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We develop a one-parameter family of static baby Skyrme models that do not require a potential term to
admit topological solitons. This is a novel property as the standard baby Skyrme model must contain a
potential term in order to have stable soliton solutions, though the Skyrme model does not require this. Our
new models satisfy an energy bound that is linear in terms of the topological charge and can be saturated in
an extreme limit. They also satisfy a virial theorem that is shared by the Skyrme model. We calculate the
solitons of our new models numerically and observe that their form depends significantly on the choice of
parameter. In one extreme, we find compactons while at the other there is a scale invariant model in which
solitons can be obtained exactly as solutions to a Bogomolny equation. We provide an initial investigation
into these solitons and compare them with the baby Skyrmions of other models.
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I. INTRODUCTION

The baby Skyrme model [1,2] is a nonlinear field theory
admitting topological solitons known as baby Skyrmions. It
is often studied as a (2þ 1)-dimensional analogue of the
Skyrme model [3] for nuclear physics though is itself an
interesting physical model with applications in condensed
matter physics [4–6]. In the (3þ 1)-dimensional Skyrme
model, the topological solitons are called Skyrmions and
can be used to model atomic nuclei with their topological
charge, an integer B, giving the baryon number. As a lower-
dimensional version of this model, the baby Skyrme model
has been used to investigate a variety of difficult problems
in the Skyrme theory including Skyrmion scattering [2,7–9]
and the effect of isorotation on Skyrmion solutions
[10–12].
A key difference in the models arises when we consider

their necessary components. The baby Skyrme model is an
Oð3Þ-sigma model extended by the addition of a term
quartic in derivatives called the Skyrme term and a
symmetry breaking potential term. The combination of
Skyrme term and potential gives a scale to the model and
enables it to evade Derrick’s theorem [13] for scalar field
theories in two space dimensions. By contrast, in the full
Skyrme model the combination of the Skyrme and sigma
terms is sufficient to evade Derrick’s theorem. This
provides one motivation for our paper—we wish to design
a static baby Skyrme model that does not require a potential
term to have topological solitons. One approach is to apply
a noncommutative deformation to the baby Skyrme model
instead of including a potential term [14,15]. We apply a
very different method.

Before discussing our approach in detail, we briefly
review different variants of the baby Skyrme model. One
way to create new models has been through the use of
different potentials [16–19], and it has been found that the
choice of potential has a dramatic effect on the solitons of
the model. In particular, the appearance and structure of
multisolitons depends strongly on the potential term. For
some potentials, higher-charge solitons form chains [20],
for some rings [19] and for others [21,22] stable multi-
solitons may not exist at all. Models have also been
designed in which the Oð3Þ symmetry is broken to the
dihedral group DN , and here multi-Skyrmions have been
observed with crystalline or broken structures [23–25].
In addition to choosing a different potential term, it is

possible to develop new baby Skyrme models by removing
the sigma term. Models consisting of only the Skyrme term
and a potential are sometimes called restricted or BPS baby
Skyrme models [26–28]. Deformations of BPS models [29]
have also been investigated, for which a physical motiva-
tion is found in the (3þ 1)-dimensional Skyrme theory.
One significant problem in applying the Skyrme model to
nuclear physics is that the binding energies of Skyrmions
are considerably larger than the experimental values. The
BPS Skyrme model [30–32] consists only of a sextic term
and a potential term, and has been developed, along with its
generalizations, as an attempt to obtain more realistic
binding energies. Different approaches to obtain Skyrme
models with low binding energies are by coupling vector
mesons to the Oð3Þ-sigma model term and removing the
Skyrme term [33,34] or by studying Skyrme solitons on
curved backgrounds [35,36].
Another attempt to address the problem of obtaining

realistic classical binding energies in the Skyrme theory has
been to create new Skyrme models through a novel choice
of potential term [37,38]. A family of models is obtained by
a one-parameter family of potential functions interpolating
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between the standard Skyrme model and a model in which
a topological energy bound can be saturated for jBj ¼ 1. An
equivalent idea has been explored in the baby Skyrme
model to obtain so-called “aloof” baby Skyrmions [39]. We
have also been motivated by recent interest in topological
energy bounds [37,40]. When designing our models, we
require that they satisfy a particular topological energy
bound. We find that this has several useful consequences
for our models.
Our approach to designing new baby Skyrme models is

entirely different from those outlined above. As we wish to
design models which do not require a potential term to have
topological solitons, we remove the potential and raise the
sigma and Skyrme terms to some powers. Considering
Derrick’s scaling argument and requiring that our models
satisfy a topological energy bound results in a one-
parameter family of baby Skyrme models. We find that
the required powers of the Skyrme and sigma terms are
fractional. This draws a natural comparison between our
models and the Nicole [41] and AFZ [42,43] models, which
were investigated numerically in Refs. [44,45] along with a
set of conformally invariant Skyrme-Faddeev models
obtained by taking linear combinations of the two.
The outline of the paper is as follows. We open in Sec. II

with a brief overview of the static baby Skyrme model,
focusing on its well-known energy bound and the appli-
cation of the Derrick scaling argument to this theory. In
Sec. III we present our new models, beginning with a
general form for the static energy and then illustrating how
the application of Derrick’s theorem and the requirement
that our solitons satisfy a topological energy bound reduces
the number of parameters to one.
In the remainder of the paper we investigate the solitons

of our one-parameter family of models. In Sec. IV we
present our numerical results, first considering axially
symmetric solutions and then progressing to simulations
of the full field theory. We discuss the effect of the model
parameter on the solitons and compare them to those found
in existing models. We end by summarizing our results and
reflecting upon open questions and opportunities for further
investigation.

II. THE BABY SKYRME MODEL

The static energy functional of the baby Skyrme model is
given by

EBS ¼
Z
R2

�
1

2
∂iϕ · ∂iϕþ 1

4
j∂iϕ × ∂jϕj2 þ VðϕÞ

�
d2x;

ð1Þ

where the field ϕ: R2 → S2 is a three-component vector
ϕ ¼ ðϕ1;ϕ2;ϕ3Þ of unit length. The first term in (1) is the
Oð3Þ-sigma model term and is extended by the addition of
a term quartic in derivatives, called the Skyrme term, and a

potential term VðϕÞ to allow the existence of stable
topological soliton solutions.
To ensure that solutions have finite energy, the boundary

condition

lim
jxj→∞

ϕ ¼ ð0; 0; 1Þ; ð2Þ

is imposed, assuming that (0, 0, 1) is a minimum of the
potential V. This enables a one-point compactification
R2 ∪ f∞g ≅ S2, and thus we can consider ϕ as a map
ϕ: S2 → S2. We can label the maps ϕ by an integer
B ∈ π2ðS2Þ ¼ Z, called the topological charge. This is
the winding number of the map, given by

B ¼ −
1

4π

Z
R2

ϕ · ð∂1ϕ × ∂2ϕÞd2x; ð3Þ

and is sometimes called the baryon number for comparison
with the Skyrme model. The topological solitons of this
theory are field configurations which minimize the energy
(1) in a given topological sector B. They are called baby
Skyrmions.
A lower bound on the energy of a solution with charge B

in the baby Skyrme model is given by

EBS ≥ 4πjBj: ð4Þ

This is a bound on the sigma term alone, obtained by a
completing the square argument, and is never saturated by
baby Skyrmions.
When deriving energy bounds, it will be convenient for

us to rewrite the static energy (1) using its geometrical
interpretation [46]. Define the symmetric, positive definite
2 × 2 matrix D by

Dij ¼ ∂iϕ · ∂jϕ; ð5Þ

and let λ2i denote the eigenvalues of the strain tensor D,
where i ¼ 1, 2. Then we can express the baby Skyrme
energy functional (1) in terms of the non-negative eigen-
values of D as

EBS ¼
Z
R2

�
1

2
ðλ21 þ λ22Þ þ

1

2
λ21λ

2
2 þ VðϕÞ

�
d2x; ð6Þ

and the topological charge can be expressed as

B ¼ −
1

4π

Z
R2

λ1λ2d2x: ð7Þ

Using the energy (6), we can obtain the well-known lower
energy bound (4) on the sigma term by completing the
square as
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1

2

Z
R2

ðλ21 þ λ22Þd2x¼
1

2

�Z
R2

ðλ1∓ λ2Þ2d2x� 2

Z
R2

λ1λ2d2x

�
;

≥
����
Z
R2

λ1λ2d2x

����¼ 4πjBj: ð8Þ

The approach given above for deriving topological energy
bounds is similar to those given in recent papers on the
subject [37,40]. We will apply this method again in Sec. III
B when we derive energy bounds for our new baby Skyrme
models. While (4) is a well-known topological energy
bound for the baby Skyrme model, recently tighter bounds
have been obtained by also taking into account energy
contributions from the Skyrme term and the potential
term [27,40].
The inclusion of a potential term in the baby Skyrme

model is important as it allows the model to evade Derrick’s
theorem [13] and thus have topological soliton solutions.
This theorem rules out the existence of topological solitons
in flat space scalar field theories by the requirement that a
stationary point of the energy must also be stationary
against rescaling. Therefore, if the energy of the theory
after applying the spatial rescaling x↦ μx, which we
denote by eðμÞ, has no stationary point, then there can
be no static finite energy solutions except the vacuum.
We apply this argument to the baby Skyrme model.

Under the rescaling x↦μx, the static energy (1) becomes

eBSðμÞ ¼ E2 þ μ2E4 þ μ−2E0; ð9Þ

where we use E2; E4 and E0 to denote the sigma term,
Skyrme term and potential term, respectively. As a result of
Derrick’s theorem, we observe that the combination of a
potential term and the Skyrme term allows the existence of
topological solitons.
We can also derive a virial theorem satisfied by the baby

Skyrme model by taking deBS
dμ jμ¼1 and setting this to zero,

to find

E4 ¼ E0: ð10Þ

Contrast this with the results of applying the scaling
argument to the Skyrme model, which has static energy

ES ¼
Z
R3

�
−
1

2
TrðRiRiÞ −

1

16
Trð½Ri; Rj�½Ri; Rj�Þ

þm2Trð1 −UÞ
�
d3x; ð11Þ

where m is related to the pion mass, the pion fields are
written as U: R3 → SUð2Þ and Ri ¼ ð∂iUÞU†.
In this case, applying the rescaling produces

eSðμÞ ¼
1

μ
E2 þ μE4 þ

1

μ3
E0; ð12Þ

so the potential term is unnecessary to evade Derrick’s
theorem. If we consider the static energy of the Skyrme
model with no potential term, we can further obtain the
virial theorem

E2 ¼ E4: ð13Þ

We have seen that the potential term is a necessary
component of the baby Skyrme model if there are to exist
topological soliton solutions. However, the same is not true
of the Skyrme model, in which Skyrmions can exist
without the presence of a potential term. This difference
between the two theories motivates us to investigate the
design of baby Skyrme models that do not include a
potential term but still have soliton solutions.
A variety of different functions VðϕÞ have been inves-

tigated as the potential term in the baby Skyrme model
[16–19]. Particular examples are

VðϕÞ ¼

8><
>:

V1 ¼ m2ð1 − ϕ3Þ ð“old” potentialÞ
V2 ¼ m2ð1 − ϕ2

3Þ ð“new” potentialÞ
V3 ¼ m2ð1 − ϕ3Þ4 ðholomorphic potentialÞ:

ð14Þ

The choice of potential has a strong effect on the appear-
ance and structure of multisoliton solutions. For example,
in the old baby Skyrme model V1, higher-charge baby
Skyrmions form chains [20], in the new baby Skyrme
model V2 rings are minima, and in the holomorphic model
V3 no multisolitons exist. Recent work [39] has explored
combining the old potential V1 with the holomorphic
potential V3 to obtain weakly bound multisolitons. We
are interested in what the structure of baby Skyrmions
would be without a potential to govern them.

III. BABY SKYRME MODELS WITHOUT
A POTENTIAL

We propose a range of new baby Skyrme models that do
not require a potential term to evade Derrick’s theorem. To
achieve this, we raise the sigma and Skyrme terms to the
power α and β, respectively, and determine the range of
acceptable values for these powers to ensure stability with
respect to rescaling. As a starting point for the new static
energy, take

E ¼
Z
R2

ðc1ð∂iϕ · ∂iϕÞα þ c2ðj∂iϕ × ∂jϕj2ÞβÞd2x; ð15Þ

where c1; c2 are positive real coupling constants, and α; β
are real constants.
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A. Derrick’s scaling argument

To determine suitable values for α and β, we apply the
rescaling x↦μx to the static energy (15) and consider the
results of Derrick’s theorem. This leads to the energy

eðμÞ ¼ μ2α−2E2 þ μ4β−2E4: ð16Þ

There are three cases in which our model can evade
Derrick’s theorem:

ðiÞ α < 1 and β > 0.5;

ðiiÞ α > 1 and β < 0.5;

ðiiiÞ α ¼ 1 and β ¼ 0.5; ð17Þ

with case (iii) providing a scale invariant model. We only
consider cases (i) and (iii) because solutions in the models
of case (ii) would either be compact or not have finite
energy; see Appendix A for a detailed discussion.
There is also a virial theorem satisfied by our models.

Take de
dμ jμ¼1 and set this equal to zero. For case (iii) this is

automatically satisfied; otherwise, we have

ð2α − 2ÞE2 þ ð4β − 2ÞE4 ¼ 0: ð18Þ

The resulting virial theorem is

E2 ¼
1 − 2β

α − 1
E4: ð19Þ

Recall that the Skyrme model without a potential term
satisfies the virial theorem E2 ¼ E4. Our models also
satisfy this virial theorem when

β ¼ 1 −
α

2
: ð20Þ

This selection of models includes one in which the static
energy (15) produces the same function eSðμÞ under
rescaling as that for the Skyrme model (11) without a
potential term. In this case the parameters are α ¼ 0.5
and β ¼ 0.75.

B. Energy bounds

We have seen in Sec. II that the baby Skyrme model (1)
satisfies a linear bound (4) on the energy of its solutions in
terms of the number of solitons. This is a useful property
shared by many soliton models [47]. Therefore, we require
our new baby Skyrme models to satisfy such a lower bound
on the energy. In the following, we use this condition to fix
the parameter β in (15) and further restrict the family of
models that we consider.
Defining the matrix D by Dij ¼ ∂iϕ · ∂jϕ as before,

rewrite the energy (15) as

E ¼
Z
R2

ðc1ðλ21 þ λ22Þα þ c2ð2λ21λ22ÞβÞd2x; ð21Þ

where λ21; λ
2
2 denote the eigenvalues of D.

To obtain a lower bound on the energy, we use the
following special case of the inequality of the arithmetic
and geometric means: for a, b non-negative,

aþ b
2

≥
ffiffiffiffiffiffi
ab

p
; ð22Þ

with equality if and only if a ¼ b.
We obtain a lower bound on the energy by first applying

inequality (22) twice to find

E ¼ 2

Z
R2

�
1

2
c1ðλ21 þ λ22Þα þ

1

2
c2ð2λ21λ22Þβ

�
d2x;

≥ 2

Z
R2

ffiffiffiffiffi
c1

p ðλ21 þ λ22Þ
α
2

ffiffiffiffiffi
c2

p ð2λ21λ22Þ
β
2d2x;

≥ 21þ
β
2

ffiffiffiffiffiffiffiffiffi
c1c2

p Z
R2

2
α
2jλ1λ2jα2jλ1λ2jβd2x;

¼ 21þ
αþβ
2

ffiffiffiffiffiffiffiffiffi
c1c2

p Z
R2

jλ1λ2j
αþ2β
2 d2x: ð23Þ

Then to ensure that this energy bound is linear in terms of
the topological charge B, the required value of β is

β ¼ 1 −
α

2
: ð24Þ

The resulting topological energy bound is

E ≥ 2
3
2
þα

4
ffiffiffiffiffiffiffiffiffi
c1c2

p
4πjBj: ð25Þ

Note that this choice of β was also found in Sec. III A by
requiring that the virial theorem (19) be simply E2 ¼ E4:
the virial theorem of the Skyrme model without a potential
term [48].
In case (iii), there is an alternative energy bound derived

by a standard completing the square argument. The static
energy for this model is given in terms of the eigenvalues
λ21; λ

2
2 as

E ¼
Z
R2

ðc1ðλ21 þ λ22Þ þ c2

ffiffiffiffiffiffiffiffiffiffiffi
2λ21λ

2
2

q
Þd2x: ð26Þ

By completing the square, we find

E ¼
Z
R2

ðc1ðjλ1j − jλ2jÞ2 þ 2c1jλ1λ2j þ
ffiffiffi
2

p
c2jλ1λ2jÞd2x;

¼
Z
R2

c1ðjλ1j − jλ2jÞ2d2xþ ð2c1 þ
ffiffiffi
2

p
c2Þ

Z
R2

jλ1λ2jd2x;

≥ 4πð2c1 þ
ffiffiffi
2

p
c2ÞjBj: ð27Þ
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So an alternative bound in case (iii) is given by

E ≥ 4πð2c1 þ
ffiffiffi
2

p
c2ÞjBj: ð28Þ

This bound is saturated for solutions of the Bogomolny
equation,

jλ1j ¼ jλ2j; ð29Þ

which leads to the following system of equations:

∂1ϕ · ∂1ϕ ¼ ∂2ϕ · ∂2ϕ;

∂1ϕ · ∂2ϕ ¼ 0: ð30Þ

Let z denote the complex coordinate z ¼ xþ iy in the
spatial plane and R the Riemann sphere coordinate on the
target S2. We can write solutions of Eqs. (30) in each
topological sector B in terms of rational maps RðzÞ as

ϕ ¼ 1

1þ jRj2 ðRþ R̄;−iðR − R̄Þ; jRj2 − 1Þ: ð31Þ

Here RðzÞ ¼ pðzÞ=qðzÞ is a ratio of two polynomials
pðzÞ and qðzÞ with no common factors, and B ¼
maxfdegðpÞ; degðqÞg. To satisfy the boundary condition
limjxj→∞ϕ ¼ ð0; 0; 1Þ at infinity, we require Rð∞Þ ¼ ∞.
One important case is the axially symmetric rational map

RðzÞ ¼ zB: ð32Þ

Thus, we can find exact solutions for baby Skyrmions of
any charge B in this model.
It still remains to set the values of the coupling constants

c1 and c2. In this paper, we choose

c1 ¼ 2−
3þα
2 and c2 ¼ 2

α
2c1; ð33Þ

and so obtain the final form of the static energy for our
models as

E ¼ 2−
3þα
2

Z
R2

ðð∂iϕ · ∂iϕÞα þ 2ðj∂1ϕ × ∂2ϕj2Þ1−α
2Þd2x:

ð34Þ

This choice of coupling constants has three useful conse-
quences. First, the choice of c2 ensures that the bounds (25)
and (28) in case (iii) coincide. It also causes the virial
theorem E2 ¼ E4 to be satisfied in case (iii), as we now
have c1 ¼ 1

4
and c2 ¼ 1

2
ffiffi
2

p and, thus,

E2 ¼ 2c1 · 4πjBj ¼ 2πjBj ¼
ffiffiffi
2

p
c2 · 4πjBj ¼ E4: ð35Þ

Due to the scale invariance of this model, it is not necessary
that the virial theorem be satisfied in this case. It is only due
to the choice of constants (33) that the virial theorem (13)
holds here.
Finally, for any choice of α, this combination of c1 and

c2 sets the topological energy bound (25) to be

E ≥ 4πjBj; ð36Þ

with the bound saturated when α ¼ 1. This is the well-
known energy bound on the sigma term of the baby
Skyrme model.

IV. NUMERICAL RESULTS

In this section, we calculate axially symmetric baby
Skyrmion solutions for parameter α ∈ ½0.5; 1� and with
topological charges B ¼ 1–3, 10. We minimize the energy
functional (34) for rotationally symmetric Skyrme con-
figurations using two very different numerical approaches:
one-dimensional gradient flow and Newton’s method for
nonlinear systems. Finally, we perfom two-dimensional
energy minimization simulations for a selection of our
models and verify that the minimal energy solutions
agree with those found when imposing axial symmetry.
Skyrmion chain solutions are found to be of higher energy.
Note that the baby Skyrmion solutions for α ¼ 0.5 are

discussed in a separate subsection as the solitons become
compactons. These are solitons with compact support,
taking vacuum values everywhere outside some finite
region of space. Compact solitons have been studied before
in the Skyrme-Faddeev model in the infinite mass limit
[49], and in massive baby Skyrme models [27,50,51].
Compactons are numerically challenging and require a
careful adjustment of our numerical methods.

A. Axial baby Skyrme solutions

To find axially symmetric soliton solutions of the
equations of motion, we use the ansatz

ϕ ¼ ðsin f cosðBθÞ; sin f sinðBθÞ; cos fÞ; ð37Þ

where r, θ are the usual polar coordinates, f ¼ fðrÞ is a
radial profile function, and B is the topological charge of
the configuration. Substituting (37) into (34) yields the
energy

E ¼ 2−
3þα
2 · 2π

Z
∞

0

��
f02 þ B2

sin2f
r2

�
α

þ 2

�
f02B2

sin2f
r2

�
1−α

2

�
rdr; ð38Þ
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which depends only on the radial coordinate r. Here prime
denotes differentiation with respect to the radial coordinate
r. By the principle of symmetric criticality, solutions of the
Euler-Lagrange equation for the simplified energy (38) will
also solve the equations of motion for the original energy
(34). In the following, we minimize the energy (38) by
solving the Euler-Lagrange equation (A1) in Appendix A
subject to the boundary conditions fð0Þ ¼ π and fð∞Þ ¼ 0
in two ways: through the use of a one-dimensional flow
method and also using Newton’s method for nonlinear
systems [52] with grid spacing Δr ¼ 10−4 over the interval
0 ≤ r ≤ 20. For both methods, we monitor the topological
charge and check the virial theorem (19) at each iteration
step.
Figure 1(a) displays the total energy E as a function of

model parameter α for axially symmetric baby Skyrmions
with topological charges B ¼ 1–3, 10. The topological
energy bound is indicated by a dashed line. All energy
values are given in units of 4πB. The energy values are
furthest from the bound towards α ¼ 0.5, but draw closer as
α increases until the bound is finally saturated in the α ¼ 1
baby Skyrme model. As the charge increases, the difference
between the energy value and the bound grows smaller.
So the bound tightens for higher-charge solutions of a
given model. Note that the energy difference between
subsequent charges also decreases drastically. As a limiting
case, we include in Fig. 1 the energy values for charge 10.
In Fig. 1(b) we display the binding energy as a function of
α, where the binding energy per soliton is given by

ΔE
B

¼ E1 −
EB

B
; ð39Þ

with E1 denoting the energy of the charge-one solution and
EB denoting the energy of the charge B solution. The
binding energy per soliton is the energy required to split a
charge B baby Skyrmion into B charge-one Skyrmions

divided by the total number of solitons. The binding energy
is found to increase with the topological charge.
Another feature of the solutions which changes dramati-

cally as α increases is illustrated in Fig. 2. Here we compare
charge-one profile functions fðrÞ in a selection of the
models ranging from α ¼ 0.51 to α ¼ 0.9 with the exact
solution of the Bogomolny equation for α ¼ 1. The
numerical profile functions were calculated using the
Newton method over the interval 0 ≤ r ≤ 20. For
α ¼ 0.51, the profile function is tightly concentrated
between r ¼ 0 and r ¼ 2.2. As α increases, the profile
functions start to spread out. By α ¼ 1, the profile function
is less localized and approaches the vacuum gradually.
A more detailed examination of the approach to the

vacuum of the profile functions is given in Appendix A. In
this appendix, we linearize the equation of motion as
r → ∞ and obtain solutions that describe the profile

FIG. 1 (color online). Energy as a function of model parameter α for axially symmetric configurations with topological charges
B ¼ 1–3, 10. (a) Total energy E. (b) Binding energy per soliton ΔE=4πB.

FIG. 2 (color online). B ¼ 1 profile functions fðrÞ for model
parameter 0.5 < α ≤ 1.
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functions as they approach zero. The profile functions
exhibit a power law behavior, fðrÞ ∼ rλ for large r. As α
tends to 0.5 the exponent λ becomes increasingly negative,
and the approach to the vacuum becomes steeper. At α ¼
0.5 the exponent diverges suggesting that solutions in this
model are compactons. Near the origin, for all values of α
the charge-one profile functions exhibit linear behavior.
This is discussed in detail in Appendix B where we
linearize the equation of motion near the origin for any
charge B.

B. Baby Skyrme solutions in the α ¼ 0.5 model

In this section, we present the results of two-dimensional
simulations for the compact charge-one and -two solitons
obtained for model parameter α ¼ 0.5. As a starting point
for our two-dimensional energy minimization routine we
choose two different initial conditions: a rotationally
symmetric configuration created from the one-dimensional
profile function for α ¼ 0.5 and the configuration relaxed
with α ¼ 0.51.
To find profile functions in the α ¼ 0.5 model we

minimize the energy (38) over intervals r ∈ ½0; Rest� for
various boundary points Rest surrounding the expected
compacton radius. Solving the corresponding field equation
over each interval is accomplished by Newton’s method for
nonlinear systems with grid spacing Δr ¼ 10−2 due to its
increased speed over the gradient flow method.We then seek
the value of Rest that minimizes the energy. This enables us
to decide upon a numerical energy value for the solution up
to one decimal place of accuracy, with the virial theorem and
topological charge also correct to one decimal place.
By substituting the profile functions obtained by this

method into the axially symmetric ansatz (37), we build

two-dimensional configurations. These are implemented as
initial configurations in a two-dimensional relaxation
method similar to that described in Ref. [10]. We evolve
the equations of motion derived from (34) in a fictitious
time t and include a damping term governed by the
dissipation ϵ. We periodically remove kinetic energy by
setting _ϕ ¼ 0 at all grid points. In the following, the finite
difference approximations are second-order accurate in the
spatial derivatives. The simulations are performed on a
ð401Þ2 grid with spacing Δx ¼ 0.02 for the charge-one
soliton and Δx ¼ 0.04 for the charge-two soliton. In both
cases the dissipation parameter ϵ is set to 0.5.
In Fig. 3(a) we plot the energy density of the resulting

B ¼ 1 configuration. Figure 4(a) displays the energy
density of a B ¼ 2 configuration obtained by the same
method. The energy of both solutions is localized in a finite
region of space, and the steep approach to the vacuum is
evident at the boundaries of the compactons. The energy
values for these solutions agree with those of the corre-
sponding profile functions to one decimal place and are
given in Table I.
The second method that we implement to find solutions

in this model is to take a two-dimensional configuration
with α ¼ 0.51 as an initial condition in the two-dimen-
sional relaxation code. The same grid and spacing are
chosen as for the previous initial configuration. In Fig. 3(b)
we compare charge-one solutions obtained by both meth-
ods. We display slices along x ¼ 0 through their energy
density. The same comparison for charge-two solitons is
presented in Fig. 4(b). While the approach to the vacuum is
not as steep for the second method, both methods generally
agree well and describe the soliton’s energy to one
decimal place.

FIG. 3 (color online). Energy density for charge-one baby Skyrmions with model parameter α ¼ 0.5. (a) Surface plot of the energy
density. (b) We compare slices through the energy density obtained when relaxing two different B ¼ 1 initial conditions: a baby Skyrme
configuration relaxed with α ¼ 0.51 (green line) and a rotationally symmetric configuration generated from an α ¼ 0.5 profile function.
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C. Higher charge solutions

To verify our axially symmetric charge-one and -two
solutions and to investigate solutions of higher charge, we
implement a two-dimensional numerical method. We apply
the same relaxation method as in the previous section, but
with a different grid. For models excluding α ¼ 0.5, we use
a ð201Þ2 grid with spacing Δx ¼ 0.2. To create initial
configurations, we substitute our numerical profile func-
tions into the axial ansatz (37) to generate two-dimensional
configurations. We then take these configurations as initial
conditions for our two-dimensional energy minimization
algorithm to find solitons of different α values. For
example, an α ¼ 0.8 axial solution is chosen as an initial
configuration to obtain the α ¼ 0.7 solution.
In Table I we give the energy values of our numerical

simulations for a selection of α values. All energy values
are given in units of 4πB, motivated by the energy bound of
our models (36). We also present the binding energy for the
two-dimensional configurations, calculated using (39). For
axial solutions the results of our two-dimensional simu-
lations agree to between two and three decimal places with
the values obtained when minimizing (38).
For higher charges, axial solutions remain the energetic

minima, though other configurations have been obtained.
In particular, we find chain configurations in our models by
using three solitons in a line as an initial configuration. The
energy values for the chain configurations are also pre-
sented in Table I and are denoted by a �. Their energy is
higher than that of the axial configurations, and they do not
satisfy the virial theorem. So these are local minima but not
the global energy minimizers.
In Fig. 5 we compare the energies obtained by

one-dimensional gradient flow with those calculated by
two-dimensional relaxation for baby Skyrmions with topo-
logical charges B ¼ 1–3. We plot the energy for axially

symmetric configurations with model parameter α ¼
0.51–1.0 and indicate all energy values computed by the
full field simulations by points. As before, the topological
energy bound is indicated by a black dashed line. The black
points denote the energy of axially symmetric baby
Skyrmions calculated by full field relaxation. They lie
on top of the lines showing the energy for baby Skyrmions
of the same topological charge obtained by one-
dimensional gradient flow. The energy for charge-three

FIG. 4 (color online). Energy density for charge-two baby Skyrmions with model parameter α ¼ 0.5. (a) Surface plot of the energy
density. (b) We compare slices through the energy density obtained when relaxing two different B ¼ 2 initial conditions: a baby Skyrme
configuration relaxed with α ¼ 0.51 (green line) and a rotationally symmetric configuration generated from an α ¼ 0.5 profile function.

TABLE I. Energy values obtained from full field simulations
(Eð2DÞ=4πB) when compared to one-dimensional gradient flow
results (Eð1DÞ=4πB). The binding energy per soliton ΔE=4πB is
calculated by (39) using the numerical two-dimensional energy
results. The two B ¼ 3 configurations given are the axial solution
(37) and the chain configuration of Fig. 7 which is denoted by 3*.

α β B Eð1DÞ=4πB Eð2DÞ=4πB ΔE=4πB

0.5 0.75 1 1.2 1.2 0.0
0.5 0.75 2 1.1 1.1 0.1
0.6 0.7 1 1.188 1.188 0.0
0.6 0.7 2 1.092 1.092 0.096
0.6 0.7 3 1.068 1.069 0.119
0.6 0.7 3* 1.081 0.107
0.7 0.65 1 1.130 1.130 0.0
0.7 0.65 2 1.059 1.058 0.072
0.7 0.65 3 1.043 1.042 0.088
0.7 0.65 3* 1.056 0.074
0.8 0.6 1 1.068 1.068 0.0
0.8 0.6 2 1.028 1.029 0.039
0.8 0.6 3 1.020 1.020 0.048
0.8 0.6 3* 1.036 0.032
0.9 0.55 1 1.021 1.020 0.0
0.9 0.55 2 1.008 1.007 0.013
0.9 0.55 3 1.005 1.005 0.015
0.9 0.55 3* 1.009 0.011
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chain configurations is also included in the figure as a series
of red points connected by a dashed red line. For α ¼ 0.8
the energy of the B ¼ 3 chain is slightly higher than the
B ¼ 2 solution, but much lower than the B ¼ 1 solution.
So, it is not energetically favorable for the chain to split up
into a B ¼ 1 and B ¼ 2 Skyrmion.
The energy density for B ¼ 1–3 baby Skyrmions with

α ¼ 0.6–0.9 is plotted in Fig. 6. They are all axially
symmetric, and the effect of increasing α on the solutions
can be seen by comparing the graphs. This is most
noticeable for the charge-one solitons, where the energy
density of the α ¼ 0.6 solution is concentrated over a wide
area with only a small tail. As α increases, the tail of the
energy density becomes wider while the area in which the
energy density is most concentrated decreases in width and
increases in height. A similar effect occurs for the charge-
two and -three rings, which become thinner and taller as α
increases.

FIG. 5 (color online). Total energy E for baby Skyrmions
obtained with the axial ansatz (37) and for baby Skyrmions
obtained with the two-dimensional relaxation method.

FIG. 6 (color online). Energy density contour plots for baby Skyrmions with model parameter α ¼ 0.6, 0.7, 0.8, 0.9 and charges
B ¼ 1–3.
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In Fig. 7, we display the energy density of chain
configurations for the same selection of models. The
structure of the chain configurations changes significantly
as α increases. For α ¼ 0.6, the solitons are very close
together but as α increases, the chain starts to pull apart. For
α ¼ 0.9, the chain almost splits into three separate solitons,
though they remain close enough to deform each other.
This may be explained by the approach to the Bogomolny
solutions at α ¼ 1. The attraction between solitons
becomes weaker and weaker until they do not feel any
attraction or repulsion at α ¼ 1. Then the baby Skyrmions
can be placed at arbitrary positions. In fact the solution
space is the space of based rational maps. In the α ¼ 1
model, the energy of three separate solitons is identical to
that of a three-soliton ring solution.
The chains observed at the lower α values most resemble

those found in the baby Skyrme model [20], although the
α ¼ 0.6 chain in particular appears more squashed. The
chains observed at higher α values are quite different.
However, comparisons could be drawn between the α ¼
0.9 chain and the isospinning baby Skyrmions of [10] in
which chains are also seen to break up.

V. CONCLUSIONS

We have developed a one-parameter family of baby
Skyrme models that do not require a potential term to admit
topological solitons. Starting with a general form for our
models involving four parameters, we fixed three of these
by specifying that our models should satisfy the topological
energy bound E ≥ 4πjBj. Similarly to the Skyrme models
described in [38], we found that at one end of our parameter
range there is a model in which this bound can be saturated.
This model is scale invariant, and exact solutions to the
Bogomolny equations can be obtained for any topological
charge. Furthermore, our choice of parameters ensures that
all of our models satisfy the same virial theorem, E2 ¼ E4,
as the Skyrme model. In this way, we have designed a one-
parameter family of baby Skyrme models without a
potential whose scaling behavior better matches the
Skyrme model and which even includes a baby Skyrme
model scaling exactly like the Skyrme model at the extreme
of our parameter range where α ¼ 0.5.
Our investigation into the solitons of our models showed

that their form greatly depends upon the choice of the

FIG. 7 (color online). Contour plots of the energy density for B ¼ 3 chain configurations. The value of α for each configuration is
indicated underneath its plot.
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parameter α. Solitons in the α ¼ 0.5model are compactons.
Both our numerical results for this model and linearization
arguments support this conclusion. Previous examples of
compactons in baby Skyrme models [27,50,51] depend on
the choice of potential term used, and typically occur for
particular parameter values in a one-parameter family of
potential functions. There is no potential term in our models
but the importance of parameter choice to the existence of
compactons is similarly observed here.
Solitons in the models with α > 0.5 were found to be

less localized. We calculated solutions numerically for a
selection of the models using three different methods. The
energy of solutions to our models decreases as α increases,
and higher-charge solutions are more tightly bound near the
α ¼ 0.5 end of the parameter range. As we approach the
extreme of the parameter range in which the energy bound
can be saturated, the binding energy of solutions decreases
to zero. The energy minimizers are axially symmetric
solutions, even for topological charge three. However,
we also observed other higher-charge configurations with
greater energy, in particular B ¼ 3 chain configurations.
Chain solutions for α ∈ ½0.6; 0.7� most closely resemble
those observed in the old baby Skyrme model [20], while
other chains have a very different appearance. In particular,
as α increases our chain configurations begin to pull apart
and become three almost separate solitons.
In this paper we have provided an initial study of our new

baby Skyrme models but there is still further work that
could be done. One interesting question is how the
solutions behave for higher charges. Will the axially
symmetric solutions always be the minimum energy
configurations or will chainlike configurations play a more
prominent role? An important challenge is to develop more
accurate numerical methods to calculate compacton sol-
utions, as this may have important applications beyond the
area of topological solitons, for example in relation to
fractional Laplacians [53] and fractional diffusion [54].
Although the unique aspect of our models is their lack of
need for a potential term, the inclusion of a potential term in

this setting offers many possibilities. Following [40] and
balancing the different terms with the potential would give
rise to multiparameter families of models which still obey a
linear energy bound. The choice of potential has an
important effect on the structure of solitons in the usual
baby Skyrme model. Whether the same is true of our new
models and generalizations thereof remains to be
determined.
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APPENDIX A: LINEARIZING AS r → ∞

In this appendix, we linearize the equation of motion for
an axially symmetric charge B soliton in the baby Skyrme
model (15) for large r. As discussed in Secs. III A and III B,
we set β ¼ 1 − α

2
, and the constants c1 and c2 are fixed

in (33).
The equation of motion for the profile function fðrÞ is

given by

f00
�
4αðα − 1Þc1f02
f02 þ B2

r2 sin
2f

þ 2βð2β − 1Þc2ð2f02 B2

r2 sin
2fÞβðf02 þ B2

r2 sin
2fÞ1−α

f02
þ 2αc1

�

þ f0
�
2αc1
r

þ 2αðα − 1Þc1ð−2 B2

r3 sin
2f þ B2

r2 f
0 sin 2fÞ

f02 þ B2

r2 sin
2f

�

þ c2βð2β − 1Þð2f02 B2

r2 sin
2fÞβðf02 þ B2

r2 sin
2fÞ1−αð− 2

r sin
2f þ f0 sin 2fÞ

f0sin2f
− αc1

B2

r2
sin 2f ¼ 0: ðA1Þ

To linearize the symmetric equation of motion (A1) as r → ∞, we substitute fðrÞ ¼ rλ into (A1) and consider only the
leading-order terms. For α ≤ 1, this leads to the equation

ð2α − 1Þλ4 − 2ðα − 1Þλ3 þ 2B2ðα − 1Þλ2 − 2B2ðα − 1Þλ − B4

λ2 þ B2
¼ 0; ðA2Þ
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which simplifies to the quadratic

ð2α − 1Þλ2 − 2ðα − 1Þλ − B2 ¼ 0: ðA3Þ

For α ≠ 1
2
this can be solved for λ, to find

λ� ¼ α − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2ðB2 − 1Þα − B2 þ 1

p
2α − 1

: ðA4Þ

For parameter value α ¼ 1, most of the terms cancel and the
solutions are

λ ¼ �B: ðA5Þ

At the other extreme, where α ¼ 0.5, the quadratic term
in (A3) cancels. The solution λ− becomes singular and

λþ ¼ B2. In Fig. 8 we plot the two solutions λþ; λ− of
Eq. (A3) as a function of the model parameter α for 0 <
α < 1 and topological charge B ¼ 1. The root λþ is always
positive and, therefore, we discard it. The root λ− has an
asymptote at α ¼ 0.5 where the Eq. (A2) is singular. For
0 < α < 0.5, the values of λ− are positive and, therefore,
solutions for this range of α are either compact or do not
have finite energy. The interesting parameter range is 0.5 <
α ≤ 1 in which λ− ≤ −1 and solutions have finite energy.
For α > 1, the leading-order terms in (A1) after sub-

stituting fðrÞ ¼ rλ are different, so that a different linear-
ized equation is found in this parameter range. Here the
equation becomes

2ð2 − αÞð1 − αÞc2
λ

ðλ − 1Þð2λ2B2Þ1−α=2ðλ2 þ B2Þ1−α ¼ 0

ðA6Þ

The only solutions are λ ¼ 1 and λ ¼ �iB. Thus for α > 1,
solutions to the equation of motion would either have
infinite energy or be compact.

APPENDIX B: LINEARIZING NEAR r ¼ 0

We also linearize the equation near r ¼ 0 to gain a
greater understanding of the behavior of solutions in
relation to their topological charge. Set

fðrÞ ¼ π − arγ; ðB1Þ

in Eq. (A1), where a is constant, and assume that γ ≥ 1. For
small rγ , we can use the small angle approximation to
replace trigonometric terms. By our assumption on γ and the
constraint 0.5 ≤ α ≤ 1, we find the leading-order equation

2αac1

�
2γ3ðα − 1Þ 1 − γ

B2 þ γ2
þ γð1 − γÞ − 2γðα − 1ÞB2

γ − 1

B2 þ γ2
þ B2 − γ

�
¼ 0; ðB2Þ

which simplifies to the quadratic

B2 þ 2ðα − 1Þγ − ð2α − 1Þγ2 ¼ 0: ðB3Þ

For α > 0.5, we can solve this to find the positive root,

γ ¼ −1þ αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2ðB2 − 1Þαþ 1 − B2

p
2α − 1

: ðB4Þ

Note that once again the α ¼ 0.5 case must be considered
separately. Here we obtain the leading-order equation

B2 − γ ¼ 0; ðB5Þ

so we find γ ¼ B2 when α ¼ 0.5. This is also the limit of
(B4) as α → 0.5.
At the other end of our allowed range of α values, where

α ¼ 1, we observe that the expression (B4) simplifies to

γ ¼ jBj: ðB6Þ
Notice that for B ¼ 1 and any choice of α ≥ 0.5, we find

γ ¼ 1. So for all of our models, the charge-one profile
function has a linear behavior near the origin. For B > 1we
confirm that γðαÞ as given by (B4) does not have any
turning points in the interval 0.5 < α < 1, with γð0.5Þ ¼
B2 and γð1Þ ¼ jBj. Hence, γ ≥ 1 for any choice of B ≥ 1.
This justifies our earlier assumption on γ.

FIG. 8 (color online). Real solutions λþ; λ− of Eq. (A2) as
functions of α for 0 < α < 1 and B ¼ 1.
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