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With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open
systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-
time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural
feature of such effective actions is the coupling between degrees of freedom on the two time axes.
This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the
low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the
environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved
stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle
to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action
of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we
show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes
equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory
under consideration, while the bulk viscosity is determined by the form of the effective action. We also
discuss the thermodynamics of the system and analyze the entropy production.
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I. INTRODUCTION

Effective theories of gapless long-range (Goldstone)
modes are the appropriate framework to systematically
derive hydrodynamics [1–3]. The equations of nondissi-
pative hydrodynamics have previously been generated
using this description at zeroth order in the gradient
expansion for relativistic fluids that are insensitive to static,
noncompressional deformations [1,2] and at second order
by [4]. This was achieved by constructing a gradient-
expanded action describing the long-range scalar modes,
which correspond to spatial excitations around the equi-
librium state of a fluid. The form of the action was
restricted by the identification of appropriate symmetries,
with the volume-preserving diffeomorphisms playing the
central role in the reduction of potential Lagrangian terms.
A serious limitation of this scheme is that dissipative

forces cannot be derived from the variational principle. Our
goal is, however, to develop a systematic scheme for the
construction of hydrodynamics at all orders—including
dissipation. One approach to this problem is to rely on the
linear response theory [5]. A different approach aimed at
computing hydrodynamic correlation functions from an
effective action was recently proposed in [6,7]. In this
work, we will report on another method, which will enable

us to describe dissipative fluids using the variational prin-
ciple. This will be done by considering a classical effective
action with the characteristics of open system effective
field theories, which emerge in the Schwinger-Keldysh
closed-time-path (CTP) formalism [8,9], first introduced
by Schwinger [8]. The formalism was invented to describe
retarded time evolution of operator expectation values acting
on mixed states, which are specified by density matrices.
We will begin this paper by presenting the CTP formal-

ism as an extension of the usual quantum field theory used
to compute scattering amplitudes between asymptotic
pure states. We will focus on the matrix structure of the
CTP propagators, which arises from the doubling of the
degrees of freedom and the introduction of two time axes:
one evolving from past to future and the other evolving
backwards in time. Effective theories emerge when the
unobserved degrees of freedom, called the environment, are
eliminated. The remaining degrees of freedom, called the
system, follow more involved effective dynamics than in a
theory of pure states. This requires the use of the CTP
formalism, which is able to incorporate interactions and
entanglement between the system and the environment. As
a result of its original interactions with the environment, the
dynamics of the system cannot conserve energy. This view
is consistent with the effective field theory understanding of
dissipation, as the energy loss of the IR macroscopic
degrees of freedom to the integrated-out, UV microscopic
degrees of freedom of the environment.
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We will argue that, generically, CTP effective field
theories include couplings between the two time axes,
expressed within the influence functional considered first
by Feynman and Vernon in [10], which includes all
effective interactions. The coupling of the two time axes
is a result of the system-environment interactions, after
the environment had been integrated out, with the details of
the effective action depending both on the choice of the
integrated-out degrees of freedom as well as the initial state.
This in turn leads to an effective theory of the low-energy
system, which experiences dissipative dynamics.
This structure descends into a classical low-energy

theory, which we will use to derive dissipative hydrody-
namical equations of motion from the variational principle.
This will be done at a phenomenological level, directly in
terms of an effective classical CTP field theory without a
microscopic derivation, in accordance with the logic used
in [1,2]. By varying the fields on only one of the two CTP
time axes, we will obtain the energy-momentum balance
equation containing a two-tensor that will not be conserved
because of interactions between the IR degrees of freedom
of the fluid and the environment. Near hydrodynamical
equilibrium, however, we will show that this tensor becomes
approximately conserved. We will then discuss the dynami-
cal regime in which this tensor can be identified with
the fluid’s phenomenological stress-energy tensor. Using
the energy-momentum balance equation, we will derive
the equations of motion, which will have the form of the
Navier-Stokes equations. The shear viscosity will be shown
to vanish and a possible cause of this restriction will
be discussed, i.e., the theory’s invariance under volume-
preserving diffeomorphisms. Nonvanishing thermodynami-
cal quantities and the bulk viscosity will be identified in
terms of the coefficient functions of the effective Lagrangian.
In the phenomenological approach based on the CTP

formalism, which we will employ in this paper, the
equations of motion and the energy-momentum balance
equation are closed without thermodynamical considera-
tions. This means that thermodynamical variables can only
be identified by using the algebraic structure of the energy-
momentum balance equation or the full stress-energy tensor
in the nondissipative case. In a self-consistent theory of
hydrodynamics, such considerations should automatically
lead to positive entropy production. What we shall see is
that this is not automatically ensured by the effective action
analyzed in this work and that constraints have to be
imposed on its form even near the hydrodynamical equi-
librium. We will comment on how such considerations can
be avoided in effective theories derived from a unitary
microscopic quantum field theory. Our analysis of entropy
will be performed only near equilibrium, where the stress-
energy tensor is approximately conserved. We will defer a
more complete discussion of entropy in the framework of
the CTP effective actions to future work.
Finally, we will conclude by summarizing our results.

II. CTP FORMALISM AND EFFECTIVE QFT

The CTP formalism was initially introduced to facilitate
a computation of an expectation value hA; t1jOðt2ÞjA; t1i at
time t2, given an initial (mixed) state A, or a density matrix
ρi, at time t1 [8]. By inserting two complete sets of states,

hA; t1jOðt2ÞjA; t1i
¼

X
B;B0

hA; t1jB; t2ihB; t2jOðt2ÞjB0; t2ihB0; t2jA; t1i; ð1Þ

expression (1) can be interpreted as an evolution of A from
t1 to t2, when the trace is evaluated, accompanied by a time
evolution from t2 backwards in time to A at t1. The two
time axes thus both include information about the physical
system, which leads to the doubling of degrees of freedom.
We introduce notation

φ → φ̂ ¼ ðφþ;φ−Þ; ð2Þ
with φþ and φ− propagating on separate time axes.
The fields φ� are identified at some final time tf > t2,
i.e., φþðtfÞ ¼ φ−ðtfÞ.
Let us consider a scalar field φ with the single time axis

action Ss½φ�. The doubling of the degrees of freedom leads
to the quantum generator functional,

eiWCTP½Ĵ� ¼
Z

Dφ̂ exp

�
iSs½φþ� − iSs½φ−� þ i

Z
Ĵ φ̂

�
:

ð3Þ
The full CTP action of φ̂,

SCTP½φþ;φ−� ¼ Ss½φþ� − S�s ½φ−�; ð4Þ
possesses the CTP symmetry,

SCTP½φþ;φ−� ¼ −S�CTP½φ−;φþ�: ð5Þ
The generator functional with two sources, Ĵ ¼ ðJþ; J−Þ,
leads to a 2 × 2 matrix propagator,

iD̂ðx; yÞ ¼
� hT ½φðxÞφðyÞ�i hφðyÞφðxÞi

hφðxÞφðyÞi hT ½φðyÞφðxÞ�i�
�
; ð6Þ

where T denotes the time ordering in the Feynman
propagator and T � the anti–time ordering. The bosonic
propagator can be further written in the form of

D̂ ¼
�
Dn þ iDi −Df þ iDi

Df þ iDi −Dn þ iDi

�
; ð7Þ

where the near, Dn, and far, Df, Green’s functions give
the retarded and advanced propagators, Dret ¼ Dn þDf

and Dadv ¼ Dn −Df. The free propagator contains the
Feynman propagator as the diagonal block, Dþþ, and
the Wightman function,
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hφðyÞφðxÞi ¼ −2πiδðk2 þm2ÞΘð−k0Þ: ð8Þ

The off-diagonal entries of the propagator D̂ induce
interactions between φþ and φ−. Finite temperature,
T ¼ 1=β, and density with a chemical potential μ, in cases
when φ is complex, further modify the free propagator by
a relation, D̂0 → D̂0 þ D̂T;μ, where

iD̂T;μðkÞ ¼ −2πiδðk2 þm2ÞnBðkÞ
�
1 1

1 1

�
; ð9Þ

and the Bose-Einstein distribution is

nBðkÞ ¼
Θð−k0Þ

eβðϵkþμÞ − 1
þ Θðk0Þ
eβðϵk−μÞ − 1

: ð10Þ

Let us now consider a massive scalar field theory with a
λφ4 coupling, where λ is treated as a small perturbative
coupling constant. We wish to follow the Wilsonian
approach to effective field theory and integrate out the
UV-degrees of freedom.1 We introduce a scheme with two
cutoffs in the original bare theory, one for frequency,
jk0j < Λ0, and one for momentum,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ εk < Λε.

We then split the fields φ̂ ¼ φ̂< þ φ̂> and integrate out φ̂>,
with frequency or energy in the following regions,

ξΛ0 ≤ jk0j < Λ0; ζΛε ≤ εk < Λε: ð11Þ

The UV-mode integrals must thus run over three regions,

I1∶ fξΛ0 ≤ k0 < Λ0; 0 ≤ εk < Λεg; ð12Þ

I2∶ f−Λ0 < k0 ≤ −ξΛ0; 0 ≤ εk < Λεg; ð13Þ

I3∶ f−Λ0 < k0 < Λ0; ζΛε ≤ εk < Λεg: ð14Þ

In a perturbative expansion of (3), we find various coup-
lings between the two axes, for example, λ2ðφþ

<Þ2ðφþ
>Þ2

ðφ−
<Þ2ðφ−

>Þ2. In the process of integrating out φþ
> and φ−

>, the
on-shell Wightman functions connect vertices on different
time axes, and give rise to nontrivial φþ

<φ−
< couplings in the

effective theory, Seff ½ϕ̂<�. We find that the effective action
includes the following types of terms,

Seff ½ϕ̂<� ¼ SCTP½ϕþ
<;ϕ−

<� þ
Z

d4x½μ1φþ
<φ−

<

þ μ2φ
þ2
< φ−2

< þ μ3φ
þ3
< φ−

> − μ�3φ
−3
< φþ

> þ…�:
ð15Þ

Due to the CTP symmetry, μ1 and μ2 have to be purely
imaginary, whereas μ3 will be complex. The equations of
motion for ϕ̂ derived from a CTP effective action will thus
also in general be complex. The real part of the equations of
motion, coming from ℜSeff , has the property that ϕþ ¼ ϕ−

is the solution, which is always true in real CTP actions. The
imaginary terms from ℑSeff will be the complex conjugates
of each other in the equations for ϕþ and ϕ−. We should note
that the same structure as in the Wilsonian effective action
would also arise in a one-particle irreducible effective action.
In both effective actions the real part of the action is
important for physical Hermitian expectation values,
whereas the imaginary part controls decoherence.
Beyond this proof of principle, which shows that

coupling between ϕþ and ϕ− generically arise in effective
actions, we will discus the significance of such effective
coupling in the following section. Furthermore, note that
this type of effective theory, which is constructed with the
full CTP machinery, is able to account for the time
evolution of any pure or mixed state in a closed or open
field theory system. The microscopic generator functional
with a nontrivial initial density matrix would be written as

eiWCTP½Ĵ� ¼
Z

Dφ̂ρi½φ̂ðti; xÞ� exp
�
iSCTP½φ̂� þ i

Z
Ĵ φ̂

�
;

ð16Þ

instead of Eq. (3). The details of the effective system we are
describing are thus determined by the degrees of freedom
that were integrated out, i.e., the environment, as well as the
choice of the initial state. The remaining reduced density
matrix of the subsystem encodes all of the information
about the entanglement with the environment and dissipa-
tion of energy from the subsystem. The subsystem can thus
either preserve or break various symmetries of the full
closed system. Of particular relevance to us will be the fact
that energy and momentum are no longer conserved in an
effective theory of such a system. More precisely, one can
no longer find a conserved Noether current, which corre-
sponded to translational invariance in the full microscopic
theory.

III. CTP FORMALISM IN CLASSICAL
FIELD THEORY

A. Closed system

To see how the features presented in Sec. II can also
follow directly from a classical theory, let us consider a
classical field theory for an isolated system, described by

1In this paper, we only consider the schematic structure of
effective actions and leave the details of the effective Wilsonian
φ4 action for future work. We note that the vast enhanced
complexity of the CTP effective actions can be seen from the
fact that a simple φ4 action will include eight real couplings,ℜm,
ℑm, ℜλ, ℑλ, ℑμ1, ℑμ2, ℜμ3, and ℑμ3, up to quartic order.
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the field ψðxÞ, which is invariant under time inversion.
Instead of deriving the effective theory for an open system
frommicroscopic dynamics, we can use the CTP formalism
in classical physics [11,12]. This is necessary when
considering a physical problem in which we wish to
specify the initial conditions for the equations of motion
and to have the possibility of introducing effective inter-
actions with dissipative forces into the Lagrangian formal-
ism. From the microscopic point of view, such a theory can
be understood as an effective field theory, a special case of
those considered in Sec. II, which keep the IR dynamics
closed. All of the considerations below would follow
directly from such a derivation.
The procedure again begins by doubling the degrees of

freedom [13],

ψ → ψ̂ ¼ ðψþ;ψ−Þ; ð17Þ

in a way that both members of the CTP doublet satisfy the
same equation of motion, initial conditions and the relation
ψþðtf; xÞ ¼ ψ−ðtf; xÞ at the final time. The action describ-
ing the dynamics of ψ̂ is defined as in (4),

SCTP½ψ̂ � ¼
Z

tf

ti

ddþ1xfLs½ψþ� − L�
s ½ψ−�g; ð18Þ

where Ls½ψ � ¼ L½ψ ; ∂ψ � þ iϵψ2 differs from the original
Lagrangian in that it splits the degeneracy of the CTP action
for ψþðxÞ ¼ ψ−ðxÞ. In the expression for Ls, ϵ ≪ 1 is an
infinitesimally small number. The action (18) possesses the
CTP symmetry (5) related to the exchange of the two time
axes, ψþ↔ ψ−, and implies the relation

SCTP½ψþ;ψ−� ¼ −S�CTP½ψ−;ψþ�; ð19Þ

which must be obeyed by any classical CTP action.

B. Open systems

In order to describe an open system of the IR gapless
hydrodynamical degrees of freedom in the language of
classical field theory, we first need to consider a question of
how to construct a general classical field theory of a subset
ϕ of the degrees of freedom ψ . The effective dynamics of ϕ
can be obtained by eliminating the environment degrees
of freedom by using their equations of motion. Similarly,
from the point of view of QFT presented in Sec. II, the
environment could be seen as the degrees of freedom,
which are integrated out. This view is consistent with the
microscopic view of dissipation in hydrodynamics; it is the
energy loss of the fluid’s IR degrees of freedom coupled to
the UV degrees of freedom of the environment. Only the
total closed system, combining all degrees of freedom,
conserves energy.
In classical CTP theory, one finds that the same structure

arises as in Sec. II. The effective action, which results from

this procedure, again has a more involved structure than
(18), namely

Seff ½ϕ̂� ¼ S1½ϕþ� − S�1½ϕ−� þ S2½ϕ̂�; ð20Þ

where the indices 1 and 2 reflect the number of time axes
entering the term in the action. S1 and S2 can be uniquely
distinguished by imposing

δ2S2
δϕþδϕ− ≠ 0: ð21Þ

Elimination of the environment generates contributions
both to S1 and S2. We would like to point out that in
the original terminology of Feynman and Vernon [10], all
effective contributions to Seff were collected into the
influence functional Si,

Seff ¼ S0½ϕþ� − S�0½ϕ−� þ Si½ϕ̂�: ð22Þ

In Eq. (22), S0 stands for the original single time-axis action
preceding the elimination of the environment. We find it is
more convenient to separate the influence functional into
terms entering S1 and S2. In this language, S0 will be
included in S1. This separation is useful because the terms
in S1 preserve energy and momentum, while terms in S2
represent dissipative forces. The inclusion of S2 into the
classical action for hydrodynamics, discussed in Sec. V,
will thus be our addition to the previous works on deriving
hydrodynamics from an action principle [1,2,4].
In the classical picture, the couplings between ϕþ and ϕ−

appear due to the boundary conditions for the environment
coordinates at the final time. These contributions arise from
asymptotic long-time excitations of the environment and
are usually approximated by gradient expansion. The
imaginary part of the effective action obtained by elimi-
nating the environment remains infinitesimal, as in the case
of an isolated system. It will be ignored below.
Let us assume that the gradient expansion in terms of

space-time derivatives is applicable in the effective action
(20). We impose identical initial conditions on the two time
axes, ∂n

t ϕ
þðti; xÞ ¼ ∂n

t ϕ
−ðti; xÞ, together with the auxiliary

conditions ∂n
t ϕ

þðtf; xÞ ¼ ∂n
t ϕ

−ðtf; xÞ for all orders of
derivatives labeled by n ≥ 0.
Variational equations can thus still be derived in the CTP

theory because the boundary contributions arising from
partial integration cancel, due to the above conditions.
Furthermore, the solutions of the open system’s Euler-
Lagrange equations of motion give

ϕþðxÞ ¼ ϕ−ðxÞ: ð23Þ

The CTP symmetry (24) implies that any effective action
must also obey the same symmetry,
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Seff ½ϕþ;ϕ−� ¼ −S�eff ½ϕ−;ϕþ�: ð24Þ

From the point of view of effective field theory, relation
(24) can be seen as a constraint on the form of terms one
can write down in the effective action.
As an example of this formalism, it is instructive to

consider a nonrelativistic one-dimensional particle whose
effective theory is defined by the Lagrangians

L1 ¼
1

2
ðm_x2 −mω2x2Þ; ð25Þ

L2 ¼
γ

2
ðx− _xþ − xþ _x−Þ; ð26Þ

where γ is an arbitrary coupling constant. The correspond-
ing equations of motion describe a damped harmonic
oscillator,

mẍ� þ γ _x∓ þmω2x� ¼ 0; ð27Þ

and hence

x≡ xþ ¼ x−: ð28Þ

The coupling constant γ in the influence functional is thus
controlling the friction term inside the on-shell equation of
motion,

mẍþ γ _xþmω2x ¼ 0: ð29Þ

It is clear that the conservation of energy is violated by L2.
In CTP, the naïve application of the Noether theorem to

the action (20) gives, due to the CTP symmetry, an
identically vanishing stress-energy tensor for fields that
satisfy the equations of motion. However, the trivial
cancellation between the time axes can be avoided and
the balance equation can be derived by varying only one of
the CTP doublet fields,

ϕþðxÞ → ϕþðxþ aðxÞÞ;
ϕ−ðxÞ → ϕ−ðxÞ: ð30Þ

The equation of motion for aðxÞ, the balance equation, can
then be written in the form of a tensor divergence as

∂μTμν ¼ Rν: ð31Þ

Note that the dynamics of ϕþ and dynamics of the ϕ−

degrees of freedom on the two time axes are related to each
other by the CTP symmetry, (24). Either time axis could
thus be used in this construction. In this work, we will
always choose to treat the positive axis with ϕþ fields as the
one directly relevant to physical observations.

IV. HYDRODYNAMICS

An effective field theory describing hydrodynamics has
recently been developed in terms of a gradient expansion of
the gapless IR Goldstone modes arising from the broken
spatial boost invariance [1,2]. Reference [14] used the coset
construction of a space-time symmetry breaking pattern to
show that three scalar modes were sufficient in parametriz-
ing the low energy effective theory. The dynamics of the
scalar modes ϕI, with I ¼ f1; 2; 3g, in flat 3þ 1 dimen-
sional space-time with metric ημν ¼ diagð−1; 1; 1; 1Þ dis-
plays internal symmetries under rigid translations,

ϕI → ϕI þ αI; with αI ¼ const; ð32Þ

rotations,

ϕI → RI
Jϕ

J; with RI
J ∈ SOð3Þ; ð33Þ

and volume-preserving diffeomorphisms (reparametriza-
tions), which we abbreviate by SDiffðR1;3Þ,

ϕI → ξIðϕÞ; with det

�∂ξI
∂ϕJ

�
¼ 1: ð34Þ

The SDiff symmetry, which is imposed here, deserves
special attention. Arnold showed that nondissipative ideal
hydrodynamical equation on a manifold M, i.e., the Euler
equation, can be generated as the coadjoint orbit on the
Lie group manifold of SDiffðMÞ [15,16]. This symmetry
should be broken by dissipation, but this mechanism has
not been understood. We will proceed by making use of it
and comment at the end on why this symmetry is most
likely too restrictive to construct the full equations of
viscous fluids.
Returning to the setup of [1,2], we note that in equilib-

rium, the fields equal the spatial coordinates ϕI ¼ const · xI .
Furthermore, relativistic hydrodynamics also requires the
Poincaré symmetry. The gradient expansion is constructed
by counting the number of derivatives acting on the vector
field,

Kμ ¼ 1

6
ϵμα1α2α3ϵIJK∂α1ϕ

I∂α2ϕ
J∂α3ϕ

K

≡ Pμα
K ∂αϕ

K; ð35Þ

which is a combination of gradients of the Goldstone modes
allowed by the symmetries in three spatial dimensions. The
vector field is conserved because of its antisymmetric
structure,

∂μKμ ¼ 0; ð36Þ

and keeps the comoving coordinates constant along its
direction, Kμ∂μϕ

I ¼ 0. We can introduce a scalar field b,
such that
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Kμ ≡ buμ: ð37Þ

The norm uμuμ ¼ −1 then implies that b2 ¼ −KμKμ.
Two useful projector identities can be derived for Pμα

K as
defined in (35) by using the properties of Kμ,

Pμν
K ∂λϕK ¼ 1

3
ðKμΔνλ − KνΔμλÞ; ð38Þ

Pμν
K ∂λ∂νϕ

K ¼ 1

3
∂λKμ; ð39Þ

with Δμν ¼ ημν þ uμuν. The zeroth and first-order
Lagrangians for the uncharged fluid are then

Lð0Þ þ Lð1Þ ¼ FðbÞ þ gðbÞKμKν∂μKν: ð40Þ

At zeroth order [2], the conserved stress-energy tensor of
the closed system takes the form of an ideal fluid,

Tμν
ð0Þ ¼ εuμuν þ pΔμν; ð41Þ

where the energy density εðxÞ and pressure pðxÞ are space-
time dependent functions, which are directly determined by
the function FðbÞ in the Lagrangian by

ε ¼ −F; ð42Þ

p ¼ F − b∂bF: ð43Þ

Further thermodynamic analysis reveals that the temper-
ature is given by

T ¼ −∂bF: ð44Þ

Finally, the vector field Kμ was interpreted at this order as
the conserved entropy current of ideal hydrodynamics [2],

Kμ ¼ buμ ≡ Sμ ¼ suμ; ð45Þ

with

s ¼ b ð46Þ

being the entropy density. This identification was performed
in [2] because Kμ is parallel to uμ and is by construction
conserved, which is consistent with the entropy conservation
in an ideal fluid, i.e., in zeroth-order relativistic hydro-
dynamics. The above results are also consistent with the
usual thermodynamical relations, εþ p ¼ sT, T ¼ ∂ε=∂s,
and s ¼ ∂p=∂T.
In Ref. [4], the authors considered nondissipative sec-

ond-order hydrodynamics by using the same identification
of the entropy current, noting that the construction should
be understood as being done in the entropy frame, in
which Sμ ¼ suμ to all orders in the absence of dissipation.

In standard phenomenological hydrodynamics, one instead
of the entropy frame usually chooses either the Landau
frame or the Eckart frame [17]. The physical meaning of the
Landau frame is that there is no energy flow in the local rest
frame of the fluid. The Eckart frame, useful for a descrip-
tion of charged fluids, means that there is no charge flow in
the local rest frame.
The first-order contribution to the Lagrangian (40) can

be rewritten as a total derivative and hence does not
contribute to Tμν. As a final point in this construction,
note that the chemical potential is vanishing in the absence
of a conserved Uð1Þ Noether current [2], which we will not
consider in this work.

V. HYDRODYNAMICS WITH DISSIPATION

A. The setup

Variational methods in the usual effective theory for-
malism cannot describe dissipation. However, this limita-
tion can be avoided by using the CTP scheme as introduced
above. Firstly, the degrees of freedom are doubled,
giving us six Goldstone fields ϕ�I . The action must be
invariant under pairs of translations, rotations, and volume-
preserving diffeomorphisms, each acting independently on
ϕIþ and ϕI−. The diffeomorphisms act as

ϕ�I → ξ�Iðϕ�Þ; ð47Þ

with two independent conditions on the determinants,

det

�∂ξþI

∂ϕþJ

�
¼ 1;

det

�∂ξ−I
∂ϕ−J

�
¼ 1: ð48Þ

The field content and symmetries allow for two indepen-
dent currents Kiμ, both with the same Lorentz structure
as before, where fi; j; k;…g ∈ f0; 3g correspond to the
number of ϕþ fields inside Kiμ,

Kiμ ¼ 1

6
ϵμα1α2α3ϵIJK∂α1ϕ

σ1I∂α2ϕ
σ2J∂α3ϕ

σ3K; ð49Þ

with ðσ1σ2σ3Þ ¼ fð− − −Þ; ðþ þ þÞg for i ¼ f0; 3g.
Both Kiμ are still conserved,

∂μKiμ ¼ 0; ð50Þ

and bothKiμ ¼ Kμ after ϕþK ¼ ϕ−K is imposed. It is useful
to define, as in Eq. (35),

K3μ ≡ P3μα
K ∂αϕ

þK: ð51Þ

Furthermore, we can introduce

SAŠO GROZDANOV AND JANOS POLONYI PHYSICAL REVIEW D 91, 105031 (2015)

105031-6



P0μα
K ≡ 0; ð52Þ

which will make it clear that the transformation δþ acting
on K0μ gives a vanishing contribution.
We can now write down the CTP action for the first two

orders in the gradient expansion of Kiμ,

Lð0Þ
CTP ¼ FðK3

γK3γÞ − FðK0
γK0γÞ þGðKi

γKjγÞ; ð53Þ

Lð1Þ
CTP ¼

X
i;j;k

fijkðKl
γKmγÞKiμKjν∂μKk

ν: ð54Þ

Small latin indices are always summed over f0; 3g. The
single axis contributions, i.e., S1, to Lð0Þ remain the same as
in (40) and the zeroth-order action S2, which includes
couplings between the two time axes, is parametrized by G.
It mixes Kiμ’s with different CTP indices. We include no
single axis action at first order, as it would be a total
derivative [2], so Lð1Þ is purely a part of S2, as classified by
Eq. (20). This means that f333 cannot be a function of only
K3μ and f000 cannot be a function of only K0μ. The real
coefficient functions F, G, and fijk can depend on any
Lorentz-contracted combination of Kiμ, but may include no
derivatives. At first order, we thus have 23 ¼ 8 coefficient
functions fijk, which are reduced to four independent
functions by the CTP symmetry (24).

B. Energy-momentum balance equation

The variation of the currentKiμ with respect to ϕþ results
in an expression that is weighted by the number of ϕþ fields
inside of Kiμ,

δþϕK
iμ ¼ iPiμα

K ∂αδϕ
þK: ð55Þ

The zeroth-order Euler-Lagrange equations of motion are

∂λ

X
i≤j

∂ðF þGÞ
∂ðKi

αKjαÞ ðiP
iμλ
K Kj

μ þ jKi
μP

jμλ
K Þ ¼ 0: ð56Þ

To find the energy-momentum balance equation for the
open system, we vary the space-time dependence of ϕþ

by x → xþ aðxÞ. This results in δþx ϕþK ¼ aμ∂μϕ
þK , while

leaving δþx ϕ−K ¼ 0. By using the definitions of Kiμ as
stated in Eqs. (49), (51), and (52), it follows that

δþx Kiμ ¼ iPiμα
K ð∂αaλ∂λϕþK þ aλ∂λ∂αϕ

þKÞ: ð57Þ

After we identify ϕþK ¼ ϕ−K, which is implied by the
equations of motion, and use projector identities (38) and
(39), the form of the left-hand side of (31) remains that of
Tμν
ð0Þ in (41). The energy density and pressure are now

ε ¼ −F; ð58Þ

p ¼ F − b∂bF þ b2

3

X
i≤j

Ḡ0
ijðiþ jÞ; ð59Þ

and the nonconserved part of the balance equation is

Rν
ð0Þ ¼

X
i≤j

Ḡ0
ijðiþ jÞb∂νb=3: ð60Þ

Throughout this work, we define the barred functions as
being evaluated on the equations of motion ϕþK ¼ ϕ−K ,

Ḡ0
ij ≡ G0

ijjϕþK¼ϕ−K : ð61Þ

Furthermore, we have defined the derivatives of Gij by

G0
ij ≡ ∂G

∂ðKi
δK

jδÞ : ð62Þ

The first-order equations of motion for Sð1ÞCTP are

∂λ

X
i;j;k

fifijkPiμλ
K Kjν∂μKk

ν

þ jfijkKiμPjνλ
K ∂μKk

ν − kfijkKiμ∂μK
j
νPkνλ

K

þ
X
l≤m

f0ijk;lm½ðlPlγλ
K Km

γ þmKl
γP

mγλ
K ÞKiμKjν∂μKk

ν

− k∂μðKl
γKmγÞKiμKj

νPkνλ
K �g ¼ 0; ð63Þ

where

fijk;lm ≡ ∂fijk
∂Kl

δK
mδ : ð64Þ

The calculation of Tμν
ð1Þ goes through as it did for Tμν

ð0Þ,
resulting in a nonsymmetric tensor Tμν on the left-hand side
of (31),

Tμν ¼ εuμuν þ pΔμν − η1uμuλ∂λuν

þ ðχ1ημν þ χ2uμuνÞ∂λuλ þ βuμ∂νb; ð65Þ

where the coefficient functions are given by

η1 ¼
b3

3

X
i;j;k

ðj − kÞf̄ijk; ð66Þ

χ1 ¼ χ2 þ bβ; ð67Þ

χ2 ¼
b3

3

X
i;j;k

X
l≤m

½ðj − kÞf̄ijk − Cijk;lm�; ð68Þ

β ¼ b2

3

X
i;j;k

if̄ijk; ð69Þ
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with

Cijk;lm ≡ b2f̄0ijk;lmðlþm − 2kÞ: ð70Þ

The contribution to the nonconserving Rν from the first-
order action is

Rν
ð1Þ ¼ η1uα∂αuλ∂νuλ þ χ1

b
∂λuλ∂νb−

β

b
∂λb∂νuλ: ð71Þ

C. Stress-energy tensor, the Navier-Stokes equations,
and the bulk viscosity

The most important remaining question is how the
energy-momentum balance equation (31) relates to viscous
phenomenological hydrodynamics, which can be obtained
from the symmetric stress-energy tensor

Tμν
ph ¼ Tμν

ð0Þph þ Tμν
ð1Þph: ð72Þ

The form of Tμν
ð0Þph equals that of Tμν

ð0Þ in Eq. (41) and

Tμν
ð1Þph ¼ −ησμν − ζΔμν∂λuλ þ ðqμuν þ qνuμÞ: ð73Þ

The tensor σμν is the transverse traceless symmetric tensor

σμν ≡ ΔμαΔνβ

�
∂αuβ þ ∂βuα −

2

3
ηαβ∂λuλ

�
: ð74Þ

The tensorial structures in Eqs. (41) and (73) directly
follow from stress-energy tensor Tμν

ph, which can be
written as

Tμν
ph ¼ Euμuν þ PΔμν þ ðuμqν þ uν ~qμÞ þ tμν; ð75Þ

with qμ and ~qμ transverse, and tμν transverse, symmetric,
and traceless. Because of the symmetry of the phenom-
enological hydrodynamic stress-energy tensor, it is clear
that ~qμ ¼ qμ. The two scalars E andP, the vector qμ and the
tensor tμν are then constructed in terms of the gradient
expansion in temperature, chemical potential and velocity
fields: TðxÞ, μðxÞ, and uμðxÞ (see, e.g., [17,18]). In our
discussion of neutral fluids, μðxÞ ¼ 0.
Despite the fact that the tensor Tμν we derived in (65) is

not conserved, we can write it in the form of (75). It is
important to note that Tμν

ð1Þ is not symmetric, and thus

~qμ ≠ qμ. At this point, the fact that Tμν is not symmetric
means that we cannot interpret it as a stress-energy tensor,
in the absence of the Belinfante-Rosenfeld procedure
[19,20]. However, we will see below that within an
approximate scheme, a simple symmetrization of Tμν

can lead to a hydrodynamic stress-energy tensor, which
reproduces exactly the same physical equations as the ones
we have derived from the energy-momentum balance
equation (31).

The tensor structure of (75) allows us to identify the
coefficient functions of (65) as

E ¼ uμuνTμν ¼ ε; ð76Þ

P ¼ ΔμνTμν=3 ¼ pþ χ1∂λuλ; ð77Þ

qμ ¼ −ΔμβuαTαβ

¼ β∂μb − bβuμ∂λuλ − η1uλ∂λuμ; ð78Þ

~qμ ¼ −ΔμαuβTαβ ¼ 0; ð79Þ

tμν ¼
1

2

�
ΔμαΔνβ þ ΔμβΔνα −

2

3
ΔμνΔαβ

�
Tαβ ¼ 0: ð80Þ

The phenomenological stress-energy tensor is by con-
struction conserved. Its conservation equations,

∂μT
μ0
ph ¼ 0; ð81Þ

∂μT
μi
ph ¼ 0; ð82Þ

give the continuity equation and the Navier-Stokes equa-
tion, respectively. They can be reduced to their standard
compressible form by using the nonrelativistic scaling [21]:
t → t=ϵ2nr, x → x=ϵnr, vi → ϵnrvi, and p → ϵ2nrp,

∂0ρþ ∂iðρviÞ ¼ 0; ð83Þ

ρð∂0þvj∂jÞvi ¼−∂ipþ η∂2viþðζþ η=3Þ∂i∂jvj; ð84Þ
where vi is the velocity field, ρ ¼ εþ p with ε the energy
density and p pressure, and ∂2 ¼ ∂j∂j. In the scaling
relations above, ϵnr is an infinitesimally small parameter
that is taken to zero in order to find the dominant non-
relativistic terms.
To show how (83) and (84) arise in our construction, we

first note that the effective Goldstone action (53), (54) for
ϕ� fields describes an out-of-equilibrium theory in which
the gradient expansion is organized by counting derivatives
of currents Kiμ at some IR hydrodynamic scale Λh. To
understand the near-equilibrium limit, we study the energy-
momentum balance equation (31) by introducing a near-
equilibrium parameter l, so that

ϕIðxÞ ¼ b1=30 ðxI þ lπIðxÞÞ: ð85Þ

Expanding around a constant equilibrium current

Kμ
0 ¼ ðb0; 0; 0; 0Þ; ð86Þ

it follows that

b ¼ b0 þ lΔbþ � � � ; ð87Þ
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uμ ¼ uμ0 þ lvμ þ � � � ; ð88Þ

with

uμ0 ¼ ð1; 0; 0; 0Þ; vμ ¼ ð0; viÞ: ð89Þ

In terms of the fluctuation fields πi, we find that

Δb ¼ b0∂iπ
i; ð90Þ

vi ¼ −∂0π
i: ð91Þ

The conservation equation (36) then implies the order-l
relation

b0∂ivi ¼ −∂0Δb: ð92Þ
At the leading order in l, the force of the environment
acting on the fluid that is encoded in the nonconserving Rν

ð1Þ
vanishes. The first-order Tμν

ð1Þ is thus approximately con-

served near equilibrium and can be treated as the viscous
contribution to the total fluid’s conserved two-tensor Tμν.
Since first-order contributions are suppressed in the

double expansion by l as well as a derivative acting on
vi, we expand the zeroth-order energy-momentum balance
equation to order l2. The contribution from Rν

ð0Þ remains

nonvanishing, but it can be absorbed into the small
OðlÞ-suppressed shifts of the fluid’s energy and pressure,

ε → εþ lp0; p → p − lp0; ð93Þ
where the unshifted expressions are those of Eqs. (58)
and (59). Furthermore, p0 is given by the expression

p0 ¼
ðiþ jÞ

3
Δb

�
b0Ḡ0

ij þ
1

2
lðḠ0

ij þ b0∂bḠ0
ijÞΔb

�
; ð94Þ

with G0
ij evaluated at b ¼ b0 and the expression summed

over i and j.
With this redefinition of ε and p, the tensor Tμν in (65)

becomes approximately conserved near equilibrium and
mimics the expected behavior of a stress-energy tensor,

∂μTμν ≈ 0: ð95Þ
A further requirement for a genuine identification of Tμν

with the hydrodynamic stress-energy tensor of the fluid
described by our CTP construction is that Tμν needs to be
symmetric. We can show that to the order of l we are
working at, a symmetrized TðμiÞ obeys

∂μTμi ¼ ∂μTðμiÞ ¼ 1

2
∂μðTμi þ TiμÞ þOðl2Þ ≈ 0: ð96Þ

The symmetrization of Tμ0 does not work in the same way.
However, in the nonrelativistic limit, only zeroth-order,

ideal hydrodynamic terms of the Tμ0 components contrib-
ute to the continuity equation (83). Thus, for a non-
relativistic, near-equilibirum Navier-Stokes fluid, we can
identify the symmetrized version of our tensor Tμν with the
phenomenological stress-energy tensor,

TðμνÞ ≈ Tμν
ph: ð97Þ

One should be aware that beyond the aesthetic desire to
exactly match the phenomenological stress-energy tensor,
what is important for the physics are the dynamical
equations of motion. Those follow from Eq. (31), which
is approximately conserved and does not require Tμν to be
symmetric. The dynamical equations derived in the near-
equilibrium limit of our CTP construction are thus com-
pletely equivalent to those derived from phenomenological
hydrodynamics with the use of conservation laws.
The Navier-Stokes equations (83) and (84) again follow

from the near-equilibrium expansion to Oðl2Þ at zeroth
order, and OðlÞ at first order in gradient expansion,
followed by a nonrelativistic scaling limit ϵnr → 0. From
this expansion, or directly from (80), we find that the shear
viscosity η vanishes while the bulk viscosity is nonzero,

η ¼ 0; ζ ¼ −χ1jb¼b0 : ð98Þ
Note that the vanishing of the shear viscosity is most likely
caused by the very large symmetry group of volume-
preserving diffeomorphisms, under which our fluid is invari-
ant. In fact, viscosity in [5] resulted from a Lagrangian term
that explicitly broke this symmetry. Furthermore, the non-
dissipative construction of second-order hydrodynamics
invariant under SDiffðR1;3Þ in [4] also resulted in a smaller
number of independent transport coefficients compared to
the phenomenological classification, which is based on the
counting of independent tensor structures.
Because of the near-equilibrium expansion, the hydro-

dynamic coefficient ζ becomes an equilibrium,
b0-dependent constant. In terms of the four undetermined
coefficient functions in the Lagrangian (54),

ζ ¼ −b30ðf̄333 þ f̄300 − f̄303 þ 3f̄330Þjb¼b0

− 2b50ðf̄0333;03þf̄0303;03 − f̄0330;03 − f̄0300;03Þjb¼b0

− 4b50ðf̄0333;00 þ f̄0303;00Þjb¼b0

þ 4b50ðf̄0330;33 þ f̄0300;33Þjb¼b0 : ð99Þ

D. The entropy current

Lastly, let us turn our attention to the entropy current
Sμ, which can be associated with the system.2 In standard
relativistic hydrodynamics with a conserved stress-energy
tensor, the entropy current can be written as a sum of two
terms,

2We thank the anonymous PRD referee for insightful com-
ments on the topic of the entropy current.
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Sμ ¼ Sμcan þ Sμcorr: ð100Þ

The first term, Sμcan, is the canonical part that must satisfy
the covariant relativistic generalization of the thermody-
namical relation εþ p ¼ sT [17],

TSμcan ¼ puμ − Tνμuν: ð101Þ

It is important to note that the canonical entropy current
is invariant to first order in ∂μuν and ∂μT under the frame
redefinitions uμ → uμ þ δuμð∂αuβ; ∂αTÞ and T → Tþ
δTð∂αuβ; ∂αTÞ.
In the spirit of the gradient expansion of hydrodynamics,

one should be allowed to add the most general series of
corrections [22,23], as terms in Sμcorr, that are consistent
with the symmetries of the vector current Sμ and ensure the
positivity of the entropy production,

∂μSμ ≥ 0: ð102Þ

However, for our purposes, Scorr is irrelevant as it has
long been known that corrections to Scan can only arise
at the second order in the derivative expansion of the
stress-energy tensor, which are beyond the scope of this
work [22–26].3
Although associating an entropy current is difficult in our

situation when the full nonlinear theory is considered, the
linearized stress-energy tensor was shown to be approxi-
mately conserved near equilibrium; cf. (95). If we restrict
ourselves to work only within that regime, then Eq. (101)
implies that

Sμ ¼ suμ þ qμ

T
¼

�
εþ p
T

�
uμ þ qμ

T
: ð103Þ

By using the standard thermodynamical expressions
εþ p ¼ sT, T ¼ ∂ε=∂s, and s ¼ ∂p=∂T, along with
Eqs. (58) and (59), we find the temperature and the entropy
density to be

T ¼ exp f− lnCþ Ig; ð104Þ

s ¼ exp

�
ln

�
−Cb∂bF −

1

3
Cb2G

�
− I

�
; ð105Þ

where C is an integration constant and we have defined

I ≡
Z

db

�∂2
bF − 2

3
G − 1

3
b∂bG

∂bF − 1
3
bG

�
; ð106Þ

G≡X
i≤j

Ḡ0
ijðiþ jÞ: ð107Þ

In the absence of dissipation, when GðKi
γKjγÞ ¼ 0, the

expressions (104) and (105) reduce to the previously
derived nondissipative results, T ¼ −∂bF and s ¼ b, after
we set C ¼ −1.
Let us proceed by considering the implications of

imposing Eq. (102), i.e., the positive entropy production
condition. A conserved hydrodynamical stress-energy
tensor (75) with ~qμ ¼ qμ ≠ 0 and η ¼ 0 leads to an
equation of motion, uν∂μT

μν
ph ¼ 0, which can be written

out in terms of the entropy density,

∂μðsuμÞ ¼
1

T
ζð∂μuμÞ2 −

1

T
∂μqμ þ

1

T
uνuμ∂μqν: ð108Þ

Equation (108) can now be used to eliminate the entropy
density term from the divergence of (103). The resulting
inequality can be written out purely in terms of the
constituents of the CTP Lagrangian. Although we will
not consider this expression here in detail, what is impor-
tant is that the action itself does not guarantee the entropy
production to be positive and additional constraints must be
imposed on the form of G and fijk to ensure a physically
sensible effective theory.
The same conclusion can be drawn by studying the sign

of the bulk viscosity ζ in Eq. (99), which would have to be
non-negative in a physical fluid.4 Again, imposing ζ ≥ 0
results in constraints on the form of the fijk functions.
The fact that we need to impose additional restrictions on

the form of the effective action in order for the system to
produce positive entropy and have non-negative energy
density, temperature, bulk viscosity, etc. is not an unex-
pected feature of our construction. It results from the fact
that the “phenomenological” effective action with the
Lagrangian (53) and (54) was not derived from a unitary,
microscopic quantum field theory. Had we done this, the
structure of the Schwinger-Keldysh propagators would
ensure that such problems would not be present in the
effective infrared theory.5

Finally, as a simpler example, consider a very special
family of Lagrangians (or fluid flows) in which
GðKi

γKjγÞ ¼ 0, so that the zeroth-order part of the entropy

3In more general hydrodynamic frames, not considered in this
work, first-order corrections to (101) may appear in the expansion
of the entropy current. For some recent discussions on those
topics and various related hydrodynamic extensions, see [27–29]
and references therein.

4Microscopically, the positivity of the two viscosities (η and ζ)
is ensured by the structure of the real-time two-point Green’s
functions, which appear in the Kubo formulas. For a more
detailed discussion, see, e.g., [6].

5See [30] for a recent derivation of an effective CTP action for
the Noether current from quantum electrodynamics and discus-
sions therein on how the structure of the Schwinger-Keldysh
propagators ensures a consistent IR effective theory. The precise
mechanism for how this microscopic structure should be imple-
mented in effective theories of the type studied in this work
remains to be understood. Recently, some of these issues were also
discussed in [31].
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current remains equals to Kμ, which is conserved by
construction. The positivity of the divergence of (103)
would then require us to only impose

∂μ

�
qμ

T

�
≥ 0: ð109Þ

It is now easy to show that at the leading order in l and in
the nonrelativistic limit, that the positive entropy produc-
tion condition (109) demands that

βðb0Þ∂i∂iΔb ≥ 0: ð110Þ

Since βðb0Þ ¼ b20
P

i;j;kif̄ijkðb0Þ=3, Eq. (110) explicitly
shows that we need to supply additional constraints on
fijk to ensure positive entropy production.
It is interesting to note that the expression (110) is

consistent with the following fact pertaining to incom-
pressible fluids, which are characterized by the condition

∂ivi ¼ 0: ð111Þ

According to the definitions (88) and (89), the incompress-
ibility condition (111) implies the relativistic relation,
∂μuμ ¼ 0, to first order in l. The conservation of Kμ

[cf. Eq. (36)] then implies that b must be a space-time
independent constant. Given the definition (87) of b to
order l, the fact that b must be constant means that we may
absorb a constant valueΔb into b0, and setΔb ¼ 0. Finally,
Eq. (110) shows that incompressibility implies conserva-
tion of entropy. These findings are therefore consistent with
the fact that an incompressible nonrelativistic fluid with
η ¼ 0 behaves as an ideal fluid without any entropy
production. In such cases, the presence of the bulk viscosity
ζ alone cannot influence the solutions of the Navier-Stokes
equation (84).

VI. CONCLUSION

In this work, we showed how phenomenological rela-
tivistic hydrodynamics with dissipation can be constructed
using a classical CTP effective action. We were able to
derive closed-form equations describing the fluid from an
action principle, containing dissipative effects triggered by
the presence of the nonzero bulk viscosity.
Of central importance were terms collected into S2,

which coupled fields living on the two time axes and
reflected quantum and classical interactions between the
open (sub)system and the integrated-out, UV degrees of
freedom of the environment. Such terms were argued to
generically arise in an effective CTP field theory.
Dissipation thus manifested itself in the energy loss of

the low-energy degrees of freedom to the UV microscopic
degrees of freedom. We note that this physical interpreta-
tion is in accordance with the usual phenomenological view
of dissipation. However, in that approach one is able to
maintain all conservation laws. Despite the immense
historical success of such a phenomenological approach,
the fact that energy should not be conserved in a theory
describing only the relevant hydrodynamic modes is a
natural result of interactions among all degrees of freedom
before a choice is made to eliminate some of them from our
description of the system. Our future plan is to explore how
this effective theory point of view could be related in a more
precise and quantitative manner to the phenomenological
assumption of conservation laws.
Despite the lack of energy conservation in our open

effective field theory, the two-tensor Tμν we derived was
shown to be conserved in the near-equilibrium regime, thus
approaching the behavior of the phenomenological stress-
energy tensor in that limit. This enabled us to identify the
bulk viscosity of the family of fluids that could be described
by the action we constructed. The shear viscosity, however,
vanished in this setup, which is most likely the result of a
large amount of symmetry, namely, the volume-preserving
diffeomorphisms that were used to construct the effective
action. We defer a further study of this problem, i.e.,
the identification of the correct symmetries for a description
of dissipative fluids, as well as the classification of different
fluids described by the presented formalism, to a future
work.
The systematic treatment of dissipation we presented in

this paper can be applied to any effective theory derived
from a quantum field theoretical model. The thermody-
namical considerations of the usual phenomenological
approach are thus completely replaced by the assumption
about the applicability of the Wick’s theorem and the
gradient expansion. We saw that the positivity of the
divergence of the dissipative entropy current, as defined
in this work, was not automatically ensured and additional
restrictions would need to be imposed on the form of the
effective action. A more detailed future investigation into
how the microscopic CTP structures constrain infrared
effective theories will be required to fully resolve this
problem.
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