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We point out the presence of a T → −T temperature-reflection (T-reflection) symmetry for the partition
functions of many physical systems. Without knowledge of the origin of the symmetry, we have only been
able to test the existence of T-reflection symmetry in systems with exactly calculable partition functions.
We show that T-reflection symmetry is present in a variety of conformal and nonconformal field theories
and statistical mechanics models with known partition functions. For example, all minimal model partition
functions in two-dimensional conformal field theories are invariant under T-reflections. An interesting
property of the T-reflection symmetry is that it can be broken by shifts of the vacuum energy.
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I. INTRODUCTION

In this paper we observe that the partition functions
Zðβ ¼ 1=TÞ of a number of physical systems have a
curious symmetry under a “reflection” of the temperature,
T → −T:

ZðþβÞ ¼ eiγZð−βÞ; ð1Þ

where eiγ is a theory-dependent but temperature-
independent complex number of modulus 1. Before pro-
ceeding we emphasize that the definition of negative
temperatures used in this paper differs from the usual
notion of negative temperatures in finite level systems,
whereby increasing the energy of the system decreases its
entropy. Instead, the definition of negative temperature
used in (1) and throughout our paper entails a formal
extension of the partition function to complex temper-
atures, off of the interval T ∈ ½0;∞Þ.
Crucially, asking about the behavior of ZðβÞ under

T-reflection requires information about all of the energy
levels, En, and degeneracies, dn, in

ZðβÞ ¼
X∞
n¼1

dne−βEn : ð2Þ

Naively, the sum representation of ZðβÞ in Eq. (2) con-
verges only for β > 0, and directly testing (1) by sending
β → −β in ZðβÞ hinges on being able to resum the series
into some sort of closed form. Systems where such
resummations are known are rare.
In this paper we consider a variety of quantum systems

where exact expressions for ZðβÞ are available and show that
they have the T-reflection symmetry summarized in (1).

Many, but not all, of our example systems are conformal
field theories (CFTs). The presence of T-reflection sym-
metry requires a unique choice of ground-state energy;
shifting it by −Δ multiplies ZðβÞ by a noninvariant factor
of eβΔ. Note that shifting the vacuum energy of a Lorentz
invariant theory amounts to shifting the trace of the energy
momentum tensor, Tμ

μ, by a constant which corresponds to
a change in the cosmological constant.
As T-reflection fixes the ground-state energy, it resem-

bles a space-time symmetry. However, it seems to persist in
interacting theories without conformal or supersymmetry,
and may be of help in developing new approaches to the
cosmological constant problem [1].
Our most intricate and surprising examples are two-

dimensional CFT minimal models. Here, the role of
the temperature is played by the modular parameter
τ½ImðτÞ > 0� of the torus, and T-reflection then acts on τ
as [3]

R∶τ → −τ: ð3Þ

We show that all characters of the Virasoro algebra which
appear in any given minimal model are invariant under
R-transformations/T-reflections. These characters, denoted
χp;p

0
r;s ðqÞ and χ̄p;p

0
m;n ðq̄Þ, are the building blocks of two-

dimensional CFT minimal model torus partition functions,
and hence all minimal models are invariant under
T-reflections. This R-transformation should be contrasted
with the familiar modular transformation [6] of the torus.
The modular group PSLð2;ZÞ is generated by two
generators S and T, which act on τ as

S∶τ → −
1

τ
; T∶τ → τ þ 1: ð4Þ
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The transformation R does not commute with the gener-
ators of PSLð2;ZÞ. In fact R; S; T generate the extended
modular group PGLð2;ZÞ.

II. OSCILLATORS IN QUANTUM MECHANICS

Let us begin with the simplest example, a bosonic simple
harmonic oscillator (SHO). If we measure energy in units
of the oscillator frequency, and denote the ground state
energy by Δ, the partition function is given by

ZSHOðβÞ ¼
X∞
n¼0

e−βðnþΔÞ ¼ eβð1=2−ΔÞ

2 sinhðβ=2Þ : ð5Þ

This is T-reflection symmetric, with γ ¼ π, only if the
ground-state energy takes the naive value, Δ ¼ þ1=2.
Similarly, the thermal partition function for a fermionic

oscillator can be written as

ZðβÞ ¼ 2eβð1=2þΔÞ coshðβ=2Þ: ð6Þ

If Δ ¼ −1=2 this has a T-reflection symmetry (γ ¼ 0). As
emphasized above, shifting the ground-state energy breaks
any symmetry under T-reflections. One can also check that
the twisted partition function ~Z ¼ Trð−1ÞFe−βH (where
F is fermion number) for the fermionic oscillator has
T-reflection symmetry if and only if Δ ¼ −1=2.

III. FREE d ¼ 2 CFTs

Next we consider some of the simplest QFT examples of
systems with T-reflection symmetry, which are free d ¼ 2
CFTs. The torus partition functions of d ¼ 2 CFTs decom-
pose into linear combinations of products of holomorphic
and antiholomorphic Virasoro characters, which can them-
selves be thought of as partition functions for left-moving
and right-moving modes. Because τ ¼ iβ=L is the shape
modulus of the torus (T2 ¼ S1L × S1β) and q ¼ e2πiτ, the
T-reflection properties of the partition functions are fixed
by the transformation properties of the characters
under q → q−1.
We now examine the q-inversion properties of the single

holomorphic character

χsðqÞ ¼ q−
1
24

Y∞
n¼1

1

ð1 − qnÞ ¼
1

ηðqÞ : ð7Þ

contributing to the free scalar CFT (the analysis for the
antiholomorphic sector is completely analogous). We find

χsðq−1Þ ¼ qþ 1
24

Y∞
n¼1

1

1 − q−n

¼
�
q

1
12

Y∞
a¼1

qa
Y∞
b¼1

1

ð−1Þ
�
χsðqÞ

¼ q
1
12qζð−1Þ

ð−1Þζð0Þ χsðqÞ ¼ iχsðqÞ; ð8Þ

where we used zeta-function regularization [ζðsÞ is the
Riemann zeta function]. So χsðqÞ has T-reflection sym-
metry with γ ¼ π=2.
For additional insight into this result—especially on the

reason for the appearance of a regulator above—we can
compute the same partition function directly from the
Euclidean path integral for a scalar field. This gives

− lnZðβÞ ¼ V0Lβ þ
X∞
m¼1

�
βωm

2
þ logð1 − e−βωmÞ

�
ð9Þ

where ωm ¼ 2πm=L and V0 is the bare vacuum energy
from the Lagrangian. One can evaluate (9) as written,
which yields ZðβÞ ¼ χsðβÞ, or evaluate (9) after sending
β → −β, which yields Zð−βÞ ¼ χsð−βÞ. Note that this
amounts to what we did in the SHO example in (5) for
each of the infinite number of oscillators in the field theory.
It is important to note that UV divergences appear in the
calculations of both ZðβÞ and Zð−βÞ in QFTs, and hence
the frequency sums must be regularized and renormalized,
with the divergences absorbed in counterterms in e.g. V0.
Indeed, the second sum in (9) is precisely the same quantity
as the infinite product in (7), while the UV divergences and
renormalization issues which appear in the first sum in (9)
are hidden in the definition of the Casimir energy Δ ¼
−1=24 in (7). One can then verify that ZðβÞ has T-reflection
symmetry so long as the renormalized vacuum energy is set
to the Casimir energy, just as in (8), and also reproduce the
γ ¼ π=2 factor which we found using ζ-function regulari-
zation above. Similar remarks apply to all of our QFT
examples.
We next check the free fermion CFT partition functions

on T2 (see e.g. [7]). We can take periodic (R) or antiperi-
odic (NS) boundary conditions for each of the two cycles of
T2, which yields three nontrivial distinct partition functions
R-NS, NS-R, and NS-NS. (R-R fermions have a zero mode
which nullifies their associated partition function.) The
difference between R-NS and NS-R comes because we take
the Hamiltonian to be associated with isometries along one
of the S1’s in T2.
For NS-NS fermions, the character takes the form

χNS-NSðqÞ ¼ q−
1
48

Y∞
n¼0

ð1þ qnþ1=2Þ: ð10Þ

Under T-reflection, we have
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χNS-NSðq−1Þ ¼ qþ 1
48

Y∞
n¼0

ð1þ q−ðnþ1=2ÞÞ

¼
�
qþ 1

24

Y∞
a¼0

q−ðnþ1=2Þ
�
χNS-NSðqÞ

¼ q
1
24
−ζð−1;1

2
ÞχNS-NSðqÞ ¼ χNS-NSðqÞ; ð11Þ

where ζðs; aÞ is the Hurwitz zeta function, and
ζð−1; xÞ ¼ − x2

2
þ x

2
− 1

12
.

Similar arguments allow us to verify that the R-NS and
NS-R partition functions,

χR-NSðqÞ ¼ q
1
24

Y∞
n¼0

ð1þ qnÞ; ð12Þ

χNS-RðqÞ ¼ q−
1
48

Y∞
n¼1

ð1 − qn−1=2Þ; ð13Þ

are each separately covariant under T-reflection.

IV. FREE GAUGE THEORIES
IN d ¼ 4 DIMENSIONS

We now consider gauge theories on S3R × S1β where R and
β are the radii of the 3-sphere and the thermal circle
respectively. Asymptotically free gauge theories with gauge
groups of rank N with a strong scale Λ become arbitrarily
weakly coupled when RΛ → 0. Indeed, in the RΛ → 0

limit they behave as if they were free CFTs on S3R × S1β with
a color-singlet constraint from the Gauss law. The authors
of Refs. [8] showed how to compute their partition
functions in this free CFT limit. The gauge theory
partition functions can be written in terms of so-called
“single-particle” partition functions, which can be calcu-
lated using CFT techniques and are given by

zSðxÞ ¼
ðx1=2 þ x−1=2Þ
ðx−1=2 − x1=2Þ3 ; ð14Þ

zFðxÞ ¼
23

ðx−1=2 − x1=2Þ3 ; ð15Þ

zVðxÞ ¼ 1þ ðx2 − x−2Þ − 4ðx − x−1Þ
ðx−1=2 − x1=2Þ4 ð16Þ

for real scalars, Majorana fermions, and vectors respec-
tively and x ¼ e−β=R. We observe that zS, zF and 1 − zV are
T-reflection symmetric with γ ¼ π.[9].
The single-trace and full multitrace confining-phase

partition functions of (nearly free) large-N gauge theories
with adjoint matter on S3R × S1β have T-reflection symmetry,
as they depend only on the covariant functions 1 − zVðxÞ,
zSðxÞ, and zFðxÞ [8]. For example, for a theory with nf

and ns massless adjoint fermions and conformally coupled
scalars, the confining-phase thermal partition function of
the gauge theory in the large-N limit can be written as

ZGðβÞ ¼
Y∞
n¼1

1

1 − zVðxnÞ − nszSðxnÞ þ ð−1ÞnnfzFðxnÞ
:

ð17Þ

The values ns ¼ 6 and nF ¼ 4 correspond toN ¼ 4 super-
Yang-Mills theory. T-reflection maps each single particle
partition function, (14)–(16), and hence each factor in the
product (17), into itself, up to a factor of ð−1Þ. To compute
the value of γ for the transformation of ZG we must deal
with the formal expression

Y∞
n¼1

ð−1Þ ¼ ð−1Þ
P

∞
n¼1

1 ≡ ð−1Þζð0Þ ¼ e−iπ=2 ð18Þ

where in the last step we used zeta function regularization
to define the value of the infinite sum. Hence these gauge
theories are T-reflection symmetric with γ ¼ π=2.
We have checked that the free conformally coupled

massless scalar, massless fermion, and Uð1Þ gauge theories
without matter on S3 × S1 all have T-reflection symmetry,
but only if the vacuum energy is set to the appropriate
Casimir energy. Since ZG describes a family of confining
theories [8], one might have expected that the vacuum
energy would be of order the confinement scale 1=R, which
in this case is also the order of a Casimir energy on S3.
However, from (17) one can see that ZG has T-reflection
symmetry only if its vacuum energy vanishes. We do not
know the underlying reason for this phenomenologically
tantalizing result, which we explore in detail in the separate
publication (see Note Added).

V. SUPERCONFORMAL INDICES

Next we consider twisted partition functions on M × S1β
for supersymmetric field theories, where the compact
manifold M and the boundary conditions on the circle
S1β are chosen such that supersymmetry is preserved. This
requires that fermions have periodic boundary conditions
on S1β, and S1β can be interpreted as a spatial circle. Our
discussion applies to d ¼ 4, N ¼ 1 theories with arbitrary
matter content (with the rank of the gauge group N kept
finite), as long as the theory has a Uð1Þ R-symmetry.
The virtue of such generalized partition functions is that

they are independent of the continuous coupling constants
and can be evaluated exactly even for strongly interacting
theories, by taking the free coupling limit. We again
essentially have a set of decoupled oscillators. In the
examples we have been able to check, these partition
functions are also invariant under T-reflections.
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For M ¼ S3, we have the so-called superconformal
index [11] defined for d ¼ 4, N ¼ 1 gauge theories on
S3 × S1, which is defined to be

I ¼ Tr

�
ð−1ÞFpEþj2

3
þj1q

Eþj2
3

−j1
Y
i

uFi
i

�
; ð19Þ

where E, j1, j2 are the Cartan generators of Uð1Þ ×
SUð2Þ × SUð2Þ isometry of S3 × S1, Fi are the flavor
Cartan generators of the theory, and p, q, ui are the relevant
fugacities. These fugacities depend exponentially on β, and
T-reflection inverts them.
As tabulated in e.g. [11,12], the single-particle indices

for vector-multiplets zV and chiral-multiplets zS are

zVðp; qÞ ¼ 1 −
ðpqÞ1=2 þ ðpqÞ−1=2

ðp1=2 − p−1=2Þðq1=2 − q−1=2Þ ;

zSðp; q; uÞ ¼
ðpqÞ1=2u−1 þ ðpqÞ−1=2u

ðp1=2 − p−1=2Þðq1=2 − q−1=2Þ : ð20Þ

Although T-reflections invert the fugacities, we see that the
rational functions ð1 − zVÞ and zS are invariant.
As was the case for the free CFTs on S3R × S1β above, the

full superconformal indices are functions of zS and 1 − zV .
From this one can show that the entire superconformal
index, a quantity associated with interacting SUSY gauge
theories, has a T-reflection symmetry with γ ¼ 0.
We have also verified that a similar argument works for

the more general indices on S1 × S3=Zp from [13], which
in turn implies a T-reflection symmetry for their dimen-
sionally reduced counterparts (e.g. three-dimensional index
on S1 × S2 [14]). For S1 × S3=Zp, T-reflection also flips
the discrete holonomies along S3=Zp.

VI. MINIMAL MODELS

We next consider d ¼ 2 minimal model CFTs, which
give an infinite family of interacting but solvable field
theories. These CFTs describe the critical behavior of a
wide variety of models from statistical physics, many of
which are experimentally realizable. A minimal model
Mðp; p0Þ has a finite set of primary operators, character-
ized by two integers r and s, satisfying 1 ≤ r < p,
1 ≤ s < p0. The characters of minimal models are given
by [15]

χp;p
0

ðr;sÞ ¼ Kðp;p0Þ
r;s ðqÞ − Kðp;p0Þ

r;−s ðqÞ; ð21Þ

Kðp;p0Þ
r;�s ðqÞ ¼ 1

ηðqÞ
Xþ∞

n¼−∞
q

ð2pp0nþðpr∓p0sÞÞ2
4pp0 : ð22Þ

The sum in (22) takes the form of a theta function,
ϑ00ðz;QÞ, which has an infinite product representation:

ηðqÞKðp;p0Þ
r;�s ðqÞ ¼ q

ðpr∓p0sÞÞ2
4pp0

Xþ∞

n¼−∞
ðq2pp0 Þn22 ðqpr∓p0sÞn

¼Q
α2

2

Y∞
n¼1

ð1−QnÞð1þQnþα−1
2Þð1þQn−α−1

2Þ

ð23Þ

where Q ¼ q2pp
0
, α ¼ pr∓p0s

2pp0 , and we used Jacobi’s
triple-product identity for ϑ00ðQα; QÞ in the last line.

QðqÞ-inversion maps ηðqÞKðp;p0Þ
r;�s ðqÞ, i.e. Qα2

2 ϑ00ðQα; QÞ,
into

Q−α2

2 ϑ00ðQ−α; Q−1Þ ¼ Q−α2

2 ϑ00ðQþα; Qþ1Þð−1Þζð0Þ
Qζð−1Þþζð−1;1

2
−αÞþζð−1;1

2
þαÞ

¼ −iQþα2

2 ϑ00ðQα; QÞ: ð24Þ

The T-reflection symmetry of the character χp;p
0

ðr;sÞ then

follows immediately from Eqs. (7), (8), (23) and (24),
and we find γ ¼ 0. We have carried out similar checks for
the characters ofN ¼ 1, 2 superminimal models. All these
characters have T-reflection symmetry.
These examples can be run backwards to show that

T-reflection invariance fixes the ground state energy to take
the values which coincide with the values mandated by
other physical principles, such as modular invariance.

VII. LATTICE MODELS

At least some exactly solved lattice models in two-
dimensional statistical mechanics also have T-reflection
symmetry. For instance, Onsager’s exact solution [16] of
the two-dimensional Ising model on the square lattice, with
periodic boundary conditions and zero external field, is

ln½ZðβÞ� ¼ Nlnð2 cosh 2βJÞ

þ N
π

Z
π=2

0

dwln

�
1

2
f1þ ð1 − K2sin2wÞ1=2g

�
;

K ¼ 2 sinhð2βJÞ
ðcoshð2βJÞÞ2 ; ð25Þ

where J is the nearest neighbor interaction, and N is the
number of sites on the lattice (N ≫ 1). This solution has
the T-reflection symmetry for arbitrary T, as guaranteed by
the bipartite/particle-hole symmetry of the underlying
square lattice, even away from the critical point. [At the
critical point the Ising model is described by the
minimal model Mð4; 3Þ, for which we already verified
T-reflection.] Note that this is an explicit example of an
interacting nonsupersymmetric and nonconformal many-
body model with T-reflection symmetry. The symmetry
would be broken if there is a shift of the ground state
energy in (25).
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As shown in Refs. [17], superconformal indices of
N ¼ 1 quiver gauge theories can be identified with
partition functions of two-dimensional exactly solvable
statistical mechanics models. Exploiting the T-reflection
symmetry of the N ¼ 1 four-dimensional superconformal
indices explored above, one could show a wide variety of
models in two-dimensional statistical mechanics also have
T-reflection symmetry.

VIII. DISCUSSION

Several comments are now in order.
It is important to keep in mind that T-reflection sym-

metry can only hold for a special class of theories; for
arbitrary En the partition function (2) cannot have any
simple T-reflection transformation. For instance, a three-
level system with unevenly spaced energy levels will not be
T-reflection symmetric. For interacting systems with an
infinite number of energy levels it is not easy to check
T-reflection, as we have already remarked in the introduc-
tion. One of the exceptions is the case where En is a
quadratic polynomial in n, where we can we can relate the
transformation of (2) to the inversion properties of theta
functions. Our prescription for extending these modular
forms from jqj < 1 to jqj > 1, i.e. for negative temper-
atures, also resonates with recent ideas in number theory,
particularly in the context of “quantum modular forms”
[18]. While many of our examples were free theories, we
again emphasize that T-reflection symmetry is not neces-
sarily spoiled by interactions, as is highlighted by the
minimal model examples.
It is conceivable that in general T-reflection symmetry

may require simultaneous transformations of other param-
eters of the system. As a simple example, consider adding
an anharmonic interaction λ

4!
ϕ4 to the harmonic oscillator.

The first-order correction to the partition function is (e.g.
Ref. [19])

Zðβ; λÞ ¼ ZSHOðβÞ
�
1 −

βλð1þ xÞ2
8ð1 − xÞ2

�
; ð26Þ

where x ¼ e−β and ZSHO was given earlier in (5) (we take
Δ ¼ 1=2). One then finds that Z → −Z under β → −β,
λ → −λ. Note that the expression above has the λ-corrected
vacuum energy

ΔðλÞ ¼ 1

2

�
1þ λ

4

�
: ð27Þ

Just as in the noninteracting theory, one is not allowed
to shift the vacuum energy from this particular value
without ruining the T-reflection “symmetry.” Similar con-
clusions seem to hold in higher orders of perturbation
theory. Nonetheless, it is uncertain whether conclusions
based on finite-order perturbation theory carry any real

information in this context: T-reflection covariance
depends crucially on the structure of the entire spectrum.
Higher-lying states in the spectrum depend more sensi-
tively on the anharmonicities. So it is an open question
whether perturbative studies of deformations of exactly
solvable systems will have definitive lessons for the
survival of T-reflection symmetry in more general settings.
All of our examples and remarks raise several obvious

interrelated questions: what is the origin of the T-reflection
symmetry? How general is the symmetry? What are
the broader implications of T-reflection symmetry? The
answers to these questions are currently unknown. It is
conceivable that T-reflection symmetry is a previously
unappreciated consequence of known symmetries, such as
e.g. time-reversal symmetry, or it might be something
entirely new. All we can say for now is that T-reflection
symmetry is not a consequence of conformal invariance,
nor of supersymmetry, since we have given examples of
T-reflection symmetric systems which are neither con-
formal nor supersymmetric.
In some examples the reflection symmetry has a simple

group-theoretical explanation. As an example, consider the
character of the spin j-representation of SUð2Þ:

Tr qJ3 ¼ q2jþ1 − q−2j−1

q − q−1
: ð28Þ

This is invariant under q → q−1, which amounts to an
exchange of the highest-weight state with the lowest-
weight state. So here T-reflection is an involution (inner
automorphism) of the SUð2Þ algebra which exchanges the
raising and lowering operators J�≔J1 � iJ2 via J3 → −J3,
J� → J∓, which is simply a π rotation along the axis 1.
Hence, for SUð2Þ, T-reflection symmetry is implied
directly by the algebraic structure itself. Similar involutions
(called Cartan-Chevalley involutions) exist for arbitrary
semisimple Lie algebras. One might then naturally wonder
whether T-reflection symmetry for CFTs might have
something to do with the fact that the Virasoro algebra,

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

δmþn;0; ð29Þ

has an outer automorphism Ln → −L−n. Such group-
theory-based arguments do not seem to have a chance to
explain T-reflection in general, however. The involution
exchanges the highest-energy state with the lowest-energy
state, but many of our examples correspond to infinite-
dimensional representations without highest-energy states.
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Note added.—Recently, several works have appeared which
discuss applications of T-reflection symmetry to the vanish-
ing of the vacuum energy in N ¼ ∞ confining gauge
theories [20] and some higher-spin gauge theories [21–24].
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