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The model of the self-interacting complex vector field is considered. It is shown that there are
nontopological solitons in this model, and research into their properties is undertaken. The asymptotic
dependences on a phase frequency are derived for the energy and the Noether charge of the soliton in the
thick-wall regime. The asymptotic expressions are obtained for the energy density, the Noether charge
density, and the phase frequency of the soliton in the thin-wall regime. The soliton solutions of the model field
equations are obtained numerically. The dependences on the phase frequency are presented for the energy and
the Noether charge of the soliton. The dependence of the soliton energy on the soliton Noether charge is
obtained numerically. It follows from this dependence that the nontopological soliton is unstable to the decay
in the free massive vector bosons in the thick-wall regime but is stable to this decay in the thin-wall regime.
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I. INTRODUCTION

A nontopological soliton is a spatially localized field
configuration that is an extremum of the energy functional
at a fixed value of the Noether charge. The distinguishing
feature of nontopological solitons is the time dependence
∝ exp ð−iωtÞ of their fields. It is known that nontopolog-
ical solitons exist in many models of field theory with
global symmetries and conserved Noether charges [1,2].
TheQ ball [3] that emerges inUð1Þ-invariant models of the
self-interacting complex scalar field is the simplest non-
topological soliton. Q balls also exist in scalar field models
with the spontaneous breaking of global Abelian symmetry
[4,5] and in scalar field models with global non-Abelian
symmetry [6,7]. Q balls are present in supersymmetric
extensions of the Standard Model with flat directions in
the scalar field potential. Specifically, it was shown in
Refs. [8,9] that the Q balls exist in the minimal super-
symmetric Standard Model. In these supersymmetric
extensions of the Standard Model, the Q balls are formed
from scalar field condensates (s leptons or s quarks)
carrying nonzero leptonic or baryonic quantum numbers.
The Q balls are of great interest in cosmological models
describing the evolution of the early Universe [10,11].
Within the framework of these models, the Q balls are the
places where dark matter is concentrated; this fact can help
explain the observed baryonic asymmetry.
The different types of nontopological solitons arise in

global-symmetric models of several interacting scalar fields.
The classic example is the nontopological soliton of the
Friedberg-Lee-Sirlin model [12]. This model describes the
system of two interacting scalar fields, one of which is real
and the other is complex. The model has global Uð1Þ
symmetry and renormalizable interaction potential.

All the solitons enumerated above are formed from
condensates of scalar fields. The next type of quantum
bosonic fields forming condensates is a four-vector field
that describes particles of spin s ¼ 1. These particles can
be either massless gauge bosons (γ quantum, gluon, W
boson), or massive vector particles (ρ, ω meson). The
presence of massless gauge bosons means a local gauge
invariance of a model. Let us note that, in all of the
examples given above, the existence of nontopological
solitons is caused by a global invariance of the corre-
sponding Lagrangians. Therefore, a Noether charge of
such solitons is not the source of a gauge field.
Nontopological solitons exist also in models with a local
gauge invariance, both Abelian [13–15] and non-Abelian
[16,17]. In particular, the model of the self-interacting
scalar Higgs doublet with non-Abelian SUð2Þ gauge
invariance was considered in Ref. [16]. It was shown that
the existence of the nontopological solitons is possible in
this model, and their main properties were studied. The
vacuum of this model completely breaks the local gauge
symmetry, and so the existence of the soliton becomes
possible only due to the additional global Lagrangian
symmetry. As a result of the complete SUð2Þ gauge group
breaking, the gauge fields decay exponentially at spatial
infinity, and there are no long-range gauge fields of the
soliton [16]. Let us remark in this connection that the
nontopological solitons of Abelian gauge models [13–15]
have a long-range gauge field.
The model of the self-interacting scalar Higgs doublet

with non-Abelian SUð2Þ ×Uð1Þ gauge invariance was
considered in Ref. [18]. This model is the bosonic sector
of the Standard Model of the electroweak interactions
[19,20]. It was shown that the nontopological solitons exist
in this model. In contrast to the model considered in
Ref. [16], the vacuum of the Standard Model does notbreak*aloginov@tpu.ru
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the SUð2Þ ×Uð1Þ gauge group completely but remains
invariant with respect to its electromagnetic subgroup
Uemð1Þ. Therefore, the nontopological soliton of the
Standard Model will have a long-range gauge field. This
long-range gauge field is the electric field, and the Noether
charge of the soliton is the electric charge. In comparison
with Ref. [16], the presence of the long-range electric field
changes the properties of the nontopological soliton
significantly.
The solitons [16–18] are formed from condensates of

Higgs scalar and gauge vector fields. In this paper, we
investigate the nontopological soliton in the model of the
self-interacting complex four-vector field. This model does
not contain scalar fields, and its self-interacting complex
four-vector field is not a gauge field. The Lagrangian of the
model has global Uð1Þ symmetry, and the model’s self-
interaction potential is a cubic polynomial in the squared
absolute value of the four-vector field. The properties of the
nontopological soliton in this model appear similar in many
ways to those of Q balls.
This paper is structured as follows. In Sec. II, we

describe briefly the Lagrangian and the field equations
for the model of the self-interacting complex vector field.
It is shown, with the help of Hamilton formalism, that the
number of independent field variables corresponds to the
massive charged particle of spin s ¼ 1. By means of
Hamilton formalism and the Lagrange multipliers method,
the time dependence is established for the four-vector field
of the nontopological soliton. In Sec. III, we give the ansatz
used for solving the model field equations and investigate
some of its properties. We derive the system of nonlinear
differential equations for the functions of the ansatz and the
expressions for the energy and Noether charge functionals
in terms of these functions. The asymptotic properties of
the solution as r → 0 and r → ∞ are investigated. The
problem of soliton stability with respect to fluctuations is
considered. In Sec. IV, we study the properties of the
nontopological soliton in the thick-wall and thin-wall
regimes. The stability of the nontopological soliton to
the decay in the free massive vector bosons is considered
for these extreme regimes. In Sec. V, we describe the
procedure for numerically solving the system of nonlinear
differential equations for the functions of the ansatz. We
present the results of our numerical soliton solution for the
functions of the ansatz, the energy density, and the Noether
charge density for some set of the model’s parameters. The
dependences on the phase frequency are presented for the
energy and Noether charge of the soliton. The dependence
of the soliton energy on the soliton Noether charge is
obtained numerically. Finally, in Sec. VI, we compare the
properties for the nontopological soliton of the complex
scalar field and the nontopological soliton of the complex
vector field.
Throughout the paper, the natural units c ¼ 1, ℏ ¼ 1

are used.

II. THE LAGRANGIAN AND THE
FIELD EQUATIONS

The Lagrangian density for the model of the self-
interacting complex vector field is

L ¼ − 1

2
FμνF�μν −UðWμW�μÞ; ð1Þ

where Fμν ¼ ∂μWν − ∂νWμ,Wμ is the complex four-vector
field, and UðWμW�μÞ is a self-interaction potential for
the complex four-vector field. In this paper, the following
self-interaction potential is used:

UðWμW�μÞ ¼ −m2WμW�μ − g
2
ðWμW�μÞ2 − h

3
ðWμW�μÞ3:

ð2Þ

This potential coincides in form with the potential for the
model of the self-interacting complex scalar field [1,5]; it is
known that there areQ balls in this model. We suppose that
the self-interaction constants g, h are positive. Note that
model (1), (2) is nonrenormalizable, so it can be considered
only as the effective field model.
Lagrangian (1) is invariant under the global Abelian

transformations Wμ → exp ðiψÞWμ. The corresponding
Noether current is

jμ ¼ iðF�μνWν − FμνW�
νÞ: ð3Þ

The presence of a global symmetry group and the corre-
sponding Noether charge is the necessary condition for
the existence of nontopological solitons [1]. By varying
Lagrangian (1) in W�μ, we obtain the field equations of the
model

∂νFνμ −U0ðWμW�μÞWμ ¼ 0; ð4Þ

where

U0ðWμW�μÞ ¼ −m2 − gðWμW�μÞ − hðWμW�μÞ2 ð5Þ

is the derivative of UðWμW�μÞ with respect to its argument
WμW�μ. Using the well-known formula Tμν ¼ 2∂L=∂gμν−
gμνL, we obtain the symmetric energy-momentum tensor of
the model:

Tμν ¼ −FμλF�λ
ν − F�

μλFν
λ þ 1

2
gμνFσλF�σλ

−U0ðWμW�μÞðWμW�
ν þW�

μWνÞ þ UðWμW�μÞgμν:
ð6Þ

From (6), we obtain the expression for the energy density of
the self-interacting complex vector field:
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E ≡ T00 ¼ F0iF�
0i þ

1

2
FijF�

ij − 2U0ðWμW�μÞjW0j2

þ UðWμW�μÞ: ð7Þ

If the self-interaction constants g, h satisfy the condition

h >
1

4

g2

m2
; ð8Þ

then energy density (7) is positive on arbitrary nontrivial
field configurations and vanishes only asWμ ¼ 0. Also, the
energy density has no local extrema on spatially homo-
geneous and time-independent field configurations, and
only one global minimum exists atWμ ¼ 0. If condition (8)
is not satisfied, then there are spatially homogeneous and
time-independent field configurations on which energy
density (7) is negative and unbounded from below (see
Appendix B). Therefore model (1), (2) is stable if condition
(8) holds and unstable otherwise. In the following, we shall
assume that condition (8) is fulfilled. Thus, trivial field
configurationWμ ¼ 0 is the unique classical vacuum of the
model. The vacuum Wμ ¼ 0 is invariant under the global
gauge and Lorentz transformations, so there is no sponta-
neously broken symmetry in the model.
As g → 0; h → 0 field equations (4) go into well-known

Proca equations [21] for the free massive vector field:
∂νFνμ þm2Wμ ¼ 0. From these equations, it follows that
the free massive vector field satisfies the additional con-
dition ∂μWμ ¼ 0. This condition reduces the number of
independent components for the free massive vector field
from four to three. The three independent complex com-
ponents correspond to the six spin-charge degrees of
freedom for the charged massive particle of spin s ¼ 1.
We shall use Hamiltonian formalism to find the number

of independent canonical variables for the self-interacting
complex vector field. From (1) and (2), we obtain the
expressions for the generalized momenta:

π0¼0; πi¼F�
i0; π�0¼0; π�i ¼Fi0; ð9Þ

and the Hamiltonian density

H ¼ πi∂0Wi þ π�i ∂0W�i − L

¼ πiπ
�
i þ

1

2
FijF�

ij − πi∂iW0 − π�i ∂iW�
0 þ UðWμW�μÞ:

ð10Þ

From (9), it follows that the primary constraints are
imposed on the generalized momenta: π0 ¼ 0, π�0 ¼ 0.
The primary constraints must hold at any instant of time;
therefore, Poisson brackets of the generalized momenta
π0, π�0 with Hamiltonian H ¼ R

Hd3x must vanish. This
condition leads us to the secondary constraints among the
canonical variables:

∂iπi þ U0ðWμW�μÞW�
0 ¼ 0;

∂iπ
�
i þ U0ðWμW�μÞW0 ¼ 0: ð11Þ

Note that secondary constraints (11) are identical to field
equation (4) with the index μ ¼ 0. This equation does not
contain the second time derivative of the fields, and so it is
an analog of Gauss’s law for gauge theories. The four
constraints reduce the number of independent canonical
variables for the massive complex vector field from 16 to
12. The 12 independent canonical variables πi, π�i ,W

i,W�i

correspond to the six spin-charge degrees of freedom as it
should be for the charged massive particle of spin s ¼ 1.
It can be shown, with the help of integration by parts and

Eqs. (11), that expressions (7) and (10) lead to the same
value for the field energy. By definition, the nontopological
soliton is an extremum of the energy functional E ¼R
Ed3x ¼ R

Hd3x at the fixed value of the Noether charge
Q ¼ R

j0d3x. From the method of Lagrange multipliers, it
follows that the nontopological soliton is an unconditional
extremum of the functional

F ¼
Z

Hd3x − ω

Z
j0d3x ¼ E − ωQ; ð12Þ

where ω is the Lagrange multiplier. From (3) and (9), we
obtain the expression for the Noether charge density in
terms of the canonically conjugated variables: j0 ¼
iðπ�i W�i − πiWiÞ. In the following, we shall assume that
the time components W0, W�

0 satisfy constraints (11). By
varying (12) with respect to the independent canonically
conjugated variables πi, π�i , Wi, W�i, and using the
Hamilton field equations

∂0Wi ¼ δH
δπi

; ∂0πi ¼ − δH
δWi ; ð13Þ

we obtain

δF ¼ −
Z

ð∂0πi − iωπiÞδWid3x

−
Z

ð∂0π
�
i þ iωπ�i ÞδW�id3x

þ
Z

ð∂0Wi þ iωWiÞδπid3x

þ
Z

ð∂0W�i − iωW�iÞδπ�i d3x ¼ 0: ð14Þ

From (11) and (14), we get the time dependence for the
components of the soliton four-vector field:

W0ðx; tÞ ¼ exp ð−iωtÞw0ðxÞ;
Wðx; tÞ ¼ exp ð−iωtÞwðxÞ: ð15Þ

NONTOPOLOGICAL SOLITONS IN THE MODEL OF THE … PHYSICAL REVIEW D 91, 105028 (2015)

105028-3



The extremum condition for F can be written in the general
form δF ¼ δE − ωδQ ¼ 0. Then it follows from this
condition that the important relation occurs for the non-
topological soliton

dE
dQ

¼ ω; ð16Þ

where ω is some function of Q.

III. THE ANSATZ AND SOME PROPERTIES
OF THE SOLUTION

We use the spherically symmetric radial ansatz for the
functions w0ðxÞ, wðxÞ in (15) to find the solutions to field
equations (4):

w0ðxÞ ¼ iuðrÞ; wðxÞ ¼ x
r
vðrÞ: ð17Þ

A similar ansatz was used in Ref. [16] to find the soliton
solutions of the non-Abelian gauge model; it was also used
in Ref. [18] to find the soliton solutions in the bosonic
sector of the Standard Model. The feature of ansatz (17)
is that the spatial components of the corresponding field
strength tensor Fμν vanish:

F00≡0; F0i¼ iexpð−iωtÞx
i

r
ðu0ðrÞ−ωvðrÞÞ; Fij¼0:

ð18Þ
Substituting (15), (17), and (18) into field equations (4),
we shall obtain the system of ordinary differential equa-
tions for the functions uðrÞ, vðrÞ:

u00ðrÞþ2

r
u0ðrÞ−ω

�
v0ðrÞþ2

r
vðrÞ

�
−m2uðrÞ−guðrÞ

×ðuðrÞ2−vðrÞ2Þ−huðrÞðuðrÞ2−vðrÞ2Þ2¼0; ð19Þ

ωu0ðrÞ þ ðm2 − ω2ÞvðrÞ þ gvðrÞðuðrÞ2 − vðrÞ2Þ
þ hvðrÞðuðrÞ2 − vðrÞ2Þ2 ¼ 0: ð20Þ

Let us consider some properties of this system. First,
note that Eq. (20) contains the quadric term in ω, while
Eq. (19) is linear in ω. It follows from this that field
equations (4) with μ ¼ 1; 2; 3 containing the second time
derivatives of the fields reduce to Eq. (20). Field equa-
tion (4) with μ ¼ 0 containing only the first time derivatives
of the fields reduces to Eq. (19). Therefore, Eq. (20) is
dynamic, while Eq. (19) is an analog of Gauss’s law for
gauge models.
Lagrangian (1) is invariant under the C, P, and T

transformations of the four-vector field Wμ. The conse-
quence of this is the invariance of system (19), (20) under
the discrete transformations:

ω; u; v → −ω; u;−v; ð21Þ

ω; u; v → ω;−u;−v; ð22Þ

ω; u; v → −ω;−u; v: ð23Þ

Substituting (15), (17), and (18) into (3) and (7), we shall
obtain the expressions for the Noether current density and
the energy density in terms of the functions uðrÞ, vðrÞ:

jμðrÞ ¼ ð2vðrÞðωvðrÞ − u0ðrÞÞ; 0; 0; 0Þ; ð24Þ

EðrÞ ¼ ðωvðrÞ − u0ðrÞÞ2 þm2ðuðrÞ2 þ vðrÞ2Þ
þ g
2
ðuðrÞ2 − vðrÞ2Þð3uðrÞ2 þ vðrÞ2Þ

þ h
3
ðuðrÞ2 − vðrÞ2Þ2ð5uðrÞ2 þ vðrÞ2Þ: ð25Þ

Then it follows from (21) and (23) that j0ðωÞ is an odd
function and EðωÞ is an even function of the phase
frequency

j0ð−ωÞ ¼ −j0ðωÞ; Eð−ωÞ ¼ EðωÞ: ð26Þ

It can be shown by direct substitution that M0ij compo-
nents of the orbital angular momentum tensor Mμνρ ¼
xρTμν − xνTμρ and S0ij components of the spin angular
momentum tensor Sμνρ ¼ W�νFρμ −W�ρFνμ þWνF�ρμ −
WρF�νμ vanish on field configuration (15), (17). Therefore
the full angular momentum of the nontopological soliton
is equal to zero. It is the consequence of the rotational
symmetry for field configuration (15), (17).
It follows from the regularity condition of the solution at

r ¼ 0 and from the finiteness of the soliton energy that the
functions uðrÞ, vðrÞ satisfy the boundary conditions:

u0ð0Þ ¼ 0; vð0Þ ¼ 0; uð∞Þ ¼ 0: ð27Þ

Substituting the power expansions for uðrÞ, vðrÞ in
Eqs. (19) and (20), we get the behavior of the solution
as r → 0:

uðrÞ ¼ a0 þ
a2
2!

r2 þOðr4Þ;

vðrÞ ¼ b1rþ
b3
3!

r3 þOðr5Þ; ð28Þ

where

a2 ¼
a0
3
ða40hþ a20gþm2 − ω2Þ; b1 ¼ − a0ω

3
;

b3 ¼ −
a0
5ω

ða40hþ a20gþm2Þð5a40hþ 3a20gþm2Þ

þ a0ω
15

ð19a40hþ 11a20gþ 3m2Þ: ð29Þ
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It follows from (28) that uðrÞ is an even function of r, while
vðrÞ is an odd function of r. From (24), (25), (28), and (29),
we obtain the power expansions for the Noether charge and
energy densities as r → 0:

j0ðrÞ ¼ d2
2!

r2 þOðr4Þ; ð30Þ

EðrÞ ¼ c0 þ
c2
2!

r2 þOðr4Þ; ð31Þ

where

c0 ¼ a20m
2 þ 3

2
a40gþ

5

3
a60h;

c2 ¼
2

3
a0a2ð16a40hþ 10a20gþ 4m2 þ ω2Þ

þ 2

9
a20ω

2ð−3a40h − a20gþm2 þ ω2Þ;

d2 ¼
4

9
a20ωða40hþ a20gþm2Þ: ð32Þ

It follows from (30) and (31) that the Noether charge
density vanishes at the center of the nontopological soliton,
while the energy density is nonzero.
The finiteness of the soliton energy leads us to the

following asymptotics of uðrÞ, vðrÞ as r → ∞:

uðrÞ∼c∞
e−Δr
r

; vðrÞ∼c∞
ω

Δ

�
1þ 1

Δr

�
e−Δr
r

; ð33Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
. It follows from (33) that the phase

frequency must satisfy the inequality jωj < m. Using (24),
(25), and (33), we get the asymptotic expressions for the
energy and Noether charge densities of the soliton as
r → ∞:

EðrÞ∼ c2∞m2
ðΔ4r2 þ ð1þΔrÞ2ðm2 þω2ÞÞ

ðΔrÞ4 × exp ð−2ΔrÞ;
ð34Þ

j0ðrÞ ∼ 2c2∞m2ω
ð1þ ΔrÞ2
ðΔrÞ4 exp ð−2ΔrÞ: ð35Þ

If the values of the parameters ω, m, g, and h are fixed,
then the behavior of the solution uðrÞ, vðrÞ as r → 0 is
determined by the single parameter a0. The behavior of the
solution uðrÞ, vðrÞ as r → ∞ is also determined by the
single parameter c∞. Thus, we have the two free param-
eters. With the help of Eq. (20) and its derivative with
respect to r, we can exclude vðrÞ and v0ðrÞ from Eq. (19). In
the result, we obtain a differential equation of the second
order for uðrÞ. The continuity condition for uðrÞ and its
derivative u0ðrÞ at arbitrary r give us two equations. So we
shall have the two equations for determining the two

parameters a0 and c∞. According to Ref. [22], this fact
is an argument in favor of the existence of the solution for
the boundary value problem (19), (20), and (27) in some
range of the parameters ω, m, g, and h.
Integrating constraint equations (11) over all space,

using Gauss’s theorem, and taking into account asymp-
totics (33), we obtain the integral relation

R
U0ðWμðxÞ

W�μðxÞÞW0ðxÞd3x ¼ 0. On field configuration (15), (17),
this relation takes the form

Z
∞

0

U0ðWμW�μÞuðrÞr2dr ¼ 0; ð36Þ

where WμW�μ ¼ uðrÞ2 − vðrÞ2. Note that the function
UðWμW�μÞ decreases monotonically when condition (8)
is satisfied. Its derivative U0ðWμW�μÞ will be negative at
any value of the argument WμW�μ. Therefore, it follows
from (36) that the function uðrÞ is alternating, and so it
must have at least one node.
It is obvious that soliton solution (15), (17) has three

translational zero modes δð0Þμi ¼ ∂iwμ. The rotational zero
modes are absent due to the spherical symmetry of the
soliton. Following Ref. [5], we wish to show that the extra
zero mode appears when the condition dQ=dω ¼ 0 holds.
Let us consider fluctuations in the functional subspace of
the spherically symmetric field configuration (15), (17).
The first variation of the energy functional for the fixed
Noether charge vanishes on the soliton solution. The
second variation can be written in the form

δ2EQ¼4π

Z
∞

0

~ψDψr2drþ1

I

�
4π

Z
∞

0

~bψr2dr

�
2

; ð37Þ

where

D ¼
�
Δr þU0 þ 2u2U00 −ωd=dr − 2ω=r − 2uvU00

ωd=dr − 2uvU00 −U0 þ 2v2U00 − ω2

�
;

ð38Þ

~b ¼
�
−v0 − 2v=r; u0 − 2ωv

�
; ð39Þ

I ¼ 4π

Z
∞

0

v2r2dr; ð40Þ

U00 ¼ −g − 2hðu2 − v2Þ is the second derivative of U with
respect to its argument WμW�μ ¼ u2 − v2, ~ψ ¼ ðδu; δvÞ is
the transposed column ψ of u, v fluctuations, and Δr ¼
d2=dr2 þ 2=r is the radial part of the Laplacian. It follows
from (37) that the spherically symmetric zero mode must
satisfy the linear integro-differential equation
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Λψ ≡Dψ þ b
4π

I

Z
∞

0

~bψr2dr ¼ 0: ð41Þ

With A≡ 4πI−1
R
∞
0

~bψr2dr from Eq. (41), we obtain

Dψ þ Ab ¼ 0: ð42Þ
Differentiating Eqs. (19) and (20) with respect to ω, one
sees that Eq. (42) is satisfied by ~ψ ¼ ~wω ≡ ðuω; vωÞ with
A ¼ 1:

Dwω þ b ¼ 0; ð43Þ
where the subscript ω means the differentiation in ω in
the following. Now, if wω is the solution to Eq. (42), then
from the condition A ¼ 4πI−1

R∞
0

~bwωr2dr ¼ 1 we get the
relation Z

∞

0

ð ~bwω − v2Þr2dr ¼ 0: ð44Þ

Differentiating (24) with respect to ω, we obtain the
expression

j0ω ¼ 2v2 þ 4ωvvω − 2u0vω − 2u0ωv: ð45Þ
It is readily seen that the derivative of the Noether charge
with respect to ω,

dQ
dω

¼ 4π

Z
∞

0

j0ωr2dr; ð46Þ

vanishes if the relation (44) holds, and conversely. Thus,
the vanishing of dQ=dω is the indication of the extra
zero mode.
We shall now show that the appearance of the extra zero

mode when dQ=dω ¼ 0 really signals the change of sign
for an eigenvalue of the integro-differential operator Λ.
That is, if λðωÞ is the eigenvalue of Λ, which is zero when
dQ=dω ¼ 0, then λðωÞ > 0 when dQ=dω < 0, and con-
versely. Indeed, if ψðωÞ is the eigenvector corresponding
to λðωÞ, and ω̄ is defined by λðω̄Þ ¼ 0, then we have
ψðω̄Þ ¼ wωðω̄Þ. Differentiating the equation ΛðωÞψðωÞ ¼
λðωÞψðωÞ with respect to ω, we obtain at ω ¼ ω̄

Λωðω̄Þwωðω̄Þ þ Λðω̄Þψωðω̄Þ ¼ λωðω̄Þwωðω̄Þ: ð47Þ

By multiplying this equation on the left with ~wω and
integrating over all space, we obtainZ

~wωðω̄ÞΛωðω̄Þwωðω̄Þd3x ¼ λωðω̄Þ
Z

~wωðω̄Þwωðω̄Þd3x;
ð48Þ

where the Hermiticity of the matrix differential operator D
and the relation Λðω̄Þwωðω̄Þ ¼ 0 were used. However, the
left-hand side of Eq. (48) can be written as

d
dω

Z
~wωðω̄ÞΛðω̄Þwωðω̄Þd3x

− 2

Z
~wωωðω̄ÞΛðω̄Þwωðω̄Þd3x

¼ d
dω

Z
~wωðω̄ÞΛðω̄Þwωðω̄Þd3x≡ Gωðω̄Þ; ð49Þ

where

GðωÞ ¼
Z

~wωðωÞΛðωÞwωðωÞd3x: ð50Þ

Using the explicit form (41) of ΛðωÞ and expressions (43)
and (45), it can be shown that GðωÞ can be represented as

GðωÞ ¼
�Z

~bwωd3x

�
1

I

�Z
~bwωd3x − I

�

¼ 1

2

�
1

2I
dQ
dω

− 1

�
dQ
dω

: ð51Þ

Since dQ=dω ¼ 0 at ω ¼ ω̄, it follows from (48)–(51) that

sgnðGðωÞÞ ¼ sgnðλðωÞÞ ¼ −sgnðdQ=dωÞ ð52Þ
in a small neighborhood of ω̄. But this is enough to prove
that sgnðλðωÞÞ ¼ −sgnðdQ=dωÞ for any allowable values
of ω. Thus we have shown that if dQ=dω > 0, then the
soliton solution has at least one negative mode. This
implies that the nontopological soliton is unstable if the
condition dQ=dω > 0 holds. Note that this condition can
also be written in the form ðω=QÞdQ=dω > 0. In this form,
it is valid for an arbitrary choice of sign in the definition of
the Noether charge Q and the phase frequency ω.

IV. THE THICK-WALL AND THIN-WALL
REGIMES OF THE SOLITON

Let us investigate the properties of the nontopological
soliton in the two extreme regimes. In the thick-wall
regime, the absolute value of the phase frequency jωj tends
to its maximum value: jωj → m. In this case, the dumping
coefficient Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
in asymptotics (33) tends to

zero that leads to the spatial spreading of the nontopo-
logical soliton. Let us consider the functional F, which
was defined in (12). This functional is related to the
energy functional by means of Legendre transformation:
FðωÞ ¼ EðQÞ − ωQ. On field configuration (15), (17), the
functional F is of the form

F¼−4π
Z

∞

0

ððu0ðrÞ−ωvðrÞÞ2þm2ðuðrÞ2−vðrÞ2Þ

þg
2
ðuðrÞ2−vðrÞ2Þ2þh

3
ðuðrÞ2−vðrÞ2Þ3Þr2dr: ð53Þ

In (53), we undertake scale transformation of the fields and
coordinates:
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u ¼ Δ2ū; v ¼ Δv̄; r ¼ Δ−1r̄: ð54Þ

As a result, the functional (53) can be written as

F ¼ ΔF̄ þOðΔ3Þ; ð55Þ

where

F̄ ¼ 4π

Z
∞

0

ð2mv̄ðr̄Þū0ðr̄Þ þ v̄ðr̄Þ2 −m2ūðr̄Þ2

− g
2
v̄ðr̄Þ4Þr̄2dr̄: ð56Þ

Notice that the functional F̄ does not depend on Δ. In
the limit Δ → 0, it is possible to ignore the higher-order
terms in Δ in expression (55). Using known properties of
Legendre transformation, we obtain consecutively

QðωÞ ¼ − dFðωÞ
dω

¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p F̄; ð57Þ

EðωÞ ¼ FðωÞ − ω
dFðωÞ
dω

¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p F̄: ð58Þ

From expressions (57) and (58), we obtain the dependence
of the soliton energy on the soliton Noether charge as
jωj → m:

EðQÞ ¼ mjQj þmF̄2

2
jQj−1 þOðjQj−3Þ: ð59Þ

It follows from (57) and (58) that the energy and Noether
charge of the nontopological soliton tend to infinity as
jωj → m.
We suppose that the dimensionless functions mūðr̄Þ and

v̄ðr̄Þ have values of the same order in the thick-wall regime.
Then it follows from (54) that the relation holds in the
thick-wall regime:

ju=mj ≪ jv=mj ≪ 1: ð60Þ

According to (28) and (29), this relation is not valid in
the range r≲ ω−1 ≈m−1. Note, however, that the range
r≲m−1 is much less than the soliton size in the thick-wall
regime. From (24), (25), and (60), we obtain the approxi-
mate expressions for the energy and Noether charge
densities in the thick-wall regime as r≳m−1:

EðrÞ ≈ ðω2 þm2ÞvðrÞ2 ≈ 2m2vðrÞ2; ð61Þ

j0ðrÞ ≈ 2ωvðrÞ2: ð62Þ

From (61) and (62), it follows that the relation holds
between the energy and Noether charge densities in the
thick-wall regime as r≳m−1:

EðrÞ ≈ ωj0ðrÞ: ð63Þ

The next extremal regime of the nontopological soliton
is the thin-wall regime in which the absolute value of the
phase frequency jωj tends to some minimum value ωmin.
In this regime, the absolute value of the three-vector
field jwðrÞj ¼ vðrÞ tends to some constant value v in the
soliton interior. Along with this, the spatial size of the
soliton increases indefinitely, and its energy and Noether
charge tend to infinity. Throughout the main bulk of the
soliton, when its volume V → ∞, the gradient operator
gives a factor proportional to V−1=3. Therefore, we can
ignore the gradient term u0 in comparison with v in
the expression for the generalized momentum πi ¼
i exp ðiωtÞniðu0ðrÞ − ωvðrÞÞ. Then we obtain from con-
straint equations (11)

U0ðWμW�μÞW0 ¼ −∂iπ
�
i ¼ i exp ð−iωtÞ 2ωv

r
: ð64Þ

If condition (8) has been satisfied, then UðWμW�μÞ is the
monotonically decreasing function, and so U0ðWμW�μÞ
does not vanish. Therefore, it follows from (64) that in the
soliton interior at sufficiently large r the time component
W0 becomes negligibly small. Thus in the interior, which
determine the energy and the Noether charge of the
soliton in the thin-wall regime, the functions of ansatz
(17) satisfy the relation vðrÞ ≈ v, uðrÞ ≈ 0. On such field
configurations, Noether charge density (24) and energy
density (25) take the form

j0 ≡ q ¼ 2ωminv2; E ¼ ðm2 þ ω2
minÞv2 − g

2
v4 þ h

3
v6:

ð65Þ

From (65), we get the ratio E=q:

E
q
¼ q

4v2
þm2v2

q
− g
2

v4

q
þ h

3

v6

q
: ð66Þ

Ratio (66) reaches the minimum value

E
q
¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2 − 3

g2

h

r
; ð67Þ

when

v ¼
ffiffiffi
3

p

2

ffiffiffi
g
h

r
; ð68Þ

q ¼ 3

8
gh−3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16hm2 − 3g2

q
: ð69Þ

From (67) and (69), we obtain the value of the energy
density

NONTOPOLOGICAL SOLITONS IN THE MODEL OF THE … PHYSICAL REVIEW D 91, 105028 (2015)

105028-7



E ¼ 3

2

gm2

h
− 9

32

g3

h2
: ð70Þ

Expressions (68)–(70) are the thin-wall asymptotic values
of jwj ¼ v, the Noether charge density, and the energy
density in the soliton interior, respectively. Note that the
relation holds at these values of v and q:

ωmin ¼
q
2v2

¼ E
q
¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2 − 3

g2

h

r
: ð71Þ

It follows from (71) that in the thin-wall regime the
energy and the Noether charge of the soliton satisfy the
asymptotic relation

lim
ω→ωmin

E
Q

¼ ωmin: ð72Þ

From the condition 0 < jωminj < m, it follows that
the self-interacting constants in (2) must satisfy the
inequality

h >
3

16

g2

m2
: ð73Þ

This inequality will obviously be valid if condition
(8) holds.
The expression (65) for the energy density in the thin-

wall regime can be represented as the sum of the kinetic and
potential terms

E ¼ T þ V; ð74Þ

where

T ¼ ω2
minv

2; V ¼ m2v2 − g
2
v4 þ h

3
v6: ð75Þ

For asymptotic values (68) and (71), the contributions of
these terms are equal to each other:

T ¼ V; E ¼ 2T ¼ 2V: ð76Þ

Let us consider the question of the soliton stability with
respect to the decay in the free massive vector bosons.
Using the standard methods [12], it can be shown that the
energy and the Noether charge of the lowest-energy free-
boson solution satisfy the usual relation

E ¼ mjQj: ð77Þ

The lowest-energy free-boson solution corresponds to an
ensemble of the free massive vector bosons at rest. From
(59) and (77), it follows that, in the thick-wall regime, the
energy of the nontopological soliton with the givenQ tends
from above to the energy of the free-boson solution with the

same Q. From (72), (73), and (77), it follows that, in the
thin-wall regime, the energy of the nontopological soliton
with the given Q is less than the energy of the free-boson
solution with the same Q. Hence, in the thin-wall regime,
the nontopological soliton is stable to the decay in the free
massive vector bosons. On the other hand, in the thick-wall
regime, the nontopological soliton is unstable to such
decay. This instability can be either classical or quantum
mechanical. If the quadratic fluctuation operator has one or
more negative eigenvalues in the soliton neighborhood,
then the soliton is unstable to the decay on the classical
level. If the quadratic fluctuation operator has no negative
eigenvalues in the soliton neighborhood, then the soliton
decay is a result of tunneling.
It is shown in Sec. III that the quadratic fluctuation

operator Λ has at least one negative eigenvalue in the
soliton neighborhood if ðω=QÞdQ=dω > 0. From (57), it
follows that ðω=QÞdQ=dω ¼ m2ðm2 − ω2Þ−1 > 0 in the
thick-wall regime. We could, therefore, be sure that the
nontopological soliton is classically unstable for
jωj ∈ ðω̄; mÞ, where ω̄ is the phase frequency at which
dQ=dω ¼ 0. The research of the soliton stability as
ðω=QÞdQ=dω < 0 is a rather complicated task and lies
beyond the scope of this paper. Let us remark in this regard
that if ðω=QÞdQ=dω < 0, then the nontopological soliton
of the self-interacting complex scalar field (Q ball) is
classically stable [5].

V. NUMERICAL RESULTS

The system of differential equations (19) and (20) with
boundary condition (27) is the mixed boundary value
problem on the semi-infinite interval r ∈ ½0;∞Þ. This
boundary value problem can be solved only by numerical
methods. In this paper, the boundary value problem (19),
(20), and (27) was solved by using the MAPLE package [23]
by the method of finite differences and subsequent
Newtonian iterations. The point r ¼ 0 is the regular
singular point of system (19), (20), and so we applied
difference schemes that do not use the boundary values of
the functions. Richardson extrapolation was used to accel-
erate the convergence of the numerical procedure to the
exact solution. Formulas (16) and (36) were used to check
the correctness of numerical solutions.
The system of differential equations (19) and (20)

depends on the four parameters ω, m, g, and h. It is readily
seen that a solution of this system has the following
dependence on the mass parameter m:

uðr;m;ω; g; hÞ ¼ m ~uðρ; ~ω; g; ~hÞ;
vðr;m;ω; g; hÞ ¼ m ~vðρ; ~ω; g; ~hÞ; ð78Þ

where ρ ¼ mr, ~ω ¼ ω=m, and ~h ¼ m2h. Note that the
dimensionless functions ~u and ~v depend only on the three
dimensionless parameters ~ω, g, and ~h. Let us consider a
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general case in which the parameters g and ~h are values of
the same order and take them equal to unity: g ¼ 1, ~h ¼ 1.
We shall use the dimensionless functions ~u, ~v and the
dimensionless combinations E=m, E=m4, q=m3 for pre-
senting numerical results, so the mass parameter m can be
an arbitrary positive value.
Figure 1 presents the numerical solution for ~uðρÞ,

~vðρÞ, corresponding to the dimensionless phase frequency
~ω ¼ 0.915. Figure 2 shows the energy density EðρÞ divided
by m4 and the Noether charge density qðρÞ divided by m3,
corresponding to the solution in Fig. 1. Notice that ~ω ¼
0.915 is the minimum value for which we managed to
obtain the numerical solution of the boundary value
problem (19), (20), and (27) at g ¼ 1, ~h ¼ 1. The difficulty
of the numerical solution under a further decrease in ~ω is
associated with the fact that the boundary value problem
(19), (20), and (27) becomes stiff; i.e., small variations of ~ω
lead to large variations in the solution ~uðρÞ, ~vðρÞ of the

boundary value problem. Thus, the solution in Fig. 1 most
closely matches the thin-wall regime, described in Sec. IV.
The characteristic features of this solution are the presence
of a transition region at small ρ, the vanishing of the
Noether charge density qðρÞ at ρ ¼ 0, and a significant
decrease in the energy density EðρÞ at ρ ¼ 0. The presence
of the transition region at small ρ and the vanishing of the
Noether charge density at ρ ¼ 0 follow from boundary
conditions (27) and the behavior of vðrÞ at small r in (28).
Such behavior of vðrÞ is due to the fact that the spatial
components of the regular spherically symmetric vector
field wðxÞ in (17) must vanish at r ¼ 0. Note, in this
connection, that nontopological solitons of the scalar field
models do not have a central transition region, and their
Noether charge density does not vanish at the center
[1,5,13]. Between the central and edge transition regions,
the energy and Noether charge densities are approximately
constant, that is the attribute of the thin-wall regime. Note
also that the values of v, q, and E in the soliton interior
are close to their asymptotic thin-wall values (68), (69),
and (70).
Figures 3 and 4 are analogous to Figs. 1 and 2 but

correspond to the dimensionless phase frequency
~ω ¼ 0.9999. At the given value of ~ω, the nontopological
soliton is in the thick-wall regime. Comparison of Figs. 1
and 2 and Figs. 3 and 4 shows that the shapes of the
nontopological soliton in the thin-wall and thick-wall
regimes essentially differ. In particular, the values of the
functions ~uðρÞ and ~vðρÞ in the thick-wall regime are
significantly less than those in the thin-wall regime.
From Fig. 3, it follows that, except for the small central
region, the relation j ~uj ≪ j ~vj ≪ 1 holds in accordance with
(60). Note that Fig. 4 shows only the dependence of E=m4

on ρ. This is because the dependence of q=m3 on ρ is
visually indistinguishable from that of E=m4. This fact is
in accordance with (63) by noting that jωj → m in the
thick-wall regime. Let us remark that the dimensionless
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0.8
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u

FIG. 1. The numerical solution ~uðρÞ, ~vðρÞ for ~ω ¼ 0.915,
g ¼ 1, ~h ¼ 1. The solid curve is for ~uðρÞ, and the dashed curve
is for ~vðρÞ.
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FIG. 2. The dependence of E=m4 and q=m3 on ρ. The solid
curve is for E=m4, and the dashed curve is for q=m3. The
parameters ~ω, g, ~h are the same as in Fig. 1.
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FIG. 3. The numerical solution ~uðρÞ, ~vðρÞ for ~ω ¼ 0.9999,
g ¼ 1, ~h ¼ 1. The solid curve is for ~uðρÞ, and the dashed curve is
for ~vðρÞ.
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combination E=m4 in Fig. 4 does not vanish at ρ ¼ 0.
It is equal to the small value ~uð0Þ2 þ ð3=2Þg ~uð0Þ4 þ
ð5=3Þ ~h ~u ð0Þ6 ¼ 4.995 × 10−6 in accordance with (28),
(31), and (32). From Figs. 3 and 4, it follows that in the
thick-wall regime the soliton has no interior with the
approximately constant values of the energy and Noether
charge densities. Note also that there is no sharp exterior
boundary of the soliton in the thick-wall regime.
Let us remark that the function ~uðρÞ in Figs. 1 and 3

is alternating sign and has exactly one node. This fact
is in accordance with (36). On the other hand, the function
~vðρÞ in Figs. 1 and 3 has no nodes. This suggests that
the numerical solutions presented in Figs. 1 and 3 are
unexcited.
Figure 5 presents the dependence of the decimal loga-

rithm of the soliton energy divided by m on the decimal
logarithm of Δ=m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~ω2

p
in the thick-wall regime

j ~ωj → 1. From this figure, it follows that the relation
log10 ðE=mÞ ¼ const − log10 ðΔ=mÞ holds in the thick-wall
regime in accordance with expression (58).

Figure 6 shows the dependences of the soliton energy E
divided by m and the soliton Noether charge Q on the
dimensionless phase frequency ~ω for g ¼ 1, ~h ¼ 1. The
dependences Eð ~ωÞ=m and Qð ~ωÞ are presented in the range
from the minimum value of ~ω to its maximum value that
we managed to reach by numerical methods. From Fig. 6, it
follows that the energy and the Noether charge of the
soliton tend to infinity as j ~ωj → ~ωmin (thin-wall regime)
and as j ~ωj → 1 (thick-wall regime). Such behavior of
the energy and the Noether charge of the soliton is in
accordance with the conclusions of Sec. IV.
Finally, the dependence of the difference between the

soliton energy and the free-boson solution energy EðQÞ −
mQ divided by m on the Noether charge Q is shown in
Fig. 7. The curve EðQÞ −mQ consists of two branches and
develops a spike at the point of their junction. At this point,
the energy and the Noether charge of the soliton attain
their minimum values. From Fig. 7, it follows that the
solitons corresponding to the upper branch are unstable to
the decay in the massive vector bosons. When moving
along the upper branch upwards Q, we attain the region of
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1.0

1.5

2.0

2.5

3.0 10 3

m4

FIG. 4. The dependence of E=m4 on ρ. The parameters ~ω, g, ~h
are the same as in Fig. 3.

1.6 1.4 1.2 1.0 0.8

3.4

3.6

3.8

4.0

log10 E m

log10 m

FIG. 5. The dependence of the decimal logarithm of the soliton
energy divided by m on the decimal logarithm of Δ=m in the
thick-wall regime.
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FIG. 6. The soliton energy divided by m (solid curve) and the
soliton Noether charge (dashed curve) as functions of the
dimensionless phase frequency ~ω.
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FIG. 7. The difference EðQÞ −mQ divided by m as a function
of the Noether charge Q.
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the thick-wall regime. In accordance with formula (59), in
this regime the soliton energy E tends to the valuemQ from
above. When moving along the lower branch upwards Q,
we attain the region of the thin-wall regime. From Fig. 7, it
follows that in the thin-wall regime the soliton is stable to
the decay in the massive vector bosons. Note also that the
curve EðQÞ −mQ for the soliton of the self-interacting
vector field coincides in form with the similar curve for the
soliton of the self-interacting scalar field (Q ball).
We can see from Figs. 6 and 7 that ðω=QÞdQ=dω > 0

on the upper branch of the EðQÞ −mQ curve. Thus, the
nontopological soliton is classically unstable on this
branch. From Figs. 6 and 7, it also follows that d2E=dQ2 ¼
dω=dQ < 0 on the lower branch of the EðQÞ −mQ curve.
Hence, the lower branch is concave, and so the inequality
holds:

EðQÞ < EðQ1Þ þ EðQ2Þ; ð79Þ
where Q ¼ Q1 þQ2. From this inequality, it follows that
on the lower branch the nontopological soliton is stable to
the fission in the several nontopological solitons with the
smaller Noether charges.

VI. CONCLUSIONS

In conclusion, we shall undertake a comparison of the
properties of the nontopological soliton of the self-
interacting vector field and the nontopological soliton
of the self-interacting scalar field. First, let us enumerate
the common properties of the solitons. Both solitons
exist in the limited range of phase frequencies
jωj ∈ ðωmin; mÞ, where m is the mass of the elementary
boson of a field model. As jωj → ωmin (jωj → m), the
solitons pass into the thin-wall (thick-wall) regime,
while their energy and Noether charge tend to infinity.
Both solitons have the same shape curve EðQÞ −mQ.
In particular, the curve EðQÞ −mQ consists of two
branches and has a cuspidal point. The region of high
Q on the upper (lower) branch of the curve corresponds
to the thick-wall (thin-wall) regime. The analysis of the
curve EðQÞ −mQ leads us to the conclusion that both
solitons are unstable to the decay in the free bosons in
the thick-wall regime but are stable to this decay in the
thin-wall regime. On the upper branch of the curve, the
solitons of both types are classically unstable. Note also
that the solitons of both types are spherically symmetric
and have no angular momentum.
In contrast to the soliton of the self-interacting scalar

field, the soliton of the self-interacting vector field has a
central transition region in the thin-wall regime. In par-
ticular, at r ¼ 0 the Noether charge density of the vector
field soliton vanishes, and the energy density attains a
minimum value. It is known [1,12] that the field configu-
ration of the scalar field nontopological soliton can be
described in terms of a mechanical analogy. It corresponds

to a one-dimensional motion of a particle with a unit mass
in the “time” r in a viscous medium in the force field of a
certain potential. Using this analogy, one can easily explain
the behavior of the scalar field nontopological soliton both
in the thin-wall and in the thick-wall regimes. Moreover,
one can easily determine whether there is a soliton solution
for any given values of model parameters. At the same time,
the system of differential equations (19) and (20) describ-
ing the vector field nontopological soliton has no inter-
pretation in terms of any mechanical analogy. For this
reason, the existence of the vector field nontopological
soliton should be established for any given m, g, h by
means of numerical methods.
A nontopological soliton can be quantized by several

alternative methods [24–26]. All these methods in one way
or another require knowing the spectrum of the quadratic
fluctuation operator in a functional neighborhood of the
soliton. Furthermore, the fluctuations should occur in the
field sector of the fixed Noether charge. This spectrum can
be found only numerically for the specific values of the
model’s parameters ω, m, g, and h. We can conclude from
the numerical results of Sec. IV that at g ∼m2h ∼ 1 the
nontopological soliton of the self-interacting vector field
is a classical object, because its action over the period
ST ¼ R 2π=ω

0 dt
R
d3xL is ∼103–104 ≫ 1, while the

Compton wavelength λ ¼ 1=E ∼ 10−2–10−4 m−1 is much
less than its linear size R ∼ 101–102 m−1.
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APPENDIX A

Lagrangian (1) contains the constants m, h with the
dimensions of mass and mass−2, respectively, and the
dimensionless constant g. Let us undertake the scaling
transformation of the four-vector field

Wμ ¼ g−1
2W̄μ: ðA1Þ

Then Lagrangian (1) and energy density (7) can be written
as

L ¼ g−1L̄; E ¼ g−1Ē; ðA2Þ

where

L̄ ¼ − 1

2
F̄μνF̄�μν − ŪðW̄μW̄�μÞ; ðA3Þ
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Ē ¼ F̄0iF̄�
0i þ

1

2
F̄ijF̄�

ij þ ŪðW̄μW̄�μÞ
− 2Ū0ðW̄μW̄�μÞjW̄0j2; ðA4Þ

ŪðW̄μW̄�μÞ ¼ −m2W̄μW̄�μ − 1

2
ðW̄μW̄�μÞ2

−
1

3

h
g2

ðW̄μW̄�μÞ3: ðA5Þ

It follows from (A2), (A3), and (A5) that Lagrangian L̄
depends on g, h only by means of ratio h=g2; hence, the
corresponding four-vector solution W̄μ also depends on g, h
by means of this ratio. Note also that the numerical
coefficients of the potentials U and Ū coincide, and so
the relation holds: W̄μðx;m2; hg−2Þ ¼ Wμðx;m2; 1; hg−2Þ.
Thus, we determine the general form of dependence on g
for the four-vector solution Wμ:

Wμðx;m2; g; hÞ ¼ g−1
2Wμðx;m2; 1; hg−2Þ: ðA6Þ

From (A2) and (A6), it follows that

Lðx;m2; g; hÞ ¼ g−1Lðx;m2; 1; hg−2Þ; ðA7Þ

Eðx;m2; g; hÞ ¼ g−1Eðx;m2; 1; hg−2Þ; ðA8Þ

in solutions of the field equations (4). If h=g2 remain fixed
and g tends to zero, then the soliton solution Wμ increases
indefinitely. As a result, the energy E ¼ R

Ed3x and the

action over the period ST ¼ R 2π=ω
0 dt

R
d3xL also increase

indefinitely, and the nontopological soliton passes into
the quasiclassical regime. In this respect, the role of the
dimensionless coupling constant g is analogous to that of
the gauge coupling constant of the pure Yang-Mills theory.

APPENDIX B

Let us consider some properties of energy density (7) on
spatially homogeneous and time -independent field con-
figurations. On such field configurations, energy density
(7) depends only on the squared absolute values of the time
component W0 and the three-vector W:

E ¼ −2U0ðWμW�μÞjW0j2 þ UðWμW�μÞ
¼ 2jW0j2ðm2 þ gðjW0j2 − jWj2Þ
þhðjW0j2 − jWj2Þ2Þ −m2ðjW0j2 − jWj2Þ

−
g
2
ðjW0j2 − jWj2Þ2 − h

3
ðjW0j2 − jWj2Þ3: ðB1Þ

It turns out that the properties of E depend in an essential
way on the value of Δ≡ g2 − 4hm2. If condition (8) is
satisfied and thereby Δ < 0, then there is the global
minimum of E at jW0j ¼ 0, jWj ¼ 0. In this minimum

E ¼ 0, but in all other points E > 0, and so the model is
stable. There are no other critical points of E in this case.
If condition (8) does not hold and Δ > 0, then there is

the local minimum at jW0j ¼ 0, jWj ¼ 0 in which E ¼ 0.
There are also the two critical points of E at

jW0j ¼ 0; jWj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g∓ ffiffiffiffi

Δ
pq

ffiffiffiffiffiffi
2h

p : ðB2Þ

This critical points, however, are not the extrema but the
saddle points. Thus, there is the single minimum (global
or local) of the energy density E at jW0j ¼ 0, jWj ¼ 0
(Wμ ¼ 0), and there are no other local minima or maxima
of E.
It can be shown that if Δ > 0, then there is a region in

which the energy density E is negative and unbounded from
below. Let us turn to the polar coordinate system:

jW0j ¼ ϱ cosðθÞ; jWj ¼ ϱ sinðθÞ: ðB3Þ

In this system, the region of the negative energy density can
be written as

ϱ1ðθÞ < ϱ < ϱ2ðθÞ; ðB4Þ

where

ϱ1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3gðtþ 2Þ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9g2ðtþ 2Þ2 − 48hm2ð2tþ 3Þ
p

−htð2tþ 3Þ

s
;

ðB5Þ

and t ¼ cos ð2θÞ. In (B4), the polar angle θ lies in the range
ðπ=4; θmaxÞ, where

θmax ¼
1

2
arccos

�
2

3
g−2

�
8hm2 − 3g2

þ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð16hm2 − 3g2Þ

q ��
ðB6Þ

for ð3=16Þðg2=m2Þ < h < ð1=4Þðg2=m2Þ and

θmax ¼ π=2 ðB7Þ

for 0 < h < ð3=16Þðg2=m2Þ.
It can be shown that for sufficiently large ϱ the

boundaries of the region E < 0 can be written as

θ1;2 ¼
π

4
þ g∓ ffiffiffiffi

Δ
p

4hϱ2
þOðϱ−4Þ: ðB8Þ

It can also be shown that for sufficiently large and fixed ϱ
the energy density E reaches the minimum value
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EðθminÞ ¼ − Δ
4h

ϱ2 þ g3

8h2
þOðϱ−2Þ ðB9Þ

at the polar angle

θmin ¼
π

4
þ g
4hϱ2

þOðϱ−4Þ: ðB10Þ

Note that (B9) and (B10) are valid for any sign of Δ. From
(B9), it follows that EðθminÞ is negative for large ϱ if
condition (8) is not satisfied. Moreover, in this case EðθminÞ
decreases indefinitely in the infinitesimal neighborhood of
θmin as ϱ → ∞. Needless to say, E is also unbounded from
below if h < 0. Thus, the model is unstable if condition (8)
is not satisfied.
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