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We study a novel type of contribution to the partition function of the Maxwell system defined on a small
compact manifold M such as a torus. These new terms cannot be described in terms of the physical
propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result
of tunneling events when transitions occur between topologically different but physically identical vacuum
winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We
argue that if the same system is considered in the background of a small external time-dependent magnetic
field, then there will be emission of photons from the vacuum, similar to the dynamical Casimir effect
(DCE) when real particles are radiated from the vacuum due to the time-dependent boundary conditions.
The difference with conventional DCE is that the dynamics of the vacuum in our system is not related to the
fluctuations of the conventional degrees of freedom, the virtual photons. Rather, the radiation in our case
occurs as a result of tunneling events between topologically different but physically identical jki sectors
in a time-dependent background. We comment on the relation of this novel effect to the well-known,
experimentally observed, and theoretically understood phenomena of the persistent currents in normal
metal rings. We also comment on possible cosmological applications of this effect.
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I. INTRODUCTION: MOTIVATION

The main motivation for the present studies is as follows.
It has been recently argued [1–3] that if the free Maxwell
theory (without any interactions with charged particles) is
defined on a small compact manifold, then some novel
terms in the partition function will emerge. These terms are
not related to the propagating photons with two transverse
physical polarizations which are responsible for the con-
ventional Casimir effect (CE)[4]. Rather, these novel terms
occur as a result of the tunneling events between the
topologically different but physically identical jki topo-
logical sectors. These states play no role when the system is
defined in infinitely large Minkowski space-time R1;3. But
these states become important when the system is defined
on a small compact manifold. Without loosing any general-
ity, we shall call this manifoldM; it could be the four-torus
T4, or it could be any other compact manifold with a
nontrivial mapping π1½Uð1Þ� ¼ Z. This nontrivial mapping
for the Maxwell Uð1Þ gauge theory precisely implies the
presence of the topological sectors jkiwhich play a key role
in our discussions. The corresponding phenomenon was
coined the “topological Casimir effect” (TCE).
In particular, it has been explicitly shown in [1] that these

novel terms in the topological portion of the partition
function Ztop lead to a fundamentally new contribution to
the Casimir vacuum pressure, which cannot be expressed
in terms of conventional propagating physical degrees of
freedom. Furthermore, the Ztop shows many features of
topologically ordered systems, which were initially

introduced in the context of condensed matter (CM)
systems; see recent reviews [5–9]. In particular, Ztop

demonstrates the degeneracy of the system which cannot
be described in terms of any local operators [2]. Instead,
such a degeneracy can be formulated in terms of some
nonlocal operators; see several comments on this classi-
fication in Appendix A. Furthermore, the infrared physics
of the system can be studied in terms of auxiliary
topological nonpropagating fields [3] precisely in the same
way as a topologically ordered system can be analyzed in
terms of the Berry’s connection (which is also an emergent,
rather than a fundamental, field). Furthermore, the corre-
sponding expectation value of the auxiliary topological
filed determines the phase of the system.
As we review in Sec. II, the relevant vacuum fluctuations

which saturate the topological portion of the partition
function Ztop are formulated in terms of topologically
nontrivial boundary conditions. These configurations sat-
isfy the periodic boundary conditions on the gauge field up
to a large gauge transformation such that the tunneling
transitions occur between physically identical but topo-
logically distinct jki sectors. It is precisely these field
configurations that generate an extra Casimir vacuum
pressure in the system. What happens to this complicated
vacuum structure when the system is placed into the
background of an external constant magnetic field Bz

ext?
The answer to this question is known: the corresponding
partition function Ztop as well as all observables, including
the topological part of the Casimir pressure, are highly
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sensitive to the small magnetic field and demonstrate the 2π
periodicity with respect to the magnetic flux represented by
parameter θeff ≡ eSBz

ext where S is the xy area of the system
T4. This sensitivity to external magnetic field is a result of
the quantum interference of the external filed Bz

ext with
topological quantum fluctuations describing the tunneling
transitions between jki sectors. This strong “quantum”
sensitivity of the TCE should be contrasted with conven-
tional Casimir forces which are practically unaltered by the
external field due to very strong suppression ∼B2

ext=m4
e; see

[1] for the details.
The main goal of the present work is to the study the

dynamics of these vacuum fluctuations in the presence of a
time-dependent magnetic field Bz

extðtÞ. We would like to
argue in the present work that there will be a radiation of
real photons emitted from the vacuum (described by the
partition function Ztop½Bz

extðtÞ�) as a result of this time-
dependent external source Bz

extðtÞ.
A simple intuitive picture of this emission can be

explained as follows. Imagine that we study conventional
CE with static metallic plates. When these plates move or
fluctuate, there will be emission from the vacuum, which is
well known and well studied phenomenon known as the
dynamical Casimir effect (DCE); see original papers [10]
and reviews [11]. The DCE has been observed in recent
experiments with superconducting circuits [12]. Basically,
the virtual photons which are responsible for conventional
Casimir pressure may become the real photons when the
plate is moving or fluctuating.
The novel effect which is the subject of this work is that

the topological configurations describing the tunneling
transitions between jki sectors will be also modified when
there is a time-dependent external influence on the
system. This time-dependent impact on the system can
be realized by moving the plates of the original manifold
M, in close analogy with the DCE. The time-dependent
impact may also enter the system through the quantum
interference of the external field with topological con-
figurations saturating the partition function Ztop. Such
quantum interference, as we mentioned above, is practi-
cally absent in conventional CE but is order of one in the
TCE. Therefore, this quantum interference gives us a
unique chance to manipulate with the Maxwell vacuum
defined on M using a time-dependent external electro-
magnetic source. This effect leads to the production of the
real photons with transverse polarizations emitted from
the topological quantum vacuum configurations saturat-
ing the partition function Ztop in the presence of time-
dependent magnetic field Bz

extðtÞ.
As this effect is very novel and quite counterintuitive, we

would like to present one more additional explanation
supporting our claim that there will be emission of real
photons from the Maxwell vacuum when the systems
(described by the partition function Ztop) is placed into
the background of time-dependent source Bz

extðtÞ.

Our second explanation goes as follows. The topological
configurations which describe the tunneling transitions are
formulated in terms of the boundary conditions on the
gauge field up to a large gauge transformations. These
boundary conditions correspond to some persistent fluc-
tuating currents which can flow along the metallic boun-
daries corresponding to the edges of M. In fact, the
possibility that such persistent current may occur in small
rings with topology S1 have been theoretically predicted
long ago [13], though with very different motivation from
the one advocated in present work. Furthermore, the
corresponding persistent nondissipating currents in differ-
ent materials have been experimentally observed in small
rings S1; see reviews [14]. Our comment here is that similar
currents flowing along the rings of S1 which represents the
boundary of M can be interpreted as a result of topological
vacuum configurations intimately related to Aharonov-
Bohm phases when the system is defined on a topologically
nontrivial manifold. We elaborate on this connection
(between the persistent currents and our description in
terms of the topological vacuum configurations) further in
the text.
The only comment we would like to make here is as

follows. The persistent clockwise and anticlockwise cur-
rents cancel out each other in the case of a vanishing
external magnetic field. This cancellation does not hold in
the presence of a time-independent external magnetic field
Bz
ext perpendicular to the ring S1, in which case the

persistent current I0 will be generated. One can view this
system as generation of a static magnetic moment
mz

ind ¼ I0S. It is quite obvious now that if the external
magnetic field Bz

extðtÞ becomes a time-dependent function,
the corresponding induced magnetic moment mz

indðtÞ also
becomes a time-dependent function. The corresponding
time dependence in mz

indðtÞ obviously implies that the
system starts to radiate physical photons with typical
angular distribution given by the magnetic dipole radiation.
This radiation is ultimately related to the topological
vacuum configurations describing the tunneling transitions
between jki sectors. These vacuum configurations get
modified in the presence of a time-dependent field
Bz
extðtÞ, which is precisely the source for the radiation of

physical photons. In all respects the idea is very similar to
the DCE with the “only” difference is that the conventional
virtual photons (responsible for the CE) do not interfere
with external magnetic field Bz

extðtÞ, while the topological
vacuum instantonlike configurations (saturating the TCE)
do. We call the corresponding phenomenon of the emission
of real photons from vacuum configurations saturating
Ztop½Bz

extðtÞ� in the presence of a time-dependent source
½Bz

extðtÞ� the nonstatic (or dynamical) topological Casimir
effect (TCE) to discriminate it from the conventional DCE.
The structure of our presentation is as follows. In Sec. II

we review our previous results [1–3] on construction of the
partition function Ztop describing the tunneling transitions
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between jki sectors. We also explain how this partition
function is modified in the presence of external static
magnetic field Bz

ext. In Sec. III we generalize the con-
struction to include the slow time-dependent fields, which
allows us to compute the induced magnetic dipole moment
of the system. This time-dependent induced magnetic
moment radiates real physical photons from vacuum. We
also elaborate on the relation of our construction to the
persistent currents in Sec. III B. Finally, in Secs. III C and
III D we make few simple numerical, order of magnitude
estimates in order to get some insights on the potential
prospects of measuring the effect, which crucially depends
on the property of degeneracy of the system. As this feature
of degeneracy is crucial for potential experimental studies
of this effect, we make a few comments on this property in
Appendix A. The corresponding description of the system
(when it is characterized by a global, rather than local
observables) is quite different from the conventional
classification scheme when a system is characterized by
an expectation value of a local operator.
Our conclusion is in Sec. IV, where we speculate on the

possible relevance of this novel effect for cosmology when
the appropriate topology is π3½SUð3Þ� ¼ Z, replacing the
nontrivial mapping π1½Uð1Þ� ¼ Z, considered in the
present work for studying the Maxwell theory on a compact
manifold. To be more concrete, we speculate that the de
Sitter behavior in inflationary epoch could be just inherent
property of the topological sectors in QCD in the expanding
Universe, rather than a result of dynamics of some ad hoc
dynamical field such as an inflaton. The emission of real
physical degrees of freedom from the inflationary vacuum
in a time-dependent background (the so-called “reheating
epoch”) in all respects is very similar to the effect
considered in the present work when the real photons
can be emitted from a vacuum in the background of a time-
dependent magnetic field Bz

extðtÞ.

II. TOPOLOGICAL PARTITION FUNCTION

Our goal here is to review the Maxwell system defined
on a Euclidean 4-torus with sizes L1 × L2 × L3 × β in the
respective directions. It provides the infrared (IR) regulari-
zation of the system. This IR regularization plays a key role
in the proper treatment of the topological terms which are
related to tunneling events between topologically distinct
but physically identical jki sectors.

A. Construction

We follow [1–3] in our construction of the partition
functionZtop where it was employed for computation of the
corrections to the Casimir effect due to these novel types
of topological fluctuations. The crucial point is that we
impose the periodic boundary conditions on gauge Aμ field
up to a large gauge transformation. In what follows we
simplify our analysis by considering a clear case with

winding topological sectors jki in the z direction only. The
classical instanton configuration in the Euclidean space
which describes the corresponding tunneling transitions
can be represented as follows:

Aμ
top ¼

�
0;−

πk
eL1L2

x2;
πk

eL1L2

x1; 0

�
; ð1Þ

where k is the winding number that labels the topological
sector, and L1, L2 are the dimensions of the plates in the x
and y directions, respectively, which are assumed to be
much larger than the distance between the plates L3. This
terminology (“instanton”) is adapted from similar studies in
two-dimensional QED [1] where the corresponding con-
figuration in the A0 ¼ 0 gauge describes the interpolation
between the pure gauge vacuum winding states jki. We
use the same terminology and interpretation for the four-
dimensional case because (2) is the classical configuration
saturating the partition function Ztop in close analogy with
the two-dimensional case as discussed in detail in [1].This
classical instanton-flux configuration satisfies the periodic
boundary conditions up to a large gauge transformation,
and provides a topological magnetic instanton flux in the z
direction:

~Btop ¼ ~∇ × ~Atop ¼
�
0; 0;

2πk
eL1L2

�
;

Φ ¼ e
Z

dx1dx2B
z
top ¼ 2πk: ð2Þ

The Euclidean action of the system is quadratic and has the
following form

1

2

Z
d4xf~E2 þ ð~Bþ ~BtopÞ2g; ð3Þ

where ~E and ~B are the dynamical quantum fluctuations of
the gauge field. We call the configuration given by Eq. (1)
the instanton fluxes describing the tunneling events
between topological sectors jki. These configurations
saturate the partition function (6) and should be interpreted
as “large” quantum fluctuations which change the winding
states jki, in contrast with “small” quantum fluctuations
which are topologically trivial and expressed in terms of
conventional virtual photons saturating the quantum por-
tion of the partition function Zquant.
The key point is that the topological portion Ztop

decouples from quantum fluctuations, Z ¼ Zquant × Ztop

such that the quantum fluctuations do not depend on the
topological sector k and can be computed in the topologi-
cally trivial sector k ¼ 0. Indeed, the cross termZ

d4x~B · ~Btop ¼
2πk

eL1L2

Z
d4xBz ¼ 0; ð4Þ
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vanishes because the magnetic portion of quantum fluctu-
ations in the z direction, represented by Bz ¼ ∂xAy − ∂yAx,

is a periodic function as ~A is periodic over the domain of
integration. This technical remark, in fact, greatly simpli-
fies our analysis as the contribution of the physical
propagating photons is not sensitive to the topological
sectors k. This is, of course, a specific feature of quadratic
action (3), in contrast with non-Abelian and nonlinear
gauge field theories where quantum fluctuations, of course,
depend on the topological k sectors.
The classical action for configuration (2) takes the form

1

2

Z
d4x~B2

top ¼
2π2k2βL3

e2L1L2

. ð5Þ

To simplify our analysis further in computing Ztop we
consider a geometry where L1; L2 ≫ L3; β similar to
construction relevant for the Casimir effect. In this case
our system is closely related to the two-dimensional
Maxwell theory by dimensional reduction: taking a slice
of the four-dimensional system in the xy plane will yield
precisely the topological features of the two-dimensional
torus considered in great details in [1]. Furthermore, with
this geometry our simplification (2) when we consider
exclusively the magnetic instanton fluxes in the z direction
is justified as the corresponding classical action (5)
assumes a minimal possible values. With this assumption
we can consider very small temperature, but still we cannot
take a formal limit β → ∞ in our final expressions as a
result of our technical constraints in the system.
With these additional simplifications the topological

partition function becomes [1–3]:

Ztop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβL3

e2L1L2

s X
k∈Z

e
−2π2k2βL3

e2L1L2 ¼ ffiffiffiffiffi
πτ

p X
k∈Z

e−π
2τk2 ; ð6Þ

where we introduced the dimensionless parameter

τ≡ 2βL3=e2L1L2: ð7Þ

Formula (6) is essentially the dimensionally reduced
expression for the topological partition function for the
two-dimensional Maxwell theory analyzed in [1]. One
should note that the normalization factor

ffiffiffiffiffi
πτ

p
which

appears in Eq. (6) does not depend on the topological
sector k, and essentially it represents our convention of
the normalization Ztop → 1 in the limit L1L2 → ∞ which
corresponds to a convenient setup for the Casimir-type
experiments as discussed in [1–3]. The simplest way to
demonstrate that Ztop → 1 in the limit τ → 0 is to use the
dual representation (10); see below.

B. External static magnetic field

In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the external
magnetic field. Normally, in the conventional quantization
of electromagnetic fields in infinite Minkowski space, there
is no direct coupling between fluctuating vacuum photons
and an external magnetic field as a consequence of linearity
of the Maxwell system. The coupling with fermions
generates a negligible effect ∼α2B2

ext=m4
e as the nonlinear

Euler-Heisenberg effective Lagrangian suggests; see [1]
for the details and numerical estimates. In contrast with
conventional photons, the external magnetic field does
couple with topological fluctuations (2). It leads to the
effects of order of unity as a result of interference of the
external magnetic field with topological fluxes k.
The corresponding partition function can be easily

constructed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decoupling
of the background fields from quantum fluctuations
assumes the same form (4). In other words, the physical
propagating photons with nonvanishing momenta are not
sensitive to the topological k sectors, nor to the external
uniform magnetic field, similar to our discussions after
Eq. (4).
The classical action for configuration in the presence of

the uniform static external magnetic field Bext
z therefore

takes the form

1

2

Z
d4xð~Bext þ ~BtopÞ2 ¼ π2τ

�
kþ θeff

2π

�
2

; ð8Þ

where τ is defined by (7) and the effective theta parameter
θeff ≡ eL1L2B

z
ext is expressed in terms of the original

external magnetic field Bz
ext. Therefore, the partition func-

tion in the presence of the uniform magnetic field can be
easily reconstructed from (6), and it is given by [1–3]

Ztopðτ; θeffÞ ¼
ffiffiffiffiffi
πτ

p X
k∈Z

exp

�
−π2τ

�
kþ θeff

2π

�
2
�
: ð9Þ

This system in what follows will be referred to as the
topological vacuum (T V) because the propagating degrees
of freedom, the photons with two transverse polarizations,
completely decouple from Ztopðτ; θeffÞ.
The dual representation for the partition function is

obtained by applying the Poisson summation formula such
that (9) becomes

Ztopðτ; θeffÞ ¼
X
n∈Z

exp

�
−
n2

τ
þ in · θeff

�
: ð10Þ

Formula (10) justifies our notation for the effective theta
parameter θeff as it enters the partition function in combi-
nation with integer number n. One should emphasize that
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integer number n in the dual representation (10) is not the
integer magnetic flux k defined by Eq. (2) which enters the
original partition function (6). Furthermore, the θeff param-
eter which enters (9), (10) is not a fundamental θ parameter
which is normally introduced into the Lagrangian in front
of ~E · ~B operator. Rather, this parameter θeff should be
understood as an effective parameter representing the
construction of the jθeffi state for each slice with nontrivial
π1½Uð1Þ� in a four-dimensional system. In fact, there are
three such θMi

eff parameters representing different slices and
corresponding external magnetic fluxes. There are similar
three θEi

eff parameters representing the external electric
fluxes as discussed in [2], such that total number of θ
parameters classifying the system equals six, in agreement
with total number of hyperplanes in four dimensions. We
shall not elaborate on this classification in the present work.
In this work we limit ourselves with a single θeff parameter
entering (9), (10) and corresponding to the magnetic
external field Bz

ext pointing in the z direction.

III. INDUCED MAGNETIC DIPOLE MOMENT
AND E & M RADIATION

The main goal of this section is to estimate the induced
magnetic dipole moment of the system in a time-dependent
background. First, in Sec. III A we derive a formula for
induced magnetic moment in the background of a uniform
static external magnetic field. We shall discuss a different
geometry in this section (in comparison with the 4-torus
discussed in Sec. II). This is because our generalization for
a time-dependent background cannot be consistently intro-
duced on the 4-torus. As the corresponding formula for the
induced magnetic moment plays an important role in the
present work, we offer a complementary interpretation of
the same expression in Sec. III B in terms of the dynamics
on the boundaries of the system, rather than in terms of the
bulk instantons (1), (2). In Sec. III C we provide some
numerical estimates, and make few comments on relation
with experimentally observed persistent currents. Finally,
we generalize the expression for induced magnetic moment
for a slowly varying field. A time-dependent magnitude for
the obtained magnetic moment automatically implies the
radiation of the real physical photons from this system as
we show in Secs. III D.

A. Magnetization of the system. The basics.

Our goal here is to construct the topological portion
Ztop for the partition function similar to (9), (10), but for
a different geometry. To be more specific, we want to
consider a solenoid (cylinder) with opened ends to have an
option to place our system under the influence of a time
variable magnetic field (which is not possible for a 4-torus).
This geometry also gives us an opportunity to discuss the
relation between the topological currents derived from Ztop

in Sec. III B and the persistent currents considered long ago

[13]. To proceed with this goal we consider a cylinder with
cross section of area πR2 which replaces the area L1L2

from original computations [1] on 4 torus. Furthermore, for
this geometry it is convenient to consider the instanton
solution describing the transitions between topological jki
sectors in Cylindrical coordinates rather than in Cartesian
coordinates (1). The corresponding instantonlike configu-
ration describes the same physics as we discussed before in
Sec. II, and it is given by

~Atop¼
kr
eR2

ϕ̂; r<R; ~Atop¼
k
er

ϕ̂; r≥R; ð11Þ

where ϕ̂ is a unit vector in the ϕ̂ direction in cylindrical

coordinates. By construction, the vector potential ~Atop ¼
k
e
~∇ϕ is a pure gauge field on the boundary with nontrivial

winding number k. The topological magnetic flux in the z
direction is defined similar to (2), and it is given by

~Btop ¼
2k
eR2

ẑ; r < R; ~Btop ¼ 0; r > R;

Φ ¼ e
Z

dx1dx2B
z
top ¼ e

I
r¼R

~Atop · d~l ¼ 2πk: ð12Þ

The corresponding formulae for Ztopðτ; θeffÞ replacing (9),
(10) with new geometry assume the form:

Ztopðτ; θeffÞ ¼
ffiffiffiffiffi
πτ

p X
k∈Z

exp

�
−π2τ

�
kþ θeff

2π

�
2
�

¼
X
n∈Z

exp

�
−
n2

τ
þ in · θeff

�
;

τ≡ 2βL3=e2πR2; ð13Þ

where L3 is the length of the cylinder, β is the inverse
temperature, and effective theta parameter θeff ≡ eπR2Bz

ext
is expressed in terms of the original external magnetic field
Bz
ext similar to (8).
Few comments are in order. First, the topological portion

of the partition function for the cylinder given by (13) plays
the same role as (9), (10) plays for the 4-torus. There are
few differences, though. In case for the 4-torus we could, in
principle, introduce 6 different θi parameters corresponding
to 6 different hyperplanes and 6 different nontrivial map-
pings π1½Uð1Þ� ¼ Z for each slice in the four-dimensional
Euclidean space. In contrast, with the new geometry there is
just one type of magnetic flux (12). Another difference is
that our treatment of the 4-torus in the previous section
neglects all other types of instantons. This was achieved by
imposing geometrical condition L1; L2 ≫ β; L3 to guaran-
tee that action (5) assumes a minimal possible value
(maximal contribution to the partition function), while
other types of instantons would produce a parametrically
smaller contribution to the partition function Ztopðτ; θeffÞ.
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In the present case we do not have any other types of
instantons that may contribute to Ztopðτ; θeffÞ. However,
we must assume that L3 ≫ R to justify our approximation
for the (finite L3) solution (11), (12) when a contribution
from outside the region can be neglected in the action (13).
Finally, as we already mentioned, the normalization
factor

ffiffiffiffiffi
πτ

p
in Ztopðτ; θeffÞ does not depend on the topo-

logical sectors k and, in fact, is a matter of convention. It is
more appropriate for the given geometry to define Z0

top ¼
Ztop=

ffiffiffiffiffi
πτ

p
such that Z0

topðτ → ∞; θeff ¼ 0Þ → 1. However,
we opted to preserve our original normalization because
our results which follow do not depend on this convention.
Our next step is to analyze the magnetic response of

the system under influence of the external magnetic field.
The idea behind these studies is the observation that the
external magnetic field acts as an effective θeff parameter,
as Eq. (13) suggests. Therefore, one can differentiate with
respect to this parameter to compute the induced magnetic
field:

hBindi ¼ −
1

βV

∂ lnZtop

∂Bz
ext

¼ −
e

βL3

∂ lnZtop

∂θeff
¼

ffiffiffiffiffi
τπ

p
Ztop

X
k∈Z

�
Bext þ

2k
R2e

�
exp

�
−τπ2

�
kþ θeff

2π

�
2
�
:

ð14Þ
As one can see from (14), our definition of the induced

field accounts for the total field which includes both terms:
the external part as well as the topological portion of the
field. In the absence of the external field (Bext ¼ 0), the
series is antisymmetric under k → −k and hBindi vanishes.
It is similar to the vanishing expectation value of the
topological density in gauge theories when θ ¼ 0. One
could anticipate this result from symmetry arguments as the
theory must respect P and CP invariance at θ ¼ 0.
The expectation value of the induced magnetic field

exhibits the 2π periodicity from the partition function and
it reduces to triviality whenever the amount of skewing
results in an antisymmetric summation, i.e., hBindi ¼ 0 for
θeff ∈ f2nπ∶n ∈ Zg. The point θeff ¼ π deserves special
attention as this point corresponds to the degeneracy; see
[2] with detailed discussions. This degeneracy cannot be
detected by an expectation value of any local operator, but
rather is classified by a nonlocal operator, similar to studies
of the topological insulators at θ ¼ π.
We now return to the analysis of Eq. (14). The topo-

logical effects, as expected, are exponentially suppressed at
τ ≪ 1 and τ ≫ 1 according to Eq. (13). The effect is much
more pronounced in the range where τ≃ 1 (see Fig. 1),
where we plot the induced magnetic field in units ðπR2eÞ−1
as a function of the external flux θeff (point θeff ¼ π should
be considered separately as we mentioned above).
It is important to note here that the induced magnetic

field defined as (14) can be thought of as the magnetization

of the system per unit volume, i.e., hMi ¼ −hBindi, as the
definition for hMi is identical to (14) up to a minus sign

because it enters the Hamiltonian as H ¼ − ~mind · ~Bext.
Therefore, we arrive at the following expression for the
induced magnetic moment of the system in the presence of
external magnetic field Bz

ext:

hmz
indi ¼

1

β

∂ lnZtop

∂Bext
z

¼ −hBindiL3πR2

¼ −
L32π

e

ffiffiffiffiffi
τπ

p
Ztop

X
k∈Z

�
θeff
2π

þ k

�

× exp

�
−τπ2

�
kþ θeff

2π

�
2
�
: ð15Þ

One can view Fig. 1 as a plot for the induced magnetic
moment in units eL3c

4πα which represents correct dimension-

ality e·cm2

s .

B. Interpretation

As formula (15) plays a key role in our discussions, we
would like to interpret the same expression for hmz

indi but in
different terms. To be more precise: Eq. (15) describes the
magnetization properties of the system in terms of the
vacuum configurations describing the tunneling transitions
between topological sectors jki. The corresponding parti-
tion function Ztopðτ; θeffÞ which governs these vacuum
processes is given by (13). A nontrivial behavior of the
magnetization of the system in terms of the induced
magnetic dipole moment (15) is the direct consequence
of the basic properties of the partition functionZtopðτ; θeffÞ.
We would like to understand the same properties in a more
intuitive way in terms of the fluctuating currents which

FIG. 1 (color online). A numerical plot of the induced magnetic
field in units c

πR2e as a function of the external flux θeff . The same
plot represents the induced magnetic moment −hmz

indi in units
eL3c
4πα ; see text with details. The unit magnetic flux corresponds to
θeff ¼ 2π. The plot is adapted from [1].
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unavoidably will be generated on the boundaries, as we
discuss below.
Indeed, the cross term in the effective action (8) which

describes the coupling of the external field with the
topological instantonlike configuration can be represented
as follows,Z

d4xð~Bext · ~BtopÞ ¼
Z

d4x~Aext · ð ~∇ × ~BtopÞ; ð16Þ

where we neglected a total divergence term. The cross term

written in the form (16) strongly suggests that ð ~∇ × ~BtopÞ
can be interpreted as a steady current flow along the
boundary. Indeed,

~jtopðkÞ ¼ − ~∇ × ~Btop ¼ −δðr − RÞ 2k
eR2

ϕ̂; ð17Þ

where we used expression (13) for ~Btop describing the
tunneling transition to the jki sector. Formula (17) is very
suggestive and implies that the vacuum transitions formu-
lated in terms of the fluxes-instantons (11), (12) can also
be interpreted in terms of the accompanying fluctuating
topological currents (17). The total current (in the topo-
logical k sector) which flows along the infinitely thin
boundary of a cylinder radius R and length L3 in our ideal
system is given by

JϕðkÞ ¼
Z

L3

0

dz
Z

drjϕtop ¼ −
2kL3

eR2
: ð18Þ

This current in the topological k sector produces the
following contribution to the magnetic dipole moment:

mz
indðkÞ ¼ πR2JϕðkÞ ¼ −

2πL3

e
k: ð19Þ

This formula precisely reproduces the term proportional
to k in the parentheses in Eq. (15) which was originally
derived quite differently; see Sec. III A.
Now we offer a few comments on Eq. (18). The

expectation value hJϕi of the topological current obviously
vanishes at zero external magnetic field when one sums
over all topological k sectors, in agreement with our
previous expression (15) with θeff ¼ 0. It is quite obvious
that the topological currents have pure quantum nature
as they effectively represent the instantons describing the
tunneling transitions in the path integral computations. The
currents could have clockwise or anticlockwise direction,
depending on the sign of the integer number k, similar to
the fluctuating instanton solutions (11), saturating the
topological portion of the partition function (13).
Furthermore, one can explicitly check that the cross term

(16) computed in terms of the boundary current ~jtopðkÞ
exactly reproduces the corresponding term in the action for

the partition function (15) computed in terms of the bulk
instantons (11), (13). Indeed,

Z
d4x~Aext · ð ~∇ × ~BtopÞ ¼

2kð2πβL3Þ
eR2

Z
rdrδðr − RÞAϕ

ext

¼ 2kð2πβL3Þ
eR2

·

�
Bz
extR

2

2

�

¼ 2τπ2k

�
θeff
2π

�
; ð20Þ

where the vector potential Aϕ
extðrÞ ¼ r

2
Bz
ext corresponds to

the external uniform magnetic field in cylindrical coordi-
nates. Our final result in Eq. (20) is expressed in terms of
the external flux θeff ≡ eπR2Bz

ext and dimensionless param-
eter τ≡ 2βL3=e2πR2. One can explicitly see that the cross
term in action in Eq. (15) is reproduced by Eq. (20) derived
in terms of the boundary currents, rather then in terms of the
bulk instantons.
The classical instanton action is also reproduced in

terms of the boundary currents. Indeed, by substituting
the expression for the current (17) for the classical action,
one arrives at

1

2

Z
d4xð~Btop · ~BtopÞ ¼

1

2

Z
d4x~Atop · ð ~∇ × ~BtopÞ;

¼ kð2πβL3Þ
eR2

Z
rdrδðr − RÞAϕ

topðrÞ

¼ τπ2k2; ð21Þ

which is precisely the expression for the classical instanton
action entering the topological portion of the partition
function (15).
The basic point of our discussions in this section is that

the expression for the induced magnetic moment (15) can
be understood in terms of the topological currents flowing
along the boundaries of the system. However, the origin of
the phenomena is not these currents but the presence of the
topological jki sectors in Maxwell Uð1Þ electrodynamics
when it is formulated on a compact manifold with non-
trivial mapping π1½Uð1Þ� ¼ Z. Such jki sectors exist and
transitions between them always occur even if charged
particles are not present in the system. The coupling of the
nontrivial gauge configurations describing the transitions
between the jki sectors with charged particles in the
presence of an external magnetic field leads to such
pronounced effects as persistent currents [13,14]. The
secondary, rather than fundamental, role of the charged
matter particles in this phenomenonmanifests, in particular,
in the fact that Ztop generates an extra contribution to the
Casimir vacuum pressure even at zero external magnetic
field. At the same time, the persistent current cannot be
generated at Bext ¼ 0, as clockwise and counterclockwise
currents cancel out each other.
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Furthermore, the persistent currents in the original works
[13,14] were introduced as a response of the electrons
(residing on the ring) on the external magnetic flux with a
nontrivial Aharonov-Bohm phase. In contrast, the non-
trivial gauge configurations (and accompanied topological
currents (17) in k sectors) in our system are generated
even when no external field nor corresponding external
Aharonov-Bohm vector potential are present in the system.
In addition, the correlation length in conventional persistent
currents [13,14] is determined by dynamics of the electrons
residing on the ring, while in our case it is determined by
the dynamics of the vacuum described by the partition
function Ztop. The corresponding topological fluctuations
(described in terms of the instantons (13)) also generate
the persistent topological currents on the boundary (17).
However, this additional contribution should be treated
separately from conventional persistent currents [13,14],
as it is an absolutely independent contribution which is
generated due to the unavoidable coupling of topological
gauge configurations with charged particles on the boun-
dary of the system.1

Finally, the induced magnetic moment (19) due to the
topological currents flowing on the boundary is quantized.
Indeed, mz

ind=L3 assumes only integer numbers in units of
2π
e . This is because the corresponding induced currents
always accompany the quantized instantonlike fluctuations
(12). In contrast, a similar induced magnetic moment due to
the conventional persistent currents [13,14] is not quan-
tized, and can assume any value.
To conclude this subsection we would like to comment

that it is quite typical in condensed matter physics that the
topologically ordered systems exhibit such a complemen-
tary formulation in terms of the physics on the boundary.
Our system (T V) can be also thought as a topologically
ordered system as argued in [2,3] because it demonstrates
a number of specific features which are inherent properties
of topologically ordered systems. In particular, Ztopðτ; θeffÞ
demonstrates the degeneracy of the system which cannot be
described in terms of any local operators. Furthermore, the
infrared physics of the system can be studied in terms of
auxiliary topological nonpropagating fields precisely in the

same way as a topologically ordered system in condensed
matter physics can be analyzed in terms of the Berry’s
connection. Therefore, it is not a surprise that we can
reformulate the original instanton fluctuations saturating
Ztopðτ; θeffÞ in terms of the boundary persistent currents
which always accompany these instanton transitions.

C. Numerical estimates

We want to make some simple numerical estimates by
comparing the magnetic induced moment hmz

indi from
Eq. (15) with corresponding expression mpersistent ≃
πI0R2 with measured persistent current I0. One should
emphasize that the conventional persistent currents are
highly sensitive to the properties of the material. More
than that, the properties of the condensed matter samples
essentially determine the magnitude of the measured
currents. At the same time, in all our discussions above
we assume that the “ideal” boundary conditions can be
arranged, such that the Maxwell vacuum defined on a
compact manifold is well described by the partition
function (9), (10). Moreover, as we discussed in
Sec. III B the topological boundary currents (17) in our
framework should be considered as an independent addi-
tional contribution to conventional persistent currents.
Therefore, the corresponding numerical estimates taken
from early work [15] are presented here for demonstration
purposes only.
The measurement of the typical persistent current was

reported in [15]. The measurements were performed on
single gold rings with diameter 2R ¼ 2.4 and 4 μm at a
base temperature of 4.5 mK. Reported values for the
currents are I0 ¼ 3 and 30 nA for these two rings. It
should be contrasted with expected current ∼0.1 nA. We
are not in position to comment on this discrepancy, as the
effect is basically determined by the properties of the
material, which is not subject of the present work. Our goal
is, in fact, quite different. We want to compare the magnetic
moment which is induced due to this persistent current with
induced magnetic moment due to the topological vacuum
configurations hmz

indi from Eq. (15). Numerically, a mag-
netic moment for the largest observed current (30 nA) can
be estimated as follows:

mpersistent ≃ πI0R2 ∼ πð30 nAÞ ·
�
2.4 μm

2

�
2

∼ 0.7 · 104
�
e cm2

s

�
: ð22Þ

It is instructive to compare this moment with fundamental
Bohr magneton μB ¼ eℏ=2me ≃ 0.6 · ðe cm2

s Þ, which pro-
vides a crude estimate of a number of effective degrees of
freedom ∼104 which generate the persistent current I0 for
this specific sample. This estimate should be taken with
some precaution because the effect of persistent currents is

1In many respects this situation is very similar to QCD when
the presence of the topological sectors is absolutely fundamental
basic property of the gauge system. At the same time, very
pronounced consequences of this fundamental feature are ex-
pressed in terms of the matter fermi fields, rather than in terms of
original gauge configurations. These well noticeable properties of
the system are basically the consequence of the Index Theorem
which states that the fermions in the background of nontrivial
gauge configurations have chiral zero modes. Precisely these zero
modes play extremely important role in explanation of many
effects such as generation of the chiral condensate in QCD, the
resolution of the so-called the Uð1ÞA problem, etc. However, the
root, the origin of these properties of the system is the presence of
topologically nontrivial gauge configurations, while the matter
fields play the secondary role.
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entirely determined by the properties of the material (such
as the electron phase coherence length lϕ) which is beyond
the scope of the present work.
Before we estimate hmz

indi from Eq. (15) to compare it
with (22), we would like to get some insights about the
numerical magnitude of the dimensionless parameter τ for
the ring with parameters used in the estimate (22),

τ≡ 2βL3

e2πR2
∼
2ð0.1 μmÞð0.6 cmÞ

4π2α

�
2

2.4 μm

�
2

≫ 1; ð23Þ

where we use L3 ∼ 0.1 μm and β ∼ 0.6 cm which corre-
sponds to the temperature T ≃ 300 mK below which lϕ
is sufficiently large and temperature independent.2 The
large magnitude of τ implies that for the chosen parameters
for the system the vacuum transitions between the topo-
logical sectors are strongly suppressed as the expression for
the partition function (9), (10) states. In this regime the
effect (22) is entirely determined by conventional mech-
anisms [13], [14].
If somehow we could manage to satisfy our ideal

boundary conditions and could adjust parameters of the
system such that τ ∼ 1, then the magnitude of hmz

indi from
Eq. (15) would be determined by parameter 2πL3=e such
that

hmz
indi ∼

2πL3

e
∼
L3ce
2α

∼ 1.5 × 107
�
e cm2

s

�
; ð24Þ

which is at least 3 orders of magnitude larger than the value
(22) of the magnetic moment generated due to the conven-
tional persistent current when the correlation length is
determined by the physics of the ring. The crucial element
in our estimate (24) is that the key parameter τ should be
order of one, τ ∼ 1. This would guarantee that the vacuum
transitions would not be strongly suppressed. We really do
not know if it could be realized in practice. The answer
hopefully could be positive as Aharonov-Bohm phase
coherence can be maintained at sufficient high temperature,
which can drastically decrease parameter τ from ((23); see
footnote 2.
We emphasize once again that Eq. (24) describes a

new contribution to the magnetic moment originated from
tunneling transitions between topological k sectors. It
should be contrasted with conventional persistent current
which also contributes to magnetic moment (22). These
two contributions originated form very different physics:
in the case of Eq. (22), the correlation in the system is
achieved by the dynamics of the electrons on the boundary,
while in our case it is achieved by the tunneling transitions

between gauge k sectors and described by the vacuum
instantons (13) saturating Ztopðτ; θeffÞ.

D. E&M Radiation

Formula (15) has been derived assuming that the external
field is static. However, formula (15) still holds even in the
case when the time dependence is adiabatically slow; i.e.,
ðdBind

dt Þ=Bind ¼ ω is much smaller than any relevant scales of
the problem, to be discussed below. Therefore, one can use

the well-known expressions for the intensity ~S and total
radiated power I for the magnetic dipole radiation when the
dipole moment (15) varies with time:

~S ¼ IðtÞ sin
2θ

4πr2
~n; IðtÞ ¼ 2

3c2
hm̈z

indi2: ð25Þ

In the case when the external magnetic field in the vicinity
of θeff ∼ 2πn the behavior of the induced magnetic moment
almost linearly follows Bz

extðtÞ as one can see from Fig. 1.
In particular, if Bz

extðtÞ ∼ cosωt then hm̈z
indi ∼ ω2 cosωt. In

this case one can easily compute the average intensity over
large number of complete cycles with the result

hIi ∼ ω4

3c2
hmz

indi2; ð26Þ

where hmz
indi is given by (15).

Few comments are in order. First of all, the magnetic
dipole radiation can be easily understood in terms of
persistent currents [13,14] flowing along the ring. For
static external magnetic field the corresponding persistent
current I0 is also time independent. The magnetic dipole
moment generated by this current can be estimated as
mpersistent ≃ πI0R2. When the external magnetic field starts
to fluctuate, the corresponding current I0ðtÞ as well as
magnetic dipole moment mpersistentðtÞ also become time-
dependent functions. It obviously leads to the radiation
of real photons which is consistent with our analysis.
However, we should emphasize that the interpretation of
this phenomenon (which we call “nonstationary TCE”) in
terms of topological persistent currents (17) is the con-
sequential, rather than fundamental, explanation. The
fundamental explanation, as emphasized in Sec. III B is
based on topological instantonlike configurations interpo-
lating between k topological sectors. These tunneling
transitions occur in the system even when persistent
currents are not generated in the system (for example in
absence of external field).
Our final comment in this subsection is as follows. As we

discussed above, the energy for E&M radiation eventually
comes from the time-dependent external magnetic field.
One could suspect that it would be very difficult to
discriminate a (noninteresting) direct emission originated
from BextðtÞ ≠ 0 and the (very interesting) emission

2One should remark here that there are related effects when the
entire system can maintain the Aharonov-Bohm phase coherence
at very high temperature T ≃ 79 K [16].
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resulted from the Maxwell vacuum which itself is excited
due to the quantum interference of the vacuum configura-
tions describing the topological jki sectors with external
magnetic field. First, the (noninteresting) term is repre-
sented by θeff ¼ eBextðtÞπR2 in the parentheses in Eq. (15),
while the second (very interesting) term is represented by
term ∼k in Eq. (15).
Fortunately, one can easily discriminate between (the

very interesting) emission from the vacuum and (absolutely
noninteresting) background radiation. The point is that the
induced magnetic dipole moment hmz

indðtÞi is the periodic
function of BextðtÞ. Exactly at the point θeff ¼ π the induced
magnetic dipole moment hmz

indi suddenly changes the sign
as one can see from Fig. 1. This is a result of complete
reconstruction of the ground state in the vicinity of θeff ¼ π
when the level crossing occurs, which eventually results in
the double degeneracy of the system at this point. As this is
the key element of the construction which leads to the
important observational consequences related to the topo-
logical features of the system, we elaborate on this issue
with more details in Appendix A.
Therefore, one could slowly change the external field

BextðtÞ in the vicinity of θeff ¼ π, which corresponds to the
half-integer flux, to observe the variation in the intensity
and polarization of the radiation. The corresponding back-
ground radiation must vary smoothly, while the emission
from the vacuum should change drastically. One could
hope that these drastic changes may serve as a smoking gun
for discovery of a fundamentally novel type of radiation
from the topological Maxwell vacuum, similar to the DCE.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this work we discussed a number of very unusual
features exhibited by the Maxwell theory formulated on a
compact manifold M with nontrivial topological mapping
π1½Uð1Þ�, which is called the “topological vacuum” (T V).
All these features are originated from the topological
portion of the partition function Ztopðτ; θeffÞ and cannot
be formulated in terms of the conventional E&M propa-
gating photons with two physical transverse polarizations.
In other words, all effects discussed in this paper have a
nondispersive nature.
The computations of the present work along with

previous calculations of Refs. [1–3] imply that the extra
energy (and entropy), not associated with any physical
propagating degrees of freedom, may emerge in the gauge
systems if some conditions are met. This fundamentally
new type of energy emerges as a result of the dynamics of
pure gauge configurations at arbitrary large distances. The
new idea advocated in this work is that this new type of
energy can be, in principle, studied if one places the system
in a time-dependent background. In this case we expect that
the vacuum topological configurations can radiate conven-
tional photons which can be detected and analyzed.

This unique feature of the system when an extra energy is
not related to any physical propagating degrees of freedom
was the main motivation for a proposal [17,18] that the
vacuum energy of the Universe may have, in fact, precisely
such a nondispersive nature.3 This proposal when an extra
energy cannot be associated with any propagating particles
should be contrasted with a conventional description when
an extra vacuum energy in the Universe is always asso-
ciated with some ad hoc physical propagating degree of
freedom, such as an inflaton.4

Essentially, the proposal [17,18] identifies the observed
vacuum energy with the Casimir-type energy which,
however, is originated not from the dynamics of the
physical propagating degrees of freedom, but rather from
the dynamics of the topological sectors which are always
present in gauge systems and which are highly sensitive to
arbitrary large distances. Furthermore, the radiation from
the vacuum in a time-dependent background (which is the
main subject of this work) is very similar in all respects to
the radiation which might be responsible for the end of
inflation in that proposal; see [18] for the details. The
present study, in fact, is motivated by the cosmological
ideas [18] which hopefully can be tested in a tabletop
experiment when the vacuum energy in a time-dependent
background can be transferred to real propagating degrees
of freedom as suggested in Sec. III D. In cosmology
the corresponding period plays a crucial role and calls
the reheating epoch which follows the inflation when the
vacuum energy is the dominating component of the
Universe.
To conclude, the main point of the present studies is that

the radiation may be generated from the vacuum configu-
rations describing the tunneling transitions between jki
sectors, rather than from the physical propagating degrees
of freedom, which would correspond to the conventional
DCE when the virtual photons become real photons in a
time-dependent background. This is precisely the differ-
ence between the DCE and the nonstationary TCE con-
sidered in the present work.

3This new type of vacuum energy which cannot be expressed
in terms of propagating degrees of freedom has been, in fact, well
studied in QCD lattice simulations; see [17] with large number of
references on the original lattice results.

4There are two instances in the evolution of the Universe when
the vacuum energy plays a crucial role. The first instance is
identified with the inflationary epoch when the Hubble constant
H was almost constant which corresponds to the de Sitter—type
behavior aðtÞ ∼ expðHtÞ with exponential growth of the size aðtÞ
of the Universe. The second instance when the vacuum energy
plays a dominating role corresponds to the present epoch when
the vacuum energy is identified with the so-called dark energy
ρDE which constitutes almost 70% of the critical density. In the
proposal [17,18], the vacuum energy density can be estimated as
ρDE ∼HΛ3

QCD ∼ ð10−4 eVÞ4, which is amazingly close to the
observed value.
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APPENDIX: CLASSIFICATION OF THE
VACUUM STATES, DEGENERACY, AND

THE TOPOLOGICAL ORDER

The main goal of this appendix is to review and elaborate
on the important property of degeneracy of the system
under study. As suggested in Sec. III D, the feature of
degeneracy may play an important role in discrimination of
novel and interesting effect of emission of real photons
from vacuum (as a result of the nonstatic topological
Casimir effect) from the background radiation.
The starting point is to analyze the symmetry properties

of partition function Ztopðτ; θeffÞ defined by Eq. (13). One
can easily observe that the θeff ¼ π is very special point as
even and odd “n”-terms in the dual representation for
Ztopðτ; θeffÞ contribute equally to the partition function. It
obviously leads to the degeneracy of the system at θeff ¼ π.
The conventional, nontopological, part of the partition
function Zquantðτ; θeffÞ is not sensitive to the topological
sectors at all, as discussed in Sec. II A. Therefore, this
property of degeneracy is an exact feature of the system.
This double degeneracy implies that Z2 symmetry is
spontaneously broken.
What is the symmetry which is spontaneously broken?

What is order parameter which classifies two physically
distinct states? One cannot formulate the corresponding
symmetry breaking effect in terms of any local operators
and their vacuum expectation values as argued in [2]. Rather,
a proper classification of the ground state is formulated in
terms of nonlocal operators. Indeed, a corresponding order
parameter which characterizes the system is�

e
2π

I
Aidxi

�
θeff¼π−ϵ

¼ þ 1

2

�
e
2π

I
Aidxi

�
θeff¼πþϵ

¼ −
1

2
; ðA1Þ

where computations should be carefully carried out by
approaching θeff ¼ π in partition function Ztopðτ; θeffÞ from
two opposite sides of the θeff ¼ π � ϵ as discussed in [2].
This classification is very different from the conventional
Landau classification based on broken symmetries when
a system is characterized by some expectation value of a
local operator. One should note that a similar classification is
known to emerge in topologically order systems, e.g.,
topological insulators at θ ¼ π; see recent reviews [5–9].

In fact, the classification (A1) is a very particular example of
a much more generic framework recently discussed in [19]
when the classification of a ground state is based on some
global rather than local observables.
We want to emphasize that the classification (A1) is not

a unique feature of the Abelian gauge theory. Similar
classification of the ground states also emerges in non-
Abelian gauge field theories. We would like to mention in
this appendix just one specific example, the so-called
“deformed QCD” model [20], because of its close relation
to real QCD and, most importantly, because this model
shows a number of features relevant for the present studies,
such as the generating of the vacuum energy which is not
associated with any propagating degrees of freedom (the
topological Casimir effect). Furthermore, it may also
exhibit the nonstatic TCE discussed in Sec. III D when
the radiation of real particles occurs as a result of a time-
dependent background, which could have profound con-
sequences for cosmology, as we already mentioned in
concluding Sec. IV.
The “deformed QCD” model is a weakly coupled gauge

theory, when the analytical computations can be performed
in theoretically controllable way. Though it is a weakly
coupled gauge theory, it nevertheless preserves all the
crucial elements of strongly interacting QCD, including
confinement, nontrivial θ dependence, degeneracy of the
topological sectors, etc. Furthermore, it has been claimed
[20] that there is no any phase transition in passage from
weakly coupled deformed QCD to strongly coupled QCD,
such that this model allows us to address and answer a
number of highly nontrivial questions. Important for the
present work topic which will be reviewed here is the
classification of the ground states in this system.
As described in [20], the proper infrared description of

the theory is a dilute gas ofN type monopoles characterized
by their fractional topological charge 1=N and magnetic
charges, which are proportional to the simple roots and
affine root αa ∈ Δaff of the Lie algebra of the SUðNÞ gauge
group. One can explicitly construct [21] the creation
operator MaðxÞ ¼ eiαa·σðxÞ for a monopole of type a at
point x, and compute its expectation value with the
following result [22]:

hMaðxÞim ¼ exp
�
i
θ þ 2πm

N

�
; ðA2Þ

where m is integer which classifies a specific ground
state. These distinct vacuum states classified by m are
not degenerate as it normally happens in supersymmetric
field theories. Nevertheless, some degree of degeneracy
(corresponding to integers m and −m for θ ¼ 0) still holds.
However, these states, being the local minima of the system
are metastable states, rather than absolutely stable states,
because they can decay to the ground state m ¼ 0 through
the tunneling transition. The corresponding decay rate can
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be expressed in terms of the of the domain walls which
separate these vacua [22]. There is a large number of
different types of domain walls in the system. Their
classification is uniquely fixed by the classification of
corresponding vacua (A2).
It is also instructive to observe how the confinement

in the vacuum states (A2) is realized. It turns out that
the confinement in this system is a result of the con-
densation of the fractionally charged monopoles, as usual
for θ ¼ 0; m ¼ 0. However, the corresponding vacuum
structure for m ≠ 0 is less trivial as it represents a specific
superposition of N different monopole condensates. To
be more specific: the condensation of the N different
monopole types is described by the same N component
σðxÞ field which describes the confinement for m ¼ 0
state. However, different monopole condensates form a
coherent superposition [22] shifted by a phase such that
the corresponding magnetization hMaðxÞim receives a
nontrivial phase (A2) for each specific superposition.
In other words, different vacuum states classified by

parameter m from (A2) correspond to the different
superpositions of N different monopole condensates,5

while the effective long range field describing the
dynamics of these monopolies, the σðxÞ field, remains
always the same for allm. This picture resembles in many
ways the picture of the so-called oblique confinement
suggested long ago by ’t Hooft [23] for some special
values of the θm ¼ 2πm

N .
Our final remark in this appendix is that the Maxwell

gauge system defined on a compact manifold and studied in
the present work, as well as the non-Abelian gauge
“deformed QCD” model reviewed in this appendix, show
a number of other features (along with property of
degeneracy already mentioned here) which are inherent
characteristics of the topologically ordered phases. We refer
to [2,3] for corresponding arguments related to the Uð1Þ
Maxwell gauge system formulated on a compact manifold
and to [24] with corresponding arguments applied to the
SUðNÞ “deformed QCD” model for the details.
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