free parameters. We also note the good
description of the Coulomb nuclear interference (CNI)
region of momentum transfer in a very wide energy region

(approximately 3 orders of magnitude) with the same slope
of the scattering amplitude. The differential cross sections
of the proton-proton and proton-antiproton elastic scatter-
ing at small momentum transfer are presented in Fig. 5 atffiffiffi
s

p ¼ 9.8 GeV for pp scattering, and
ffiffiffi
s

p ¼ 11 GeV for
pp̄ elastic scattering, and in Fig. 6 at

ffiffiffi
s

p ¼ 7 TeV andffiffiffi
s

p ¼ 8 TeV for pp scattering. The model quantitatively
reproduces the differential cross sections in the whole
examined energy region in spite of the fact that the size
of the slope is essentially changing in this region [due to the
standard Regge behavior logðŝÞ] and the real part of the
scattering amplitude has different behaviors for pp and pp̄.
The results for the whole energy region for small

momentum transfer are presented in Table III for the
proton-proton elastic scattering and in Table IV for the
proton-antiproton elastic scattering. We can see that the χ2

values are suitable. We note that they are especially small
for the high-precision FNAL-JINR data which reach a very
small size of the momentum transfer (up to −t ¼
0.00037 GeV2 [78] at energies

ffiffiffi
s

p ¼ 13.4, 19.4, 23.4,
and 27.4 GeV). The additional normalization coefficients
do not show an energy dependence and are distributed
only statistically. We also include the high-precision
non-normalized data of the UA4/2 Collaboration at

FIG. 5. dσ=dt for pp (top) at
ffiffiffi
s

p ¼ 9.8 GeV and pp̄ (bottom)
at

ffiffiffi
s

p ¼ 11.3 GeV.

FIG. 6. dσ=dt for pp (top) at
ffiffiffi
s

p ¼ 7 TeV (crosses and circles
are TOTEM [76] and ATLAS [77] data, respectively) and
(bottom) at

ffiffiffi
s

p ¼ 8 TeV (circles are TOTEM data [67]).
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ffiffiffi
s

p ¼ 541 GeV which reach a very small momentum
transfer, −tmin ¼ 0.000875 GeV2.
The real part of the scattering amplitude significantly

influences the size and form of the differential cross sections
in the Coulomb-hadron interference region [79,80]. The
second Reggeons also have a large slope for the imaginary
part and hardly change the slope of the differential cross
sections. A suitable description of both pp and pp̄ exper-
imental data in this region supports the determination of the
real part of the scattering amplitude chosen in the model. It
should be noted that possible contributions of the second
Reggeons will essentially change the form and size of the
real part of the scattering amplitude. The results presented in
Tables III and IV show that up to such a low energy we do
not feel the essential contributions of the second Reggeons.
This especially concerns the possible contribution of the f0
meson. In some models it has an intercept essentially above
0.5 and its contribution influences the differential cross
sections and σtotðsÞ and ρðs; tÞ in the ISR energy region.
Our results practically exclude such Reggeons with an
intercept above 0.5.
The form and energy dependence of the diffraction

minimum are very sensitive to the different parts of the
scattering amplitude. The change of the sign of the
imaginary part of the scattering amplitude determines
the position of the minimum and its movement with a
change in the energy. The real part of the scattering
amplitude determines the size of the dip. Hence, it depends
heavily on the Odderon contribution. The spin-flip ampli-
tude gives the contribution in the differential cross sections
additively. So the measurement of the form and energy
dependence of the diffraction minimum with high precision
is an important task for future experiments. In Fig. 7, the
description of the diffraction minimum in our model is
shown for low energies. The HEGS model sufficiently
reproduces the energy dependence and form of the dif-
fraction dip. In this energy region the diffraction minimum

reaches the sharpest dip at
ffiffiffi
s

p ¼ 30 GeV. Note that at this
energy the value of ρðs; t ¼ 0Þ also changes its sign in the
proton-proton scattering. The pp̄ cross sections in the
model are obtained by the s → u crossing without changing
the model parameters. And for the proton-antiproton
scattering the same situation with correlations between
the sizes of ρðs; tÞ ¼ 0 and ρðs; tminÞ takes place at low
energy (approximately at pL ¼ 50 GeV). Such a correla-
tion was noted in Ref. [81].

FIG. 7. The form and energy dependence of the diffraction
minimum at low energies (long-dashed line:

ffiffiffi
s

p ¼ 13.4 GeV;
thick hard line:

ffiffiffi
s

p ¼ 18.4 GeV; hard line:
ffiffiffi
s

p ¼ 30.4 GeV;
dashed line:

ffiffiffi
s

p ¼ 44.7 GeV).

FIG. 8. dσ=dt for pp at
ffiffiffi
s

p ¼ 52.8 GeV (top), pp̄ at
ffiffiffi
s

p ¼
52.8 GeV (middle), and pp at

ffiffiffi
s

p ¼ 7 TeV (bottom) (the dashed
lines are the predictions at

ffiffiffi
s

p ¼ 14 TeV).
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The model reproduces dσ=dt at very small and large t
and provides a qualitative description of the dip region at
−t ≈ 1.4 GeV2, for

ffiffiffi
s

p ¼ 53 GeV and for
ffiffiffi
s

p ¼ 62.1 GeV
for the proton-proton and proton-antiproton elastic scatter-
ing (see top and middle panels of Fig. 8). The diffraction
minimum at

ffiffiffi
s

p ¼ 7 TeV is reproduced sufficiently well
too (see bottom panel of Fig. 8).
In Fig. 9, the description of the differential cross

sections of the elastic scattering pp at large t and different
values of s is presented. It is to be noted that the
calculation of our integrals with complex oscillation
functions at large momentum transfer is a difficult task
and requires high-precision calculations. In any case, we
obtain a quantitatively good description of the differential
cross sections at large t. In this region of t, the contribution
of the spin-flip amplitude is felt. We take into account
only the asymptotic part of this amplitude with the
simplest and energy-independent forms. Although it has
a small size, its constant is determined sufficiently
well, hsf ¼ 0.06� 0.004.

In Fig. 10, the model calculations for the differential
cross sections are shown for the LHC energies. Obviously,
in the model the difference in the behavior of the differ-
ential cross sections between

ffiffiffi
s

p ¼ 7 and
ffiffiffi
s

p ¼ 14 TeV is
not large. For the most part, it is reflected in the movement
of the position of the diffraction minimum to low momen-
tum transfer and the increase of the sizes of the differential
cross sections in the minimum and second diffraction
maximum.

VI. THE STRUCTURE OF THE SCATTERING
AMPLITUDE

In the model, only the Born terms of the scattering
amplitude are determined. The separate terms and the full
Born scattering amplitude have a simple form and their
imaginary parts do not have any oscillating behavior at
small momentum transfer. In Fig. 11 and Fig. 12, the parts
of the Born terms of the scattering amplitude are presented
at

ffiffiffi
s

p ¼ 9.8 GeV and
ffiffiffi
s

p ¼ 7 TeV. At small momentum
transfer the imaginary part of the Pomeron P2g dominates at
both energies. At small energy, the cross-even and cross-
odd imaginary parts of P3g are equal to P2g in the region of
momentum transfer 0.7–0.9 GeV2, and then they dominate.
Both parts of P3g have the same size at −t > 1 GeV2. But
the real part of the cross-odd term of P3g dominates at
−t > 0.4 GeV2 and determines the real part of the full Born

FIG. 9. dσ=dt at large t for pp at
ffiffiffi
s

p ¼ 19.4 GeV (hard line),ffiffiffi
s

p ¼ 27.4 GeV, and
ffiffiffi
s

p ¼ 52.8 GeV (dashed line). The
squares, circles, and crosses are the experimental data for each
case, respectively.

FIG. 10. The model predictions of dσ=dt at
ffiffiffi
s

p ¼ 7 (hard line)
and

ffiffiffi
s

p ¼ 14 TeV (dashed line).

FIG. 11. The magnitude of the Born parts of the pp elastic
scattering amplitudes at

ffiffiffi
s

p ¼ 9.8 GeV. (Top) The imaginary
parts: the sum of all parts (hard line), the contribution of P2g
(long-dashed line), the contribution of the cross-even P3g (dashed
line), and the contribution of the cross-odd part of P3g (line with
points). (Bottom) The same for the real parts of the Born
amplitude.
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term of the scattering amplitude. As it has a different sign,
compared to the real part of P2g, the full real part of the
Born term changes the sign at −t ¼ 0.3 GeV2.
At

ffiffiffi
s

p ¼ 7 TeV the picture is different. In this case, the
imaginary part of the cross-odd P3g practically does not
influence the form of the scattering amplitude. The imagi-
nary part of the cross-even P3g exceeds the imaginary part
of P2g when −t > 0.3 GeV2 and further determines the full
Born term.
The energy dependence of the imaginary and real parts

of the full Born term of the scattering amplitude is shown in
Fig. 13. Note that the imaginary part grows with energy at
small momentum transfer and decreases at large momen-
tum transfer. The real part changes sign and then grows at
small momentum transfer, but has a small energy depend-
ence at large t.
The energy dependence of the slope of the full Born term

of the scattering amplitude is represented in Fig. 14. As ŝ is
complex, the slope has real and imaginary parts too. The
slope changes with s most quickly at small momentum
transfer. The minimum change occurs in the region

−t ≈ 0.8 GeV2. In Fig. 15, the energy dependence of the
“basic” slope Bðs; tÞ [Eq. (18)] is shown. Its real part has a
simple form at low energies with a growing maximum at
high energies that moves towards low t. However, the
imaginary part has a more complicated energy dependence.
The maximum of its energy dependence occurs at a
momentum transfer larger than that for the real part in
the region 0.4 < −t < 0.8 GeV2. The distinction of the
form of the slope from the constant (linear) slope cannot be
explained by the absence of the second Reggeons in the
model. The second Reggeons have real and imaginary parts
of the same order with a large slope near α1 ≈ 0.9 GeV−2.
They essentially change the t dependence of the differential
cross sections at low momentum transfer and especially in
the CNI region.
In order to use the unitarization procedure, it is necessary

to transform the Born term of the scattering amplitude in
the impact-parameter presentation. As our Born term has
the form factor in a complicated form compared to the
simple exponential, this transform can be performed only
by numerical integration [Eq. (7)]. Then, the standard

FIG. 12. The magnitude of the Born parts of the pp elastic
scattering amplitudes at

ffiffiffi
s

p ¼ 7 TeV. (Top) The imaginary parts:
the sumof all parts (hard line), the contribution ofP2g (long-dashed
line), the contribution of the cross-even P3g (dashed line), and the
contributionof thecross-oddpartofP3g (linewithpoints). (Bottom)
The same for the real parts of the Born amplitude.

FIG. 13. (Top) The imaginary part of the full Born amplitude of
the pp elastic scattering amplitudes at

ffiffiffi
s

p ¼ 7 TeV (solid line),ffiffiffi
s

p ¼ 541 GeV (long-dashed line),
ffiffiffi
s

p ¼ 52.8 GeV (dashed
line),

ffiffiffi
s

p ¼ 27.4 GeV (dashed-dotted line), and
ffiffiffi
s

p ¼
9.8 GeV (dotted line). (Bottom) The same for the real parts of
the Born amplitude.
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eikonal representation is used to obtain the overlapping
function in the impact-parameter representation [Eqs. (8)
and (9)].
The energy dependence of the corresponding term of

Γðs; bÞ [Eq. (9)] is represented in Fig. 16. One can see that
the black disc limit is not reached at

ffiffiffi
s

p ¼ 7 TeV [where
ImΓðs; b ¼ 0Þ ¼ 0.93] and even at

ffiffiffi
s

p ¼ 14 TeV [where
ImΓðs; b ¼ 0Þ ¼ 0.95]. The real part of Γðb; sÞ (bottom
panel of Fig. 16) is small and has some important influence
only at large impact parameters. Hence, the behavior of the
scattering amplitude will change to the saturation regime
when the energy grows essentially above the LHC energies.
It is necessary to take this into account when the cross
sections are extrapolated from the accelerator energies to
the energies reached in cosmic-ray experiments.
The corresponding representations for the total, elastic,

and inelastic cross sections are

σtotðsÞ ¼ 2

Z
bΓtotðs; bÞdb; ð23Þ

with Γtotðs; bÞ ¼ Ref1 − exp½χðs; bÞ�g,

σelðsÞ ¼
Z

bΓelðs; bÞdb; ð24Þ

with Γelðs; bÞ ¼ Ref1 − exp½χðs; bÞ�g2, and

σinelðsÞ ¼
Z

bΓinelðs; bÞdb; ð25Þ

with Γinelðs; bÞ ¼ Ref1 − exp½2χðs; bÞ�g.
The energy and impact parameter dependence of these

values are represented in Fig. 17. The Γinelðs; bÞ saturates
the unitarity bound up to b ¼ 0.6 fm at

ffiffiffi
s

p ¼ 14 TeV.
However, Γelðs; bÞ and the corresponding Γtot¼ΓelþΓinel.
do not reach the unitarity bound at this energy. In the
middle panel of Fig. 17, we can see that such saturation
takes place only at very large energy,

ffiffiffi
s

p ¼ 100 TeV. As a
result, the maximal growth of ΔΓinelðs2; s1Þ ¼ Γinelðs2Þ −
Γinelðs2Þ occurs at large impact parameters. The difference
between ΔΓinelðs2; s1Þ, ΔΓelðs2; s1Þ, and ΔΓtotðs2; s1Þ of

FIG. 14. (Top) The real part of the slope of the full Born
amplitude of the pp elastic scattering amplitudes at

ffiffiffi
s

p ¼ 7 TeV
(solid line),

ffiffiffi
s

p ¼ 541 GeV (long-dashed line),
ffiffiffi
s

p ¼ 52.8 GeV
(dashed line),

ffiffiffi
s

p ¼ 27.4 GeV (dashed-dotted line), and
ffiffiffi
s

p ¼
9.8 GeV (dotted line). (Bottom) The same for the real parts of the
Born amplitude.

FIG. 15. (Top) The real part of Bðs; tÞ [Eq. (18)] of the pp
elastic scattering amplitudes at

ffiffiffi
s

p ¼ 7 TeV (solid line),
ffiffiffi
s

p ¼
541 GeV (long-dashed line),

ffiffiffi
s

p ¼ 52.8 GeV, (dashed line),ffiffiffi
s

p ¼ 27.4 GeV (dashed-dotted line), and
ffiffiffi
s

p ¼ 9.8 GeV
(dotted line). (Bottom) The same for the imaginary parts of
Bð; tÞ [Eq. (18)].
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these values between
ffiffiffi
s

p ¼ 14 TeV and
ffiffiffi
s

p ¼ 7 TeV is
shown in the bottom panel of Fig. 17. Though the size of
the growth for the elastic and inelastic values is very
similar, the maximum of the growth takes place at different
impact parameters. The growth of inelastic processes has a
peripheral character. However, it is due to the saturation of
such processes in the central region.
The full elastic scattering amplitude is calculated by

numerical integration [Eq. (8)]. The magnitude of the real
and imaginary parts of the full elastic scattering amplitude
are represented in Fig. 18 for

ffiffiffi
s

p ¼ 9.8 GeV toffiffiffi
s

p ¼ 7 TeV. The imaginary part changes by moving its
zero from −t ¼ 1.35 GeV2 to −t ¼ 0.5 GeV2. The mag-
nitude of the real part has zeroes in the examined region of t
and mostly changes its size, but conserves its form. It
should be noted that the real part is negative at small
momentum transfer at

ffiffiffi
s

p ¼ 9.8 GeV. The energy depend-
ence of ρðs; t ¼ 0Þ (the ratio of the real part to the
imaginary part of the scattering amplitude) is shown in
Fig. 19. Note that we do not include the experimental data
on ρðs; t ¼ 0Þ and σtotðsÞ in the fitting procedure.
In Fig. 20 the slopes of the hadronic part of the full

elastic scattering amplitude are represented at

ffiffiffi
s

p ¼ 9.8 GeV and
ffiffiffi
s

p ¼ 7 TeV. Obviously, the differ-
ence between the slopes at small momentum transfer is
only in the size, though we examined such different
energies. The nonlinear behavior of the slope of the
Born term of the scattering amplitude is very weakly
reflected in the form of the slope of the eikonalized

FIG. 16. The overlapping function Γðs; bÞ [for the real (top) and
imaginary (bottom) parts] at

ffiffiffi
s

p ¼ 9.8 GeV (dashed line),
ffiffiffi
s

p ¼
52.8 GeV (dash-dotted line),

ffiffiffi
s

p ¼ 7 TeV (long dashed line),
and

ffiffiffi
s

p ¼ 14 TeV (hard line).

FIG. 17. (Top) Γðs; bÞtot (hard line), Γðs; bÞel (dashed line), and
Γðs; bÞinel (long dashed line) at

ffiffiffi
s

p ¼ 14 TeV. (Middle) The
energy dependence of Γðs; b ¼ 0Þtot (hard line), Γðs; b ¼ 0Þel
(dashed line), and Γðs; b ¼ 0Þinel (long dashed line). (Bottom)
The differences between Γðs; bÞtot (hard line), Γðs; bÞel (dashed
line), and Γðs; bÞinel (long dashed line) between

ffiffiffi
s

p ¼ 14 TeV
and

ffiffiffi
s

p ¼ 7 TeV.
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amplitude, but it essentially influences the fitting pro-
cedure. In a larger region of the momentum transfer the
slope of the differential cross section has a significant
difference for the low and high energies (bottom panel of
Fig. 20). This is the result of the eikonalization procedure
which is reflected in the position of the diffraction
minimum.
The comparison of the energy dependence of the

model calculations of the slope of the differential cross
sections is represented in Fig. 21. In Ref. [82], the slope
was determined as

BelðsÞ ¼
R
d2bb2Γðs; bÞR
d2bbΓðs; bÞ : ð26Þ

This gives the slope at t ¼ 0, but the experimental data
for the slope are obtained at small momentum transfer and

beyond the Coulomb-hadron interference region and in
some region of t. So, we used the standard determination of
the slope,

BelðsÞ ¼ Log

�
dσ=dtjt1
dσ=dtjt2

�
=½jt2j − jt1j�: ð27Þ

In the different experimental data, t1 and t2 are different.
We take some middle points: −t1 ¼ 0.04 GeV2 and

FIG. 18. The magnitude of the pp elastic scattering amplitudes
after eikonalization of the imaginary and real parts for

ffiffiffi
s

p ¼
9.8 GeV (long-dashed line and dash-dotted line, respectively);
and for

ffiffiffi
s

p ¼ 7 TeV (hard line and dashed line, respectively).

FIG. 19. The energy dependence of ρðs; t ¼ 0Þ (the ratio of the
real and imaginary parts of the scattering amplitude for pp (solid
line) and p̄p (dashed line) scattering. We also show the
experimental data for pp (squares) and p̄p (crosses) scattering
from Ref. [34].

FIG. 20. The slope of the full scattering amplitude at
ffiffiffi
s

p ¼
9.8 GeV (dashed line) and

ffiffiffi
s

p ¼ 7 TeV (hard line), for the real
parts (top), the imaginary parts (middle), and the slope of the
differential cross sections (bottom).
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−t2 ¼ 0.05 GeV2. The experimental data have large errors.
However, the energy dependence of our calculations for the
most part coincides with the energy dependence of the
experimental data.

VII. CONCLUSIONS

We have presented a new model of the hadron-hadron
interaction at high energies. The model is very simple with
regards to the number of parameters and functions. There
are no artificial functions or cuts that bound the separate
parts of the amplitude by some region of momentum
transfer or energy. One of the most remarkable properties
is that the real part of the hadron scattering amplitude is
determined only by the complex energy ŝ that satisfies the
crossing symmetries.
The new HEGS model gives a quantitative description of

the elastic nucleon scattering at high energy with only five
high-energy fitting parameters. Our model of the GPDs
leads to a good description of the proton and neutron
electromagnetic form factors and their elastic scattering
simultaneously. A successful description of the existing
experimental data by the model shows that the elastic
scattering is determined by the generalized structure of the
hadron. The model leads to a coincidence of the model
calculations with the preliminary data at 8 TeV. We found
that the standard eikonal approximation [83] works per-
fectly well from

ffiffiffi
s

p ¼ 9 GeV up to 8 TeV. The extended
variant of the model shows the contribution of the “maxi-
mal” Odderon with specific kinematic properties and does
not show a visible contribution of the hard Pomeron, as
in Ref. [25].
The slope of the differential cross sections at small

momentum transfer has a small peculiarity and has the
same properties in the whole examined energy region. Such
a uniform picture for the slope gives the possibility of
further research into small peculiarities of different cross

sections, such as possible oscillations [84]. Note that we did
not see the contributions of the second Reggeons with a
large slope and intercept above 0.5 in the examined energy
region.
The obtained value of the total cross sections σtotðsÞ and

the parameter ρðs; t ¼ 0Þ are shown in Table V. At low
energies the model calculation of σtotðsÞ corresponds to the
experimental data. The inclusion in our fit of the data of the
TOTEM Collaboration increases σtot at

ffiffiffi
s

p ¼ 7 TeV from
95 mb [24] to 97 mb, which can be compared with recent
data [67].
In Table VI, our model calculations at

ffiffiffi
s

p ¼ 7 TeV are
compared with experimental data obtained at the LHC by
different experimental collaborations. On the whole, the
model calculations correspond to the existing experimental
data. In our opinion, the experimental result of the ATLAS
Collaboration σtotðsÞ is preferable.
In Table VII, the comparison of our model with some

others are shown. The first is the old Bourrely-Soffer-Wu
(BSW1) model [14]. It has a small number of fitting
parameters (seven), but it also takes into account the
second Reggeon’s contributions. We have already noted
that in this model the form factor is approximated by some
function and it represents the average between the electro-
magnetic and matter form factors. The recent development
of this model is represented as BSW2 [86]. In this variant
the number of experimental points increases, but the
number of fitting parameters increases as well. Both of
the models (ours and BSW) used the standard eikonal
unitarization procedure. Another example of the model

FIG. 21. The energy dependence of the forward elastic slope
[Eq. (27)] compared to the existing experimental data for pp
(hard line and open circles) and pp̄ (dashed line and squares)
scattering.

TABLE V. Theobtained[85]andpredictedsizesofσtotðsÞ (inmb)
and ρðt ¼ 0; sÞ.
ffiffiffi
s

p
, GeV σtot-exp σtot ρðt ¼ 0; sÞ

19.42 38.98� 0.4 39.58� 0.8 −0.005� 0.0006
22.96 39.42� 0.4 39.89� 0.8 −0.005� 0.0006
52.8 42.85� 0.7 43.15� 0.5 0.074� 0.005
541 62.72� 0.2 62.72� 0.2 0.128� 0.005
1800 77.3� 0.38 77.3� 0.38 0.127� 0.02
7000 98.0� 2.6 97.16� 0.5 0.121
7000 96.4� 2. 97.16� 0.5 0.121
8000 101.� 2.1 99.4� 0.5 0.12
14000 104� 26. 108.76� 0.5 0.1176
30000 120.� 15 122.7� 0.5 0.11
57000 133� 23 135.4� 0.5 0.11

TABLE VI. The sizes of the cross sections and the ratio of
σel=σinel at 7 TeV.

σtot σel σinel Rel=inel

HEGS0 95.1� 0.8 24.1� 0.8 65� 0.8 0.37
HEGS1 97.2� 0.5 24.3� 0.5 66� 0.5 0.37
TOTEM 98.3� 2.9 24.8� 1.3 73.5� 1.9 0.34
ATLAS 95.35� 1.36 24.0� 0.6 71.34� 0.9 0.34

NUCLEON STRUCTURE AND THE HIGH ENERGY … PHYSICAL REVIEW D 91, 113003 (2015)

113003-15



(which does not use the unitarization procedure) is based
for the most part on Ref. [87]. Its recent variants are
presented as AGN [88] and MN [89]. The work is based on
many different forms of the parts of the elastic scattering
amplitude with many additional artificial functions. It
examined a large number of experimental data points but
did not include the Coulomb-hadron interference region.
The model includes in the fitting procedure the experi-
mental data of the total cross sections σtotðsÞ and the
parameter ρðs; t ¼ 0Þ. Such an inclusion decreases the total
χ2. Both models summed the statistical and systematic
errors and have χ2=N 2.46 and 1.23, respectively. The
obtained χ2 is minimal in the model MN but with a
huge number of fitting parameters and the inclusion
of additional artificial functions. Only our model takes

into account the whole region of momentum transfer
(3.7510−4 ≥ jtj ≥ 15 GeV2), which includes the high-pre-
cision experimental data on the Coulomb-hadron interfer-
ence region.
A small number of fitting parameters will make it

possible to explore some fine additional effects like
possible oscillations of the scattering amplitude, and to
find some corrections to the standard eikonal unitarization
procedure.
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