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We revisit and extend previous calculations of glueball decay rates in the Sakai-Sugimoto model, a
holographic top-down approach for QCD with chiral quarks based on D8-D̄8 probe branes in Witten’s
holographic model of nonsupersymmetric Yang-Mills theory. The rates for decays into two pions, two
vector mesons, four pions, and the strongly suppressed decay into four π0 are worked out quantitatively,
using a range of the ’t Hooft coupling which closely reproduces the decay rate of ρ and ω mesons and also
leads to a gluon condensate consistent with QCD sum rule calculations. The lowest holographic glueball,
which arises from a rather exotic polarization of gravitons in the supergravity background, turns out to have
a significantly lower mass and larger width than the two widely discussed glueball candidates f0ð1500Þ and
f0ð1710Þ. The lowest nonexotic and predominantly dilatonic scalar mode, which has a mass of 1487 MeV
in the Witten-Sakai-Sugimoto model, instead provides a narrow glueball state, and we conjecture that only
this nonexotic mode should be identified with a scalar glueball component of f0ð1500Þ or f0ð1710Þ.
Moreover the decay pattern of the tensor glueball is determined, which is found to have a comparatively
broad total width when its mass is adjusted to around or above 2 GeV.

DOI: 10.1103/PhysRevD.91.106002 PACS numbers: 11.25.Tq, 13.25.Jx, 14.40.Be, 14.40.Rt

I. INTRODUCTION

The non-Abelian nature of quantum chromodynamics
(QCD)—the theory of the strong interactions—makes it
possible to form bound states of gauge bosons, the so-called
glueballs [1–3]. In pure Yang-Mills theory, these are in fact
the only possible particle states, and their spectrum has been
studied in detail in lattice gauge theory [4–6]. Glueballs
are obtained for a range of quantum numbers JPC, where J
denotes total spin, P parity, and C charge conjugation; the
lowest glueball has the quantum numbers of the vacuum,
JPC ¼ 0þþ. In the presence of quarks, the situation becomes
complicated because glueballs can mix with qq̄ states of
the same quantum numbers. Lattice simulations of QCD
including quarks are more difficult, but recent unquenched
calculations continue to indicate the existence of glueballs
[7] with the lightest glueball around 1600–1800 MeV.
The identification of glueballs in experimental data,

however, remains elusive [8–11] and will be one of the
objectives of the PANDA experiment at FAIR [12,13].
Experimentally, the 0þþ meson sector turns out to be
particularly challenging. Listings of the Particle Data
Group (PDG) [14] contain five isospin–zero scalar states
in the energy region below 2 GeV: f0ð500Þ or σ, f0ð980Þ,
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ, with the last two rather
narrow states being frequently discussed as potential
candidates for states with dominant glueball content
[15–25]. Alternative scenarios with broad glueball reso-
nances around 1 GeVand mixing with the σ meson are also
discussed in the literature [26–29].
A similarly unclear situation is found in the case of the

lightest tensor glueball: lattice simulations obtain a mass

between 2.3 GeV and 2.6 GeV [4–7] while the PDG lists
f2ð1950Þ, f2ð2010Þ, f2ð2300Þ, and f2ð2340Þ as estab-
lished states around and above 2 GeV, with several needing
confirmation [e.g., the narrow fJð2220Þ state that may
have spin two or four, or may not exist at all]. Various
approaches to low-energy QCD have also been applied to
this region [30–34] but a clear identification of a tensor
glueball in the meson spectrum is missing.
A central difficulty is the paucity of theoretical predic-

tions of glueball couplings and decay rates from first
principles. Lattice gauge theory provides information on
Euclidean correlators, and the extraction of real-time quan-
tities is involved and fraught with uncertainties. Glueballs
are particularly difficult to studywhen dynamical quarks are
included.
A completely different approach to strongly coupled

gauge theories has been developed over the past one and a
half decades in the form of anti–de Sitter/conformal field
theory (AdS/CFT) correspondence or, more generally,
gauge-string duality [35,36]. The AdS/CFT correspon-
dence posits a map of correlation functions of gauge
invariant composite operators with a large number of colors
Nc and large ’t Hooft coupling to perturbations of certain
backgrounds in classical (super)gravity. Already in 1998,
Witten [37] proposed a top-down construction of such a
duality based on type-IIA supergravity, where both super-
symmetry and conformal invariance are broken such that at
low energies, below a Kaluza-Klein mass scale MKK, the
dual gauge theory is four-dimensional large-Nc Yang-Mills
theory. The calculation of glueball spectra from type-IIA
supergravity was in fact one of the first applications of
“holographic QCD” [38–43]. (Glueballs have subsequently
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been studied further in more phenomenological, bottom-up
holographic models in, e.g., Refs. [44–47].)
Quarks in the fundamental representation can be added

to the AdS/CFT correspondence in the form of probe flavor
D-branes [48]. In type-IIA superstring theory there are
D-branes of even spatial dimensionality, and the first attempt
to include quarks in Witten’s model of nonsupersymmetric
Yang-Mills theory was based on D6-branes [49]. This made
it possible to study chiral symmetry breaking in the case
of one flavor, which, however, did not permit a correct
generalization to flavor number Nf > 1, an issue that was
solved in 2004 by Sakai and Sugimoto [50,51] by adding
pairs of D8- and anti-D8-branes intersecting the color
D4-branes of the Witten model. This model has been
remarkably successful in reproducing various features of
low-energy QCD while being firmly rooted in string theory
with a minimal set of parameters—for givenNc andNf, the
only dimensionless parameter is the ’t Hooft coupling λ at
the Kaluza-Klein scale MKK.
In this paper we shall use the Witten-Sakai-Sugimoto

model to study glueball-meson interactions and to calculate
glueball decay rates from the resulting effective interaction
Lagrangians. This was first carried out by Hashimoto, Tan,
and Terashima in Ref. [52], whose calculations we repeat
(with important corrections) and extend.
In addition to the lowest glueballmode in theWittenmodel,

which happens to be rather different from the dilaton mode
that plays this role in simpler bottom-up models of holo-
graphicQCD,we consider the (predominantly but not purely)
dilatonic mode of the Witten model, as well as the tensor
glueball and their excitations. We calculate decay rates into
two and four pions, andwe confirm the prediction of Ref. [52]
that scalar glueball decay into four π0 mesons is suppressed
by evaluating the rate quantitatively. The latter receives
contributions from multiglueball interactions as well as from
higher-order terms in the Dirac-Born-Infeld (DBI) action of
the D8-branes, with the latter yielding the dominant piece.
One of the main conclusions of our work is that the

lowest gravitational mode in the Witten-Sakai-Sugimoto
model appears to be ill suited to model the lowest glueball
of QCD as found in lattice simulations, while the dilatonic
mode has reasonable properties regarding its mass and
decay rates. The lowest mode either has to be discarded on
grounds of its exotic polarization along the compactified
dimension of the type-IIA background or perhaps could
find a physical role as a pure-glue component of the σ
meson [26] (which itself is absent in the Sakai-Sugimoto
model) or the “red dragon” of Ref. [27].
We also make quantitative comparisons with experimen-

tal data on glueball candidates among scalar mesons at or
above 1.5 GeV by extrapolating the mass of the holo-
graphic glueball and assuming weak mixing with qq̄ states
as the latter is parametrically suppressed at large Nc [53]
and thus also in the Witten-Sakai-Sugimoto model [52].
Moreover, the decay pattern of the tensor glueball is

worked out in detail, where also extrapolations to decays
into massive pseudo-Goldstone bosons appear possible.
In view of Refs. [24,54], a particularly interesting feature

of the holographic approach is that it admits narrow glueball
states in the mass range predicted by lattice simulations,
while the prediction of the gluon condensate is small, close to
its standard Shifman-Vainshtein-Zakharov (SVZ) value [55].

II. THE WITTEN MODEL OF
NONSUPERSYMMETRIC YANG-MILLS THEORY

The Witten model of nonsupersymmetric (and noncon-
formal) Yang-Mills theory in 3þ 1 dimensions is based on
the AdS/CFT correspondence for a six-dimensional (0,2)
superconformal field theory that is obtained from a large
number Nc of coincident M5-branes in 11-dimensional M
theory. Their near-horizon 11-dimensional supergravity
geometry is the product space AdS7 × S4 with a curvature
radius L of the AdS7 space that is twice the radius of the S4.
With M5-branes extended along the directions 0, 1, 2, 3, 4,
and 11, the line element of this space reads [56]

ds2 ¼ r2

L2
½ημνdxμdxν þ ðdx4Þ2 þ ðdx11Þ2�

þ L2

r2
dr2 þ L2

4
dΩ2

4; ð2:1Þ
where μ; ν ¼ 0;…; 3 are (3þ 1)-dimensional indices
(following [56] we are skipping the index value 10, see
Table I for a summary of our notations). The six-dimensional
gauge theory living on the boundary of AdS7 is a rather
elusive maximally supersymmetric conformal field theory
without a Lagrangian formulation. Dimensional reduction on
a supersymmetry-preserving circle with

x11 ≃ x11 þ 2πR11; R11 ¼ gsls; l2s ¼ α0 ð2:2Þ
leads to the near-horizon geometry of (nonconformal)
D4-branes of type-IIA supergravity, whose dual theory is a
five-dimensional super-Yang-Mills theory.
Already in 1998, Witten proposed to use this correspon-

dence as a basis for a holographic model of the low-energy
regime of pure-glue Yang-Mills theory by a further circle
compactification which breaks supersymmetry in the same
way as supersymmetry is broken in the imaginary-time
formulation of thermal field theory. The fermionic gluinos
are subject to antiperiodic boundary conditions and thus
become massive at tree level, whereas adjoint scalars
acquire masses through loop corrections since they are
not protected by gauge symmetry. In the limit of a large
Kaluza-Klein mass scale, the only remaining degrees of
freedom are the gauge bosons. The dual geometry is given
by a doubly Wick-rotated black hole in AdS7 × S4,

ds2 ¼ r2

L2
ðfðrÞdx24 þ ημνdxμdxν þ dx211Þ

þ L2

r2
dr2

fðrÞ þ
L2

4
dΩ2

4; ð2:3Þ

BRÜNNER, PARGANLIJA, AND REBHAN PHYSICAL REVIEW D 91, 106002 (2015)

106002-2



with fðrÞ ¼ 1 − r6KK=r
6 and a would-be thermal circle

x4 ≃ x4 þ 2πR4; R4 ≡ 1

MKK
¼ L2

3rKK
; ð2:4Þ

where the relation between rKK and MKK is determined
by the absence of a conical singularity at r ¼ rKK. The
background also has a Ramond-Ramond (R-R) nonvanish-
ing antisymmetric tensor gauge field with Nc units of flux
through the S4.
The relation to the type IIA string-frame metric is

ds2 ¼ GM̂ N̂dx
M̂dxN̂

¼ e−2Φ=3gMNdxMdxN þ e4Φ=3ðdx11 þ AMdxMÞ2;
ð2:5Þ

with M;N ¼ 0;…; 9 and M̂, N̂ additionally including the
index 11. This leads to a nonconstant dilaton eΦ ¼
ðr=LÞ3=2 and Am ¼ 0 for the above background geometry.
For later use we introduce the alternative radial coor-

dinates U∈ðUKK;∞Þ and Z∈ð0;∞Þ, used also in
Refs. [50,51]), through

U ¼ r2=2
L

; KðZÞ≡ 1þ Z2 ¼ r6

r6KK
¼ U3

U3
KK

: ð2:6Þ

Note that the holographic boundary is at infinite values of r,
U, and Z.
In terms of the radial coordinate U the ten-dimensional

metric reads

ds2 ¼
�

U
RD4

�
3=2

½ημνdxμdxν þ fðUÞðdx4Þ2�

þ
�
RD4

U

�
3=2

�
dU2

fðUÞ þU2dΩ2
4

�
ð2:7Þ

with fðUÞ ¼ 1 − ðUKK=UÞ3; the nonconstant dilaton is
given by

eΦ ¼ ðU=RD4Þ3=4: ð2:8Þ

The parameters of the dual field theory are given
by [49–51,57]1

g2YM ¼ g25
2πR4

¼ 2πgslsMKK;

ðL=2Þ3 ≡ R3
D4 ¼ πgsNcl3s : ð2:9Þ

At scales much larger than MKK, the dual theory turns into
five-dimensional super-Yang-Mills theory. However, it is
not possible to make MKK arbitrarily large without leaving
the supergravity approximation.
The dual gauge theory exhibits confinement. Wilson

loops connecting heavy quarks at the boundary with large
spatial separation along x are represented by fundamental
strings that minimize their energy by having most of their
length at minimal U. The effective string tension therefore
tends to the value

σ ¼ 1

2πl2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgxx

p jU¼UKK
¼ 1

2πl2s

�
UKK

R

�
3=2

¼ 2g2YMNc

27π
M2

KK: ð2:10Þ

In accordance with confinement, the dual theory has a mass
gap for fluctuations of the background geometry with scale
set by MKK.

A. Holographic glueball spectrum

Ignoring all Kaluza-Klein modes on the compactification
circles and all nontrivial harmonics on the S4 with nonzero
R charge, the bosonic normal modes of the supergravity
multiplet can be interpreted as glueballs in the dual
(3þ 1)-dimensional Yang-Mills theory [38–43].2 There
are in total six independent wave equations for various
scalar, vector, and tensor modes, which were denoted as S4,
T4, V4, N4, M4, and L4 in [43]; see Table II. These give
three distinct possibilities to obtain modes with JPC ¼ 0þþ
quantum numbers, corresponding to the (3þ 1)-dimen-
sional scalars G11;11, G44, and the S4 volume fluctuation
Gα

α, where the index α refers to the S4. The latter, termed
L4 in Table II, has a lowest mass eigenvalue ≈3.57MKK
which is larger than those of all the other wave equations
and will be ignored in what follows.
The remaining two towers of scalar modes are described

by the wave equations denoted S4 and T4. The lowest mass
eigenvalue is found in S4, which corresponds asymptoti-
cally to 11-dimensionally traceless metric fluctuations in
Gii, G11;11, and G44. The other scalar mode does not
involve G44 and can be attributed to the dilaton derived
from G11;11. It is degenerate with the 2þþ tensor mode
(wave equation T4) that is provided by transverse-traceless
fluctuations in Gij, i; j ¼ 1; 2; 3. [It is also degenerate with
the vector mode 1þþ derived from G11;i, but this mode is

1This is based on a normalization of the Yang-Mills action as
− 1

4g2YM
TrFμνFμν, which differs, however, from the convention

used in particle physics, where the coupling constant of SUðNcÞ
gauge theories is invariably defined as L ¼ − 1

2g2 TrFμνFμν so that
g2 ¼ 2g2YM. This means that the QCD coupling is given by αs ≡
g2=ð4πÞ ¼ g2YM=ð2πÞ ¼ λ=ð2πNcÞ in terms of the ’t Hooft
coupling λ≡ Ncg2 as used here. Since we do not attempt to
match with perturbative QCD here, this is of no concern for the
calculations performed below (it is, however, important to take
into account when comparing quantitatively with weak-coupling
results; see also footnote 1 in Ref. [58]).

2In Ref. [59] this analysis was recently extended to modes
obtained by breaking the symmetry of the S4.
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discarded as spurious from the point of view of the
(3þ 1)-dimensional Yang-Mills theory because of negative
“τ-parity” [43], implying that its dual operator is odd under
a reflection x4 → −x4.]
Pseudoscalar (0−þ) modes are obtained from the

one-form field component C4 descending from G11;4 (wave
equation V4), whereas the three-form field of
11-dimensional supergravity is responsible for vector
modes: a vector 1þ− from the antisymmetric tensor field
Bij (wave equationN4), and avector 1−− from the three-form
field componentsCij4 (wave equationM4). All other modes
can be discarded due to negative τ parity.
The glueball mass spectrum resulting from the numerical

results listed in Table II is displayed in Fig. 1, where it is
compared with recent lattice results at large Nc from
Ref. [60], which is in fact rather similar to that obtained
for Nc ¼ 3 [4,5]. When juxtaposed such that the lowest
tensor mode is matched, the holographic spectrum roughly
reproduces the pattern obtained in lattice gauge theory.
Missing states of spin 2 with PC ≠ þþ and higher spin
states might be due to closed string modes. On the other
hand, there is a certain proliferation of 0þþ states due to the
existence of modes involving G44, which have been termed
“exotic” in Ref. [42], where they were first considered. In
fact, Ref. [42] suspected that only one of the towers of
scalar states may survive in the limitMKK → ∞, where the
Witten model would turn into an exact string-gauge dual of
large-Nc Yang-Mills theory.

B. Normalization of glueball modes

To be able to derive effective actions of the glueball
modes and their interactions, we need to calculate the
normalization factors required for a canonical kinetic term.
For this purpose it is convenient to use the 11-dimensional
notation, where the fluctuations take their simplest form.

1. Lowest (exotic) scalar glueball

The lowest scalar glueball 0þþ is associated with fluc-
tuations involving asymptotically (for r → ∞) δG44 ¼
−4δG11 ¼ −4δG22 ¼ −4δG33 ¼ −4δG11;11. In the bulk,
other metric components are also involved, leading to the
following “exotic polarization” [42]

δG44¼−
r2

L2
fHEðrÞGEðxÞ;

δGμν ¼
r2

L2
HEðrÞ

�
1

4
ημν−

�
1

4
þ 3r6KK
5r6−2r6KK

�∂μ∂ν

M2
E

�
GEðxÞ;

δG11;11¼
r2

L2

1

4
HEðrÞGEðxÞ;

δGrr ¼−
L2

r2
f−1

3r6KK
5r6−2r6KK

HEðrÞGEðxÞ;

δGrμ ¼
90r7r6KK

M2
EL

2ð5r6−2r6KKÞ2
HEðrÞ∂μGEðxÞ; ð2:11Þ

where the eigenvalue equation is given by

1

r3
d
dr

rðr6 − r6KKÞ
d
dr

HEðrÞ

þ
�

432r2r12KK
ð5r6 − 2r6KKÞ2

þ L4M2
E

�
HEðrÞ ¼ 0: ð2:12Þ

Integration over the S4 reduces the 11-dimensional
supergravity action to

S¼ 1

2κ211
ðL=2Þ4Ω4

Z
d7x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detG

p �
RðGÞþ 30

L2

�
ð2:13Þ

with 2κ211 ¼ ð2πÞ8l9sg3s and Ω4 ¼ 8π2=3.

TABLE II. Our results for the mass spectrum m2
n of AdS7 black hole metric fluctuations in the notation of [43]

(i.e. in units of r2KK=L
4 ¼ M2

KK=9) obtained by spectral methods cross-checked with a shooting method. The
results for the lowest modes agree completely with Ref. [43], while for certain higher modes there are deviations in
the last few digits. JPC assignments are given only for the modes with even τ parity that are expected to have a
counterpart in QCD.

Mode S4 T4 V4 N4 M4 L4

JPC 0þþ 0þþ=2þþ 0−þ 1þ− 1−− 0þþ

n ¼ 0 7.30835 22.0966 31.9853 53.3758 83.0449 115.002
n ¼ 1 46.9855 55.5833 72.4793 109.446 143.581 189.632
n ¼ 2 94.4816 102.452 126.144 177.231 217.397 277.283
n ¼ 3 154.963 162.699 193.133 257.959 304.531 378.099
n ¼ 4 228.709 236.328 273.482 351.895 405.011 492.171

TABLE I. Notations used here versus notation in Hashimoto
et al. [52], Brower et al. [43], and Sakai and Sugimoto [50,51].

Here [52] [43] [50]

x11 x4 x11 � � �
R11 R11 R1 � � �
x4 τ τ τ
R4 ≡M−1

KK M−1
KK R2 M−1

KK
rKK R R � � �
RD4 ≡ L=2 RSS RAdS=2 R
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Inserting the metric fluctuations (2.11) into the seven-
dimensional action givesZ

d7x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p �
RðGÞ þ 30

L2

�����
H2

E

¼ −CE
Z

dx11d4xdx4
1

2
½ð∂μGEÞ2 þM2

EG
2
E� ð2:14Þ

with

CE ¼
Z

∞

rKK

drr3

L3

5

8
HEðrÞ2: ð2:15Þ

For the lowest eigenmode HE we obtain numerically

CE ¼ 0.057395½HEðrKKÞ�2
r4KK
L3

: ð2:16Þ

[This deviates from the result given in Ref. [52] by a factor 1
2

that seems to be missing in their Eq. (2.19).]
Requiring that upon integration over x4 and x11 the scalar

field GEðxÞ is canonically normalized leads to

½HEðrKKÞ�−1 ¼ ½HEðZ ¼ 0Þ�−1

¼ 1ffiffiffi
2

p 0.0097839λ1=2NcMKK

¼ 0.0069183λ1=2NcMKK: ð2:17Þ

(This differs from [52] only by the explicitly written
factor 1=

ffiffiffi
2

p
.)

2. Scalar and tensor modes from the tensor multiplet

A scalar mode 0þþ that does not involve metric
components with index 4 is obtained from3

δG11;11 ¼ −3
r2

L2
HDðrÞGDðxÞ;

δGμν ¼
r2

L2
HDðrÞ

�
ημν −

∂μ∂ν

□

�
GDðxÞ: ð2:18Þ

Since upon reduction to ten dimensions δG11;11 is essen-
tially the dilaton, we shall refer to this mode as predomi-
nantly dilatonic. [Note that also the exotic mode (2.11)
involves a dilaton component, but that there the dominant
component is δG44. It should also be kept in mind that the
attribute exotic only refers to the holographic origin of this
mode, and not to any exotic JPC quantum numbers in the
dual field theory.]
The tensor glueball 2þþ is dual to metric fluctuations that

have neither δG44 nor δG11;11, but contain a transverse
traceless polarization tensor in δGμν. For example, one can
choose as only nonvanishing components

δG11 ¼ −δG22 ¼ −
r2

L2
HTðrÞGTðxÞ: ð2:19Þ

The radial functionsHD;T are determined by the equation

1

r3
d
dr

rðr6 − r6KKÞ
d
dr

HD;TðrÞ þ L4M2HD;TðrÞ ¼ 0;

ð2:20Þ

with M2 ¼ M2
D ¼ M2

T .
Calculating the normalization of these glueball modes in

analogy to (2.14) leads to

CD;T ¼
Z

∞

rKK

drr3

L3

�
6HDðrÞ2
HTðrÞ2

: ð2:21Þ

For the lowest eigenmode HE we obtain numerically

CT ¼ 0.22547½HTðrKKÞ�2
r4KK
L3

ð2:22Þ

and an analogous result for CD with a coefficient 6 times
as large.

--
PC

0

1

2

3

M/M
KK

++ -+ +- ++ -+ +- --
PC

0

2

4

6

8

10

M/√σ

(b)(a)

FIG. 1 (color online). The glueball spectrum of the Witten
model (a) in units of MKK (exotic scalar modes in green)
compared to the spectrum obtained in the recent large-Nc lattice
calculations of Ref. [60] (b) in units of the square root of the
string tension

ffiffiffi
σ

p
, juxtaposed such that the lowest tensor mode is

matched. The dotted lines in (b) give the glueball spectrum of the
Witten model when expressed in terms of the string tension of
the Witten model with the standard set of parameters (3.8) for the
Sakai-Sugimoto model.

3As discussed recently in Ref. [59], more possibilities for
scalar (and other) glueball modes are obtained if Ramond-
Ramond field fluctuations which partially break the SO(5)
symmetry are included.
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This leads to

½HD;TðrKKÞ�−1 ¼ ½HD;TðZ ¼ 0Þ�−1

¼ λ1=2NcMKK

�
0.033588

0.013712
: ð2:23Þ

C. Glueball field/operator correspondence

The above metric perturbations are sourced by operators
in the dual field theory, which is five-dimensional super-
Yang-Mills theory compactified on the circle along x4.
The operator dual to the tensor perturbations is simply

the five-dimensional energy-momentum tensor with three-
dimensional indices. Omitting the adjoint scalars of the
five-dimensional theory, we have

Tð5Þ
mn ¼ TYM

mn þ F4mF4n −
1

2
δmnF4μF4

μ þ � � �; ð2:24Þ

where A4 is a further scalar that like the adjoint scalars of
the five-dimensional theory becomes massive through loop
corrections.
The operators dual to the exotic and the predominantly

dilatonic scalar modes can be inferred from their couplings
to the fields in the DBI action of D4-branes in the limit
of r → ∞ [40]. The exotic scalar mode δGE

MN and the
dilatonic one, 1

4
δGD

MN , turn out to source, respectively,4

OE ¼ −
5

8
FμνFμν −

1

2
TYM
00 þ F4μF4

μ −
1

2
F2
40 þ � � �;

ð2:25Þ

OD ¼ þ 3

8
FμνFμν −

1

2
TYM
00 þ F4μF4

μ −
1

2
F2
40 þ � � �:

ð2:26Þ

The difference OD −OE ¼ FμνFμν is the purely four-
dimensional glueball operator, which is dual to
1
4
δGD

MN − δGE
MN . However, this linear combination is not

a normal mode in the gravitational background. We
therefore need to keep the exotic and the predominantly
dilatonic mode, of which both, or perhaps only one of them,
might correspond to the glueballs of the four-dimensional
Yang-Mills theory. To really end up with the latter, one
would, however, need to take the limit of large Kaluza-Klein
mass MKK, which is necessarily leaving the supergravity
approximation. In this limit, both modes will presumably
receive important corrections. If one of the modes drops out
of the spectrum, onemight suspect that it will more likely be
δGE

MN as it includes a then spurious polarization compo-
nent δG44.

In the following we shall consider both modes, as well as
the tensor mode, when calculating glueball-meson inter-
actions within the Witten-Sakai-Sugimoto model, extend-
ing the analysis of Ref. [52], which only studied the lowest
(exotic) 0þþ mode.

III. THE WITTEN-SAKAI-SUGIMOTO MODEL

Sakai and Sugimoto introduced chiral quarks in Witten’s
model of pure-glueYang-Mills theory bymeans ofNf probe
D8- and anti-D8-branes that fill all spatial directions except
the Kaluza-Klein circle [50,51]. Quarks and antiquarks
are thus localized on separate points x4 of the (4þ 1)-
dimensional boundary theory. The global flavor symmetry
UðNfÞL × UðNfÞR is, however, broken spontaneously,
because the subspace x4-U has the topology of a cigar
forcing the D8- and anti-D8-branes to join in the bulk. The
action of the joinedD8-braneswhich describes the dynamics
ofqq̄mesons through flavor gauge fields on the branes reads

SD8 ¼ −TD8Tr
Z

d9xe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ð~gMN þ 2πα0FMNÞ

p
þ SCS

¼ −ð2πα0Þ2TD8Tr
Z

d9xe−Φ
ffiffiffiffiffiffi
−~g

p
×

�
1þ 1

4
~gPR ~gQSFPQFRS þOðF4Þ

�
þ SCS ð3:1Þ

with TD8 ¼ ð2πÞ−8l−9s , ~gMN the metric on the (8þ 1)-
dimensional world volume induced by (2.7), and Φ shifted
such that eΦ ¼ gsðU=RD4Þ3=4. Because no backreaction of
the D8-branes on the ten-dimensional background of the
Witten model is taken into account, this corresponds to the
quenched approximation of QCD, as indeed is appropriate
for the large-Nc limit at fixedNf. (For attempts to go beyond
the quenched approximation see Refs. [61,62].)
In the original version of the Sakai-Sugimoto model that

we shall use here, the D8- and anti-D8-branes are put at
antipodal points so that they join at the minimal value
U ¼ UKK. In this case it is most convenient to use the
dimensionless coordinate Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU=UKKÞ3 − 1

p
already

introduced above, but extended to the range −∞� � � þ∞
so that the radial integrations of the D8- and the anti-D8-
branes are combined. The part of the DBI action quadratic
in the flavor field strength then reads

SðF
2Þ

D8 ¼ −κTr
Z

d4x
Z

∞

−∞
dZ

�
1

2
K−1=3ημρηνσFμνFρσ

þ KM2
KKη

μνFμZFνZ

�
ð3:2Þ

with K ≡ 1þ Z2 and

κ ¼ ð2πα0Þ2TD8g−1s Ω4

1

3
R9=2
D4 U

1=2
KK ¼ λNc

216π3
; ð3:3Þ4We disagree here with Ref. [43] which attributed F2

μν to δGD

and T00 to δGE.
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where (2.9) as well as Ω4¼8π2=3 and M2
KK¼ð3=2Þ2UKK=

R3
D4 have been used.
The Goldstone bosons of chiral symmetry breaking

appear as

SD8 ¼
f2π
4

Z
d4xTrðU−1∂μUÞ2 þ � � �;

U ¼ P exp

�
i
Z

∞

−∞
dZAZ

	
; ð3:4Þ

which determines the so-called pion decay constant in
terms of λ and MKK as

f2π ¼
1

54π4
λNcM2

KK: ð3:5Þ

Massive vector and axial vector mesons arise as even and

odd eigenmodes of AðnÞ
μ ¼ ψnðZÞvðnÞμ ðxÞ with eigenvalue

equation

−ð1þ Z2Þ1=3∂Zðð1þ Z2Þ∂ZψnÞ ¼ λnψn;

ψnð�∞Þ ¼ 0: ð3:6Þ

The lowest mode vð1Þμ is interpreted as the isotriplet ρmeson
[or the ω meson for the U(1) generator] with mass m2

ρ ¼
λ1MKK with the numerical result λ1 ¼ 0.669314….
The next-highest mode vð2Þμ with eigenvalue λ2 ≈ 1.569 is

an axial vector that can be identified [50] with the meson
a1ð1260Þ. The experimental value for the ratio ma1=mρ ≈
1.59 is remarkably close to

ffiffiðp
λ2=λ1Þ ≈ 1.53. Also the

experimental value for the mass of the excited ρð1450Þwith
mρ�=mρ ≈ 1.89 is close to

ffiffiðp
λ3=λ1Þ ≈ 2.07. This nice

agreement may, however, be a bit fortuitous, since recent
lattice simulations [63] at large Nc, extrapolated to zero
quark mass, give the higher values ma1=mρ ≈ 1.86 and
mρ�=mρ ≈ 2.40. This would correspond to errors 21% and
16%, respectively, which may still be considered a success

given that already the mass of vð2Þμ is aboveMKK. (For more
checks of the quantitative predictions of the Witten-Sakai-
Sugimoto model see Ref. [64].) Optimistically, one can
therefore hope that the Witten-Sakai-Sugimoto model is a
useful approximation to QCD up to masses of 2 or 3
times MKK.

A. Choice of parameters

Matching the result for the ρ meson mass with its
experimental value, mρ ¼

ffiffiffiffiffi
λ1

p
MKK ≈ 776 MeV,5 fixes

the Kaluza-Klein mass to [50,51] MKK ¼ 949 MeV.
This determines the masses of the other vector and axial

vector mesons, which come out in rough agreement with
experiment. The masses of the lowest (exotic) and the
predominantly dilatonic scalar glueball, the tensor glueball
(degenerate with the dilatonic scalar), and the lowest
pseudoscalar glueball are fixed to, respectively,

ME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7.30834=9

p
MKK ≈ 855 MeV;

MD ¼ MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22.0966=9

p
MKK ≈ 1487 MeV;

MP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31.9853=9

p
MKK ≈ 1789 MeV;

ME� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
46.9855=9

p
MKK ≈ 2168 MeV;

MD� ¼ MT� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55.5833=9

p
MKK ≈ 2358 MeV; ð3:7Þ

where we have also given the masses of some of the
corresponding excited states (marked by a star).
The lowest scalar glueball involving the exotic polari-

zation (2.11) with a dominant δG44 component is found to
be only 10% heavier than the ρ meson. This is in stark
contrast to lattice results both for quenched Nc ¼ 3 and
Nc ¼ ∞ QCD [60], where the lightest glueball is about
twice as heavy.
A possible modification of the Sakai-Sugimoto model

consists of choosing a nonmaximal separation of the
D8-D̄8-branes [65,66]. The latter then join at a value
U ¼ U0 > UKK and the mass of a string stretched between
UKK and U0 has been interpreted as a “constituent” quark
mass. Unfortunately, this only makes the problem worse:
Nonmaximal separation increases the eigenvalue λ1 [67]
while the glueball spectrum is unaffected. With a constitu-
ent quark mass of 310 MeV and keeping the mass of the ρ
meson fixed as done in Ref. [68], MKK is reduced to
720 MeV, which reduces all values in (3.7) by 25%.
With maximal separation and the standard choice

MKK ¼ 949 MeV, the mass of the dilatonic glueball is
not far from the numerical result obtained in lattice gauge
theory for the lightest scalar glueball state, while a degen-
eracy with the tensor glueball is not observed there—the
latter is instead significantly heavier. This degeneracy might
perhaps be lifted by higher-derivative corrections when
going beyond the leading supergravity approximation.
Similarly, it is conceivable that only the dilatonic glueball
survives in the (unfortunately inaccessible) limit to a
complete holographic QCD and that therefore the lowest
scalar mode is to be discarded. We shall come back to this
question when calculating the decay width of the various
glueball states.
To calculate glueball-meson interactions, we shall need

to extrapolate to finite coupling and finite Nc ¼ 3. The
original [50,51] and most widely used choice is obtained
from matching fπ ≈ 92.4 MeV in (3.5) which gives

κ ≡ λNc=ð216π3Þ ¼ 7.45 × 10−3⇒λ ≈ 16.63 ðNc ¼ 3Þ:
ð3:8Þ

5The mass of the ω meson, which is degenerate with the ρ
meson in the Sakai-Sugimoto model, is only slightly higher in
real QCD.
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(The original and published versions of Refs. [50,51]
contained an error in the prefactor of the D8-brane action
for Nf > 1 involving a different definition of κ, which led
to a ’t Hooft coupling of about 8.3 and effectively a
correspondingly reduced pion decay constant. This error,
which was later corrected in the e-print versions of
Refs. [50,51], did not affect the mass spectra of mesons
obtained in Refs. [50,51], but it does affect all interactions.
Unfortunately, Ref. [52] still employed the incorrectly
matched ’t Hooft coupling, affecting all meson and glueball
decay rates calculated therein.)
In what follows, we shall take (3.8) as the standard

choice, but also consider as an alternative a value of the
’t Hooft coupling obtained by matchingmρ=

ffiffiffi
σ

p
, where σ is

the string tension (2.10), to the large-Nc lattice result of
Ref. [63]. Reference [63] obtained mρ=

ffiffiffi
σ

p ¼ 1.504ð50Þ,
whose central value corresponds to λ ¼ 12.55. With the
“standard” value λ ≈ 16.63 the Sakai-Sugimoto model
predicts mρ=

ffiffiffi
σ

p
≈ 1.306, which agrees within 15% but

points to a smaller ’t Hooft coupling and thus a smaller
string tension. A smaller ’t Hooft coupling has also been
argued for in Ref. [69], where the spectrum of higher-spin
mesons obtained from massive open string modes has been
considered. We shall therefore consider a downward varia-
tion of λ ≈ 16.63� � �12.55 to get an idea of the variability of
the predictions of the Witten-Sakai-Sugimoto model.
Before turning to decay rates, we consider two other

predictions of the Witten-Sakai-Sugimoto model at finite
Nc where the concrete value of λ matters.
At infinite Nc, the Goldstone bosons include also a

massless η0 pseudoscalar meson from the spontaneous
breaking of the UAð1Þ symmetry, whose anomaly is sup-
pressed at Nc → ∞. However, at finite Nc, the Sakai-
Sugimoto model predicts a finite mass for the η0 meson
through a Witten-Veneziano formula evaluated already in
[50] with the result

mη0 ¼
1

3
ffiffiffi
3

p
π

ffiffiffiffiffiffi
Nf

Nc

s
λMKK: ð3:9Þ

With MKK ¼ 949 MeV and λ ≈ 16.63 (or 12.55) the
numerical value for Nc ¼ Nf ¼ 3 turns out to be
967 MeV (730 MeV). The higher value is surprisingly
close to the experimental value 958 MeV, but actually a
smaller value than that might perhaps be expected given the
absence of a strange quark mass. At any rate, the right
ballpark seems to be reached with the parameters consid-
ered here.
Another quantity of interest, in particular in connection

with glueball physics, is the gluon condensate which was
calculated in Ref. [57] as

C4 ≡


αs
π
Ga

μνGaμν

�
¼ 4Nc

37π4
λ2M4

KK: ð3:10Þ

For λ ≈ 16.63 this yields C4 ¼ 0.0126 GeV4, almost iden-
tical to the standard SVZ sum rule value [55], while for
λ ¼ 12.55 a significantly smaller value of 0.0072 GeV4 is
obtained. Using sum rules both smaller [70] and larger [71]
values than the standard SVZ sum rule value are discussed
in the literature, while lattice simulations typically give
significantly larger values, which are, however, of the same
size as ambiguities from the subtraction procedure [72].
While a quantitative comparison thus does not seem to be
in order, we note that the gluon condensate is predicted to
be small.

B. Normalization of qq̄ modes

For the calculation of decay rates we will initially
consider Nf ¼ 2, dropping the strange quark whose non-
negligible mass cannot be easily accommodated within the
Sakai-Sugimoto model (see, however, Refs. [73–76]); the
possible effects of the finite quark masses will be discussed
in Sec. V.
In the chiral Sakai-Sugimoto model, the Goldstone

bosons are the massless pions contained in

AZ ¼ UKKϕ0ðZÞπðxμÞ; ð3:11Þ

where UKK has been included to render the mode function
ϕ0ðZÞ dimensionless.6 The U(1) part of AZ corresponds to
the η0 meson, which is a Goldstone boson only at infinite
Nc; for finite Nc it receives a mass through the Witten-
Veneziano mechanism [50] [see Eq. (3.9) below].
The only vector mesons that we shall consider will be the

isotriplet ρ meson described by the traceless part of

Aμ ¼ ψ1ðZÞρμðxνÞ; ð3:12Þ

and the isosinglet ω meson given by the corresponding
expression proportional to the unit matrix.
Following Ref. [52] (which here differs from [50,51]) we

choose the generators of the SU(2) flavor group such that
TrTaTb ¼ δab. Canonical normalization of the fields πa

and ρaμ in (3.2) such that upon integration over Z one has

S ¼ −Tr
Z

d4x

�
1

2
ð∂μπÞ2 þ

1

4
F2
μν þ

1

2
λ1M2

KKρ
2
μ þ � � �

�
ð3:13Þ

leads to

2κ

Z
∞

−∞
dZK−1=3ðψ1Þ2 ¼ 1; ð3:14Þ

6For our purposes it is most convenient to keep AZ nonzero.
The frequently adopted gauge choice AZ ¼ 0 leads to a different
but physically equivalent field parametrization of the Goldstone
bosons.
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2κðUKKMKKÞ2
Z

∞

−∞
dZKðϕ0Þ2 ¼ 1: ð3:15Þ

The first relation determines the value of ψ1 at Z ¼ 0 with
the help of the numerical resultZ

∞

−∞
dZK−1=3ðψ1Þ2 ¼ 2.80302� � �ψ2

1ð0Þ; ð3:16Þ

while the second fixes the normalization of ϕ0∝1=K ≡
1=ð1þ Z2Þ as

UKKMKKϕ0 ¼
1ffiffiffiffiffiffiffiffi
2πκ

p 1

K
: ð3:17Þ

C. ρ and ω meson decay

The ρ − π interactions are determined by the second term
of (3.2), using7 FμZ ¼ ∂μAZ − ∂ZAμ − i½Aμ; AZ�. The effec-
tive vertex between the four-dimensional fields ρ and π’s
are obtained upon integration of the resulting products of
the mode functions ψ1ðZÞ and ϕ0∝1=K. For the process
ρ → ππ we need specifically

Lρππ ¼ −gρππϵabcð∂μπ
aÞρbμπc;

gρππ ¼
ffiffiffi
2

p Z
dZ

1

πK
ψ1 ¼

ffiffiffi
2

p
× 24.030λ−

1
2N

−1
2

c : ð3:18Þ

This agrees with the numerical value given in Table 3·34 of
Ref. [51] for gv1ππ ≡ gρππ. (gρππ=

ffiffiffi
2

p
was denoted as c6 in

[52]; we will reserve ci, i ¼ 1; 2; 3;…, for the coefficients
in the interactions of the glueball field with mesons, for
which we will follow the conventions chosen in [52].)
The amplitude for the decay of a ρ meson at rest with

polarization ϵμ ¼ ð0; eÞ into two pions with momenta
pμ ¼ ðjpj;pÞ and qμ ¼ ðjpj;−pÞ reads

M ¼ igρππϵμðpμ − qμÞ ¼ 2igρππe·p: ð3:19Þ

The expression for the decay rate involves a directional
average, leading to

Γρ=mρ ¼
1

4π

Z
dΩ

jMj2
16πm2

ρ

¼ g2ρππ
48π

≈
7.659
λNc

≈
�
0.1535 ðλ ¼ 16.63Þ
0.2034 ðλ ¼ 12.55Þ ;

ð3:20Þ

which compares remarkably well with the current exper-
imental value Γρ=mρ ¼ 0.191ð1Þ from Ref. [14] (although

it should be noted that in this process the finite pion mass
implies a reduction by about 20% compared to a decay into
massless particles so that the coupling gρππ appears some-
what underestimated with our range of parameters for the
Sakai-Sugimoto model).
The decay of the ωmeson into π0γ and π0πþπ−, which is

due to the Chern-Simons part of the D8-brane action, has
been calculated in [51], with the result 2.58 MeV for the
dominant three-pion decay, which is significantly below the
experimental value ≈7.6 MeV. However, the result of [51]
is proportional to λ−4. Varying again λ from 16.63 to 12.55
gives the range 2.58–7.96 MeV, which happens to include
the experimental value.
So the model appears to make reasonable semiquanti-

tative estimates for meson interactions, which is quite
remarkable given that after fixing the mass scale and
setting Nc ¼ 3, there is only one free parameter, namely
λ. This certainly makes it interesting to consider the
predictions of this model for glueball decay rates in detail.

IV. GLUEBALL-MESON INTERACTIONS

The glueball modes, which have been obtained in
Sec. II A in terms of 11-dimensional metric perturbations
δGM̂ N̂ , translate to perturbations of the type-IIA string
metric gMN and the dilaton Φ according to (2.5). Explicitly,
this gives

gμν ¼
r3

L3

��
1þ L2

2r2
δG11;11

�
ημν þ

L2

r2
δGμν

�
;

g44 ¼
r3f
L3

�
1þ L2

2r2
δG11;11 þ

L2

r2f
δG44

�
;

grr ¼
L
rf

�
1þ L2

2r2
δG11;11 þ

r2f
L2

δGrr

�
;

grμ ¼
r
L
δGrμ;

gΩΩ ¼ r
L

�
L
2

�
2
�
1þ L2

2r2
δG11;11

�
;

e4Φ=3 ¼ r2

L2

�
1þ L2

r2
δG11;11

�
: ð4:1Þ

Here we differ from Ref. [52] where the metric fluctuations
gΩΩ on the S4 have been omitted. As one can check
(Appendix A), the ten-dimensional equations for the glue-
ball modes are satisfied only when the fluctuation in gΩΩ
is kept.8

We shall consider in turn the lowest glueball dual to the
metric fluctuations (2.11), referred to as exotic because it

7Here we follow the conventions of Ref. [52]. Note that in
Refs. [50,51] the matrix-valued flavor gauge fields are anti-
Hermitian.

8In ten dimensions, the induced fluctuations in gΩΩ are in fact
necessary to decouple the mode L4, which in 11 dimensions
corresponds to pure S4 volume fluctuations, as can be seen from
the explicit ten-dimensional calculations in Ref. [40].
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involves δG44 besides dilaton fluctuations in δG11;11, the
predominantly dilatonic glueball associated with (2.18),
and the tensor glueball with metric fluctuations (2.19).
Inserting the respective metric fluctuations in the D8-brane
action and integrating over the bulk coordinates yields
effective interaction Lagrangians which are given in full
detail in Appendix B.

A. Glueball decay to two pions

The effective, (3þ 1)-dimensional interaction
Lagrangian for the lowest (exotic) 0þþ glueball GE reads
(omitting terms that vanish when GE is on shell)

LGE→ππ ¼ −Tr
�
1

2
c1∂μπ∂νπ

∂μ∂ν

M2
E
GE þ 1

2
c̆1∂μπ∂μπGE

�
ð4:2Þ

with coupling constants c1 and c̆1 defined in (B3) and
numerically given in Table III.

The corresponding result for the dilatonic scalar 0þþ and
the 2þþ modes, denoted GD and Tμν, respectively, is

LGD→ππ ¼ 1

2
d1Tr∂μπ∂νπ

�
ημν −

∂μ∂ν

M2
D

�
GD; ð4:3Þ

LGT→ππ ¼ 1

2
t1Tr∂μπ∂νπTμν; t1 ≡

ffiffiffi
6

p
d1: ð4:4Þ

GD is a canonically normalized real scalar, and Tμν a
massive tensor field with transverse traceless polarizations,
normalized such that

LT ¼ 1

4
Tμνð□ −M2

TÞTμν þ Bμ∂νTμν þ BημνTμν þ � � �;
ð4:5Þ

where Bμ and B are Lagrange multiplier fields. The
coefficient d1 is given in Table IV.
For the two scalar glueballs described byGE andGD, the

decay width into two pions (Fig. 2) is given by the simple
expression

ΓGE;D→ππ ¼
jpj

8πM2
E;D

jME;Dj2 × 3 ×
1

2
; ð4:6Þ

where p is the momentum of one of the pions in the rest
frame of the glueball with jpj ¼ ME;D=2, the factor of 3
comes from the sum over the isospin quantum number,
and the factor of 1

2
is included because the two pions are

identical. The amplitude for the decay of GE and GD is,
respectively,

jMEj ¼ jðc1þ c̆1Þp0q0− c̆1p·qj ¼ jc1þ2c̆1j
M2

E

4
; ð4:7Þ

jMDj ¼ jd1p·qj ¼ jd1j
M2

D

4
: ð4:8Þ

TABLE III. Coupling coefficients in the interaction Lagrangian
of the lowest glueball. [Here we give numerical results for ci=

ffiffiffi
2

p
to permit a comparison with the results listed in [52], with which
we disagree by a factor of

ffiffiffi
2

p
in (2.17). Taking this into account

we agree with all numerical values, with the exception of c4,
which in [52] seems to be missing the numerical factor contained
in the normalization of HEðZÞ.] The coefficients c̆1;2;3;5 are
coupling constants due to S4 volume fluctuations induced by the
lowest glueball that were apparently dropped in [52]. Coefficients
with a star indicate the corresponding constants for the first
excited exotic mode.

Vertex Value

c1=
ffiffiffi
2

p
GE∂π∂π 44.304λ−

1
2N−1

c M−1
KK

c2=
ffiffiffi
2

p
GEρρ 5.0318λ−

1
2N−1

c M−1
KK

c3=
ffiffiffi
2

p
GE∂ρ∂ρ 49.334λ−

1
2N−1

c M−1
KK

c4=
ffiffiffi
2

p
GEρ∂ρ −7.4810λ−1

2N−1
c Mþ1

KK

c5=
ffiffiffi
2

p
GEρπ∂π 1428.1λ−1N

−3
2

c M−1
KK

c̆1=
ffiffiffi
2

p
GE∂π∂π 11.590λ−

1
2N−1

c M−1
KK

c̆2=
ffiffiffi
2

p
GEρρ 2.0970λ−

1
2N−1

c M−1
KK

c̆3=
ffiffiffi
2

p
GE∂ρ∂ρ 12.814λ−

1
2N−1

c M−1
KK

c̆5=
ffiffiffi
2

p
GEρπ∂π 359.33λ−1N

−3
2

c M−1
KK

c�1=
ffiffiffi
2

p
G�

E∂π∂π 24.641λ−
1
2N−1

c M−1
KK

c�2=
ffiffiffi
2

p
G�

Eρρ −0.8227λ−1
2N−1

c M−1
KK

c�3=
ffiffiffi
2

p
G�

E∂ρ∂ρ 27.906λ−
1
2N−1

c M−1
KK

c�4=
ffiffiffi
2

p
G�

Eρ∂ρ −1.7467λ−1
2N−1

c Mþ1
KK

c�5=
ffiffiffi
2

p
G�

Eρπ∂π 858.66λ−1N
−3
2

c M−1
KK

c̆�1=
ffiffiffi
2

p
G�

E∂π∂π 4.5843λ−
1
2N−1

c M−1
KK

c̆�2=
ffiffiffi
2

p
G�

Eρρ −1.2390λ−1
2N−1

c M−1
KK

c̆�3=
ffiffiffi
2

p
G�

E∂ρ∂ρ 5.3829λ−
1
2N−1

c M−1
KK

c̆�5=
ffiffiffi
2

p
G�

Eρπ∂π 176.99λ−1N
−3
2

c M−1
KK

TABLE IV. Coupling coefficients di (ti ≡
ffiffiffi
6

p
di) in the inter-

action Lagrangian of the lowest glueballs in the tensor multiplet
(dilaton and tensor), collectively denoted as ~G, with a star
indicating the first excited mode. [Note that there is no term
analogous to the one involving c4 for the lowest (exotic) glue-
ball.]

Vertex Value

d1 ~G∂π∂π 17.226λ−
1
2N−1

c M−1
KK

d2 ~Gρρ 4.3714λ−
1
2N−1

c M−1
KK

d3 ~G∂ρ∂ρ 18.873λ−
1
2N−1

c M−1
KK

d5 ~Gρπ∂π 512.20λ−1N
−3
2

c M−1
KK

d�1 ~G�∂π∂π 11.906λ−
1
2N−1

c M−1
KK

d�2 ~G�ρρ −0.9415λ−1
2N−1

c M−1
KK

d�3 ~G�∂ρ∂ρ 13.680λ−
1
2N−1

c M−1
KK

d�5 ~G�ρπ∂π 419.46λ−1N
−3
2

c M−1
KK
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For the tensor glueball an average over the polarizations
of the tensor is needed. Alternatively, we can choose a
fixed polarization ϵ11 ¼ −ϵ22 ¼ 1 and integrate over the
orientation of our Cartesian coordinates. This leads to
the scattering amplitude (in the rest frame of the tensor
glueball)

jMT j ¼ jt1ðp2
x − p2

yÞj; jpj ¼ MT=2; ð4:9Þ

and the decay width

ΓT→ππ ¼
jpj

8πM2
T

Z
dΩ
4π

jMT j2 ×
3

2
¼ 1

640π
jt1j2M3

T:

ð4:10Þ

Numerically we obtain9 with λ ≈ 16.63 for the scalar
glueballs GE, GD, and G�

D,

ΓGE→ππ=ME ¼ 3jc1 þ 2c̆1j2M2
E

512π

≈
13.79
λN2

c
≈ 0.092 ðME ≈ 855 MeVÞ; ð4:11Þ

ΓGD→ππ=MD ¼ 3jd1j2M2
D

512π
≈
1.359
λN2

c

≈ 0.009 ðMD ≈ 1487 MeVÞ; ð4:12Þ

ΓG�
D→ππ=MD� ¼ 3jd�1j2M2

D�

512π
≈
1.633
λN2

c

≈ 0.011 ðMD� ≈ 2358 MeVÞ; ð4:13Þ

and for the tensor

ΓT→ππ=MT ¼ jt1j2M2
T

640π
≈
2.174
λN2

c

≈ 0.0145 ðMT ≈ 1487 MeVÞ; ð4:14Þ

ΓT�→ππ=MT� ¼ jt�1j2M2
T�

640π
≈
2.613
λN2

c

≈ 0.0175 ðMT� ≈ 2358 MeVÞ: ð4:15Þ

If we replace the standard choice λ ≈ 16.63 by the
smaller value 12.55 as discussed above, all these decay
rates which are proportional to λ−1 increase by 33% (see
Table V for a summary).
A somewhat anomalous feature of the lowest (exotic)

scalar glueball is that its width is much larger than the

next-to-lowest (dilatonic) scalar glueball while having a
rather low mass. This appears rather unnatural if the
dilatonic scalar glueball is interpreted as an excited scalar
glueball and may be another indication that the exotic mode
should be discarded altogether.
Interestingly enough, a scenario with a broad glueball

around 1 GeV in combination with a narrow glueball in the
range predicted by quenched (as well as unquenched [7])
lattice gauge theory has been proposed in Refs. [26,77–79]
on the basis of QCD spectral sum rules. There the lighter
glueball, called σB, plays the role of an important bare
glueball component of the σ meson f0ð500Þ, while a higher
narrow glueball around 1.5–1.6 GeV is required by the
consistency of subtracted and unsubtracted sum rules. The
glueball state σB of Refs. [26,77,79] has a broad decay
width into two pions, in fact even much broader than (4.11),
which makes us speculate that the exotic scalar glueball of
the Witten-Sakai-Sugimoto model could find a role as the
holographic dual of a pure-glue component of the σ meson,
perhaps while having to be discarded from the spectrum of
the pure-glue Witten model.10 This would also be in line
with the fact that the gluon condensate of the Witten model,
Eq. (3.10), is small, close to its standard SVZ value [55],
while models with only one scalar glueball field [24,54]
cannot reconcile a small gluon condensate with narrow
glueball states.
In the range 1.5–1.8 GeV, where lattice gauge theory

locates the lowest scalar glueball, there are, experimentally,
two isoscalar mesons f0ð1500Þ and f0ð1710Þ which are
frequently and alternatingly considered as predominantly
glue. The experimental results for the decay width into two
pions are

ΓðexÞðf0ð1500Þ → ππÞ=ð1505 MeVÞ ¼ 0.025ð3Þ; ð4:16Þ

TABLE V. Decay width of scalar and tensor glueballs into
two (massless) pions divided by the glueball mass for
λ ¼ 16.63� � �12.55.

M Γ=M

GE → 2π 855 0.092 � � � 0.122
G�

E → 2π 2168 0.149 � � � 0.197
GD → 2π 1487 0.009 � � � 0.012
G�

D → 2π 2358 0.011 � � � 0.014
T → 2π 1487 0.0145 � � � 0.0193
T� → 2π 2358 0.0175 � � � 0.0233

9Ignoring the contribution involving c̆1, the result for the
relative width of the scalar glueball G would read 0.040 in
agreement with the result of [52], because the fact that the
coefficient in jc1j2 is twice that of [52] is exactly compensated by
λ−1 in jc1j2 being half that in [52].

10This dichotomy might be due to the fact that the flavor D8-
branes of the Sakai-Sugimoto model are localized in the x4
direction along which the graviton mode associated with GE is
polarized, whereas this extra spatial direction should play no
active role in the Witten model—while the requirement of even x4
parity does not rule out the exotic mode GE, some further
projection may be appropriate for the pure-glue case.
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ΓðexÞðf0ð1710Þ → ππÞ=ð1722 MeVÞ

¼
�
0.017ð4Þ
0.009ð2Þ ; ð4:17Þ

where the first result is taken from Ref. [14], the second
from Ref. [80] using data from the BES Collaboration [81]
(upper entry), and the WA102 Collaboration [82] (lower
entry), respectively.
The lowest (exotic) scalar glueball mode GE appears to

have a much too large decay width to be consistent with a
dominantly glueball interpretation of either f0ð1500Þ or
f0ð1710Þ. On the other hand, the dilatonic mode has a
decay width below but comparable to the data for the two
glueball candidates; in the case of the WA102 data for the
f0ð1710Þ there happens to be even complete agreement. To
get a more complete picture, we shall now consider also the
other couplings between glueballs and mesons as deter-
mined by the Witten-Sakai-Sugimoto model.

B. Glueball decay to four and more pions

To leading order in 1=α0 or equivalently inverse ’t Hooft
coupling, the D8-brane action (3.2) does not give direct
couplings of glueballs to more than two pions. These
appear only through higher DBI corrections with terms
quartic in the field strength FμZ as will be discussed
further below.
Decays into more than four pions can, however, proceed

through vertices involving vector mesons. The vertices
coupling a single glueball to π and/or ρ mesons that are
obtained from the Yang-Mills part of the D8-brane action
(3.2) arise from terms of the form (dropping derivatives and
Lorentz indices)

GTrðππÞ; GTrðρρÞ; GTrðρ½π; π�Þ;
GTrð½π; ρ�2Þ; GTrðρ½ρ; ρ�Þ; GTrð½ρ; ρ�2Þ: ð4:18Þ

Only the first three couplings are relevant for the decay
of a glueball to ≤ 4 pions. The corresponding interac-
tion Lagrangians for the exotic and the dilatonic scalar
glueballs are given explicitly in Appendix B with the
coupling constants for the lowest glueball states listed in
Tables III and IV.
The relative width of the decay of a glueball to two pions

was found above to be ΓG→ππ=M∝λ−1N−2
c , parametrically

suppressed by a factor 1=Nc compared to the decay of the ρ
meson. For glueballs with mass larger than 2mρ, the decay
into two ρ mesons is of the same parametric order.
However, both the lowest exotic glueball and the lowest
dilatonic glueball have mass below the 2ρ threshold. In this
case at least one ρ meson has to be off shell, which leads to
an additional suppression by a factor Γρ=mρ∝λ−1N−1

c .
Because the vertex coupling a single ρ meson to two

pions involves Trðρ½π; π�Þ, the leading-order decay into

four pions produces pairs of pions with different isospin
indices. (The parametrically suppressed decaysG → 2G →
4π0 and G → Gþ 2π0 → 4π0 which only need the leading
Yang-Mills part of the DBI action will be discussed
together with the direct decay G → 4π0 from higher-order
DBI corrections further below.)

1. Leading-order decay rate of scalar glueballs
to four pions involving π�

The Feynman diagrams for the amplitude of the decay
GE;D → 2πa þ 2πb with a ≠ b are shown in Fig. 3. Some
details of the rather lengthy calculation of the decay rate are
given in Appendix C.
Because one internal ρ meson can reach its mass shell,

while it has non-negligible width, we include (following
Ref. [52]) Γρ in the ρ meson propagator according to
ΔρðrÞ ¼ 1=ðr20 − r2 −m2

ρ þ imρΓρÞ with Γρ given by
(3.20). This corresponds to a partial summation of
higher-order terms in inverse powers of λNc. As a cross-
check of our calculations, we have verified that in the limit

FIG. 2. Leading-order glueball decay into two pions.

FIG. 3. Leading-order glueball decay into four pions, isospin
indices a ≠ b.
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λNc → ∞ the resulting decay rate agrees with the rate for
GE;D → ρππ, and in the case of glueballs above the 2ρ
threshold, with G → 2ρ (Appendix C 1 b).
Becausemρ < mE;D < 2mρ, the leading parametric order

of the decay width ofGE andGD into four pions is given by
the processG → ρππ and reads λ−2N−3

c . Decays throughoff-
shell ρ mesons contribute terms of order λ−3N−4

c .
For GE, which is only 10% heavier than a ρ meson, the

contribution from one on-shell ρ meson is strongly sup-
pressed by phase space, but the finite width of the ρ meson
helps to increase the rate. For λ ≈ 16.63 we find11

ΓGE→4π=ME ≈ 1.33 × 10−4 ðλ ≈ 16.63Þ: ð4:19Þ
For the heavier dilatonic glueball GD, the process

G → ρππ is more dominant, leading to a significantly
larger relative width

ΓGD→4π=MD ≈ 2.44 × 10−3 ðλ ≈ 16.63Þ: ð4:20Þ
Evidently, the 4π decay of the lowest holographic glueball
state, be it GE or GD, is strongly suppressed. Table VI
summarizes these results and also shows them for smaller
λ ¼ 12.55. (In Sec. V we shall consider the extrapolation of
these lowest states to the higher masses of experimental
glueball candidates in the range predicted by lattice gauge
theory.)

2. Decay of excited scalar glueballs to two vector mesons

For the excited dilatonic glueball with mass
MD� ≈ 2358.4 MeV, which is above the 2ρ threshold, a
similar calculation, but with coefficients d�i in place of di
(see Table IV), gives

ΓG�
D→4π=MD� ≈ 0.104 ðλ ≈ 16.63Þ: ð4:21Þ

This result, which involves resummed ρ propagators, is in
fact well approximated by the decay rate to two on-shell ρ
mesons,

ΓG�
D→2ρ=MD� ≈

14.330
λN2

c
≈ 0.096 ðλ ≈ 16.63Þ; ð4:22Þ

which corresponds to the strictly leading-order part of (4.21)
as explained in Appendix C 1 b.
The result (4.22), divided by its isospin factor of 3, also

gives the decay into two isosinglet vector mesons ω, whose
mass is only 1% higher than that of the ρ meson.

Since the decay width into two pions given in (4.13) is
much smaller than the width into two vector mesons, the
excited dilatonic glueball turns out to decay predominantly
into four pions and six pions.
The excited exotic scalar (if we do not discard this mode

altogether) is instead dominated by the decay into two
pions, which makes this state extremely broad. Calculating
also the decay into two vector mesons, we find that the
decay into two ρ mesons accounts for only about a third of
the total decay into four pions,

ΓG�
E→2ρ=ME� ≈

2.078
λN2

c
≈ 0.014 ðλ ≈ 16.63Þ: ð4:23Þ

This means that the decay into four pions is coming largely
from the G�

Eρππ vertex.
In Table VII the results for the decay widths of the

excited exotic and dilatonic scalar glueballs in the Witten-
Sakai-Sugimoto model are summarized. While the excited
dilatonic scalar glueball has a more moderate decay width
compared to the very broad excited exotic scalar, it turns
out to be still quite large, around 500 MeV.

3. Scalar glueball decay to four π0

The glueball decays into four pions that we have
considered above involve pairs of pions with different
isospin indices. A decay to four π0 is suppressed by powers

TABLE VI. Decay widths of lowest exotic and lowest dilatonic
scalar glueballs into four (massless) pions divided by the glueball
mass for λ ¼ 16.63� � �12.55.

M Γ=M

GE → 4π 855 1.3 × 10−4 � � � 3.0 × 10−4

GD → 4π 1487 2.4 × 10−3 � � � 3.9 × 10−3

GD → 4π0 (NLO-DBI) 1487 4.0 × 10−6 � � � 2.9 × 10−5

GD → GE þ 2π0 → 4π0 1487 2.6 × 10−6 � � � 4.5 × 10−6

GD → GD þ 2π0 → 4π0 1487 1.9 × 10−9 � � � 4.5 × 10−9

TABLE VII. Decay widths of excited scalar glueballs divided
by the glueball mass for λ ¼ 16.63� � �12.55 (chiral limit, with a
ratio 3∶4∶1 for the combined decay into 2π, 2K, 2η).

M Γ=M

G�
E → f2π; 2K; 2ηg 2168 0.397 � � � 0.526

G�
E → 4π 2168 0.037 � � � 0.061

G�
E → 2ω → 6π 2168 0.005 � � � 0.006

G�
E → 2ϕ 2168 0.005 � � � 0.006

G�
E (total) 2168 0.443 � � � 0.599

G�
D → 4π 2358 0.104 � � � 0.142

G�
D → 2ω → 6π 2358 0.032 � � � 0.043

G�
D → 2ϕ 2358 0.032 � � � 0.043

G�
D → f2π; 2K; 2ηg 2358 0.029 � � � 0.039

G�
D (total) 2358 0.197 � � � 0.267

11Omitting the contributions from the interaction terms involv-
ing the c̆ coefficients as in [52] would give the even lower value
5.1 × 10−5. In contrast to the decay into two pions, in the four-
pion decay rates the factors

ffiffiffi
2

p
in the coupling constant gYM and

in the normalization of the lowest scalar glueball by which we
differ from Ref. [52] no longer cancel. However, even when
using exactly the couplings of Ref. [52] we have not been
able to reproduce the numerical result 2.2 × 10−5 given in
Eq. (3.26) of [52].
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of inverse ’t Hooft coupling, because either it has to come
from higher-order contributions in the DBI action of the
D8-branes (Fig. 4) or it has to involve glueball self-
interactions and virtual glueballs (Fig. 5).
As shown in Appendix B, the parametric order of the

vertex formed by a single glueball and four π0 turns out to
be λ−7=2N−2

c , whereas the amplitude for G → 2G → 4π0

and G → Gþ 2π0 → 4π0 is proportional to λ−3=2N−3
c . The

former thus has stronger suppression in inverse powers of λ,
while the latter is more strongly suppressed with respect to
inverse powers of Nc.
For simplicity, we only consider the dilatonic glueball,

since the exotic glueball has a much more complicated
interaction Lagrangian. In Appendix B 2 b the interaction
Lagrangian for a dilatonic glueball with four π0 resulting
from the next-to-leading terms of the DBI action has
been obtained, and in Appendix B 2 c the vertex for
GD → GD;E þ 2π0. Numerically evaluating the respective
decay rates of the dilatonic glueball shows that at finite
’t Hooft coupling and Nc ¼ 3 the dominant decay process
comes from the direct coupling of GD to four π0. For
λ ≈ 16.63 we find (see Appendix C 2 for details)

ΓðNLO−DBIÞ
GD→4π0

=MD ≈ 4.02 × 10−6 ðλ ≈ 16.63Þ: ð4:24Þ

The decay through virtual glueballs, while not as
strongly suppressed by inverse powers of λ, is subleading
at large Nc and is disfavored by phase space. To check
whether it might nevertheless be important at Nc ¼ 3 and
our range of ’t Hooft coupling, we have evaluated the first

diagram in Fig. 5 involving one virtual glueball and found
that its contribution is smaller than (4.24) by several orders
of magnitude (see Table VI),

ΓðLO−DBIÞ
GD→GDþ2π0→4π0

=MD ≈ 1.94 × 10−9 ðλ ≈ 16.63Þ:
ð4:25Þ

If we do not discard the exotic glueball as a physical state
(for instance if we were to interpret the latter as the
holographic dual of a glueball component of the σ meson,
as speculated at the end of Sec. IVA), we should also
consider the process GD → GE þ 2π0 which is less sup-
pressed kinematically (but still by N−1

c ). This would be of
similar magnitude as the result (4.24),12

ΓðLO−DBIÞ
GD→GEþ2π0→4π0

=MD ≈ 2.56 × 10−6 ðλ ≈ 16.63Þ:
ð4:26Þ

[As shown in Table VI, at smaller λ this contribution is less
important compared to the next-to-leading DBI contribu-
tion (4.24).]
Decays into four π0 have been seen for the glueball

candidate f0ð1500Þ at a level of about an order of
magnitude below the general 4π decay [14], whereas no
such data seem to be available for f0ð1710Þ. The smallness
of the holographic result (4.24), however, would corre-
spond to a much stronger suppression than the one
observed experimentally for f0ð1500Þ.

4. Tensor glueball decay to two vector mesons

Unless the mass of the lowest tensor glueball is manually
adjusted (as we shall consider to do in Sec. V), only the
excited tensor glueball of the Witten model with mass
MT� ¼ MD� ≈ 2358.4 MeV can decay into two ρ or two ω
mesons.
The decay rate involves two sums over the polarizations

of the two vector mesons. The average over the polarization
of the tensor can again be performed by choosing the
particular polarization ϵ11 ¼ −ϵ22 ¼ 1 and averaging over
spatial directions. The rate for two vector mesons with fixed
isospin quantum numbers reads

Γ ¼ 1

16πMT�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMT�=2Þ2 −m2

ρ

q Z
dΩ
4π

X3
λ1;λ2¼1

jMϵT ðλ1; λ2Þj2;

ð4:27Þ
where λ1;2 are labels for the polarizations of the two vector
mesons and ϵT refers to the specific tensor polarization. The
amplitude MϵT ðλ1; λ2Þ and the final result of the

FIG. 4. Glueball decay into four π0 through a vertex from the
next-to-leading order terms of the DBI action.

FIG. 5. Glueball decay into four π0 (a) through terms in the
Yang-Mills part of the DBI action that are quadratic in the
glueball mode; (b) through a pair of virtual glueballs.

12By contrast, in the scenario of Ref. [26], where the σ meson
has a large glue contribution, the heavier glueball is claimed to
have important 4π0 decays.
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summations and the integration are given in Appendix C 3.
With coupling constants t�i ≡

ffiffiffi
6

p
d�i and d�i from Table IV,

the result for the decay into two ρ mesons is

ΓT�→2ρ→4π

MT�
≈
21.236
λN2

c
≈ 0.142 ðλ ≈ 16.63Þ; ð4:28Þ

and 1=3 of that result for the decay T� → 2ω → 6π. This
should be compared to the decay rate into two pions,
Eq. (4.15), which is less than 1=8 of (4.28).
As we shall discuss below, a similar pattern arises when

the lowest tensor glueball is extrapolated in mass such that
it is above the 2ρ threshold.

V. EXTRAPOLATIONS AND COMPARISON
WITH EXPERIMENTAL DATA

When comparing our results for decay rates with experi-
ment, it seems reasonable to do so with the dimensionless
ratio Γ=M when extrapolating the mass M of the holo-
graphic glueball to the mass of the experimental glueball
candidates f0ð1500Þ or f0ð1710Þ. In the case of decay into
two massless pions, Eqs. (4.11)–(4.15), this ratio involves
two explicit powers of the glueball mass M that cancel the
inverse mass scale squared coming from the normalization
of the glueball field, Eq. (2.17) or (2.23). When extrapo-
lating to higher glueball masses, we thus assume that the
normalization of the glueball field scales according to the
glueball mass. While this keeps Γ=M for two-pion decays
unchanged, the decay rates into two vector mesons or four
pions are modified and depend in fact strongly on whether
the glueball mass is above or below the 2ρ threshold.

A. Extrapolations for the scalar glueball candidates
f 0ð1500Þ and f 0ð1710Þ

The results of such an extrapolation to the experimental
masses of the isoscalar mesons f0ð1500Þ or f0ð1710Þ is
given in Table VIII, where the holographic results of the
(chiral) Witten-Sakai-Sugimoto model for the lowest
(exotic) and the dilatonic 0þþ glueball are compared to
the experimental results for the total and the partial decay
widths. Here we have generalized our results toNf ¼ 3 and
assumed that pions, kaons, and η mesons appear in ratios
3∶4∶1, respecting SU(3) flavor symmetry.
Explicit masses for quarks would require a modification

of the Sakai-Sugimoto model, for example along the lines
of Refs. [74–76], which we intend to study in future work.
This will necessarily modify the coupling of scalar glue-
balls through contributions that depend on the mass of the
pseudo-Goldstone bosons, and this may either increase or
decrease the decay amplitudes into the heavier pseudo-
Goldstone bosons. A significant enhancement would be in
line with the so-called chiral suppression of scalar glueball
decays that is suggested by the lattice results of Ref. [83]
and the analysis of Ref. [84]. (In the dilaton effective theory
of Ref. [54] also an increase of the amplitude for the decay
into a pair of heavier pseudo-Goldstone bosons was found,
however, such that it is approximately canceled by the
kinematical suppression from the phase space integral.)
When comparing the extrapolated decay rates of the

holographic glueballs with those of the isoscalar mesons
f0ð1500Þ or f0ð1710Þ we find that the lowest (exotic)
glueball is much too broad to be identified as their dominant
glueball component. The dilatonic glueball, however, is
sufficiently narrow for this purpose. It leads to a total decay
width that is quite close to the experimental width of

TABLE VIII. Experimental data for the decay rates of the isoscalar mesons f0ð1500Þ and f0ð1710Þ juxtaposed to the holographic
results for the various decay channels of the lowest (exotic) glueball (GE) and predominantly dilatonic glueball (GD) with mass mE;D

artificially raised to the respective experimental values (still in the chiral limit, i.e. with massless pions, kaons, and η) and ’t Hooft
coupling varied from 16.63 to 12.55. Experimental data are from Ref. [14] except for those marked by a star, which are from Ref. [80]
where the total width of f0ð1710Þ was split under the assumption of a negligible branching ratio to four pions, using data from BES [81]
(upper entry) and WA102 [82] (lower entry), respectively. (Holographic predictions that are substantially increased due to the manually
adjusted glueball mass are rendered in italic.)

Decay Mexp Γ=M (exp.) Γ=M½GEðMexpÞ� Γ=M½GDðMexpÞ�
f0ð1500Þ (total) 1505 0.072(5) 0.249 � � � 0.332 0.027 � � � 0.037
f0ð1500Þ → 4π 1505 0.036(3) 0.003 � � � 0.006 0.003 � � � 0.005
f0ð1500Þ → 2π 1505 0.025(2) 0.092 � � � 0.122 0.009 � � � 0.012
f0ð1500Þ → 2K 1505 0.006(1) 0.123 � � � 0.163 0.012 � � � 0.016
f0ð1500Þ → 2η 1505 0.004(1) 0.031 � � � 0.041 0.003 � � � 0.004
f0ð1710Þ (total) 1722 0.078(4) 0.252 � � � 0.336 0.059 � � � 0.076
f0ð1710Þ → 2K 1722 �f0.041ð20Þ

0.047ð17Þ 0.123 � � � 0.163 0.012 � � � 0.016
f0ð1710Þ → 2η 1722 �f0.020ð10Þ

0.022ð11Þ 0.031 � � � 0.041 0.003 � � � 0.004
f0ð1710Þ → 2π 1722 �f0.017ð4Þ

0.009ð2Þ 0.092 � � � 0.122 0.009 � � � 0.012
f0ð1710Þ → 4π 1722 ? 0.006 � � � 0.010 0.024 � � � 0.030
f0ð1710Þ → 2ω → 6π 1722 Seen 0.00016 � � � 0.00021 0.011 � � � 0.014
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f0ð1710Þ, while being somewhat more strongly below that
of f0ð1500Þ. With mass equal to that of f0ð1500Þ, the
dilatonic glueball has a significantly smaller width in 2π
decays, and it is still smaller for decays into four pions,
which is the dominant decay mode of the f0ð1500Þ.
Regarding the f0ð1710Þ, the decay into 2π is found to be

nicely comparable to the experimental value, while the
stronger rate into pairs of heavier pseudo-Goldstone bosons
remains unaccounted for with our assumption of SU(3)
invariance. A significant enhancement of decays into kaons
and η mesons may, however, be brought about by mass
terms for the latter which inevitably will give additional
contributions to the coupling with scalar glueballs.
If our extrapolation of the decay width into 4π can be

trusted, this appears now uncomfortably large considering
that the decay of f0ð1710Þ into 4π has not been observed. It
should be noted, however, that the experimental data for the
branching ratios of the f0ð1710Þ still have large uncer-
tainties and are not covered by the Particle Data Group [14].
The quoted results are from Refs. [24,80], which assume
that decays into ππ, ηη, and KK̄ add up to the total width
with negligible contribution from 4π decays.
Our extrapolations also predict decays into two ω

mesons at a non-negligible level. According to [14], decays
of f0ð1710Þ to two ω mesons have at least been seen. The
Witten-Sakai-Sugimoto model for a (pure) glueball candi-
date suggests that the rate into four pions should be about
twice as large.
In this context it is worth mentioning that there are still

many open questions surrounding the nature of f0ð1710Þ
[9]. For example, some authors have argued that the nearby
resonance [85] f0ð1790Þ, which is not yet covered by the
Particle Data Group, should be combined with f0ð1710Þ
into one object f0ð1760Þ, for which Ref. [86] was able to fit
disparate decay patterns, with and without significant decay
into four pions.

B. Extrapolations for the tensor glueball

In the Witten model, withMKK ¼ 949 MeV, the mass of
the tensor glueball equals the mass of the dilatonic scalar
glueball, and the tensor glueball has roughly similar decay
rates into two and four pions. The rate into two pions
practically exhausts the decays into pions and has been
calculated above in Eq. (4.14). The lowest tensor glueball
thus turns out to be a rather narrow state; however, this is
due to the fact that it stays below the 2ρ threshold.
Indeed, the situation is markedly different for the excited

tensor glueball T�. Its mass equals that of the excited
dilatonic glueball, and because this is above the threshold
for two ρmesons, there is a significant contribution to four-
pion decays, and also from other vector meson decays, as
we have seen in Sec. IV B 4. Extrapolating the couplings of
the lowest tensor glueball to a similarly high mass, 2 or
2.4 GeV (where the latter is roughly the prediction of lattice
gauge theory for the lowest tensor mode), gives equally

large contributions from decay into two vector mesons, as
listed in Table IX. Reassuringly, these results are quite close
to those for the unmodified results for T� [cf. Eq. (4.28)] so
that we consider them as plausible extrapolations to the
likely situation of a tensor glueball with mass above 2 GeV.
In Table IX we have also extrapolated to decays into

kaons and η mesons. In the holographic setup, a tensor
glueball presumably does not couple to an explicit mass
term of the pseudoscalar mesons, so the effect of the latter
should be purely kinematic. The results (4.9) and (4.10)
imply a pseudoscalar mass dependence of the form
ð1 − 4m2

π=M2
TÞ5=2. This suppression is such that it over-

compensates the ratio 4=3 that favors kaons over pions.
Adding up the individual contributions, we find a rather

broad width for a 2.4 GeV tensor glueball, 700 to 900 MeV,
which is significantly broader than all the f2 mesons listed
in [14]. With a mass of 2 GeV, the relative width turns out to
be comparable with that of the tensor meson f2ð1950Þ,
which has Γ=M ¼ 0.24ð1Þ. The latter is indeed occasion-
ally discussed as a candidate for a tensor glueball as it
appears to have largely flavor-blind decay modes.

VI. CONCLUSION

Using the Witten-Sakai-Sugimoto model for holographic
QCD, which only has one free dimensionless parameter,
we have repeated and extended the calculation of glueball
decay rates of Ref. [52], where only the lowest scalar mode
was studied.
This lowest mode is associated with an exotic polariza-

tion of the gravitational field, involving components in the

TABLE IX. Extrapolation of tensor glueball decay for the case
of massive pseudo-Goldstone bosons with glueball mass M ¼
MT ¼ MD and when the latter is raised to 2 GeV or the lattice
prediction ∼2.4 GeV. The ’t Hooft coupling is again varied from
16.63 to 12.55.

Decay M Γ=M½TðMÞ�
T → 2π 1487 0.013 � � � 0.018
T → 2K 1487 0.004 � � � 0.006
T → 2η 1487 0.0005 � � � 0.0007
T (total) 1487 ≈0.02 � � � 0.03
T → 2ρ → 4π 2000 0.135 � � � 0.178
T → 2ω → 6π 2000 0.045 � � � 0.059
T → 2π 2000 0.014 � � � 0.018
T → 2K 2000 0.010 � � � 0.013
T → 2η 2000 0.0018 � � � 0.0024
T (total) 2000 ≈0.16 � � � 0.21
T → 2ρ → 4π 2400 0.159 � � � 0.211
T → 2ω → 6π 2400 0.053 � � � 0.070
T → 2ϕ 2400 0.053 � � � 0.070
T → 2π 2400 0.014 � � � 0.019
T → 2K 2400 0.012 � � � 0.016
T → 2η 2400 0.0025 � � � 0.0034
T (total) 2400 ≈0.29 � � � 0.39
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direction of compactification from a five-dimensional
super-Yang-Mills theory down to nonsupersymmetric
Yang-Mills theory. The mass of this lowest (exotic) 0þþ
mode turns out to be only slightly above the mass of the ρ
meson and is therefore much smaller than the mass scale of
glueballs found in lattice gauge theory. The background of
the Witten model also contains another tower of scalar
glueball modes which are predominantly dilatonic and
whose lowest mass is about 1.5 GeV, not far from the
predictions of lattice simulations.
Besides its very low mass, the lowest (exotic) scalar

glueball turns out to have a decay rate that is significantly
higher than that of the heavier dilatonic mode, which seems
counterintuitive if the latter were to represent an excitation
of the former. We are therefore led to the conjecture that the
exotic scalar mode should be discarded so that the glueball
spectrum begins with the (predominantly) dilatonic mode
as lowest glueball. Another, more speculative possibility
that we have mentioned in Sec. IVA is that the exotic scalar
mode represents a broad glueball component of the σ
meson in line with the scenario of Refs. [26,77,79], which
features a broad glueball around 1 GeVand a narrower one
around 1.5 GeV.
The decay widths of glueballs obtained in the Witten-

Sakai-Sugimoto model are parametrically suppressed by a
factor of λ−1N−2

c , but the numerical results vary substan-
tially for the different modes and decay channels, and thus
do not give a picture of “universal narrowness” despite the
large-Nc nature of the Witten-Sakai-Sugimoto model.
A very strong parametric suppression is obtained for the

decay into 4π0, as already pointed out in Ref. [52]. We have
confirmed that also the final numerical value turns out to be
very small.
A noteworthy feature of the Witten-Sakai-Sugimoto

model is that the value of the gluon condensate is small,
close to its standard SVZ value [55], whereas phenom-
enological models which incorporate a scalar glueball
through a QCD dilaton field [24,54] would require very
large gluon condensates to admit only narrow glueball
states.
We have also extrapolated our results so that they can be

compared with experimental data for the scalar glueball
candidates f0ð1500Þ or f0ð1710Þ. In the case of f0ð1500Þ,
our results for the decay widths of the dilatonic glueball are
significantly below the observed rates for decay into two
pions and even more so for the experimentally dominant
decay into four pions. In the case of the f0ð1710Þ meson,
the decay rate into two pions comes out in nice agreement
with available experimental data. The much stronger rate
into kaons is not accounted for, but this may be due to the
fact that the Witten-Sakai-Sugimoto model is strictly chiral
and the mechanism of chiral suppression [83,84]. However,
our (crude) extrapolation to the mass of f0ð1710Þ predicts
also a significant branching ratio into four pions that has
not been seen experimentally. [Although in this context it

should be noted that the identification of f0ð1710Þ and its
separation from the nearby f0ð1790Þ [85] has been a matter
of debate [9,86]].
Furthermore, we have studied the decay of tensor glue-

balls, which in the Witten-Sakai-Sugimoto model have a
narrow width into two pions and (when the mass is above
the 2ρ threshold) a larger width into four pions, such that
only the isoscalar tensor meson f2ð1950Þ appears to be
compatible with our holographic result, while heavier
tensor glueball modes would have to be broader than the
tensor mesons so far discussed in the literature.
In the case of the tensor glueball we can already

plausibly anticipate the effects of nonzero pseudo-
Goldstone masses. In the case of scalar glueballs the
situation is less clear, and we intend to study this issue
in extensions of the Witten-Sakai-Sugimoto model in a
future work. This would be particularly interesting in view
of the glueball candidate f0ð1710Þ which according to the
recent phenomenological studies [24,25] could be a nearly
unmixed glueball and which has a ratio [14] ΓðππÞ=ΓðKKÞ
that is significantly below the flavor-symmetric value 3=4.
Since the holographic results pertain only to pure glue-

balls, it would clearly be most interesting to study the
mixing of glueballs with qq̄ states as this can strongly
obscure signatures of glueball content. In the holographic
setup, mixing is suppressed by 1=Nc [52] and would
presumably require more difficult stringy corrections that
are not captured by the effective Lagrangian following from
the Witten-Sakai-Sugimoto model. Absent those, it might
be interesting to consider a more phenomenological
approach such as extended linear sigma models [24], where
holographic results for the glueball-meson interactions
could be used as input instead of fitting to experimen-
tal data.
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APPENDIX A: TEN-DIMENSIONAL
FIELD EQUATIONS

The Kaluza-Klein reduction of the 11-dimensional
graviton modes yields metric fluctuations pertaining to
the four-sphere, i.e. in the components denoted by gΩΩ.
Omitting these fluctuations as done in Ref. [52] corre-
sponds to dropping all vertices proportional to c̆i in the
interaction Lagrangian (B2) of the exotic scalar glueball. To
see whether this reduction could be justified, we check if
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these truncated modes solve the ten-dimensional field
equations of type IIA supergravity.
For the Witten-Sakai-Sugimoto model, the relevant

terms of the supergravity action are given by [87]

SIIA ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2Φ

×

�
Rþ 4∇MΦ∇MΦ −

1

2
e2ΦjF4j2

�
; ðA1Þ

where 2κ210 ¼ ð2πÞ7l8s and F4 ¼ dC3 is the four-form from
the R-R sector of the theory, with

jF4j2 ≡ 1

4!
FABCDFABCD: ðA2Þ

Variation of this action with respect to the background
metric gMN and the dilaton field Φ results in

RMN −
1

2
RgMN þ 2∇MΦ∇NΦ

−
e2Φ

4!
ð2FM

ABCFNABC − 3!jF4j2 gMNÞ ¼ 0 ðA3Þ

and

Rþ 4∇M∇MΦ − 4∇MΦ∇MΦ ¼ 0; ðA4Þ

respectively.
The solution to these equations that corresponds to the

background of the Witten model is given by the metric
(2.7), the dilaton (2.8), and a nonvanishing R-R four-form
field. The latter is fixed by the requirement that the flux
through a unit four-sphere is quantized, i.e.Z

S4
F4 ¼ Nc

κ10ffiffiffiffiffiffiffi
α0π

p ; ðA5Þ

where the factor of Nc arises from the fact that we are
considering a stack of Nc D4-branes. The field strength that
satisfies this condition is given by F4 ¼ 3RD4g−1s ω4, with
ω4 denoting the volume form of the unit four-sphere.13

With this information, one can linearize the field
equations and plug in the solutions both with and without
the spherical fluctuations, which is easily done with
computer algebra tools. The result is that for both the
dilatonic and the exotic glueball modes, the field equations
are not satisfied unless the fluctuations along the four-
sphere are included. This means that in a rigorous top-down
approach the vertices corresponding to the coefficients c̆i
have to be included in the calculation of decay rates. (For

the dilatonic glueball mode, the need to include gΩΩ
fluctuations can also be deduced from the explicit ten-
dimensional calculations of Ref. [40].)

APPENDIX B: GLUEBALL-MESON
INTERACTION LAGRANGIANS

The effective interaction Lagrangian of glueballs and qq̄
mesons is obtained by inserting the ten-dimensional metric
fluctuations (4.1) into the D8-brane action and integrating
over the bulk coordinates. In this section we give the result
for the lowest (exotic) scalar glueball, the dilatonic scalar
glueball, and the tensor glueball, expanded up to the order
needed for the calculation of decay rates of glueballs into
two pions and four pions as discussed in the text.
As discussed above, we do so by keeping induced

fluctuations in gΩΩ. In the D8-brane action (3.1) the
contribution from the dilaton fluctuation δG11;11 appearing
through the factor

ffiffiffiffiffiffi
gS4

p ¼ g2ΩΩ in
ffiffiffiffiffiffi
−~g

p
is opposite in sign

to that from e−Φ and larger by a factor of 4=3.
Let us also recall that following Ref. [52] we use the

convention

π ¼ πaTa; ρμ ¼ ρaμTa; TrTaTb ¼ δab; ðB1Þ

so that for Nf ¼ 2 using Pauli matrices we have Ta ¼
σa=

ffiffiffi
2

p
and Tr½Ta; Tb�Tc ¼ ffiffiffi

2
p

iϵabc, while Refs. [50,51]
have TrTaTb ¼ 1

2
δab. The Minkowski metric used in the

(3þ 1)-dimensional Lagrangians is ημν ¼ diagð−þþþÞ.

1. Lowest scalar mode

The glueball-meson interactions contributing at leading
order to the decay of a glueball into two or four pions are
given by the terms linear in the glueball field and up to
quadratic in ρ, maximally trilinear in π, ρ in the Yang-Mills
part of the DBI action of the D8-branes. In the case of the
lowest (exotic) scalar mode, they read

LGE
¼−Tr

�
c1

�
1

2
∂μπ∂νπ

∂μ∂ν

M2
E
GEþ

1

4
ð∂μπÞ2

�
1−

□

M2
E

�
GE

�

þc2M2
KK

�
1

2
ρμρν

∂μ∂ν

M2
E
GEþ

1

4
ðρμÞ2

�
1−

□

M2
E

�
GE

�

þc3

�
1

2
F̄μρF̄ν

ρ∂μ∂ν

M2
E
GE−

1

8
F̄μνF̄μν

�
1þ □

M2
E

�
GE

�

þc4
3

2M2
E
ρμF̄μν∂νGE

þic5

�
∂μπ½π;ρν�

∂μ∂ν

M2
E
GEþ

1

2
∂μπ½π;ρμ�

�
1−

□

M2
E

�
GE

�

þ1

2
c̆1∂μπ∂μπGEþ

1

2
c̆2M2

KKρμρ
μGE

þ1

4
c̆3F̄μνF̄μνGEþic̆5∂μπ½π;ρμ�GE

	
; ðB2Þ

13Note that this result looks different in some of the literature,
e.g. [50]. This is due to a different convention with rescaled three-
form potential.
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where F̄μν≡∂μρν−∂νρμ without a commutator term ½ρμ; ρν�.
This agreeswithRef. [52],whose notationswe have adopted,
in the part involving ci, but Ref. [52] effectively dropped all
terms proportional to c̆i due to the neglect of δgΩΩ.
The coefficients ci and c̆i are obtained by integrals over

the glueball mode function HEðZÞ, the ρ meson mode
function ψ1ðZÞ, and the pion mode function ϕ0ðZÞ∝1=K,
K ≡ 1þ Z2, according to

c1 ¼
Z

dZ
H̄E

πK
; c2 ¼ 2κ

Z
dZKðψ 0

1Þ2H̄E;

c3 ¼ 2κ

Z
dZK−1=3ðψ1Þ2H̄E;

c4 ¼ 2κM2
KK

Z
dZ

20ZK
ð5K−2Þ2ψ1ψ

0
1HE; c5¼

Z
dZ

ψ1H̄E

πK
;

c̆1 ¼
Z

dZ
HE

4πK
; c̆2¼

1

2
κ

Z
dZKðψ 0

1Þ2HE;

c̆3 ¼
1

2
κ

Z
dZK−1=3ðψ1Þ2HE; c̆5 ¼

Z
dZ

ψ1HE

4πK
; ðB3Þ

where the integral over Z is from −∞ to þ∞ and where
following Ref. [52] we have introduced

H̄EðZÞ≡
�
1

4
þ 3

5K − 2

�
HEðZÞ: ðB4Þ

The corresponding coefficients for the excited mode G�
E

are obtained by replacing the lowest mode function HEðZÞ
by the next highest eigenfunction.
The numerical results for the coefficients ci, c̆i for the

lowest mode as well as for c�1 and c̆�1 for G�
E are given in

Table III.

2. Dilatonic and tensor mode

a. Glueball-meson interactions contributing
to leading order decays

Restricting ourselves again to glueball-meson inter-
actions contributing to leading order decays to two and
four pions, the interaction Lagrangian linear in GD or T, up
to quadratic in ρ, and maximally trilinear in π, ρ reads, for
the dilatonic mode,

LGD
¼ Tr

�
d1

1

2
∂μπ∂νπ

�
ημν −

∂μ∂ν

□

�
GD þ d2M2

KK
1

2
ρμρν

�
ημν −

∂μ∂ν

□

�
GD

þ d3
1

2
F̄μρF̄ν

ρ

�
ημν −

∂μ∂ν

□

�
GD þ id5∂μπ½π; ρν�

�
ημν −

∂μ∂ν

□

�
GD

	
ðB5Þ

with coefficients

d1 ¼
Z

dZ
HD

πK
; d2 ¼ 2κ

Z
dZKðψ 0

1Þ2HD;

d3 ¼ 2κ

Z
dZK−1=3ðψ1Þ2HD; d5 ¼

Z
dZ

ψ1HD

πK
;

ðB6Þ

and for the tensor glueball

LT ¼ Tr

�
1

2
t1∂μπ∂νπTμν þ 1

2
t2M2

KKρμρνT
μν

þ 1

2
t3F̄μρF̄ν

ρTμν þ it5∂μπ½π; ρν�Tμν

	
ðB7Þ

with ti defined in analogy to (B6). Because ofHT∝HD with
the normalization conditions (2.23), we simply have
ti ¼

ffiffiffi
6

p
di.

The numerical results for di and the corresponding
coefficients d�i for the next-highest dilatonic scalar are
given in Table IV.

b. GD-4π0 vertex from next-to-leading order
DBI action

A direct coupling of glueball modes to more than two
pions appears only at higher orders of the DBI action of the
D8-branes. For the coupling to four π0 ≡ π3 we need to
expand up to quartic terms in F3

νZ. The action, restricted to
F3
νZ, reads

S ¼ TD8ð2πα0Þ2
Z

d9xe−Φ
ffiffiffiffiffiffi
−~g

p �
−
1

2
gZZgμνF3

μZF
3
νZ

þ ð2πα0Þ2
8

½gZZgμνF3
μZF

3
νZ�2

	
: ðB8Þ

Inserting the metric fluctuations corresponding to the
dilatonic glueball and dropping terms that vanish on the
mass shell of the glueball gives

LGD→4π0 ¼ 3d01½ð∂μπ
0Þ2�2GD

− 2d01ð∂ρπ
0Þ2ð∂μπ

0Þð∂νπ
0Þ
�
ημν −

∂μ∂ν

M2
D

�
GD

ðB9Þ
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with

d01 ¼
39π3

8λ3NcM4
KK

Z
dZHDK−8=3 ≈ 2.513

× 106λ−
7
2N−2

c M−5
KK: ðB10Þ

c. Two-glueball-two-π vertices

The leading (Yang-Mills) part of the DBI action also
contains nonlinear terms with respect to the metric fluc-
tuations dual to glueballs, which have to be considered for
the glueball decays in four π0, which vanish at leading
order. Expanding the bilinear term in π to second order in
the dilatonic mode GD yields

LGDGDππ ¼dDD
1

2
Tr

�
3ð∂μπÞ2G2

D

−∂μπ∂νπηρσ

�
ημρ−

∂μ∂ρ

□

�
GD

�
ησν−

∂σ∂ν

□

�
GD

�
ðB11Þ

with

dDD
1 ¼

Z
dZ

H2
D

πK
¼ 399.04� � �λ−1N−2

c M−2
KK: ðB12Þ

In Eq. (4.26) we have considered for completeness also
the decay through the lowest exotic scalar glueball. For this
process the relevant terms in the interaction Lagrangian
turn out to be

LGDGEπ
0π0 ¼ cDE

1 Tr

�
∂μπ∂νπ

�∂μ∂σ

M2
E
GE

��
ησν −

∂σ∂ν

□

�
GD

−
1

4
∂μπ∂μπ

�∂ρ∂σ

M2
E
GE

��
ησρ −

∂σ∂ρ

□

�
GD

�
ðB13Þ

with

cDE
1 ¼

Z
dZ

HDH̄E

πK
¼ 1653.9� � �λ−1N−2

c M−2
KK: ðB14Þ

APPENDIX C: FOUR-PION DECAY AMPLITUDES
AND PHASE SPACE INTEGRALS

1. Decay of scalar glueballs into four massless
pions involving π�

The leading-order decay amplitude of a glueball into four
pions involves two pairs of pions with different isospin
indices (thus excluding the case of four π0’s). If M is the
amplitude for G → 2πa2πb with fixed a ≠ b, the total
decay rate of a glueball into four pions is given by

ΓG→4π ¼
3

4
×

1

2M

Z
dLIPS4ðMÞjMj2; ðC1Þ

where the factor 3
4
is due to a factor of 3 for the three

different pairs a, b possible, and 1
4
is the symmetry factor for

two pairs of identical particles.
For the decay of a particle at rest with mass M into n

particles we have

dLIPSnðMÞ ¼ ð2πÞ4δ4
�
Mδμ0 −

Xn
A¼1

pμ
A

�Yn
B¼1

d3pB

ð2πÞ32p0
B
:

ðC2Þ
Useful details of how to organize the integration over

the final momenta are given in Ref. [52]. As a test of the
numerical procedure for implementing these integrations
we have used that for massless final states the phase space
integral with M≡ 1 can be done analytically with the
result [88]Z

dLIPSnðMÞ ¼ M2n−4

2ð4πÞ2n−3ΓðnÞΓðn − 1Þ : ðC3Þ

a. Four-pion decay amplitude for the dilatonic glueball

Because the lowest glueball corresponding to an exotic
polarization of the metric fluctuations has a rather lengthy
interaction Lagrangian and because we arrived at the
conjecture that the next-higher scalar (predominantly dila-
tonic) mode should be interpreted as the lowest scalar
glueball of QCD, we shall give the decay amplitude into
four pions explicitly only for the latter. Denoting the final
pion four-momenta in GD → 2πa2πb by p, p0, q, q0 (see
Fig. 3) and defining

aμ ¼ qμ − pμ; bμ ¼ q0μ − p0μ; rμ ¼ p0μ þ q0μ;

sμ ¼ pμ þ qμ; r0 þ s0 ¼ MD; ðC4Þ

we find

iM ¼
ffiffiffi
2

p
gρππðΔρðrÞ þ ΔρðsÞÞd5a·b

þ g2ρππΔρðrÞΔρðsÞfd2M2
KKa·b

þ d3½ða0b0 − a·bÞr·sþ a·bðr0s0 − r·sÞ
− ða0r0 − a·rÞb·s − ðb0s0 − b·sÞa·r�g
þ ðq↔q0Þ; ðC5Þ

where ΔρðrÞ ¼ 1=ðr20 − r2 −m2
ρ þ imρΓρÞ with Γρ given

by (3.20).

b. Scalar glueball decay through ρππ and ρρ

The use of a finite width of the ρmeson in the propagator
Δρ corresponds to a partial resummation of formally higher
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order diagrams. This seems to be natural in view of the fact
that Γρ=mρ is not very small, but it should be kept in mind
that e.g. a correction of the residue of the propagator is
being dropped.
If the glueball decay were to be treated strictly pertur-

batively in inverse powers of λ and Nc, one would neglect
Γρ=mρ as a higher-order contribution and treat the ρ meson
as nearly stable. Because to leading order there is no local
vertex that would couple a glueball directly to four pions,
the leading-order process would then be given by a decay
into on-shell ρππ with decay width proportional to λ−2N−3

c
as long as the glueball mass is below the 2ρ threshold;
glueballs with mass larger than 2mρ would have the decay
into two ρ mesons as a dominant process for the eventual
decay into four pions, with partial width proportional
to λ−1N−2

c .
We have evaluated the decay rates into ρππ (and ρρwhen

M > 2mρ) as a cross-check of our results for the decay into
four pions, which coincide in the limit of large λ,

lim
λ→∞

λ2ΓG→4π=M ¼ lim
λ→∞

λ2ΓG→ρππ=M ¼ γ1

for mρ < M < 2mρ; ðC6Þ

lim
λ→∞

λΓG→4π=M ¼ lim
λ→∞

λΓG→2ρ=M ¼ γ2 for M > 2mρ;

ðC7Þ

with γ1 ≈ 22.074N−3
c for the glueball mode GD, and γ2 ≈

6.451N−2
c when its mass is artificially raised to 1722 MeV.

Taking these strictly leading-order results as a basis for the
decay width into four pions would give somewhat higher
numerical values than the above calculation involving a
finite Γρ.

14

For the lowest (exotic) glueball mode, whose mass is
not much higher than mρ, we find γ1 ≈ 0.0030N−3

c

(≈0.00114N−3
c if the contribution from the c̆’s is dropped).

Again the results for ΓG→4π=M converge to this limit for
λ → ∞. However, for λ ¼ 16.63 the effect of resumming Γρ

in the calculation of ΓG→4π is now an increase of the decay
width by more than 2 orders of magnitude compared to
the strictly perturbative result that corresponds to a nearly
stable ρ meson with negligible width: the latter would
give ΓGE→ρππ→4π=ME ≈ 4.0 × 10−7 compared to 1.3 × 10−4

from ΓGE→4π=ME with resummed ρ propagators.
The decay amplitudes for G → ρππ are somewhat

unwieldy, in particular for the exotic glueball mode. We
therefore give details only for the decay of the excited
dilatonic glueball into two ρmesons. (The analogous decay
width of the lowest dilatonic glueball when its mass is

raised above the 2ρ threshold is obtained by replacing d�i
by di.)
No phase space integration is involved in this process,

but the polarizations of the ρ meson have to be summed
over. Denoting the two transverse and the one longitudinal
polarization by indices T and L, respectively, the result is

ΓD�→ρρ=MD� ¼ 3

32πM3
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D� − 4m2
ρ

q
ðjMLj2 þ 2jMT j2Þ;

ðC8Þ
with

jMLj ¼
����d�2M2

KK
M2

D�

4m2
ρ
þ d�3m

2
ρ

����;
jMT j ¼

����d�2M2
KK þ d�3

�
3

4
M2

D� − 2m2
ρ

�����: ðC9Þ

Decays into two ω mesons, whose mass equals the ρ
meson mass in the Sakai-Sugimoto model (in the real world
it is only 1% heavier), are given by the same expression
with the overall isospin multiplicity factor of 3 omitted.
(For the excited dilatonic glueball, also decay into two ϕ
mesons becomes relevant, though not for the lowest
dilatonic glueball when its mass is raised to one of the
glueball candidates as the latter are all below the 2ϕ
threshold.)

2. Decay of dilatonic glueball into four massless π0

With M the amplitude for GD → 4π0, the total decay
rate is given by

ΓGD→4π0 ¼
1

24
×

1

2M

Z
dLIPS4ðMÞjMj2: ðC10Þ

The dominant contribution is provided by (B9), which
leads to

M=ð8id01Þ ¼ 3½p·qp0·q0 þ p·p0q·q0 þ p·q0q·p0�
− p·qp0·q0 − p·qp0·q0 − p·p0q·q0

− p·p0q·q0 − p·q0q·p0 − p·q0q·p0: ðC11Þ

3. Decay of tensor glueball into two vector mesons

Unless one adjusts its mass parameter, only the excited
tensor mode is above the 2ρ threshold. The interaction
Lagrangian (B7) with ti replaced by t�i determines the
amplitude in Eq. (4.27) for a specific tensor polarization ϵμνT
and two ρ mesons with momenta p, q and polarizations
ϵμðp; λ1Þ, ϵνðq; λ2Þ as

MϵT ðλ1; λ2Þ ¼ ϵμðp; λ1Þϵνðq; λ2Þ½t�2M2
KKϵ

μν
T

− t�3ðp·ϵT ·qημν þ p·qϵμνT − pνϵμρT qρ

− qμϵνρT pρÞ�: ðC12Þ
14Reference [52] has added ΓG→4π and ΓG→ρππ when compar-

ing their results with experimental data, which we regard as
overcounting.
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With p0 ¼ q0 ¼ M=2, p ¼ −q, and p2 ¼ ðM=2Þ2 −m2
ρ, the result of the summation over the polarizations λ1, λ2 and the

integration over spatial directions reads

Z
dΩ
4π

X3
λ1;λ2¼1

jMϵT ðλ1; λ2Þj2 ¼ 2ðt�2M2
KK=m

2
ρÞ2

�
2

15
ðp2Þ2 þ 2

3
m2

ρp2 þm4
ρ

�

þ 4t�2t
�
3M

2
KK

�
4

3
p2 þm2

ρ

�
þ 2t�23

�
8

15
ðp2Þ2 þ 2m2

ρp2 þm4
ρ

�
; ðC13Þ

with t�i ≡
ffiffiffi
6

p
d�i and d�i given in Table IV.
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