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Many-body systems with a conserved Uð1Þ current in ð2þ 1Þ dimensions may be probed by weakly
gauging this current and studying correlation functions of magnetic monopole operators in the resulting
dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental
flavor, where the monopole operator is dual to a magnetically charged particle in the bulk. In charge-gapped
phases, the monopole operator is expected to condense. We show that this condensation is holographically
dual to the capping off of the bulk flavor brane and compute the monopole condensate. We argue that from
the lower-dimensional point of view, this may be understood as a simple example of confinement of a
gauge field in the bulk. In a compressible finite-density phase, we present a novel calculation of the
monopole correlation in space and time: the correlation is power law in time but Gaussian in space due to
interaction with the background charge density.
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I. INTRODUCTION

Consider a many-body system in ð2þ 1Þ dimensions
with a global Uð1Þ current jμ. Different classes of infrared
behavior for this current define different phases of matter.
One useful way to probe this dynamics is to couple jμ to an
external gauge field aμðxÞ,

SQFT → SQFT −
Z

d3xaμjμ; ð1:1Þ

and study what happens as aμ is wiggled slightly away from
zero, allowing one to extract (for example) the correlation
functions of the current. In this way one can understand very
familiar observables such as the conductivity.
In this paper we will consider a different sort of probe.

Let us imagine weakly gauging the current jμ by promoting
aμ to a dynamical gauge field. Now there is a new
observable we can consider [1]: in the new functional
integral over a, let us demand that its field strength f have a
“magnetic monopole” singularity at a Euclidean spacetime
point xm,

df ¼ qmδð3Þðx − xmÞ; ð1:2Þ
where f ¼ da. This operation deforms the theory at the
point xm and may be understood as inserting a local
operator MðxmÞ at that point,

hMðxmÞi≡Z−1
Z
xm

½DaDϕ�exp
�
−SQFT½ϕ�þ

Z
d3xjμaμ

�
;

ð1:3Þ

where Z is the undeformed partition function and the
subscript xm indicates that the functional integral over aμ
obeys the modified boundary condition (1.2). MðxÞ is
called a “monopole operator” and is an example of a more
general class of disorder operators which are defined not as
polynomials of fundamental fields appearing in the
Lagrangian but rather by the modification of boundary
conditions obeyed by such fields in the path integral, as
in (1.2).
Having defined M we can study its two-point function

hMðxÞM†ð0Þi; this “monopole correlation function” mea-
sures how the system responds to an injection of magnetic
flux and will be a nontrivial function of the separation x
between the monopole and antimonopole. Importantly, the
magnetic monopole charge qm satisfies a Dirac quantiza-
tion condition and cannot be made arbitrarily small. Thus,
the configuration above necessarily represents nonpertur-
bative information that is not contained in simple correla-
tion functions of the current jμ, as will be increasingly clear
as we proceed.
There are various reasons to study this object. Many

interesting phases in conventional condensed matter phys-
ics result in the presence of an emergent dynamical Uð1Þ
gauge field that one may identify with a (e.g. the Uð1Þ spin
liquids; for reviews see [2,3] and references therein). As
originally shown by Polyakov, the presence of magnetic
monopoles can dramatically change the infrared physics of
a dynamical gauge theory: if the local operator MðxÞ that
one identifies with the monopole insertion is relevant, then
its presence will drive the system to a new IR phase in
which the Uð1Þ gauge field is confined [4,5]. The presence
of gapless charged matter directly affects this monopole
dimension; thus, it is of intrinsic interest to study monopole
correlations in different phases of matter. As we review*n.iqbal@uva.nl
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below, the nonperturbative nature of this object makes it
difficult to compute using conventional field-theoretical
techniques in all but the most symmetric of settings.
Independent of such considerations, we will argue that

the monopole correlation is an interesting probe of phases
of matter in its own right, being sensitive to the IR structure
of the charge sector in a novel manner. As a probe of
gapless charged matter, it appears to be ideally suited to a
holographic description. The boundary monopole operator
associated to a current j is dual to a bulk particle that is
magnetically charged under the bulk gauge field A that is
dual to j [6,7]. Its correlation function can be given a
simple geometric interpretation in the bulk and is easily
computable. Such bulk monopoles have previously been
argued to be important for a fine-grained understanding of
holographic matter in [7,8]. In this paper we will study
them in a particular top-down holographic model where the
Uð1Þ current in question will be the baryon number
associated with fundamental flavor degrees of freedom.
While some of our considerations will apply to any
holographic model, we will see that the extra control
associated with the top-down construction will be useful
at certain points.
We now present a brief outline of this note. In Sec. II we

review field-theoretical results for monopole correlations in
various settings. In Sec. III we turn to holography and
introduce the particular brane embedding that we will
study, as well as the holographic realization of the monop-
ole operator as a wrapped D-brane. In Sec. IV we turn to a
holographic phase with a charge gap. Here one expects the
monopole operator to condense: we demonstrate this
condensation geometrically from the bulk. We also argue
that a bulk charge gap can be understood as confinement of
the bulk U(1) gauge field, as anticipated in [7,8]. In Sec. V
we compute the monopole correlation function on a
compressible phase with a finite density of the Uð1Þ charge
ρ. We find a Gaussian suppression of the correlation
function due to the interaction of the monopole with the
background electric field. We conclude in Sec. VI with a
brief discussion and some directions for future research.
Previous discussion of magnetic monopole operators in

anti–de Sitter (AdS) includes a realization of monopoles as
solitons in bottom-up studies [9,10], or wrappedM2-branes
[11]. The implementation of the monopole as a wrapped
D-brane that we study here has also been discussed in a
slightly different context in the recent work [12].

II. MONOPOLE CORRELATIONS
IN FIELD THEORY

In this section we discuss in more detail the construction
of the monopole correlation function and review some
expectations for this object from field theory. As described
above, given a theory with a global Uð1Þ current jμ, we
may couple the current to a dynamical gauge field aμ and
then define the monopole correlation function to be

hMðxmÞM†ðx̄mÞi

≡ Z−1
Z
ðxm;x̄mÞ

½DaDϕ� exp
�
−SQFT½ϕ� þ

Z
d3xjμaμ

�
;

ð2:1Þ

where ϕ denotes the underlying fields of the QFT and the
subscript xm, x̄m indicates that all aμ in the functional
integral should satisfy the following monopole boundary
condition, corresponding to placing a monopole at xm and
an antimonopole at x̄m,

df ¼ qmðδð3Þðx − xmÞ − δð3Þðx − x̄mÞÞ: ð2:2Þ

This monopole correlation function will be the main object
of study in the remainder of this note.
One may be uneasy about the definition (2.1) without a

bare kinetic term for aμ. As it turns out, as we flow to the IR
the coupling of aμ to the current will always introduce an
effective kinetic term and there is no need to specify one in
the UV. As our motivation is to study an interesting probe
of the original theory (with no dynamical gauge field), one
might also worry that the fluctuations of aμ could drive us to
a new IR phase that is very different from the original one.
While this is a concern in principle, we will ignore it in this
note, assuming that the large number of charged degrees of
freedom N ≫ 1 that are present in all our models will
effectively suppress fluctuations of aμ.

1 Essentially we are
simply asking how the field theory responds to a gauge field
source of the form shown in Fig. 1, where the path integral
over aμ allows it to relax to a configuration that minimizes
the action subject to the monopole boundary conditions.
There is another way to understand the monopole

correlator. Any Uð1Þ gauge theory in ð2þ 1Þ dimensions
(such as the one we have just constructed) has a topological
global Uð1Þ current ~jμ,

xm xm

FIG. 1. Schematic of field lines around monopole-antimono-
pole pair.

1As discussed in [13], in conformal theories it is also possible
to define a monopole operator for a strictly global Uð1Þ
symmetry, i.e. without making aμ dynamical, essentially by
fixing a suitable monopole profile for aμ. While these objects
are very similar to those studied in this paper, they differ at
subleading order in 1=N (when fluctuations of aμ begin to play a
role) and appear difficult to precisely formulate in nonconformal
theories.
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~jμ ≡ i
4π

εμνρfνρ; ð2:3Þ

whose conservation follows from the Bianchi identity.
However, we see directly from the definition of the
monopole operator M in (1.3) that this current is not quite
conserved in its presence:

h∂μ
~jμðxÞMðyÞ � � �i ¼ iqm

2π
δð3Þðx − yÞhMðyÞ � � �i: ð2:4Þ

This expression is of precisely the correct form to be aWard
identity for the topological current ~jμ; thus, we conclude
that the monopole operatorMðxÞ has a charge qm

2π under the
topological current. Questions about the long-distance
behavior of the monopole correlator can be understood
in terms of the realization of the global symmetry generated
by ~jμ. We now briefly review expectations for the monopole
correlator from field theory.

A. Conformal matter

We begin with the most symmetric setting, a conformal
field theory. Here we expect the correlator to be a power
law,

hMðxÞM†ð0Þi ∼ 1

jxj2Δ : ð2:5Þ

The correlation is completely determined by the dimen-
sion Δ. The most efficient way to compute this dimen-
sion is to perform a conformal mapping to S2 ×R [1]. A
monopole insertion at the origin with magnetic charge qm
corresponds to having qm units of magnetic flux on the
S2. The Casimir energy of the resulting field theory state
is related to the dimension of the monopole operator via
the usual state-operator correspondence. In the limit of a
large number of charged degrees of freedom, one can
neglect gauge field fluctuations and simply compute the
energy of the charged degrees of freedom on a monopole
background. This computation has been performed
explicitly in a handful of conformal field theories. For
example for a unit charged monopole in a theory of Nf

free fermions, one finds [1]

Δf ¼ Nf · 0.265; ð2:6Þ

and for free and critical bosons, one finds [13–15]

Δfree ¼ Nb · 0.097 ð2:7Þ

Δcritical ¼ Nb · 0.125: ð2:8Þ

Further work, including the computation of Oð1Þ cor-
rections and the generalization to supersymmetric and
non-Abelian theories, can be found in [16–18].

B. Gapped charge carriers

We turn now to the case of gapped charges. We can no
longer use the conformal mapping, and in fact it is now very
difficult to obtain an explicit expression for the monopole
correlator hMðxÞM†ð0Þi as a function of the separation,
even for the free theory obtained in a large N limit.
However, we may qualitatively understand the extreme
IR limit: in the infrared, all the charges are gapped, and we
can integrate them out and obtain an effective action for a.
Assuming parity, the most relevant contribution will be the
Maxwell term,

Γ½a� ¼ 1

4M

Z
d3xðdaÞ2; ð2:9Þ

where the effective IR gauge coupling
ffiffiffiffiffi
M

p
is set by the

mass of the charged degrees of freedom.
This actually describes a phase where the topological

symmetry generated by ~j in (2.3) is spontaneously broken.
To understand this, we first add a source term Bμ

~jμ to the
Maxwell action. Now free Maxwell theory in ð2þ 1Þ
dimensions is equivalent to the theory of a free compact
scalar ϕ; performing the usual duality (e.g. as in
Appendix B of [19]) with the source term added, we find
the action

Γ½ϕ;B� ¼ M
2

Z
d3x

�
∇ϕ −

B
2π

�
2

; ð2:10Þ

where the relation between f and ϕ is fμν ¼
−iMερμνð∂ρϕ − Bρ

2πÞ. The action (2.10) describes a theory

where the current ~j that couples to the external source B is
spontaneously broken, with ϕ the corresponding Goldstone
mode. This duality is possible only when there is no
charged matter coupled to aμ and, thus, should apply only
at scales much longer thanM−1. We conclude that a charge
gap implies that the topological symmetry is broken in the
infrared.
What does this imply for the monopole correlator? We

see from (2.4) that the monopole operator M is charged
under ~j and so should act as an order parameter for the
symmetry breaking. Thus, in a phase with a charge gap we
expect the correlator to saturate

lim
x→∞

hMðxÞM†ð0Þi ∼ hMi2 ≠ 0; ð2:11Þ

where the monopole condensate should be set by the charge
gap hMi ∼MΔ. In particular, if we deform a conformal
theory by adding a mass term we expect the monopole
correlator to interpolate between (2.5) at short distances and
a constant (2.11) at long distances.
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C. Superfluid

We turn now to a superfluid, when the symmetry
generated by the original Uð1Þ current jμ has been
spontaneously broken by a condensate of bosons with
charge qe. For simplicity first consider a relativistic system
with zero net charge, ρ ¼ 0. Upon gauging by aμ the
system becomes a superconductor with effective action

Γ½θ; a� ¼
Z

d3xρsð∇θ − qeaÞ2; ð2:12Þ

where θ is the Goldstone mode associated with the breaking
of jμ.
Consider now inserting a monopole operator. The

magnetic flux created by this monopole cannot propagate
freely in the superconductor; the ordinary Meissner effect
will force the flux lines into a single Abrikosov-Nielsen-
Olesen vortex. Thus, a monopole-antimonopole pair is
always connected by a flux tube with finite tension T as in
Fig. 2, and so the correlator should decay (at least)
exponentially in space:

hMðxÞM†ð0Þi ∼ exp ð−TjxjÞ: ð2:13Þ
Equivalently, the monopole operator M creates a massive
state–the Abrikosov-Nielsen-Olesen vortex–which carries
charge qm

2π under ~j. This is the only excitation charged
under ~j: as it is massive, the symmetry generated by ~j is
unbroken.
If the net charge is nonzero we actually expect the

correlation function to decay faster than exponential: we
will return to this issue in the conclusion.

D. Fermi liquid

Consider now a Fermi liquid, which is a compressible
phase that contains a finite density of charge ρ without
breaking the Uð1Þ symmetry. It also contains many low-
lying degrees of freedom at the Fermi surface, far more
than the single Goldstone mode studied above. Here there
are no simple techniques to understand how these exci-
tations affect the monopole correlation function: we have
neither relativistic conformal symmetry nor a simple
understanding of monopoles as creating gapped vortices

as in the superfluid case. There is, however, a (generically
uncontrolled) method that has been used in the literature
[20–22], the one-loop or RPA approach, which we take a
moment to outline here. We stress that this approach does
not actually result in quantitatively correct results [23],
though one might hope for qualitative agreement. Our
main motivation is to contrast this with the holographic
calculation that will follow.
Consider taking the (unperturbed) Fermi liquid state and

integrating out the low-lying modes near the Fermi surface
to obtain an effective quadratic action for the gauge field ai,

Γ½a� ¼
Z

dωd2k
ð2πÞ3 aiðω; kÞajð−ω;−kÞKijðω; kÞ; ð2:14Þ

where Kij is a kernel that is the current-current correlation
function hjiðkÞjjð−kÞi. As we have integrated out (many)
gapless degrees of freedom the kernel is quite nonlocal in
position space. Given this effective action, it might seem
reasonable to simply vary it with respect to ai, subject to the
monopole boundary conditions (2.2). After this we can
compute the action of the monopole-antimonopole pair on-
shell, and the correlation function would be

hMðxÞM†ð0Þi ∼ exp ð−Γ½x�Þ: ð2:15Þ
This procedure has been carried out in the references
above for the Fermi liquid with different sorts of inter-
actions (i.e. different bare kinetic terms for the gauge field).
While there is some variation in the literature depending on
the precise model used, one typically finds answers that fall
off exponentially in space (i.e. superficially similar to
(2.13), but with a different physical origin).
The serious problem with this approach is that it treats

the problem perturbatively in the size of the monopole
field, whereas the monopole is an intrinsically nonpertur-
bative object [23], as the magnitude of its field qm satisfies a
Dirac quantization condition. We cannot justify dropping
the terms that are higher order in a in (2.14). For example,
applied to the free relativistic fermion this technique results
in a power-law correlation as in (2.5), but with a Δ ∼ q2m
as befitting a classical interaction energy. However, this
is wrong: the actual dependence of Δ on the discrete
parameter qm, computed using conformal field theory
(CFT) techniques in [1,16], is not quadratic.
Importantly, it has, however, been argued nonperturba-

tively that the monopole dimension is formally “infinite”
with respect to the scaling symmetry that scales single-
particle modes towards the Fermi surface [24]. This means
that the monopole operator is not relevant and suggests that
the correlation function should fall off faster than a power
law, but we do not know of a controlled field-theoretical
method to compute the actual scaling function.
The nonperturbative nature of the monopole operator

will be particularly clear in the holographic computations
that follow, and we will revisit this issue in the conclusion.

xm xm

FIG. 2. In a superfluid phase field lines are forced into an
Abrikosov-Nielsen-Olesen vortex (solid black lines) rather than
being able to spread out (gray lines). The vortex may be viewed as
the worldline of a massive particle that is charged under ~j.
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III. HOLOGRAPHIC FLAVOR AND
MONOPOLE OPERATORS

Having reviewed expectations from field theory, we now
turn to holography. Given a ð2þ 1Þ-dimensional field
theory with a gravitational dual, we seek to understand
the bulk object that is dual to the monopole operatorMðxÞ.
Soon we will specialize to a particular field theory, but first
we make some general statements that should apply to any
holographic model.
The conserved current jμðxÞ is dual to a gauge field

AMðr; xÞ in the ð3þ 1Þ-dimensional bulk. Now a local
operator on the boundary is generally dual to a propa-
gating field in the bulk. If this field has a large mass–
which will turn out to be the case for the monopole
operator–then the physics is well described by the indi-
vidual quanta of the field, i.e. by particles. It is well
understood that if such a bulk particle is electrically
charged under AM, then it is dual to an operator that carries
charge under jμ. It should then seem very natural that a
particle that is magnetically charged under AM— i.e. a
bulk magnetic monopole—is dual to the monopole oper-
ator MðxÞ, which carries “magnetic charge” with respect
to jμ in the manner defined above. Some details related to
this identification can be found in [7], including the
holographic computation of the three-point function
between j and the monopole operators.
We present a quick way to understand this. Consider the

definition (1.3) of the monopole operator. In AdS=CFT,
the external gauge field source aμ is identified with the
boundary value of the bulk gauge field Aμðr → ∞; xÞ ¼
aμðxÞ. In the large-N limit, the path integral over aμ reduces
to the tree-level demand that the bulk action be stationary
with respect to variations of the boundary value of Aμ,
subject to the boundary condition (1.3).
Now imagine a small S2 at the boundary surrounding the

monopole insertion point xm, as shown in Fig. 3 We have

Z
S2
dAðr → ∞Þ ¼

Z
S2
da ¼ qm: ð3:1Þ

As a is a dynamical gauge field, this boundary condition
indicates the presence of a defect sourcing the gauge field at
xm on the boundary. This source can only be supplied by
the bulk magnetic monopole, whose worldline must now
intersect the boundary at xm. This is precisely the statement
that the bulk monopole is the dual of the local operator
defined by (1.3). Note that if we now pull the S2 off the
boundary and move it into the bulk, the nonzero flux will
persist whenever the S2 surrounds a one-dimensional curve
C—the worldline of the monopole.
These considerations apply to any reasonably consistent

example of holography, in particular to bottom-up models.
However, we will see that some of the physics that we
are interested in will require extra information (i.e. the

completion provided by string theory) for a controlled
description.

A. D3-D5 intersection

To that end we now specialize to a particular field theory,
the well-studied D3-D5 intersection. Here we will take Nc
D3 branes and a single D5 brane intersecting along ð2þ 1Þ
dimensions. The field theory consists of N ¼ 4 Super
Yang-Mills with gauge group SUðNcÞ in ð3þ 1Þ dimen-
sions from the D3 branes. The D5 brane contributes matter
charged in the fundamental under this SUðNcÞ but living on
a ð2þ 1Þ-dimensional defect [25–27].2 We will focus only
on the dynamics that is localized on this defect. At zero
coupling the field-theory action for the degrees of freedom
on the defect is

Sdefect ¼
Z

d3xðjDμqj2 − iΨ̄γμDμΨÞ: ð3:2Þ

Here the q’s are complex scalars that transforms in the
fundamental under a global symmetry SUð2ÞH, while the
Dirac fermions Ψ transform in the fundamental of a
different global symmetry SUð2ÞV. Both the scalars and
fermions are in the fundamental of the gauge group
SUðNcÞ. The Uð1Þ current that we will study is the baryon
number current Uð1ÞB, which acts as a phase rotation on
both Ψ and q. This system has been very well studied as an
example of top-down holography in ð2þ 1Þ dimensions
and we briefly review it here.
At strong coupling the D3 branes coalesce into the usual

AdS5 × S5, with the standard relations for the AdS radius R
and the string coupling in terms of gauge theory quantities:

FIG. 3. Intersection of bulk monopole worldline with boundary
is insertion of field theory monopole operator at xm. Note any
S2 surrounding the bulk worldline will register a nonzero
magnetic flux.

2See e.g. chapter 8 of [28] for an introductory review of
fundamental flavor in AdS-CFT via probe branes.
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gs ¼
g2YM
4π

R
ls
¼ ðg2YMNcÞ14: ð3:3Þ

The single D5 brane can be treated as a probe brane:
neglecting the backreaction of the probe is dual to neglect-
ing the effect of the OðNcÞ fundamental matter degrees of
freedom on the OðN2

cÞ gluons.
To determine the possible phases we minimize the dirac-

born-infeld (DBI) action of the D5 brane

S5 ¼ −T5

Z
d6σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðγ5 þ 2πα0FÞ

p
; ð3:4Þ

where γ5 is the induced metric on the D5 brane world
volume, and F ¼ dA is the field strength of the bulk gauge
field A that is dual to the Uð1ÞB current j. The tension of a
Dp brane is

Tp ¼ 1

ð2πÞpgslpþ1
s

: ð3:5Þ

We take the metric of a unit S5 to be

ds2
S5
¼ dψ2 þ sin2ψðdθ2 þ sin2θdϕ2Þ
þ cos2ψðd~θ2 þ sin2 ~θd ~ϕ2Þ; ð3:6Þ

and we write the metric of AdS5 as

ds2AdS5 ¼
R2

z2
ð−dt2 þ dx2 þ dy2 þ dx2⊥ þ dz2Þ; ð3:7Þ

There is a solution where the D5 brane is extended in the θ
and ϕ directions and so wraps the first S2 ⊂ S5, sitting at
the point ψ ¼ π

2
. SUð2ÞH acts as SOð3Þ rotations on ðθ;ϕÞ,

and SUð2ÞV acts as SOð3Þ rotations on ð~θ; ~ϕÞ. The D5
brane also sits at x⊥ ¼ 0; the remaining four dimensions
ðt; x; y; zÞ form an AdS4 slice inside the bulk AdS5:

ds2AdS4 ¼
R2

z2
ð−dt2 þ dx2 þ dy2 þ dz2Þ: ð3:8Þ

This AdS4 indicates that the dual ð2þ 1Þ-dimensional
defect theory is conformally invariant.
There are other possibilities for the IR dynamics: indeed

we may realize many of the possibilities discussed in Sec. II
above, but for the remainder of this section we will study
the conformal phase.

B. Monopole operator

We now need to identify the bulk object that is dual to the
monopole operatorMðxÞ. Following the discussion above,
this should be a particle (i.e. a one-dimensional object in
spacetime) in AdS4 and is magnetically charged under the
world-volume gauge field A.

The correct object is a wrapped D3 brane that ends on the
D5 brane. The boundary of the D3 brane is a ð2þ 1Þ-
dimensional manifold: as the D3 ends on the D5, this
boundary must lie on the D5 world volume. Take this
boundary to wrap the compact S2: as the S2 shrinks to zero
size inside the S5, the D3 brane can now fill in a half S3, as
shown in Fig. 4. In the coordinates of (3.6) the D3 brane is
extended in the ψ direction from ψ ¼ 0 to ψ ¼ π

2
where it

ends on the D5 brane. The remaining one dimension of the
D3 brane becomes a worldline C on the AdS4. This D3
brane configuration and its identification as a magnetic
monopole has recently been studied in [12].
Branes ending on branes appear as magnetic sources to

world-volume fields when the difference in dimension is 2
[29]. In Appendix A we work out the couplings between
this worldline and the world-volume fields on the D5 and
show that indeed there is a coupling of the form

SD3; ~A ¼ 2π

Z
C

~A; ð3:9Þ

where ~A is the magnetic dual of the world-volume gauge
field A. It satisfies

ðd ~AÞMN ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det4ðγ þ 2πα0FÞ

p
½ðγ þ 2πα0FÞ−1�PQεPQMN

ð3:10Þ

with the normalization N ¼ −4π2R2α0T5.
This may look somewhat unfamiliar, but is actually the

generalization of the usual idea of electric-magnetic duality
to the nonlinear kinetic term of the DBI action (3.4).
Importantly, the right-hand side of the above expression is
the object that obeys Gauss’s law, and the constraint that
dðd ~AÞ ¼ 0 is equivalent to the dynamical equation of
motion for A, as we expect for electric-magnetic duality.
To first order in F this is the familiar Maxwell expression
d ~A ∼ ⋆4F. Note that ~A is dual to the boundary topological
current ~j [6]. The charge quantum in (3.9) corresponds to a
magnetic charge that saturates the Dirac quantization

FIG. 4. D3 brane ends on D5 brane world volume (at ψ ¼ π
2
),

filling in half-S3 and extending from ψ ¼ 0 to ψ ¼ π
2
.
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condition, where the unit electric charge is taken to be the
end point of a fundamental string.
To compute the two-point function of the monopole

operator we should demand that this D3 brane intersect the
AdS4 boundary at two points separated by a distance Δx.
The on-shell action of the brane will determine the
correlation function:

hMðΔxÞM†ð0Þi ∼ exp ð−SD3½Δx�Þ: ð3:11Þ

This action has two parts: a geometric portion given by the
DBI action of the D3 brane and a coupling to the world-
volume gauge field given by (3.9). We now compute the
effective mass of the wrapped D3 brane from the AdS4
point of view. The DBI action for the D3 brane is

SD3 ¼ −T3

Z
D3

d4σ
ffiffiffiffiffiffiffiffi
−γ3

p ¼ −m
Z
C
ds; ð3:12Þ

where to obtain the effective four-dimensional mass, we
integrate the tension (3.5) over the half S3 to find

m ¼ R3

gsl4s

4π

ð2πÞ3
Z π

2

0

dψsin2ψ ¼ Nc

2R
: ð3:13Þ

Using the usual (large-mass) AdS=CFT relation Δ ¼ mR
we conclude that in this theory the dimension of the unit-
charge monopole operator MðxÞ at strong coupling is

Δ ¼ Nc

2
: ð3:14Þ

As expected, the dimension essentially counts the number
of charged degrees of freedom.3 We can compare this to
the dimension at weak coupling: using the results for
free bosons and fermions in (2.6) and (2.7), we find the
qualitatively similar Δfree ≈ Nc · 0.724. By conformal
invariance, if we compute the two-point function using
(3.11) we will find that the correlator is a power law as in
(2.5) with Δ given by (3.14).
The monopole operator is characterized by other quan-

tum numbers than simply its dimension. In particular, it
transforms in a spin Nc

2
representation under the global

R-symmetry SUð2ÞV. This can be understood field-
theoretically from the presence of fermion zero modes
bound to the monopole, and holographically from the

quantization of the movement of the D3 brane in the
ð~θ; ~ϕÞ directions. The construction of this representation is
interesting but unrelated to our main narrative, and so we
relegate it to Appendix B.
Finally, we note that at the attachment points the D3

brane pulls on its parent D5 brane, sourcing the field ψ .
Taking this to its logical conclusion, there is an alternative
BIon-like [30] description of the attached D3 brane in terms
of D5 brane fields alone: rather than attach an explicit D3
brane, we can instead construct a D5 brane profile where the
internal S2 (i.e. whose size is parametrized by ψÞ shrinks but
the S2 surrounding the curve C in AdS4 remains at a finite
size, allowing us to put magnetic flux on it without requiring
an explicit source. This is somewhat like a Minkowski
embedding for the D5 brane, and this configuration has
recently been studied in detail in [12]. It mimics the
geometry of the attached D3 brane. We have checked that
in the limit of a small amount of flux, the net energy of the
resulting configuration is precisely the same as that com-
puted above from the D3 brane alone, as is often the case for
such BIons.
At our level of description there appears to be little

difference between considering the excitation in question to
be a BIon or an attached D3 brane. For more precise
questions it may be useful that there is extra information in
the BIon description, as the boundary values of the D5
brane fields in this construction correspond to other sources
(in addition to the magnetic field) that have been turned on
to source the monopole. For example, the deformation of
ψðrÞ corresponds to a radially dependent mass for the
defect fermions and, thus, in the BIon construction above
we should ensure that ψðr → ∞Þ ¼ π

2
.

IV. GAPPED CHARGES

We now discuss a phase where we deform the CFT away
from criticality. The operator dual to the slipping mode
ψðzÞ—which, as shown in (3.6), controls the size of the S2

that the D5 brane wraps—has dimension Δψ ¼ 2 and so is
a mass term in the CFT. If we turn on this source in the UV
then ψðzÞ develops a radial profile in the bulk. The effective
action for ψ can be worked out from (3.4) to be

SD5 ¼ −4πT5R6

Z
dz

 
sin2ψðzÞ

z4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

�∂ψðzÞ
∂z

�
2

s !
;

ð4:1Þ
whose equations of motion admit the following exact
solution

ψðzÞ ¼ cos−1
�

z
zm

�
; ð4:2Þ

with zm a constant of integration [27]. Note that we have
ψðzmÞ ¼ 0; thus, at this value of the radial coordinate, the

3The simple expression for the dimension (3.14) is similar to
that found in the supersymmetric model [17]. In our gauging of
Uð1ÞB we have not attempted to preserve supersymmetry: the
new dynamical photon has no superpartner. However, at leading
order in large Nc, we can ignore the photon fluctuations and view
the monopole as a state on a fixed background. There is likely
then a supersymmetric cousin to our monopole (presumably with
other background fields turned on) whose dimension could be
derived from a field-theoretical analysis. It would be interesting
to study this further.
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S2 has closed up entirely and the brane has smoothly
capped off in a Minkowski embedding, indicating the
presence of a mass gap for all flavored degrees of freedom,
and in particular for any excitation that is charged under the
global Uð1ÞB symmetry. Further, expanding ψðzÞ near the
boundary we have

ψðz → 0Þ ∼ π

2
−

z
zm

þOðz3Þ: ð4:3Þ

The term linear in z is the source, and so we see the bare
boundary mass M ¼ z−1m . The absence of a quadratic term
indicates that there is no condensate of the operator dual
to ψ .

A. Monopole correlation

Now from the discussion around Sec. II B, we expect
that if we have a charge gap the monopole operator should
develop a vacuum expectation value (VEV), suggesting that
the D3 brane should condense. It is interesting to see how
this is realized geometrically. The key fact is that as the S2

that the D5 wraps shrinks in the bulk, the D3 brane—which
ends on this S2—also wraps a smaller and smaller portion
of the S3, as shown in Fig. 5. Its effective four-dimensional
mass is now position-dependent, decreasing in the bulk:

RmðzÞ ¼ 2Nc

π

Z
ψðzÞ

0

dψsin2ψ

¼ Nc

π

"
cos−1

�
z
zm

�
−

z
zm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
z
zm

�
2

s #
: ð4:4Þ

Once the S2 shrinks to zero size at zm, the monopole
worldline can simply end smoothly in the bulk at z ¼ zm.
Thus, the basic physics of the monopole two-point

function can be seen without computation: at small
separations the dominant configuration is a connected
worldline whose action increases with distance, whereas
at large separations the correlator will break into two
disconnected pieces and the correlation function will

saturate to a nonzero constant that is independent of
distance, as shown in Fig. 6. This is precisely the behavior
expected in a phase where the monopole has condensed, as
described in (2.11). Each of the two disconnected pieces of
the correlator should, thus, be understood as a VEV for the
monopole operator, and the fact that the worldline can end
in the bulk should be understood as implementing the idea
of a “condensate”—normally thought of in terms of bulk
fields—in the worldline picture. We note that the presence
of a wrapped shrinking cycle causing a topological tran-
sition is a familiar mechanism in holography, appearing in
the holographic representation of the (Euclidean) screening
of quarks at finite temperature [31,32] and the saturation of
holographic entanglement entropy in a gapped phase [33].
We now present some details of the (quite standard)

computation. To obtain the effective action for the monop-
ole, we start from the DBI action for the wrapped D3 brane
and integrate over ðψ ; θ;ϕÞ to obtain

SD3 ¼
Z
C
dsmðzðsÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMNðXðsÞÞ _XM _XN

q
; ð4:5Þ

where M;N run over the AdS4 directions and s para-
metrizes the remaining D3 brane direction along the
worldline. An overdot denotes a derivative with respect
to s. As A ¼ 0 on this background, the coupling (3.9) plays
no role in this analysis. We have assumed here that none of
the transverse directions XMðsÞ depend on ψ , i.e. that the
D3 brane is “rigid” in the way in which it wraps its half-S3.
We will not show that this is the most energetically favored
configuration, and so this will remain an assumption in this
note. We will discuss its consequences later.
The simplest way to proceed is to define a conformally

rescaled metric that takes into account the radial variation
of the mass,

ḠMNðxÞ≡GMNðxÞmðzÞ2; ð4:6Þ

after which this takes the form of an ordinary geodesic
action and we may use the usual machinery.

FIG. 6. Possible configurations contributing to monopole
correlator. For small Δx the connected configuration dominates,
whereas as Δx is increased eventually bulk worldline breaks into
two pieces. Monopole worldline is allowed to end at zm as it
wraps a shrinking cycle.

FIG. 5. Left: In massive phase D5 brane wraps internal S2 that
shrinks to zero size in the interior at z ¼ zm: from lower-
dimensional point of view, brane simply ends. Right: Attached
D3 brane wraps a smaller and smaller amount of the internal S3 as
it hangs deeper into the bulk.
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We first solve for the connected solution: we take the
geodesic to extend in the x direction, and so we need to
determine the curve ðxðsÞ; zðsÞÞ. There is a conserved
momentum

P≡ _xḠxx; ð4:7Þ

and a constraint arising from reparametrization invariance
with respect to s:

Ḡxx _x2 þ Ḡzz _z2 ¼ 1: ð4:8Þ

Using these relations, we solve for _z and write the net
change in x and the total action S in terms of the conserved
momentum P,

Δx ¼ 2

Z
z⋆

ε
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gzz

1 − ḠxxP2

s
ḠxxP ð4:9Þ

SD3 ¼ 2

Z
z⋆

ε
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gzz

1 − ḠxxP2

s
; ð4:10Þ

where the turning point z⋆ is the solution to Gxxðz⋆Þ ¼ 1
P2,

and ε is a UV cutoff. By varying P and performing the
integrals numerically we can find SD3½Δx�.
This action should be compared to that of the discon-

nected configuration, which is simply

Sdisc ¼ 2

Z
zm

ε
dz

ffiffiffiffiffiffiffi
Gzz

q
: ð4:11Þ

The results from such an analysis are shown in Fig. 7
and display precisely the behavior predicted above. The
critical value of Δx of the phase transition is found
numerically to be

Δx⋆M ¼ 0.545…: ð4:12Þ

If we relax the assumption that the transverse coordinates
do not depend on ψ , then there may be an energetically
preferred configuration that will dominate. This should
affect physics on the scale of the AdS radius R and, thus,
may alter the precise value of Δx⋆, but we do not expect it
to alter the qualitative shape of the curve shown in Fig. 7,
which is essentially measuring a geodesic length that
probes scales much longer than the AdS radius.
In this framework it is not possible to determine the

precise normalization of the monopole condensate.
However, we may track its dependence on the mass: the
full dependence on the mass comes from the UV loga-
rithmic divergence in the integral, so we find

hMi ∼ exp

�
−
Z

zm

ε
dz

ffiffiffiffiffiffiffi
Gzz

q �
∼ ðMεÞNc

2 ; ð4:13Þ

in agreement with considerations around (2.11).

B. Monopole condensation as confinement in the bulk

We now pause to discuss the bulk interpretation of this
calculation. On the world volume of the D5 brane lives a
gauge field A: its dynamics is basically given by the
Maxwell action, and so it is in a Coulomb phase. If the
D5 brane caps off at z ¼ zm, from the four-dimensional
point of view, what happens to A in the region z > zm,
where the D-brane simply does not exist? We are not
actually allowed to simply delete a gauge field in a region
of space; rather, we require an effectively four-dimensional
mechanism to remove it from the spectrum.
In this case, the mechanism is confinement. For z > zm it

is not true that the gauge field has ceased to exist; rather
its electric flux is forced into tight flux tubes that we
normally call fundamental strings. When these strings end
on the D5 brane they cross into a deconfined phase and
their flux is allowed to spill out into A, as shown in Fig. 8.
The existence of such electric flux tubes is basically the
definition of confinement. Indeed, confinement on D-brane
world volumes and the subsequent realization of a funda-
mental string as an electric flux tube has been argued to
play an important role in brane/antibrane annihilation
[34,35], and the physics here is somewhat similar, except
that the confinement is localized in space and (relatedly)
should be thought of as confinement only from the effective
four-dimensional point of view.
In four dimensions, confinement is also associated with

the condensation of magnetic monopoles, and indeed we
have seen explicitly above that monopoles have condensed
for z > zm. Said slightly differently, there is no terribly
good reason for the D5 brane to exist at all: it wraps an S2

that is topologically trivial, and so the only thing stopping it
from collapsing to a point is energetics, i.e. the fact that the
slipping mode is dynamically stable. The magnetic monop-
ole exploits this fact: looking at Fig. 4, we see that it is a
localized excitation that interpolates between an equatorial

�x� M
�x M

S��x�

0.3 0.4 0.5 0.6

17.0

17.5

18.0

FIG. 7 (color online). Monopole action on background with
charge gap. Solid black line represents favored configuration; red
and blue are unfavored branches of the disconnected (i.e.
completely flat) and connected (i.e. swallowtail) configurations
respectively. Note first-order transition at Δx⋆M ≈ 0.545.
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S2 and a degenerate S2 that has shrunk to a point. Thus, the
monopole costs some energy but uses it to collapse its
parent D5 brane in its vicinity. A condensate of monopoles
is equivalent to closing off the brane over a macroscopic
region.
It is interesting that we were able to perform a controlled

calculation to observe monopole condensation in the bulk,
normally thought of as a strongly coupled phenomenon.
Indeed, it is true that the effective four-dimensional gauge
coupling,

1

g2F
∼
Ncffiffiffi
λ

p VolðS2Þ; ð4:14Þ

is blowing up as we approach z ¼ zm from the D-brane
side; however, the full higher-dimensional geometry is
completely regular, a fact that we exploited in our calcu-
lation. It would be quite difficult to control such a
calculation in a bottom-up context, and this is the main
reason that we focused on a probe brane construction in this
paper. This provides a simple holographic example of
confinement in the bulk, and makes it particularly clear that
bulk confinement is dual to a charge gap on the boundary,
as articulated previously by various authors [7,8] (see also
[36] for discussion of non-Abelian confinement in AdS).

V. FINITE-DENSITY LIQUID

We now set the mass deformation to zero and turn
instead to a finite density phase. Via the normal rules of
AdS=CFT, the field theory charge density ρ is equal to the
boundary value of the bulk electric field, i.e. the canonical
momentum ρðzÞ conjugate to the gauge potential AtðzÞ:

ρðzÞ≡ δSD5

δð∂zAtÞ
¼ 2Nc

π
ffiffiffi
λ

p ∂zAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z4ð2πÞ2

λ ð∂zAtÞ2
q : ð5:1Þ

As there is no charged matter in the bulk the equation of
motion for At is simply the bulk Gauss law:

∂zρðzÞ ¼ 0: ð5:2Þ
Thus, we can evaluate ρðzÞ anywhere in the bulk, and it
is always equal to the field theory charge density ρ,
justifying our notational abuse. Note that a finite-density
state requires that the brane always extend to the Poincaré
horizon: there are no explicit bulk sources, and so the bulk
electric field lines can only emerge from the horizon. This
state and its generalizations with nonzero magnetic field
and temperature have been extensively studied and are host
to a rich body of physical phenomena, a sampling of which
can be found in [37–42].
Despite extensive study, this state remains somewhat

exotic. It is a finite-density state that does not break the
Uð1ÞB symmetry (and so is not a superfluid) and yet at
first glance also not appear to display the structure in
momentum space required for a Fermi surface (and so
is not a Fermi liquid). Connecting such holographic
phases to a more conventional understanding of states
of quantum matter remains an important and open
question.
It is nevertheless of interest to understand how the

monopole correlation behaves on this background. The
finite charge density has an important effect that is easy to
understand: the magnetic monopole wants to move in dual
“Landau levels” of the background electric field. Landau
level wave functions are Gaussian in space and, thus, we
expect the correlation to fall off in a similar fashion. This is
precisely what happens, and in the remainder of this section
we will derive this result through a Euclidean worldline
calculation.

A. Conserved quantities on magnetic backgrounds

The effective Euclidean action for the monopole takes
the form

SD3 ¼ m
Z

dsþ iqm

Z
~A: ð5:3Þ

The first term is a proper length on AdS4 and the second is a
coupling to ~A, the magnetic dual of A, as shown in (3.10).
We will keep m and qm arbitrary in this section as the
analysis does not require any stringy ingredients. To
understand the factor of i we note that on a real trajectory
the coupling to a background gauge field always generates
phases, even in Euclidean signature. Now evaluating (3.10)
explicitly and using the fact that the only nonzero compo-
nent of F is Fzt ∼ ρ, we see from (5.1) that d ~A takes a very
simple form:

d ~A ¼ ρdx ∧ dy: ð5:4Þ

We need to pick a gauge for ~A; for concreteness we will use

~A ¼ −ρydx ð5:5Þ

FIG. 8. “Confinement” in the bulk. For z > zm the D5 brane
does not exist, and its world-volume flux is confined into flux
tubes (fundamental strings) which extend to the (Poincaré)
horizon at z ¼ ∞. From the four-dimensional point of view, it
appears that the world-volume gauge field has confined and
monopoles have condensed.
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and will comment on the (easily understandable) gauge
dependence of our answers at the end. It is clear that the
problem we are solving is equivalent after a change of
notation to that of an electric charge moving in a back-
ground magnetic field.
We now need to solve the geodesic equation following

from (5.3)

m
D2XM

ds2
− iqmðd ~AÞMN

_XN ¼ 0: ð5:6Þ

This is generally done by finding conserved quantities
associated to Killing vectors ξμ of the background metric,
e.g. translation along the spatial directions. The situation is
slightly more complicated here: from (5.5) we see that ~A
does not appear invariant under spatial translations. It is,
however, invariant up to a Uð1Þ gauge transformation, and
one would hope that this would be just as useful.
Generalizing slightly, denote by Lξ the Lie derivative

along ξ and suppose we have a background ðGMN; ~AMÞ
such that

LξðGMNÞ ¼ 0 Lξð ~AMÞ ¼ ∂MΛξ ð5:7Þ
with Λξ a scalar function of spacetime. Due to the gauge-
invariance of the action (5.3) this is a symmetry; thus, by
applying the usual Noether procedure to (5.3) with the
infinitesimal transformation δXμ ¼ ξμ, we find the follow-
ing conserved quantity along the geodesic:

QξðsÞ≡ ξMðm _XMðsÞ þ iqm ~AMðXðsÞÞÞ − iqmΛξðXðsÞÞ:
ð5:8Þ

We can also verify directly from (5.6) that d
ds Qξ ¼ 0 along

the geodesic. We see that there is still a conserved charge,
but it explicitly involves the gauge transformation param-
eter Λξ.

B. Geodesic action

With these conserved quantities it is easy to construct the
on-shell action. We seek a geodesic that intersects the
boundary at ðx; yÞ ¼ ð�Δx

2
; 0Þ. The geodesic will move in

ðx; y; zÞ. Using (5.8) we can construct conserved quantities
associated with spatial translations:

Px ¼ m_xGxxðzÞ − iqmρy

Py ¼ m_yGxxðzÞ þ iqmρx: ð5:9Þ
In the gauge (5.5) translational invariance in the x direction
is manifest, but that in the y direction requires the usage of
the formalism developed above. The final expressions are
pleasingly symmetric.
We will also use the normalization of the four-velocity,

Gxxð_x2 þ _y2Þ þGzz _z2 ¼ 1: ð5:10Þ

It is convenient to define a new parameter λ along the path

GxxðzðsÞÞ
d
ds

¼ d
dλ

: ð5:11Þ

With the constants of motion (5.9) we can immediately
solve for the dependence of x and y on λ:

x ¼ x0 þ α coshðωλÞ þ β sinhðωλÞ
y ¼ y0 − iðα sinhðωλÞ þ β coshðωλÞÞsgnðqmρÞ; ð5:12Þ

where ω is the cyclotron frequency, defined so that it is
always positive,

ω ¼ jqmρj
m

; ð5:13Þ

and x0; y0;α; β are free integration constants. Note that if
the displacement in x is real, then that in y is necessarily
imaginary: the geodesic that we are constructing will be
complex.
Take λ ¼ 0 to be the midpoint of the geodesic: then our

boundary conditions require x0 ¼ α ¼ 0. It remains to
relate β and y0 to the boundary conditions. Now plugging
into (5.10), we find

GxxðzÞðωβÞ2 þGzzðzÞ_z2 ¼ 1: ð5:14Þ

Using the AdS4 metric (3.8) we can solve for dz
ds,

dz
ds

¼ z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
z
z�

�
2

s
z� ≡ R

ωβ
: ð5:15Þ

Now we can use (5.11) to determine the change in λ along
the path; if we have λ ¼ 0 at the turning point, then at the
initial end point we find

λi ¼ −
Z

z�

0

dz
ds
dz

Gxx ¼ −
R

ðωβÞ2 : ð5:16Þ

Putting this into (5.12) we find the desired relation between
β and Δx:

β sinh
�

R
ωβ2

�
¼ Δx

2
: ð5:17Þ

This cannot be explicitly solved for β; however, in the large
Δx limit β is reasonably well approximated by

βðΔx → ∞Þ ≈ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

logð Δx
ζ
ffiffiffiffiffi
mR

p Þ

s
; ð5:18Þ

where we have used (5.13) and defined a correlation
length ζ as
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ζ ¼ 1ffiffiffiffiffiffiffiffiffiffiffijqmρj
p : ð5:19Þ

What does ζ measure? If the Dirac condition is saturated we
have qm ¼ 2π

qe
and the factor ðqmρÞ−1

2 is then a length scale
characterizing the area occupied by a single field-theoretical
quantum of charge in the finite-density state. In a Fermi
liquid this scale would correspond to the inverse Fermi
momentum, ζ ¼ ffiffiffi

2
p

k−1F . Such a length scale can emerge
from a holographic calculation only because of the non-
perturbative nature of the magnetic monopole, whose
magnetic charge knows about the fundamental electric
charge quantum qe [8].
We still need to fix y0: as we would like the geodesic to

start and end at y ¼ 0, we pick y0 ¼ iβ coshðωλiÞ. This
completely fixes the solution.
We now compute the on-shell action (5.3) in the largeΔx

limit. The geometric portion (at large Δx) is

m
Z

ds ≈ 2mR log

 
ζ

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR log

�
Δx

ζ
ffiffiffiffiffiffiffi
mR

p
�s !

; ð5:20Þ

with ε a UV cutoff. Note that it depends very weakly onΔx:
essentially the geometric portion saturates at the length
scale given by ζ.
The contribution from the coupling to ~A is more

interesting. Putting in the explicit solutions (5.12) and
using the form (5.5) we find at large Δx

iqm

Z
dx ~Ax ≈

jqmρj
4

β2 exp

�
2

ωβ2

�
; ð5:21Þ

which can be further simplified using (5.17) to be

iqm

Z
~A ≈

jqmρj
4

ðΔxÞ2 ¼ 1

4

�
Δx
ζ

�
2

: ð5:22Þ

It is interesting to note that the seemingly imaginary
coupling has resulted in a real contribution to the action.
This is because the geodesic was also complex, moving in
the imaginary y direction, meaning that we pick up an extra
factor of i from the evaluation of the gauge field (5.5). The
result may be thought of as a WKB derivation of the
familiar Landau level wave function (if in curved space).
We may now assemble the pieces. At large Δx the

geometric part (5.20) depends very weakly on spatial
separation and can be neglected. Thus, we conclude that
the correlator behaves as

hMðΔxÞM†ð0Þi ∼ exp

�
−
jqmρj
4

ðΔxÞ2
�
: ð5:23Þ

In the specific case of the D3 brane one should set qm ¼ 2π
as in (3.9). This computation of the monopole correlation in

a compressible finite-density phase is one of the main
results of this paper. We see that the correlation is very
strongly suppressed in space.
Finally, we should discuss the monopole correlation in

(Euclidean) time. If we separate the end points of the
geodesic in time, it does not couple to the background
electric field, and the calculation is the same as in pure
AdS4, i.e.

hMðΔtÞM†ð0Þi ∼ ðΔtÞ−2Δ; ð5:24Þ

with Δ ¼ mR. Thus, the correlation is power law in time
and Gaussian in space.
We briefly comment on the gauge-dependence of our

answer. Any charged correlator in a background field
depends on the gauge. Gauge transformations generated
by a gauge parameterΛðxÞwill shift the answer by (5.23) by
a phase factor expðiqmðΛðΔxÞ − Λð0ÞÞÞ. Similarly, if we
translate or rotate the correlator (5.23)wewill generally pick
up phases, as the gauge choice (5.5) will no longer exactly
line up with the interval choice of a separation purely in the
x-direction. The absolute value of the correlator will not
change.

VI. CONCLUSION

In this work we computed monopole correlation func-
tions from holography by relating a boundary monopole
operator to a bulk magnetically charged excitation. We
worked largely in the context of a particular top-down
brane model, the D3-D5 intersection, where the bulk
monopole is a type of wrapped D3 brane. We demonstrated
that in a phase when the boundary Uð1Þ current jμ is
gapped, the bulk monopole can be thought of as being
condensed in the region of space where the D5 brane does
not exist. From a four-dimensional point of view, this looks
like bulk confinement of the world-volume gauge field,
with the fundamental string being the flux tube. Despite its
somewhat exotic bulk realization, this condensation is
precisely what is expected from a gapped phase on
field-theoretical grounds.
We also presented results on monopole correlations in a

finite-density compressible phase. We found the correlation
to die off as a Gaussian in space in (5.23)—this follows
simply from an understanding of the bulk magnetic monop-
ole moving in dual “Landau levels” of the bulk electric field.
Some aspects of the calculation presented here do not

really require holography and can be understood in any
system with a Uð1Þ current jμ. As it is conserved, we may
write it as the curl of an auxiliary gauge field,

jμ ≡ i
4π

εμνρ∂νbρ: ð6:1Þ

Now the coupling between the source gauge field aμ and jμ
is (after an integration by parts):
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Z
d3xaμjμ ¼

i
4π

Z
d3xεμνρð∂μaνÞbρ ¼

Z
d3xbμ~j

μ:

ð6:2Þ

In other words, in any system the topological current ~j under
which the monopole is charged is coupled to an external
gauge field source bwhich is related to the ordinary current
via (6.1). If j has a nonzero charge density, then b
corresponds to an applied magnetic field, and presumably
themonopoleswhichmake up the current “feel” this applied
field. This is clearly the physics that is encoded holo-
graphically in the coupling (3.9).
We see that the key ingredient from holography was not

the coupling between the charge density and the monopole,
but rather the relation of the monopole to a gapped
excitation in the bulk whose dynamics could be easily
understood. It is this identification which fails in a conven-
tional Fermi liquid, where a monopole operator does not
obviously create a well-defined object (see, however, [43]
for a discussion of vortexlike objects in Fermi liquids). It
would be very interesting to compute the monopole
correlation in a Fermi liquid, perhaps through an extension
of the techniques in [24]. We note that in a superfluid with a
net charge density ρ the monopole creates a gapped vortex
(now in ð2þ 1Þ dimensions). If the vortex is heavy we can
compute its two-point function in a calculation similar to
that above, except in (2þ 1)-dimensional flat space, and
we find precisely the same Gaussian suppression.
We briefly comment on the relation between the calcu-

lations in this paper and the RPA approach to monopole
correlations described in Sec. II D. Such an approach takes
into account only the energy stored in the gauge field: if
applied to our system it would entirely miss the tension
of the monopole worldline, a tension that encodes the
fact that the monopole is a nonperturbative object. In fact,
if we expand the DBI action about the conformal phase
and examine the normalization of the Maxwell kinetic term
we find

S ¼ Nc

4π
ffiffiffi
λ

p
Z

d4xðdAÞ2: ð6:3Þ

The normalization of the Maxwell action maps to that of the
current-current correlator4 and so if we were to perform an
RPA-type analysis as in (2.14) we would find a contribution
with an overall scaling OðNcffiffi

λ
p Þ. This should be compared to

the OðNcÞ dependence of the monopole worldline mass,

and so is subleading at strong coupling. The presence of the
extra parameter λ in this theory lets us cleanly separate
these two contributions.
We now discuss some directions for future research. The

monopole correlation function can easily be studied holo-
graphically in more general circumstances, e.g. at finite
temperatures or near phase transitions [44–47], such as that
between Minkowski and black hole embeddings at finite
baryon chemical potential and quark mass. We note also
that the monopoles studied here—which try to close off the
bulk D-brane—seem to be the conjugate objects to the
world-sheet instantons studied in [48], which try instead to
pull the bulk D-brane into the black hole horizon. Such
objects were argued to play an important role in the
aforementioned phase transition at finite λ [49], and it
would be very interesting to understand if (and how) the
monopoles studied here interact with that story.
Many of the considerations studied in this note may be

extended to higher dimensions, and again holography may
be helpful for simple computations. For example, in a
general d-dimensional field theory, the analog of a monop-
ole operator is a d − 3-dimensional object Σ along which f
is not closed:

df ¼ δð3Þð“x − Σ”Þ: ð6:4Þ

To take the familiar case of ð3þ 1Þ dimensions, the
monopole operator becomes an extended one-dimensional
object, a t’Hooft line. In a phase with gapped charges, a
closed t’Hooft loop will obey a perimeter law, which is the
analog of the factorization of the monopole correlator in a
gapped phase in (2.11).5

Finally, we close on a more speculative note.
Holographic phases of compressible matter are somewhat
mysterious: they do not fit easily into a textbook classi-
fication of quantum matter, essentially because they can
support a finite density of charge without displaying the
structure in momentum space that is normally associated
with a Fermi surface [51–54]. The situation is slightly less
mysterious in a ð2þ 1Þ-dimensional bulk. It was shown in
[8] that essentially any holographic compressible state in
(2þ 1) dimensions will exhibit Friedel oscillations in its
density correlation function. Such oscillations are normally
associated with the presence of a Fermi surface, but in the
holographic model they arose from the presence of a dilute
gas of bulkmagnetic monopole instantons. This calculation
has not yet been extended to higher dimensions, but
intuition arising from the low-dimensional calculation
suggests that magnetically charged objects are likely to
be important in any sufficiently fine-grained description of
holographic matter, even in higher dimension [7]. While

4This statement requires a choice of normalization for the
boundary theory current. In this section we discuss the normali-
zation provided by string theory, but actually similar statements
can also be made in a bottom-up model, where the key physics is
just that the bulk monopole should be sufficiently heavy that
quantum corrections to its mass can be neglected. This is the case
in models that remain weakly coupled in the bulk.

5The notion of “generalized global symmetries” recently
introduced in [50] is useful here and is the extension of the
topological symmetry ~j to higher dimension.

MONOPOLE CORRELATIONS IN HOLOGRAPHICALLY … PHYSICAL REVIEW D 91, 106001 (2015)

106001-13



further study is required, we hope that the monopoles
studied here will eventually help build a bridge between a
conventional description of compressible phases and that
provided by holography.
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APPENDIX A: DERIVATION OF
MONOPOLE COUPLINGS

The bulk monopole studied in this paper is actually a D3
brane that wraps a hemispherical S3 ⊂ S5 and ends on the
D5 brane in a manner described in detail in Sec. III B. In
this appendix we derive its couplings to the world-volume
fields living on the D5 brane.
The starting point is the following action:

S ¼ −T5

Z
D5

d6σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγ þ 2πα0FÞ

p
þ T5

Z
D5

2πα0F ∧ C4 þ T3

Z
D3

C4 þ � � � : ðA1Þ

F is the field strength of the D5 brane world-volume gauge
field, F ¼ dA. In this action the electric gauge field A is the
dynamical variable, but we know that the edge of the D3
brane should couple magnetically to A, and so we need to
dualize this action. This is done by treating F as the
dynamical variable rather than A and supplementing the
action with a 3-form Lagrange multiplier K3 to guarantee
that dF ¼ 0 everywhere except on the edge of the D3
brane:

SK ¼
Z
D5

K3 ∧ dF þ qm

Z
∂D3

K3: ðA2Þ

Now the portion of the action involving couplings to the
form fields is

Sþ SK ¼
Z
D5

F ∧ ðdK3 þ 2πα0T5C4Þ

þ T3

Z
D3

C4 þ qm

Z
∂D3

K3 þ � � � : ðA3Þ

If we proceed to eliminate F from this action using its
equation of motion then K3 will be its 6 d magnetic dual.
Now C4 has a gauge transformation under a 3-form gauge
parameter Λ3. For the first term above to be gauge-invariant
we see that we require that K3 also transform under Λ3:

δΛC4 ¼ dΛ3 δΛK3 ¼ −2πα0T5Λ3: ðA4Þ

The sum of the second two terms in (A3) will also be gauge
invariant if we pick qm to be

qm ¼ T3

2πα0T5

¼ 2π: ðA5Þ

The fact that this coupling is nonzero means that the edge of
the D3 brane couples to K3. Now to interpret this from the
four-dimensional point of view, we take the following
ansatz for K3,

K3 ¼
1

4π
~A ∧ V2; ðA6Þ

with V2 the volume form of a unit S2 ⊂ S5. The edge of the
D3 brane is a product of this S2 and a one-dimensional curve
C ⊂ AdS4, and integrating over the S2 we find from (A2)

SK ¼
Z
AdS4

F ∧ d ~Aþ qm

Z
C

~A: ðA7Þ

~A is the four-dimensionalmagnetic dual toA, and the second
term is the desired coupling between the monopole (effec-
tively a particle moving along the worldlineC on AdS4) and
~A. To understand the precise relation between ~A and A we
vary the total action with respect to F to find

ðd ~AÞMN ¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det4ðγþ 2πα0FÞ

p
½ðγþ 2πα0FÞ−1�PQεPQMN;

ðA8Þ

where the normalization N ¼ −4π2α0R2T5, as claimed in
(3.10). This is the generalization of the idea of a magnetic
dual to the nontrivial gauge kinetic term in theDBI action.At
smallF it reduces to themore familiard ~A ∼ ⋆4F ofMaxwell
electric-magnetic duality.

APPENDIX B: TRANSFORMATION OF THE
MONOPOLE UNDER GLOBAL SYMMETRIES

Recall that the global symmetry group of the defect
field theory is Uð1ÞB × SUð2ÞV × SUð2ÞH, where the two
SUð2Þ factors are realized geometrically as the isometry
groups of the two S2 factors inside the S5. The fermions are
charged in the fundamental under SUð2ÞV (in which the D5
brane is not extended), and the scalars are in the funda-
mental under SUð2ÞH (which the D5 brane wraps). In this
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section we seek to understand how the monopole operator
transforms under this global symmetry group.
We start from the field theory, at zero coupling. We

essentially follow the arguments given in [1], with slight
modifications to deal with the different symmetry group in
our problem. To determine the quantum numbers of the
monopole at large Nc we can study the field theory on
S2 ×Rwith a classical gauge field background correspond-
ing to a single unit of Uð1ÞB flux on the S2. As we are
interested in the operator with lowest conformal dimension,
we would like to understand the ground state of this system.
However, there is some ambiguity as to what we mean by

“ground state,” due to the existence of fermion zero modes
bound to the monopole. There are 2Nc zero modes, one for
each fermion species, and we denote them by cai , where a is
a SUðNcÞ color index and i an SUð2ÞV spinor index. The
only (color) gauge-invariant combination of zero mode
creation operators takes the baryonic form

Ci1i2���iNc
¼ εa1a2���aNc

ðca1i1 Þ†ðc
a2
i2
Þ† � � � ðcaNc

iNc
Þ†; ðB1Þ

with ε representing the antisymmetric symbol. This
object is entirely symmetric in its spin indices and so
transforms in theNc þ 1 dimensional spin-Nc

2
representation

under SUð2ÞV.
Denote the Fock vacuum—which is annihilated by all

the c’s—by j0i. To create a gauge-invariant state we must
act with the C’s defined above. Acting with them once we
find the Nc þ 1 states described above,

Ci1i2���iNc
j0i: ðB2Þ

Acting with them twice, the only nonvanishing state is

C2j0i≡ εi1j1 � � � εiNc jNcCi1���iNc
Cj1���jNc

j0i: ðB3Þ

This state has every zero mode filled and is a singlet under
SUð2ÞV , just like j0i. Each C carries Uð1ÞB charge Nc: this
fixes the relative charge assignments, but there is an
ambiguity in deciding which state should carry Uð1ÞB
charge 0. It is argued in [1] that a CP-invariant quantization
requires that we assign equal and opposite Uð1ÞB charge to
j0i and C2j0i. This prescription gives j0i and C2j0i a
Uð1ÞB charge of −Nc and Nc, respectively, and states that
the states (B2) carry zero Uð1ÞB charge. Presumably, these
are the states we have been studying in this note.
This analysis was all performed at zero coupling. As we

go to strong coupling, it is not clear how much of the
physics of these zero modes should survive: in particular, it
seems that interactions could modify the energies of the
charged monopole states j0i and C2j0i relative to the
charge 0 states (B2). However, as the states in (B2) form an
irreducible multiplet under SUð2ÞV they should remain
degenerate, and so even at strong coupling we expect the

charge-0 monopole to transform as a spin-Nc
2
representation

under SUð2ÞV.
Interestingly, it is actually possible to reproduce this

result from a holographic analysis, to which we now turn.
Consider the metric of a unit S5:

ds2
S5
¼ dψ2 þ sin2ψðdθ2 þ sin2θdϕ2Þ
þ cos2ψðd~θ2 þ sin2 ~θd ~ϕ2Þ: ðB4Þ

The monopole D3 brane wraps ðψ ; θ;ϕÞ and sits at a point
at ð~θ; ~ϕÞ. SUð2ÞV acts nonlinearly as a rotation on ð~θ; ~ϕÞ,
and so it appears that the existence of the D3 brane at a
definite location spontaneously breaks SUð2ÞV entirely.
This cannot be true at the quantum mechanical level. In the
finite-Nc field theory the D3 brane is associated with a
pointlike operator, and the Coleman-Mermin-Wagner-
Hohenberg theorem states that the breaking of a continuous
symmetry can happen only on an object with at least two
extended dimensions [55–57]. In other words, we should
not be able to assign ð~θ; ~ϕÞ a classical value: rather the
wavefunction of the D3 brane in the bulk is delocalized in
the ð~θ; ~ϕÞ directions.
To understand this wave function, we should quantize

these two directions. Following the discussion in the field
theory, we study the boundary field theory on S2 × Rwith a
unit of flux and attempt to understand the Hilbert space of
the monopole. In the bulk we have global AdS4 with the
monopole at rest at the origin in the interior of the
geometry. The only low-lying fluctuations are in ð~θ; ~ϕÞ:
we study a configuration where these fluctuations depend
only on time and, thus, trace out a worldline on the S2 ⊂ S5

representing SUð2ÞV . The relevant action is

S ¼ −T3

Z
d4σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ3

p
þ T3

Z
D3

C4: ðB5Þ

The eigenvalues of the Hamiltonian governing this world-
line quantum mechanics are related to the dimensions of a
tower of operators associated with the monopole using the
usual rules of AdS=CFT. We are interested in the lowest-
energy state.
The coupling of the monopole D3 brane to the back-

ground C4 sourced by the color D3 branes plays an
interesting role here. The portion of C4 with legs along
the S5 can be taken to be

C4 ¼ 8λl4ssin2ψcos2ψdψ ∧ dðcos θÞ ∧ dϕ ∧ bþ � � � ;
ðB6Þ

where b is a one-form chosen so that db is proportional to
the volume form on S2:

db ¼ 1

2
sin ~θd~θ ∧ d ~ϕ: ðB7Þ
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This means that b can be interpreted as the gauge potential
for a unit-charge magnetic monopole6 at the core of this S2.
Then letting the index α run over ð~θ; ~ϕÞ and integrating over
all compact directions we find that the coupling to C4

becomes

T3

Z
D3

C4 ¼ Nc

Z
bα

dXα

dt
dt: ðB8Þ

This looks like the coupling of a charged particle to a
background Uð1Þ gauge field. Now expanding out the DBI
action in derivatives, we find

− T3

Z
d4σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ3

p
¼ −

Nc

2R

Z
dt

�
1 −

R2

8
ð_~θ2 þ cos2 ~θ _~ϕ

2Þ
�
þ � � � : ðB9Þ

The first term is a classical energy corresponding to the rest
mass of the particle, as in (3.13). The second term gives
dynamics to the S2 coordinates.
Combining (B8) and (B9) we find that the system is given

by a charged particle moving on an S2 with a magnetic
monopole of charge Nc at its core. This is a well-studied
action, and is in fact the path-integral representation of a
spin-Nc

2
system (for a pedagogical review see e.g. chapter 7 of

[58]). To be more precise, the lowest Landau level of the
particle on the S2 has degeneracyNc þ 1 and transforms as a
spin-Nc

2
representation under SUð2ÞV. Pleasingly, this is

precisely the representation expected for the monopole
operator on field-theoretical grounds. It is interesting to
see how the fermion zero modes are geometrized into the
quantum mechanics of the collective coordinate on S2.
From the prefactor of the kinetic term in (B9) we see that

the spacing between this degenerate ground state and the
other bulk energy levels scales like ðNcRÞ−1. As we take
Nc → ∞ all of these states become degenerate, collapsing
onto the ground state and permitting spontaneous sym-
metry breaking of SUð2ÞV . There is some similarity
between this discussion and that of giant gravitons [59],
which is different in detail but where the same coupling
between probe branes and background flux also allows
access to physics that is nonperturbative in Nc.
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