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We present the general form of all timelike supersymmetric solutions to three-dimensional Uð1Þ3 gauged
supergravity, a known consistent truncation of string theory. We uncover a rich vacuum structure, including
an infinite class of new timelike-warped AdS3 (Gödel) and timelike-warped dS3 critical points. We outline
the construction of supersymmetric flows, driven by irrelevant scalar operators in the SCFT, which
interpolate between critical points. For flows from AdS3 to Gödel, the natural candidate for the central
charge decreases along the flow. Flows to timelike-warped dS3 exhibit topology change.
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I. INTRODUCTION

It is a remarkable fact that the geometrical Bekenstein-
Hawking (BH) entropy of black holes with AdS3 near-
horizons can be derived from the central charge of a
two-dimensional (2D) CFT [1,2]. This result, a key precusor
to AdS/CFT [3], rests on the Brown-Henneaux analysis
of the asymptotic symmetries of AdS3 [4] and the Cardy
formula [5], which permits one to determine the asymptotic
density of states in a CFT in the semiclassical limit.
It is well known that Kerr black holes, candidates for

astrophysical black holes, e.g. Cygnus X-1 [6], exhibit
warped AdS3 near-horizons [7]. In recent years, the
matching of BH entropy through the Cardy formula led
to a bold conjecture that there is a (warped) CFT dual to
Kerr black holes [8] (see [9] for a review). A greater
understanding of the putative dual QFT, if it is even a CFT
[10–14], requires a theory with a UV completion, such as
string theory.
In this work we take a step in this direction by

identifying warped AdS3 vacua of N ¼ 2 Uð1Þ3 gauged
supergravity [15], a consistent truncation of string theory
[16,17], and offering evidence that they can be connected to
understood AdS3 vacua by supersymmetric flows. This
places holography on a firmer footing, since at one end of
the flow, the supersymmetric AdS3 vacua are dual to two-
dimensional N ¼ ð0; 2Þ SCFTs [18–21], whose central
charge and R symmetry can be determined exactly using
c-extremization [20,21] and agree with holographic calcu-
lations (see [22] for subleading terms).
Following a review in the next section, we make the

following novel contributions. First, we present the general
form—dictated by the Bogomol'nyi-Prasad-Sommerfield
(BPS) conditions—of all supersymmetric timelike solu-
tions to three-dimensional Uð1Þ3 gauged supergravity,
including an infinite class of new half-BPS critical points,
going under the moniker timelike-warped AdS3 (Gödel)
and timelike-warped dS3 in the literature. Indeed, the latter
is a known solution to topologically massive gravity with a

positive cosmological constant [23], and here we provide
potentially the first example in both a supersymmetric and
string theory context. Being timelike-warped, the geom-
etries exhibit characteristic closed-timelike-curves (CTCs),
signaling a breakdown in unitarity in the dual theory. Along
with the Gödel universe [24], which is not ruled out by
supersymmetry [25,26], a version of Hawking’s chronol-
ogy protection conjecture [27] is expected for timelike-
warped dS3. See [28–31] for related works in the AdS/CFT
context.
We construct numerical supersymmetric flows from

AdS3 to timelike-warped critical points and identify the
flows as deformations of the two-dimensional SCFT by
irrelevant scalar operators. We show that the inverse of the
real superpotential monotonically decreases along flows to
timelike-warped AdS3 vacua and calculate an expression
for the candidate central charge in terms of twist param-
eters. For flows to timelike-warped dS3, the curvature of the
Riemann surface changes sign and the topology changes.
Since the two-dimensional SCFTs correspond to twisted
compactifications of N ¼ 4 super-Yang-Mills, our three-
dimensional flows can be uplifted to five dimensions,
where they may be interpreted as deformations of N ¼ 4
super-Yang-Mills. This short letter highlights the existence
of novel warped critical points; further examples of super-
symmetric flows, the five-dimensional uplift and the
generalization to null spacetimes can be found in [32].

II. THREE-DIMENSIONAL Uð1Þ3 GAUGED
SUPERGRAVITY

We consider three-dimensional N ¼ 2 gauged super-
gravity [15], which uplifts on a constant curvature Riemann
surface of genus g, Σg, to well-known five-dimensional
Uð1Þ3 gauged supergravity, where it can be further
embedded consistently in higher dimensions [16,17].
Examples of consistent truncations of string theory with
warped AdS3 vacua have appeared previously in [33]
(see also [34]).
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The action for the theory may be written as

L3 ¼ R �3 1 −
1

2

X3
i¼1

½dWi ∧ �3dWi þ e2WiGi ∧ �3Gi�

þ 8

�
T2 −

X3
i¼1

ð∂Wi
TÞ2

�
�3 1

− a1B2 ∧ dB3 − a2B3 ∧ dB1 − a3B1 ∧ dB2; ð1Þ

with the field content comprising three scalars, Wi, and
three gauge fields, Gi ¼ dBi, which may be rewritten in the
canonical form of three-dimensional gauged supergravity
[35]. T denotes the superpotential

T ¼
X3
i¼1

�
1

2
e−Wi −

ai
4
eWiþK

�
; ð2Þ

K ¼ −
P

iWi is the Kähler potential of the scalar manifold,
and ai, i ¼ 1, 2, 3 denote constants that are constrained by
the curvature κ of Σg:

a1 þ a2 þ a3 ¼ −κ: ð3Þ
We note there is the freedom to change the sign of T and the
potential does not change [36].
Through AdS/CFT [3], AdS3 vacua of the above super-

gravity correspond to two-dimensional SCFTs arising
through twisted compactifications of four-dimensional
N ¼ 4 super Yang-Mills with gauge group U(N) on Σg
[37,38]. To preserve supersymmetry, one “twists” the
theory by turning on gauge fields coupled to the SO(6)
R symmetry of the four-dimensional theory. For twists
involving the SOð2Þ3 Cartan subgroup of the R symmetry,
the twist parameters, ai, must satisfy (3), a necessary
condition for N ¼ 2 supergravity. Supersymmetry is
enhanced to N ¼ ð2; 2Þ and N ¼ ð4; 4Þ, when one or
two of the ai vanish, respectively.
Supersymmetric AdS3 vacua of the action (1) correspond

to the critical points, ∂Wi
T ¼ 0 [34],

eWi ¼ −
Q

j≠iaj
κ þ 2ai

: ð4Þ

These vacua were featured in a series of works [18–21,39].
From extrema of T, one can see there is no good AdS3
vacuum dual to N ¼ ð4; 4Þ SCFTs and that N ¼ ð2; 2Þ
vacua only exist when g > 1.

III. ALL TIMELIKE SOLUTIONS

Given a supergravity theory, it is feasible to invoke
Killing spinor techniques to find all supersymmetric
solutions, e. g. [25,40,41] in five dimensions. Here we
present the timelike solutions to the theory (1). Full details
of the classification exercise appear elsewhere [32].

The class of supersymmetric geometries is characterized
by a real timelike Killing vector P0, LP0

Wi ¼ LP0
Gi ¼ 0

and an additional complex vector, Pz ¼ P1 þ iP2. Suitably
normalized, we have Pa · Pb ¼ ηab, ηab ¼ ð−1; 1; 1Þ and
a ¼ 0, 1, 2. The existence of a Killing spinor is equivalent
to the differential conditions [32]:

dP0 ¼ 4T �3 P0; ð5Þ

e−
1
2
Kd½e1

2
KPz� ¼

X3
i¼1

ðe−Wi �3 þiBiÞ ∧ Pz: ð6Þ

The field strengthsGi are completely determined and break
supersymmetry by one-half when nonzero,

Gi ¼ e−Wið−4∂Wi
T �3 P0 þ P0 ∧ dWiÞ; ð7Þ

meaning Gi ¼ 0 at AdS3 vacua. This appears to contradict
the existence of well-known holographic flows from AdS5
to AdS3 [18], but in our conventions these fall into the null
class of spacetimes, Pa · Pb ¼ 0.
Given these conditions, it is a straightforward exercise to

introduce coordinates P0 ≡ ∂τ, Pz ¼ eD−1
2
Kðdx1 þ idx2Þ,

so that the spacetimes take the form

ds23 ¼ −ðdτ þ ρÞ2 þ e2D−Kðdx21 þ dx22Þ;
Gi ¼ e−Wi ½−4∂Wi

Te2D−Kdx1 ∧ dx2

þ ðdτ þ ρÞ ∧ dWi�; ð8Þ

where ρ is a one-form connection on the Riemann surface
parametrized by ðx1; x2Þ, with dρ ¼ 4Te2D−Kdx1 ∧ dx2.
Here Dðx1; x2Þ is modulo a convenient factor of the Kähler
potential, a warp factor parametrizing the vector Pz, and in
turn the Riemann surface. Inserting the expressions for Gi

into the flux equations of motion (EOMs), one can derive
the following equation for the scalars:

∇2eWi ¼ 2e2D
�
4T
eK

−
X
j≠i

ajðeWj þ eWiÞ þ
Y
j≠i

aj

�
: ð9Þ

From (6), one derives a differential condition for the warp
factor,

∇2D ¼ 4
X3
i¼1

e−Wið∂Wi
T þ TÞe2D−K: ð10Þ

We note for a given constant value of Wi, this equation
reduces to the Liouville equation on the Riemann surface,
∇2D ¼ −Ke2D, with Gaussian curvature K.
Using these four equations, it is possible to show that the

scalar and Einstein EOMs are satisfied. It can be inde-
pendently checked that the EOMs are consistent with the
integrability conditions [32], as expected.
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IV. NEW CRITICAL POINTS

In this section, we get oriented by recovering the AdS3
vacua (4). For simplicity, we introduce a radial direction
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
and a U(1) isometry parametrized by φ. A

general solution to (10) exists where

eD ¼ 2
ffiffiffiffiffiffiffijKjp

jKj þKr2
; ð11Þ

resulting in a spacetime metric of the form

ds23 ¼ −l2

�
dτ −

sgnðKÞr2
½1þ sgnðKÞr2� dφ

�
2

þ e−K

jKj
�
4ðdr2 þ r2dφ2Þ
ð1þ sgnðKÞr2Þ2

�
: ð12Þ

For AdS3 vacua, K ¼ −4Te−K
P

ie
−Wi j∂Wi

T¼0, which upon
redefinition, r ¼ tanh ρ and a shift φ → φ − τ, leads to the
usual form of global AdS3 (radius l ¼ 2

T j∂Wi
T¼0),

ds23 ¼ l2½−cosh2ρdτ2 þ dρ2 þ sinh2ρdφ2�: ð13Þ

We now present a key observation of this paper, namely
that (9) has a second critical point, i.e. solutions with
∂aWi ¼ 0, supported by fluxes. In addition to (4), the rhs of
(9) vanishes when

eWi ¼
X
j≠i

aj þ
κ

2
þ
Q

j≠iaj
κ

: ð14Þ

This exhausts the possibility for additional critical points
beyond the supersymmetric AdS3 vacuum. For Wi ∈ R, a
requirement for real solutions, necessarily κ < 0, so without
loss of generality we set κ ¼ −1. Furthermore, the range in
parameter space where good vacua is constrained, as
depicted in Fig. 1. From Fig. 1, suppressing a1 through
the supersymmetry condition a1 ¼ 1 − a2 − a3, we recog-
nize that within the range of parameters where good AdS3
vacua exist (cream), there are regions where additional new
critical points exist (green). Points in parameter space
where supersymmetry is enhanced to N ¼ ð2; 2Þ
(K ¼ 0) e. g. ða2; a3Þ ¼ ð1

2
; 0Þ; ð0; 1

2
Þ; ð1

2
; 1
2
Þ on the dashed

red locus are excluded, meaning new critical points only
exist for N ¼ ð0; 2Þ supersymmetry.
As one crosses the dashed red locus in Fig. 1, the

topology of the Riemann surface parmetrized by ðx1; x2Þ
changes from H2 externally to S2 internally. We note that
l2
4
eKjKj ≥ 0 for critical points, so that the timelike fibration

in the metric (12) is stretched, and thus warped. This
inequality is saturated only for the supersymmetric AdS3
vacua, where no stretching occurs. Moreover, the Ricci
scalar of the overall three-dimensional spacetime,
R ¼ 2ð4T2 þKeKÞ, changes sign as one crosses this locus,
an observation that justifies the billing “de Sitter” in the

internal region, but not de Sitter in the conventional sense,
since the geometry is supersymmetric. Uplifting the warped
critical points to ten or eleven dimensions [16,17], one can
show that CTCs appear for large values of r [32]. Finally,
again suppressing a1, we remark that there is an external
locus, illustrated in Fig. 2, where critical points coalesce
and only the supersymmetric AdS3 vacuum exists,

a2 ¼
−1þ 2a3 − a23 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 − 2a23 þ a43

p
2ða3 − 1Þ : ð15Þ

0.4 0.2 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). The range of parameters in the ða2; a3Þ
plane where the scalars Wi remain real for AdS3 vacua (cream)
and warped AdS3 vacua (green). The dotted red line separates
external (K < 0) from internal regions (K > 0).
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FIG. 2 (color online). A contour plot in the ða2; a3Þ plane of
stretching, 4Ω2 −m2, in a sample K < 0 region. Yellow curve
corresponds to the AdS3 locus.
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At (14) the Gaussian curvature may be written as
follows:

K ¼ 2ða1a2 þ a2a3 þ a3a1Þ − a21 − a22 − a23 ¼
2a1a2a3

l
:

ð16Þ

For K < 0, the critical points are easy to identify and
correspond to supersymmetric Gödel spacetimes [24], a
healthy collection of which can be found in three dimen-
sions [42–45]. To see this, we can recast the solution in the
form [46]

ds23 ¼ −
�
dτ þ 4Ω

m2
sinh2

�
mρ

2

�
dφ

�
2

þ dρ2 þ sinh2ðmρÞ
m2

dφ2; ð17Þ

where in our notation, one has ρ ¼ 2
m tanh

−1ðrÞ,
Ω ¼ l

4
jKjeKjcrit,m2 ¼ jKjeKjcrit. Written in the above form

(17), the homogeneity and causal structure of the Gödel
solution holds in the range 0 ≤ m2 < 4Ω2 [47], with the
original Gödel solution at m2 ¼ 2Ω2 and AdS3 at
m2 ¼ 4Ω2. We plot 4Ω2 −m2 in Fig. 2, noting the yellow
(zero valued) AdS3 locus and steadily increasing contours
outwards towards the boundaries.
ForN ¼ ð0; 2Þ SCFTs, the central charge is proportional

to T−1 [15], making it the natural candidate for a holo-
graphic c-function [48,49]. Indeed, T−1

AdS3
> T−1

Gödel, so for
flows from AdS3 to Gödel, this observation suggests an
analogue of Zamolodchikov’s c-theorem [50]. Recent work
[14] on the asymptotic symmetries of warped AdS3,
including Gödel, demonstrates that one can find two copies
of the Virasoro symmetry, resulting in the expected central
charge c ¼ 3l

2G for a two-dimensional CFT. Unfortunately,
the analysis in [14] and earlier [51] only holds for warped
AdS3 vacua where the cosmological constant does not
change. In the language of three-dimensional gauged
supergravity, this means we are confined to warped
AdS3 vacua that coexist with unwarped AdS3 partners at
constant value of the scalars in the potential.
Here, our setting is more general since the vacua exist at

different values of the scalar fields, and these results do not
apply. It is an open problem to repeat the analysis of
Ref. [14] to see how the central charge depends on the
scalar potential. Given the limitations of the literature, it is
fitting to speculate that the inverse of the superpotential, as
in the AdS3 case, is the relevant quantity that encodes the
central charge of the dual QFT. On this assumption [52], we
can determine c at Gödel fixed points in terms of twist
parameters of N ¼ 4 super-Yang-Mills:

c ¼ 3jg − 1jN2
Y3
i¼1

1

ai

�
2a2i −

X3
k¼1

a2k

�
: ð18Þ

It will be interesting to repeat the analysis of Ref. [14] to
determine the central charge for gauged supergravities.
When K > 0, little is known about these solutions, other

than that they exist as solutions to topologically massive
gravity [23] and suffer from CTCs. Since they are topo-
logically R × H2, it is possible that they can be analytically
continued along the lines of [53] to give spacelike-warped
AdS3 with topology S1 × AdS2, on the proviso we change
the sign of T. We now show that this is not possible. To see
this, we send ds2ðS2Þ ¼ −ds2ðAdS2Þ through redefining
r → iρ, φ → i~τ and τ → i ~φ. This would leave us with a
signature problem; however, this is overcome by
Wi → ~Wi þ iπ, an analytic continuation that allows us to
(with ai → −ai) flip the sign of T. Note, this leaves (9),
(10) and (16) unchanged. From the uplifted five-
dimensional perspective, this analytic continuation sends
κ → −κ, thus changing the genus g of the Riemann surface
used in the five-dimensional to three-dimensional reduc-
tion. Unfortunately, the price one pays for this operation is
that Gi becomes complex, so the solution is not real. One
can potentially overcome this by sending T → iT, but then
one sacrifices the consistent truncation, essentially by
complexifying the theory.
Before outlining the construction of numerical solutions

in the next section, we end with a final remark that we have
only discussed classical supergravity vacua and the ai
should be quantized. To see this, we recall that the
embedding in string theory is through a Uð1Þ3 fibration
of S5. For each U(1) isometry ∂φi

, the corresponding gauge
field, Ai, must be a connection on a bona fide U(1)
fibration. This is equivalent to the condition that the periods
of the first Chern class be integer valued, or

1

2π

Z
Σg

dAi ¼ 2aiðg − 1Þ ∈ Z: ð19Þ

For g > 1 (κ ¼ −1), where new critical points exist, this
constraint poses few obstacles since we can ensure that the
regions in Fig. 1 are populated by increasing the genus.

V. SUPERSYMMETRIC FLOWS

In this section we focus solely on parameters in the
internal region of Fig. 1, where the timelike-warped de
Sitter vacua exist, and construct a sample numerical
solution to show flows from N ¼ ð0; 2Þ fixed points exist.
In this region topology changes from H2 to S2, and T
changes sign making its c-function interpretation problem-
atic. We note that linearizing (9) about its AdS3 values,
there is an instability to flows in the direction of the
timelike-warped dS3 point. In contrast, flows to Gödel are
perturbatively stable.
Given a sample point in this region ða1; a2; a3Þ ¼

ð 3
10
; 3
10
; 4
10
Þ, we can use a shooting method, i.e. varying

the initial conditions in the vicinity of r ¼ 0, so that the
interpolating solution arrives at the second critical point at
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r ¼ 1. We have checked that the output of MATHEMATICA

in Fig. 3 leads to an error of order 1 × 10−7 when reinserted
in the EOMs over the same range. Stiffness is encountered
beyond r ¼ 1, but this is due to T blowing up as eWi → 0.

We have linearized the scalar EOMs about the AdS3
vacuum to extract the masses, m2

ϕ�l
2 ¼ 1

2
ð4� 3

ffiffiffi
3

p Þ, for
scalars ϕ� ¼ � 1ffiffi

3
p W1 þ 1

2
ð1∓ 1ffiffi

3
p ÞW3, and they are con-

sistent with one relevant and one irrelevant operator.
Tracing the fluctuation to the boundary of AdS3 at
r ¼ 1, it can be shown that the flows correspond to an
irrelevant deformation of the SCFT [32]. We anticipate a
rich class of supersymmetric flows both between critical
points. It remains to be seen how these solutions are related
to black holes, so that the CFT interpretation can be
elucidated. We hope to report on these in future work.
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