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We study N ¼ 2 supersymmetric gauge theories on RP2 × S1 and compute the superconformal index
by using the localization technique. We consider not only the round real projective plane RP2 but also the
squashed real projective plane RP2

b which turns back to RP2 by taking a squashing parameter b as 1.
In addition, we find that the result is independent of the squashing parameter b. We apply our new
superconformal index to check the simplest case of 3D mirror symmetry, i.e., the equivalence between
theN ¼ 2 supersymmetric quantum electrodynamics (SQED) and the XYZmodel onRP2 × S1. We prove
it by using a mathematical formula called the q-binomial theorem. We also comment on theN ¼ 4 version
of mirror symmetry, mirror symmetry via generalized indices, and possibilities of generalizations from
mathematical viewpoints.
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I. INTRODUCTION

The remarkable recent progress in 3D supersymmetric
gauge theories is that we can exactly investigate theories
with interactions on various curved geometries by making
use of the localization [1–9]. One of the interesting
quantities to which we can apply this exact calculation
is the superconformal index (SCI) [10,11] defined as a
refinement of the Witten index. The SCI of N ¼ 2 super-
conformal theories is defined by [12]

Iðx; eiμaÞ ¼ TrH

�
ð−1ÞF̂x0fQ;Q†gxĤþĵ3

Y
a

eiμaf̂a
�
; ð1:1Þ

where H is the Hilbert space of the theory, and the trace is
taken over this Hilbert space (see Sec. III for details).
Basically, it counts the number of supersymmetric vacua,
so-called BPS states, with eigenvalues of certain operators
commuting with both the Hamiltonian fQ;Q†g and the
fermion number operator F̂. The SCI on S2 × S1 has been
computed by the localization in [13,14].
An application of the SCI is to study 3D mirror

symmetry [15–18] of which the duality between the
N ¼ 2 supersymmetric quantum electrodynamics
(SQED) and the XYZ model is the simplest example.
Mirror symmetry on S2 × S1 based on SCIs has been
studied numerically in [14] and has been manifested in [19]
by using the q-binomial theorem and Ramanujan’s sum-
mation (the special case for SCIs with gauging flavor
symmetries called generalized indices also has been proven

in the same way [20]). An advantage in utilizing the SCI
is that we can establish mirror symmetry rigorously in the
mathematical sense thanks to the localization.
On the other hand, one can construct 2D theories on the

real projective plane RP2 by taking precise boundary
conditions of fields on the two-sphere S2 under the antipodal
identification

ðπ − ϑ; π þ φÞ ∼ ðϑ;φÞ; ð1:2Þ
where ϑ;φ are coordinates of S2. The partition function on
RP2 has been computed exactly in [21]. The authors also
showed how to define 2D supersymmetry (SUSY) theories
on the squashed real projective plane RP2

b by turning on an
appropriate background Uð1ÞR-gauge field. This method
was developed in [22] in the context of localization calculus
on the squashed two-sphere S2

b.
In this paper, we show that their constructions can be

lifted naturally to these on RP2
b × S1 by adding the third

coordinate y. We can get this curved space from S2
b × S1 by

identifying

ðπ − ϑ; π þ φ; yÞ ∼ ðϑ;φ; yÞ; ð1:3Þ
where ϑ ∈ ½0; π�;φ ∈ ½0; 2π�, and y ∈ ½0; 2π�. Note that
there is no difference between S2

b × S1 and RP2
b × S1 if

we only discuss the local quantities. The difference between
them comes from the global distinction of topology and the
boundary conditions of fields under the antipodal identi-
fication (1.3). With these setups, we calculate the SCI of
N ¼ 2 supersymmetric gauge theories on RP2

b × S1 by the
localization. First of all, we take the Kaluza-Klein (KK)
expansion for all fields along the S1 direction, which reduces
Lagrangians on RP2

b × S1 to the sum of Lagrangians on
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RP2
b over KK modes. Then, the one-loop determinant of the

vector multiplet and the matter multiplet can be obtained as
the product of one-loop determinants on RP2

b computed in
[21]. Furthermore, we specify parity conditions named the
B-parity condition, in order to make all fields consistent with
the antipodal identification. The B-parity condition is con-
cluded by plausible requirements from physical consider-
ation. The one-loop determinant is expressed by the
contribution of the Z2-holonomy even or odd sector due
to theB-parity condition. As a result, the SCI is written as the
sum of each contribution when the vector multiplet is
considered. This is different from the case where the SCI
on S2

b × S1 receives the contribution of the monopole as the
infinite sum over integers. In addition, the one-loop deter-
minants and the SCI on RP2

b × S1 are independent of the
squashing parameter b.
With our exact results, we check N ¼ 2 Abelian mirror

symmetry on RP2
b × S1. Again, the B-parity condition

carries a crucial role to establish this duality. We verify it
exactly as the equality of the SCIs involving the q-shifted
factorial and the basic hypergeometric series.1 In this paper,
we do not discuss the non-Abelian case because there is a
slight difficulty in the classical configuration of the gauge
field. Its solutions of saddle point equations consistent
with the B parity are written by the flat connection on RP2

b
and the Wilson line phase along S1 [see (3.10)]. After the
localization, the final form of the index becomes the
integration over the saddle points (i.e., Coulomb moduli).
Besides the one-loop determinants, we have the Jacobian
coming from fixing its integration measure onto the Cartan
subalgebla by using the gauge symmetry of the saddle
points. However, this factor is now undetermined since we
do not find the explicit form of the flat connection. It is
straightforward to extend all other arguments to non-
Abelian SUSY gauge theories. We put off this issue as a
future work.
The rest of this paper is organized as follows: In Sec. II,

we construct N ¼ 2 supersymmetric gauge theories with
the U(1)-gauge group on RP2

b × S1. Also, we indicate the
B-parity condition for a single flavor and its generalization
to Nf flavors. In Sec. III, we show the main idea of the
localization computation on RP2

b × S1 and the one-loop
determinant for the vector multiplet and the matter multi-
plet. In addition, we provide the general formula of the new
SCI for convenience. In Sec. IV, mirror symmetry on
RP2

b × S1 is established as the relation of the SCI for the
SQED and the XYZ model with the appropriate identi-
fications of variables. We must take account of the B-parity
condition correctly to get these SCIs. We justify it math-
ematically by employing the q-binomial theorem. In
Sec. V, we summarize our results and comment on some

open questions. In Appendixes A and B, we explain
calculation details of the one-loop determinants. In addition
to mirror symmetry, there is another example called an
Abelian duality hold between a gauge field and a scalar
in a 3D Abelian gauge theory [24–26] to be able to check
the validity of our new SCI. We show how the SCI on
RP2

b × S1 precisely works on Abelian duality in
Appendix C. In Appendix D, we discuss mathematical
generalizations of our relation obtained as mirror
symmetry.

II. SUPERSYMMETRY ON RP2
b × S1

In this section, we show how to define 3D SUSY theories
with the U(1)-gauge group onRP2

b × S1. Of course, we can
also define the theories on S2

b × S1. In fact, the arguments
in Secs. II A–II C can be applied to the theories on S2

b × S1.
However, we omit explanations for the calculations of the
index on S2

b × S1 because the final results are free from the
squashing parameter and just reproduce the known results
on S2 × S1 [3,13,14]. On the other hand, discussions on
RP2

b × S1 produce truly new results even though they are
free from the squashing parameter. Therefore, we concen-
trate on the explanations of the theories on RP2

b × S1.

A. Our background and conventions

We extend the construction of 2D Killing spinors and the
background Uð1ÞR-gauge field in [21,22] to the 3D case.

1. Our background

We consider the following dreibein and background
Uð1ÞR-gauge field:

e1 ¼ fðϑÞdϑ; e2 ¼ l sinϑdφ; e3 ¼ dy; ð2:1Þ

VR ¼ 1

2

�
1 −

l
f

�
dφþ −i

2l

�
1 −

l
f

�
dy; ð2:2Þ

where fðϑÞ2 ¼ ~l2sin2ϑþ l2cos2ϑ. We use latin alphabet
a; b; c for the local Lorentz indices.

2. Covariant derivative

The 3D covariant derivative is defined by

Dμ ¼ ∂μ þ
1

4
ωab
μ

ˆJ ab − iR̂VR
μ ; ð2:3Þ

where ωab
μ is the spin connection computed from the

dreibein (2.1), and the ˆJ ab’s are Lorentz generators of
the fields characterized by its spin:

spin-0 ⇒ Ĵ ab ¼ 0;

spin-1=2 ⇒ Ĵ ab ¼ γab; ð2:4Þ
1We follow these names used in [19,23]. The authors of [20]

use the q product instead of the q-shifted factorial.
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where γab are antisymmetrized gamma matrices defined in
(2.7), and R̂ is anR charge. See Table I for assignments of R
charges to each field.

3. Killing spinors

Then, the spinors

ϵðϑ;φ; yÞ ¼ e
1
2
ðylþiφÞ

�
cos ϑ

2

sin ϑ
2

�
;

ϵ̄ðϑ;φ; yÞ ¼ e
−1
2
ðylþiφÞ

�
sin ϑ

2

cos ϑ
2

�
ð2:5Þ

satisfy the Killing spinor equations,

Dμϵ ¼
1

2f
γμγ3ϵ; Dμϵ̄ ¼

−1
2f

γμγ3ϵ̄: ð2:6Þ

4. Gamma matrices

The gamma matrices γa are defined by the Pauli matrices

γ1 ¼
�
0 1

1 0

�
; γ2 ¼

�
0 −i
i 0

�
;

γ3 ¼
�
1 0

0 −1

�
; γab ¼

1

2
ðγaγb − γbγaÞ: ð2:7Þ

5. Spinor bilinear

Let us denote generic spinors by ϵ; ϵ̄, and λ. We take
spinor bilinears as

ϵλ ¼ ð ϵ1 ϵ2 Þ
�

0 1

−1 0

��
λ1

λ2

�
;

ϵγaλ ¼ ð ϵ1 ϵ2 Þ
�

0 1

−1 0

�
γa

�
λ1

λ2

�
:

Using this convention, one can prove the following
formulas:

ϵλ ¼ ð−1Þ1þjϵj·jλjλϵ; ϵγaλ ¼ ð−1Þjϵj·jλjλγaϵ;
ðγaϵÞλ ¼ −ϵγaλ; ϵ̄ðϵλÞ þ ð−1Þ1þjϵj·jϵ̄jϵðϵ̄λÞ þ ðϵ̄ϵÞλ ¼ 0;

ð−1Þ1þjϵj·jϵ̄jϵðϵ̄λÞ þ 2ðϵ̄ϵÞλþ ð−1Þ1þjλj·jϵjðϵ̄γaλÞγaϵ ¼ 0;

where jϵjmeans the spinor ϵ’s statistics such that jϵj ¼ 0 for
a bosonic ϵ and jϵj ¼ 1 for a fermonic ϵ.

B. Supersymmetry

We show our definition of supersymmetry in this
subsection. There are two kinds of multiplets in the 3D
N ¼ 2 theory. The first one is the vector multiplet
composed of gauge field Aμ, scalar σ, gauginos λ; λ̄, and
an auxiliary field D. The supersymmetry for the vector
multiplet is given by

δϵAμ ¼ −
i
2
λ̄γμϵ; δϵ̄Aμ ¼ −

i
2
ϵ̄γμλ; ð2:8Þ

δϵσ ¼ þ 1

2
λ̄ϵ; δϵ̄σ ¼ þ 1

2
ϵ̄λ; ð2:9Þ

δϵλ ¼
1

2
γμνϵFμν −Dϵþ iγμϵDμσ þ i

f
σγ3ϵ; δϵ̄λ ¼ 0;

ð2:10Þ

δϵλ̄ ¼ 0; δϵ̄λ̄ ¼
1

2
γμνϵ̄Fμν þDϵ̄ − iγμϵ̄Dμσ þ i

f
σγ3ϵ̄;

ð2:11Þ

δϵD ¼ þ i
2
Dμλ̄γ

μϵþ i
4f

λ̄γ3ϵ;

δϵ̄D ¼ −
i
2
ϵ̄γμDμλþ

i
4f

ϵ̄γ3λ; ð2:12Þ

where we use the same supersymmetry as in [27], which
takes δϵ and δϵ̄ to be purely fermionic. We use the Killing
spinors in (2.5) as supersymmetry parameters. f is the
function that appeared in (2.1). One can verify that the
above SUSY closes within the translation, rotation, R
symmetry, and the gauge transformation.
The second one is the matter multiplet composed of

scalars ϕ; ϕ̄, spinors ψ ; ψ̄ , and auxiliary fields F; F̄; which

TABLE I. Charge assignments for each field.

Killing spinor ϵ ϵ̄

Spin 1=2 1=2
R̂ þ1 −1

Field Aμ σ λ λ̄ D ϕ ϕ̄ ψ ψ̄ F F̄

Spin 1 0 1=2 1=2 0 0 0 1=2 1=2 0 0
R̂ 0 0 þ1 −1 0 −Δ Δ −ðΔ − 1Þ Δ − 1 −ðΔ − 2Þ Δ − 2
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couple to the vector multiplet via the gauge symmetry with
a charge q. Also, we have the following SUSY trans-
formations for the matter multiplet:

δϵϕ ¼ 0; δϵ̄ϕ ¼ ϵ̄ψ ; ð2:13Þ

δϵϕ̄ ¼ ϵψ̄ ; δϵ̄ϕ̄ ¼ 0; ð2:14Þ

δϵψ ¼ iγμϵDA
μϕþ iqϵσϕ −

iΔ
f
ϵγ3ϕ; δϵ̄ψ ¼ ϵ̄F;

ð2:15Þ

δϵψ̄ ¼ F̄; ϵ; δϵ̄ψ̄ ¼ iγμϵ̄DA
μ ϕ̄þ iqϕ̄σϵ̄ −

iΔ
f
ϕ̄γ3ϵ̄;

ð2:16Þ

δϵF ¼ iϵγμDA
μψ − iqσϵψ − iqϵλϕþ ið2Δ − 1Þ

2f
ϵγ3ψ ;

δϵ̄F ¼ 0; ð2:17Þ

δϵF̄; ¼ 0;

δϵ̄F̄; ¼ iϵ̄γμDA
μ ψ̄ − iqϵ̄ ψ̄ σ þ iqϕ̄ ϵ̄ λ̄−

ið2Δ − 1Þ
2f

ϵ̄γ3ψ̄ :

ð2:18Þ

Of course, the SUSY algebra is closed within the trans-
lation, rotation, R symmetry, and the gauge transformation.
Here, we use the covariant derivative coupled with A,

DA
μΦ ¼ DμΦ − iqAμΦ; DA

μ Φ̄ ¼ DμΦ̄þ iqΦ̄Aμ:

ð2:19Þ

If one wants a neutral matter, it is achieved by turning off q.
In our convention, Aμ has the same dimension as ∂μ; thus,
the charge q must be dimensionless, or, equivalently, q is
just a number. One of the most important features of the
above SUSY is nilpotency

δ2ϵ ¼ δ2ϵ̄ ¼ 0: ð2:20Þ

C. Lagrangians

1. SUSY-exact terms

In order to use the localization method, we need so-
called SUSY-exact terms for the vector multiplet and the
matter multiplet. For the vector multiplet, we can use the
super-Yang-Mills term as a SUSY-exact term. In fact, one
can verify

LYM ¼ 1

2
FμνFμν þD2 þDμσDμσ þ ϵ3ρσ

σ

f
Fρσ þ

σ2

f2

þ iλ̄γμDμλ −
i
2f

λ̄γ3λ ¼ δϵ̄ððδϵ̄→ϵ̄† λ̄Þλ̄Þ ð2:21Þ

up to a total derivative term. The notation δϵ̄→ϵ̄† is defined in
the same way in [27]. In addition, the following term for
the matter multiplet is also SUSY exact:

Lmat ¼ −iðψ̄γμDA
μψÞ þ iqðψ̄σψÞ − iqϕ̄ðλ̄ψÞ − iΔ

2f
ðψ̄γ3ψÞ þ F̄; F

þ iqðψ̄λÞϕþ gμνDA
μ ϕ̄DA

ν ϕþ q2ϕ̄σ2ϕþ iqϕ̄Dϕ −
Δ
f
ϕ̄DA

3ϕ −
Δ
2f2

ϕ̄ϕþ Δ
4
Rϕ̄ϕ

−
Δ − 1

f
viϕ̄DA

i ϕ −
Δ − 1

f
ωqϕ̄σϕ − i

Δ − 1

2f
viðψ̄γiψÞ − i

Δ − 1

2f
ωðψ̄ψÞ

¼ δϵ̄

�
δϵ̄→ϵ̄† ½F̄;ϕ� − i

Δ − 1

f
δϵ½ϕ̄ϕ�

�
; ð2:22Þ

where i runs for 1,2, or equivalently, ϑ;φ. Here, we define

vμ ¼ ϵ̄γμϵ; ω ¼ ϵ̄ϵ: ð2:23Þ

We use these actions as “regulators” for the localization.
Thanks to the nilpotency (2.20), these terms are δϵ̄
invariant automatically.

2. Other terms

Of course, we can construct other SUSY-invariant terms.
The famous one is the supersymmetric Chern-Simons term

LCS ¼
1ffiffiffi
g

p ϵμνλðAμ∂νAλÞ − λ̄λþ 2Dσ: ð2:24Þ

This term is, however, prohibited on RP2
b × S1 as we will

explain later. We consider the U(1)-gauge group; therefore,
the Fayet-Iliopoulos term

LFI ¼ D −
1

f
A3 ð2:25Þ

can be taken into account. If there is an additional

dynamical vector multiplet, say, ðBμ; ~σ;
~̄λ; ~λ; ~DÞ, which
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has the same SUSY transformations as (2.8)–(2.12), then
we can write down the following BF-type coupling called
the supersymmetric BF term:

LBF ¼
1ffiffiffi
g

p ϵμνλðBμFνλÞ − λ̄ ~λ− ~̄λλþ 2D ~σ þ 2 ~Dσ: ð2:26Þ

However, this term is also prohibited on RP2
b × S1. In

addition, the superpotential terms for the matter multiplet
are also SUSY invariant. It may be interesting to construct
them explicitly on our curved space. For example, there is a
known result how to write them explicitly on S3 [28].

D. Parity conditions

As studied in [21], we have to find parity conditions
compatible with the antipodal identification (1.3) for
component fields. Our guiding principles are as follows:

(i) The squared parity transformation becomes þ1 for
bosons and −1 for fermions.

(ii) The regulator Lagrangians (2.21) and (2.22) must be
invariant under the parity.

(iii) SUSY δϵ; δϵ̄ must be consistent with the parity.

1. Vector multiplet

After simple calculus, we find a set of parity conditions
for the vector multiplet,

A1ðπ − ϑ; π þ φ; yÞ ¼ −A1ðϑ;φ; yÞ;
A2;3ðπ − ϑ; π þ φ; yÞ ¼ þA2;3ðϑ;φ; yÞ;

σðπ − ϑ; π þ φ; yÞ ¼ −σðϑ;φ; yÞ;
λðπ − ϑ; π þ φ; yÞ ¼ þiγ1λðϑ;φ; yÞ;
λ̄ðπ − ϑ; π þ φ; yÞ ¼ −iγ1λ̄ðϑ;φ; yÞ;
Dðπ − ϑ; π þ φ; yÞ ¼ þDðϑ;φ; yÞ: ð2:27Þ

These are similar to the ones in [21] called B parity.
Therefore, we would like to call the conditions in (2.27) the
B-parity condition.

2. Matter multiplet

The one flavor matter multiplet has two choices:

ϕðπ − ϑ; π þ φ; yÞ ¼ �ϕðϑ;φ; yÞ;
ϕ̄ðπ − ϑ; π þ φ; yÞ ¼ �ϕ̄ðϑ;φ; yÞ;
ψðπ − ϑ; π þ φ; yÞ ¼ ∓iγ1ψðϑ;φ; yÞ;
ψ̄ðπ − ϑ; π þ φ; yÞ ¼ �iγ1ψ̄ðϑ;φ; yÞ;
Fðπ − ϑ; π þ φ; yÞ ¼ �Fðϑ;φ; yÞ;
F̄; ðπ − ϑ; π þ φ; yÞ ¼ �F̄; ðϑ;φ; yÞ: ð2:28Þ

The existence of the compatible two choices can be

regarded as the existence of a holonomy with respect to
a background Uð1Þflavor flat gauge field Bflavor

flat . In other
words, the parity conditions are characterized by the
holonomy of Bflavor

flat ,

�1 ¼ e
i
H
γ
fBflavor

flat ; ð2:29Þ

where γ is a noncontractible cycle on RP2, and f is the
corresponding Uð1Þflavor charge defined by f̂Φ ¼ fΦ. f̂ is a
flavor charge operator used later in the definition of the
superconformal index. This is an analogue of the back-
ground Uð1Þflavor monopole gauge field on S2 × S1 in [20].
If we have many flavors, we can generalize these con-
ditions. Let us denote a multiflavor field by

~Φ ¼

0
BBBBB@

Φ1

Φ2

..

.

ΦNf

1
CCCCCA: ð2:30Þ

Then, the generic B-parity condition is

~ϕðπ − ϑ; π þ φ; yÞ ¼ M~ϕðϑ;φ; yÞ;
~̄ϕðπ − ϑ; π þ φ; yÞ ¼ N ~̄ϕðϑ;φ; yÞ;
~ψðπ − ϑ; π þ φ; yÞ ¼ −iγ1M~ψðϑ;φ; yÞ;
~̄ψðπ − ϑ; π þ φ; yÞ ¼ iγ1N ~̄ψðϑ;φ; yÞ;
~Fðπ − ϑ; π þ φ; yÞ ¼ M~Fðϑ;φ; yÞ;
~̄F; ðπ − ϑ; π þ φ; yÞ ¼ N ~̄F; ðϑ;φ; yÞ; ð2:31Þ

where M and N are Nf × Nf matrices constrained by

NTM ¼ 1; M2 ¼ N2 ¼ 1: ð2:32Þ

3. Comments on the B-parity condition

There are two comments. The first one is related to the
vector multiplet. In order to use LYM (2.21) as a regulator
when we perform the localization, we would like to
maintain it to be invariant under the B parity (2.27) as
we noted in our guiding principles. In fact, LYM is invariant
under (2.27). On the other hand, LCS (2.24) and LBF (2.26)
become parity odd

LCS=BFðπ − ϑ; π þ φ; yÞ ¼ −LCS=BFðϑ;φ; yÞ: ð2:33Þ

It means that we cannot take it on RP2
b × S1 as we

commented just below (2.24) and (2.26).
The second comment concerns the matter multiplet.

Suppose we have two flavors and the B-parity condition
described by the 2 × 2 matrices

SUPERCONFORMAL INDEX ON … PHYSICAL REVIEW D 91, 105023 (2015)

105023-5



M ¼ N ¼
�
0 1

1 0

�
: ð2:34Þ

Then we can lift its Lagrangian on RP2
b × S1 to the one on

S2
b × S1 by defining a new matter multiplet on S2

b × S1 as

Φðϑ;φ; yÞ ¼
�
Φ1ðϑ;φ; yÞ; ϑ ∈ ½0; π

2
�;

Φ2ðϑ;φ; yÞ; ϑ ∈ ½π
2
; π�: ð2:35Þ

The authors of [21] also commented on this fact. This is
quite similar to the doubling trick in string theory.
In Sec. IV, we use such B-parity condition exactly in the
context of 3D mirror symmetry.

III. LOCALIZATION CALCULUS ON RP2
b × S1

In this section, we calculate the SCI,

Iðx; αÞ ¼ TrHRP2
b

½ð−1ÞF̂x0ĤþR̂−ĵ3xĤþĵ3αf̂�; ð3:1Þ

where F̂ is the fermion number operator, Ĥ is the energy
operator, R̂ is the R-charge operator, ĵ3 is the third
component of the orbital angular momentum operator
which acts on RP2

b, and f̂ is the flavor charge operator.
Note that we have opposite R-charge assignments com-
pared with [14,19,20,29]. HRP2

b
represents the Hilbert

space of the theory on RP2
b. The squashing procedure is

compatible with the definition (3.1) because this procedure
preserves the isometry generated by ĵ3. We take each
fugacity as

x0 ¼ e−β1 ; x ¼ e−β2 ; α ¼ eiμ; ð3:2Þ

where μ is a chemical potential and define the relations

β1 þ β2 ¼
2π

l
; Ω ¼ β1 − β2

β1 þ β2
; ð3:3Þ

where we introduce the parameter Ω for later simplicity.

A. Vector multiplet contribution

First, we have to identify the locus of the Lagrangian
LYM (2.21) characterized by LYM ¼ 0. In order to find it, it
is useful to introduce the combination of the fields

F μ ¼ 1

2
ϵμρσFρσ þ ∂μσ þ 1

f
δμ3σ: ð3:4Þ

The Lagrangian LYM can be rewritten as

LYM ¼ F μF μ þD2 þ iλ̄γμDμλ −
i
2f

λ̄γ3λ ð3:5Þ

up to total derivative. Now, the locus is obtained by

F μ ¼ 0; ð3:6Þ

D ¼ 0; λ ¼ 0; λ̄ ¼ 0: ð3:7Þ

1. Locus on RP2
b × S1

A nontrivial equation is (3.6). This is equivalent to the
following equation expressed by differential forms:

�F þ dσ þ e3

f
σ ¼ 0: ð3:8Þ

We have to know the configuration invariant under the
B-parity condition (2.27) which satisfies (3.8). It can be
characterized by

F ¼ 0; σ ¼ 0: ð3:9Þ

The first equation in (3.9) means, of course, the flat
connection. The flat connection A on RP2 × S1 is
expressed by

A ¼ Aflat þ
θ

2π
dy; ð3:10Þ

where Aflat is a flat connection of RP2 related to the
holonomy along the noncontractible cycle γ of RP2.

There are two choices for Aflat ¼ Að�Þ
flat characterized by

exp

�
i
I
γ
Að�Þ
flat

�
¼ �1: ð3:11Þ

Also, there is a constraint on θ as

θ ∼ θ þ 2π: ð3:12Þ

Therefore, we have to sum up these contributions weighted
by the Gaussian parts, or, equivalently, the one-loop

determinants Zð�Þ
1-loop,

Iðx; αÞ ¼
Z

2π

0

dθ
2π

ZðþÞ
1-loop þ

Z
2π

0

dθ
2π

Zð−Þ
1-loop: ð3:13Þ

One important thing is that we can perform calculus even if

we do not know the explicit form of Að�Þ
flat . This is similar to

the calculation of the partition function on RP2
b in [21].

2. 3D to 2D

One might think that the U(1) vector multiplet contri-
bution is trivial because the result on S2 × S1 was so
[3,13,14]. However, there is a nontrivial contribution once
we put the theory on RP2

b × S1. We can use results of 2D
calculations [21] to compute our 3D SCI (3.13). Let us
show how it works. First, we expand each component field
around the loci (3.7), (3.9), and (3.10), then we get the
following linearized Lagrangians:
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Lboson ¼
1

2
½∂μAν − ∂νAμ�2 þ ð∂μσÞ2

þ ϵ3μν
σ

f
½∂μAν − ∂νAμ� þ

σ2

f2
; ð3:14Þ

Lfermion ¼ iλ̄γμDμλ −
i
2f

λ̄γ3λ: ð3:15Þ

Here, our starting Lagrangian has only a U(1)-gauge
symmetry. In other words, (2.21) is the one of a
Gaussian-type theory. Therefore, the above Lagrangians
have nothing but the same form as the original one (2.21).
Usually, in the context of localization calculus, one

expand these fields with respect to the direct product of
some harmonic functions on RP2 and Kaluza-Klein modes
of S1. Here, however, we take a much quicker route. We
expand each field with respect to the Kaluza-Klein modes
only:

Ai ¼
X
n

1ffiffiffiffiffiffi
2π

p eðin−
β1−β2
2π ĵ3ÞyAðnÞ

i ðϑ;φÞ ði ¼ 1; 2Þ; ð3:16Þ

A3 ¼
X
n

1ffiffiffiffiffiffi
2π

p eðin−
β1−β2
2π ĵ3ÞyAðnÞ

3 ðϑ;φÞ; ð3:17Þ

σ ¼
X
n

1ffiffiffiffiffiffi
2π

p eðin−
β1−β2
2π ĵ3ÞyσðnÞðϑ;φÞ; ð3:18Þ

λ ¼
X
n

1ffiffiffiffiffiffi
2π

p eðinþð1−ĵ3Þβ12πþĵ3
β2
2πÞyλðnÞðϑ;φÞ; ð3:19Þ

λ̄ ¼
X
n

1ffiffiffiffiffiffi
2π

p eðinþð−1−ĵ3Þβ12πþĵ3
β2
2πÞyλ̄ðnÞðϑ;φÞ; ð3:20Þ

where ĵ3 is the orbital angular momentum operator2

ĵ3 ¼ −i∂φ: ð3:21Þ

Then, one can get the sum of 2D Lagrangians L2DðnÞ of
Kaluza-Klein fields labeled by n after performing the
integral along S1,

Z
d3x

ffiffiffiffiffi
g3

p
L ¼

Z
d2x

ffiffiffiffiffi
g2

p X
n

L2dðnÞ: ð3:22Þ

The bosonic part and the fermionic part are as follows:

ffiffiffiffiffi
g2

p
L2D ðnÞ
boson ¼

0
B@

Að−nÞ

Að−nÞ
3

σð−nÞ

1
CA

T

∧ �2

0
B@

−ð�2dÞ2 þ h2n −ihnd − �2 d 1
f

−ihn �2 d�2 −ð�2dÞ2 0

þ 1
f �2 d 0 −ð�2dÞ2 þ 1

f2 þ h2n

1
CA
0
B@

AðnÞ

AðnÞ
3

σðnÞ

1
CA; ð3:23Þ

L2D ðnÞ
fermion ¼ λ̄ð−nÞ

�
iγiDi þ γ3

�
hn þ

i
2l
Ω
��

λðnÞ; ð3:24Þ

where �2 is the Hodge star of RP2
b, and the exterior

derivative d and the gauge field AðnÞ are 1-forms on
RP2

b. The symbol hn represents an operator defined by

hn ¼ −
�
nþ i

l
Ωĵ3

�
: ð3:25Þ

The Lagrangians (3.23) and (3.24) are quite similar to the
ones on RP2

b in [21] by identifying hn ∼ α · σ. Although, in
the fermionic term (3.24), a slightly different contribution
exists, we can do the same procedure performed in the
Appendix in [21]. See Appendix A for details.

3. One-loop determinant

The final result is

ZvectorðþÞ
1-loop ðxÞ ¼ Zvectorð−Þ

1-loop ðxÞ ¼ Zvector
1-loopðxÞ

¼ xþ1
4 exp

�X∞
m¼1

1

m
fvectorðxmÞ

�
; ð3:26Þ

fvectorðxÞ ¼
x2

1 − x4
−

x4

1 − x4
; ð3:27Þ

where the prefactor preceding the exponent is the Casimir
energy explained in detail in Appendixes A and B. As the
end of the discussion here, we would like to mention the
origin of the U(1) vector one-loop determinant. Intuitively,
it is concluded as the difference of spins of bosonic and
fermionic fields. More precisely, Z2-holonomy splits the
eigenvalues of ĵ3 into two sets of integers which are
assigned to each sector according to the spins of the fields.
As a result, the eigenvalues run for odd integers in the
bosonic sector and even integers in the fermionic sector
under the B-parity condition (2.27). This mismatch of the

2When one generalizes it with the non-Abelian gauge group,
one should replace ∂φ by the covariant derivative defined by the
precise flat connection Að�Þ

flat in (3.21) corresponding to the locus
around which the fluctuation fields are expanded.
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eigenvalues leads to the nontrivial one-loop determinant for
U(1)-gauge group. The readers can see this explicitly also
in Appendix A 1.

B. Singlet matter multiplet contribution

Second, we have to know the locus of the matter
Lagrangian Lmat (2.22). However, it is somewhat trivial
because the configuration is realized by turning off all
fields in the matter multiplet. Therefore, by expanding
around it, we get the following linearized Lagrangians:

Lboson ¼ gμνDA
μ ϕ̄DA

ν ϕ −
Δ
f
ϕ̄DA

3 ϕ −
Δ
2f2

ϕ̄ϕþ Δ
4
Rϕ̄ϕ

−
Δ − 1

f
viϕ̄DA

i ϕ; ð3:28Þ

Lfermion ¼ −iðψ̄γμDA
μ ψÞ −

iΔ
2f

ðψ̄γ3ψÞ − i
Δ − 1

2f
viðψ̄γiψÞ

− i
Δ − 1

2f
ωðψ̄ψÞ: ð3:29Þ

Here, the superscript A means the covariant derivative
(2.19) defined with the locus value of the gauge field (3.10).

1. 3D to 2D

By expanding Kaluza-Klein modes first, we can get the
2D action as well as the case of the vector multiplet. In
order to preserve SUSY, we have to read the precise
boundary conditions from the fugacities in the index (3.1):

ϕðϑ;φ; yÞ ¼
X∞
n¼−∞

1ffiffiffiffiffiffi
2π

p eðinþð−Δ−ĵ3Þβ12πþĵ3
β2
2π−

ifμ
2π ÞyϕðnÞðϑ;φÞ;

ð3:30Þ

ϕ̄ðϑ;φ; yÞ ¼
X∞
n¼−∞

1ffiffiffiffiffiffi
2π

p eðinþðþΔ−ĵ3Þβ12πþĵ3
β2
2πþifμ

2π Þyϕ̄ðnÞðϑ;φÞ;

ð3:31Þ

ψðϑ;φ; yÞ ¼
X∞
n¼−∞

1ffiffiffiffiffiffi
2π

p eðinþð−Δþ1−ĵ3Þβ12πþĵ3
β2
2π−

ifμ
2π Þyψ ðnÞðϑ;φÞ;

ð3:32Þ

ψ̄ðϑ;φ; yÞ ¼
X∞
n¼−∞

1ffiffiffiffiffiffi
2π

p eðinþðþΔ−1−ĵ3Þβ12πþĵ3
β2
2πþifμ

2π Þyψ̄ ðnÞðϑ;φÞ;

ð3:33Þ

where ĵ3 is the orbital angular momentum operator

ĵ3 ¼ −ið∂φ − iqAflat
φ Þ: ð3:34Þ

Note that there is a nontrivial contribution from the gauge
field on the locus because the matter multiplet couples with

the vector multiplet via the gauge symmetry. This effect is
absent in the vector multiplet’s case because it is neutral
when the gauge group is U(1).
Now, once we perform the integral over S1 as for the

vector multiplet, we can get 2D Lagrangians,

L2D ðnÞ
boson ¼ ϕ̄ð−nÞ

�
−gijDAflat

i DAflat
j þ

�
pn − i

Δ
2l
Ω
�

2

þ Δ2 − 2Δ
4f2

þ Δ
4
R −

Δ − 1

f
viDAflat

i

�
ϕðnÞ;

ð3:35Þ

L2D ðnÞ
fermion ¼ ψ̄ ð−nÞ

�
−iγiDAflat

i − γ3

�
pn − i

Δ − 1

2l
Ω
�

− i
1

2f
γ3 − i

Δ − 1

2f
viγi − i

Δ − 1

2f
ω

�
ψ ðnÞ;

ð3:36Þ
where the symbol pn represents an operator defined by

pn ¼ −
�
nþ i

l
Ωĵ3

�
þ qθ þ fμ

2π
: ð3:37Þ

The Lagrangians (3.3) and (3.36) are also similar to the
ones onRP2

b in [21] by identifying pn ∼ σ. As we can see in
the fermionic part of the Lagrangian for the vector
multiplet, there are also distinctions between (3.35),
(3.36), and the corresponding ones in [21]. Even with
these extra terms, we can perform exact calculations.
See more details in Appendix A.

2. One-loop determinant

The final result is

ZΔðþÞ
1-loopðeiqθ; x; αf Þ ¼ xþΔ−1

4 eþi
4
qθαþ1

4
f

×exp

�X∞
m¼1

1

m
fðþÞ
matterðeimqθ; xm; αmf Þ

�
;

ð3:38Þ

fðþÞ
matterðeiqθ; x; αf Þ ¼ eþiqθαþf xΔ

1 − x4
− e−iqθα−f

x2−Δ

1 − x4

ð3:39Þ

for the even holonomy sector which gives e
i
H
γ
ðqAflatþfBflavor

flat Þ¼
þ1. The other final form is

ZΔð−Þ
1-loopðeiqθ; x; αf Þ ¼ x−

Δ−1
4 e−

i
4
qθα−

1
4
f

× exp

�X∞
m¼1

1

m
fð−Þmatterðeimqθ; xm; αmf Þ

�
;

ð3:40Þ
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fð−Þmatterðeiqθ; x; αf Þ ¼ eþiqθαþf x2þΔ

1 − x4
− e−iqθα−f

x4−Δ

1 − x4
;

ð3:41Þ

when we have the odd holonomy sector

e
i
H
γ
ðqAflatþfBflavor

flat Þ ¼ −1.

C. Doublet matter multiplet contribution

If we have a doublet matter multiplet constructed from
two matter multiplets

Φ1; Φ2 ð3:42Þ

with the matrix (2.34),

M ¼ N ¼
�
0 1

1 0

�
ð3:43Þ

in the parity condition (2.31), then, we can regard them as
one matter multiplet on S2

b × S1 as commented above.

1. One-loop determinant

Therefore, we can get the corresponding one-loop
determinant just by quoting the one in the zero-monopole
sector on S2

b × S1 [14]:

ZΔð2Þ
1-loopðeiqθ; x; αf Þ ¼ exp

�X∞
m¼1

1

m
fð2Þmatterðeimqθ; xm; αmf Þ

�
;

ð3:44Þ

fð2Þmatterðeiqθ; x; αf Þ ¼ eþiqθαþf xΔ

1 − x2
− e−iqθα−f

x2−Δ

1 − x2
:

ð3:45Þ

Note that there is ð1 − x2Þ in the denominator of (3.45)
different from ð1 − x4Þ in (3.39) and (3.41).

D. Formulas of the SCI on RP2
b × S1

Now, we summarize the relevant formulas of the SCI on
RP2

b × S1 for later use in the check of 3D mirror symmetry.
We specify with two types of theories. The first one is a
class of matter theories. The second one is a class of
U(1)-gauge theories. Before proceeding to the details of
the formulas, we rewrite one-loop determinants in (3.26),
(3.38), and (3.40) as more convenient forms. We now focus
on the exponential part called the plethystic exponential of
the one-loop determinant of the vector multiplet (3.26). It
can be rewritten as follows. We use a geometric series for
the one-particle index (3.27) and perform the sum over m.
Then, the plethystic exponential becomes

exp

�X
m≥1

1

m
fvectorðxmÞ

�

¼ exp

�X
k≥0

flogð1 − x4x4kÞ − logð1 − x2x4kÞg
�

¼
Y
k≥0

ð1 − x4x4kÞ
ð1 − x2x4kÞ ¼

ðx4; x4Þ∞
ðx2; x4Þ∞

; ð3:46Þ

where we use the q-shifted factorial defined by [23]

ðZ; qÞn ≔

8>><
>>:

1 for n ¼ 0;Q
n−1
k¼0ð1 − ZqkÞ for n ≥ 1;Q−n
k¼1ð1 − Zq−kÞ−1 for n ≤ −1;

ð3:47Þ

where Z and q are complex numbers and ðZ; qÞ∞ ≔
limn→∞ðZ; qÞn with 0 < jqj < 1. For simplicity, we will
use the notation

ðZ1; Z2; � � � ; Zr; qÞ∞ ≔ ðZ1; qÞ∞ðZ2; qÞ∞ � � � ðZr; qÞ∞:
ð3:48Þ

The plethystic exponential of (3.38), (3.40), and (3.44) can
be written in the same manner with the q-shifted factorial,

exp

�X
m≥1

1

m
fðþÞ
matterðzqm; xm; αfmÞ

�
¼ ðz−qα−fxð2−ΔÞ; x4Þ∞

ðzþqαþfxΔ; x4Þ∞
;

ð3:49Þ

exp

�X
m≥1

1

m
fð−Þmatterðzqm; xm; αfmÞ

�
¼ ðz−qα−fxð4−ΔÞ; x4Þ∞

ðzþqαþfxð2þΔÞ; x4Þ∞
;

ð3:50Þ

exp

�X
m≥1

1

m
fð2Þmatterðzqm; xm; αfmÞ

�
¼ ðz−qα−fxð2−ΔÞ; x2Þ∞

ðzþqαþfxΔ; x2Þ∞
;

ð3:51Þ
where we define z ≔ eiθ. Combining the Casimir energy
(B6), (B8), and (B10) together, we have the following
one-loop determinants for each multiplet:

Zvector
1-loopðxÞ ¼ xþ1

4
ðx4; x4Þ∞
ðx2; x4Þ∞

;

ZΔðþÞ
1-loopðzq; x; αf Þ ¼ xþΔ−1

4 zþ1
4
qαþ1

4
f ðz−qα−fxð2−ΔÞ; x4Þ∞

ðzþqαþfxΔ; x4Þ∞
;

ZΔð−Þ
1-loopðzq; x; αf Þ ¼ x−

Δ−1
4 z−

1
4
qα−

1
4
f ðz−qα−fxð4−ΔÞ; x4Þ∞
ðzþqαþfxð2þΔÞ; x4Þ∞

;

ZΔð2Þ
1-loopðzq; x; αf Þ ¼

ðz−qα−fxð2−ΔÞ; x2Þ∞
ðzþqαþfxΔ; x2Þ∞

: ð3:52Þ
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1. SCI for matter theory

First of all, for later use, we consider a theory constructed
only by multimatter multiplets as follows:

(i) Singlet matter multiplets with the upper sign in
(2.28): Φaþ; Φ̄aþ, a ¼ 1; 2;…; NðþÞ

f .
(ii) Singlet matter multiplets with the lower sign in

(2.28): Φb−; Φ̄b−, b ¼ 1; 2;…; Nð−Þ
f .

(iii) Doublet matter multiplets with the parity by (2.34):

ΦA
1;2; Φ̄

A
1;2, A ¼ 1; 2;…; Nð2Þ

f .
We can turn on arbitrary superpotentials. However, we
assume here that we turn a certain superpotential which
restricts the flavor symmetries to one global U(1) symmetry,
and we denote the corresponding fugacity by α. In this case,
the SCI does not contain any summation or integral over the
configuration of the gauge field, and our result is

Iðx; αÞ ¼
YNðþÞ
f

a¼1

ZΔaðþÞ
1-loop ð1; x; αf aÞ

YNð−Þ
f

b¼1

ZΔbð−Þ
1-loopð1; x; αf bÞ

×
YNð2Þ

f

A¼1

ZΔAð2Þ
1-loopð1; x; αfAÞ; ð3:53Þ

where flavor charges f a; f b; fA for the global U(1) symmetry
and R charges Δa;Δb;ΔA are assigned to the matter
multiplets Φaþ, Φb

−, and ΦA
1;2, respectively.

2. SCI for gauge theory

The second example is a U(1)-gauge theory con-
structed from

(i) a vector multiplet: V,
(ii) singlet matter multiplets with the upper sign in

(2.28): Φaþ; Φ̄aþ, a ¼ 1; 2;…; NðþÞ
f

(iii) singlet matter multiplets with the lower sign in
(2.28): Φb−; Φ̄b−, b ¼ 1; 2;…; Nð−Þ

f ,
(iv) doublet matter multiplets with the parity by (2.34):

ΦA
1;2; Φ̄

A
1;2, A ¼ 1; 2;…; Nð2Þ

f .
In addition to the global U(1) symmetry and R charges, we
assign U(1)-gauge charges qa; qb; qA ∈ Z for Φaþ, Φb

−;ΦA
1;2,

respectively. As noted in (3.13), we have a summation over

two terms coming from two distinct loci Aflat ¼ Að�Þ
flat and an

integral over loci θ ∈ ½0; 2π�. With the results (3.26), (3.38),
and (3.40) obtained by the localization, the one-loop
determinants for the multiplets are given as follows:

V → Zvector
1-loop always in ð3.52Þ;

Φaþ; Φ̄aþ → ZΔa
1-loop depending on the sign e

i
H
γ
ðqaAflatþf aBa

flatÞ ¼ þe
i
H
γ
ðqaAflatÞ;

Φb
−; Φ̄b

− → ZΔb
1-loop depending on the sign e

i
H
γ
ðqbAflatþf bBb

flatÞ ¼ −ei
H
γ
ðqbAflatÞ;

ΦA
1;2; Φ̄

A
1;2 → ZΔAð2Þ

1-loop always in ð3.52Þ:

The one-loop determinant ZΔð�Þ
1-loop for a singlet matter

multiplet is slightly complicated, and let us give a detailed

explanation here. For the Aflat ¼ AðþÞ
flat sector, we have

e
i
H
γ
ðqAþ

flatÞ ¼ ðei
H
γ
Aþ
flatÞq ¼ ðþ1Þq ¼ þ1, and then we get

the one-loop determinants for Φ� as ZΔð�Þ
1-loop in (3.52),

respectively.
On the other hand, for the Aflat ¼ Að−Þ

flat sector, we have

e
i
H
γ
ðqA−

flatÞ ¼ ðei
H
γ
A−
flatÞq ¼ ð−1Þq, and its value depends on

the parity of q ∈ Z. For simplicity, we assume the follow-
ing circumstances:

Each charge qa; qb takes its value in odd integers:

ð3:54Þ
This is satisfied in the latter part of this paper. Then, we get

the one-loop determinants for Φ� as ZΔð∓Þ
1-loop in (3.52) with

Aflat ¼ Að−Þ
flat sector. Under the condition (3.54), we arrive at

the following formula for the SCI by defining z ¼ eiθ:

Iðx; αÞ ¼ Zvector
1-loopðxÞ
ðsymÞ

I
C0

dz
2πiz

�YNðþÞ
f

a¼1

ZΔaðþÞ
1-loop ðzqa ; x; αf aÞ

YNð−Þ
f

b¼1

ZΔbð−Þ
1-loopðzqb ; x; αf bÞ

YNð2Þ
f

A¼1

ZΔAð2Þ
1-loopðzqA ; x; αfAÞ

þ
YNðþÞ
f

a¼1

ZΔað−Þ
1-loopðzqa ; x; αf aÞ

YNð−Þ
f

b¼1

ZΔbðþÞ
1-loop ðzqb ; x; αf bÞ

YNð2Þ
f

A¼1

ZΔAð2Þ
1-loopðzqA ; x; αfAÞ

�
: ð3:55Þ
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The integration contour C0 is defined by jzj ¼ 1 because
jzj ¼ jeiθj ¼ 1 by definition. The symbol (sym) represents
degrees of a redundant symmetry between two sectors

e
i
H
γ
Aflat ¼ �1. If the first integrand is identical to the

second one, it is 2. If not, it is 1.

IV. ABELIAN MIRROR SYMMETRY

We start with the review of Abelian mirror symmetry for
3D N ¼ 2 theories [15–18] with a single flavor. Then, we
explain how this duality can be realized in terms of the SCIs
for theories on RP2

b × S1 in the physical sense and provide
the mathematically exact verification to it.

A. Review of 3D mirror symmetry

N ¼ 2 mirror symmetry states the duality between the
SQED and the XYZ model. From the renormalization
group point of view, these two theories are defined in the
UV region and flow to the same IR fixed point. TheN ¼ 2
SQED has one vector multiplet V and one flavor consisting
of two chiral fields Q, ~Q with charges q ¼ þ1;−1 under
the U(1)-gauge group, respectively. This theory possesses
extra U(1) global symmetries: one is a topological Uð1ÞJ,
and the other is a flavor symmetry Uð1ÞA with a charge
f ¼ þ1 which rotates Q and ~Q by the phase with the same
weight as seen in Table II. On the other hand, the XYZ
model is the theory containing three chiral fields3 X; Y, and
Z interacting through the superpotential W ¼ XYZ. This
theory has two U(1) global symmetries named Uð1ÞV and
Uð1ÞA in [20], whose charges assigned on each field are
shown in Table III.
Uð1ÞJ and Uð1ÞA in the SQED are identified with Uð1ÞV

and Uð1ÞA in the XYZ model, respectively, and the currents
JA associated with each Uð1ÞA are mapped with flipping the
sign (see Table IV). Furthermore, there exists the corre-
spondence between the moduli spaces of those theories
(at least on the flat space). The moduli parameters of the
SQED are Q ~Q characterizing the Higgs branch and ðσ þ
iρÞ where ρ is the dual photon defined by

1

2
ϵμνρFνρ ¼ ∂μρ: ð4:1Þ

The expectation values of two chiral superfields
eðσþiρÞ=e2 ; e−ðσþiρÞ=e2 (e is a coupling constant) parametrize
the corresponding regions of the Coulomb branch. In the
context of mirror symmetry, we can identify eðσþiρÞ=e2 ;
e−ðσþiρÞ=e2 , andQ ~Qwith X; Y, and Z on the moduli space of
the XYZ model, respectively (Table IV).
We can also construct the N ¼ 4 version of mirror

symmetry. In the SQED, we introduce an adjoint (uncharged)
chiral field ~S coupling to Q ~Q. Similarly for the XYZ model,

~Z is added via the superpotential Z ~Z making Z and ~Z
massive. We can obtain the (twisted) free theory with chiral
fields X and Y by integrating out Z and ~Z. The duality
between those theories is referred to as N ¼ 4 mirror
symmetry.
Let us now consider gauging a flavor symmetry and

denote a corresponding background gauge field by Bflavor.
In addition to JA, there is a topological current4 JT ¼ �F
associated with Uð1ÞJ where * is the Hodge star defined by
a 3D metric. The flavor symmetry can be gauged by
coupling Bflavor with JT , which is the same thing as adding
a BF term to the original action [17,30]. This fact can be
employed to demonstrate mirror symmetry with general Nf

in terms of generalized indices [20].

B. Physical derivation on RP2
b × S1

In this subsection, we construct Abelian mirror sym-
metry on RP2

b × S1 from physical viewpoints. Here, we
should note that Uð1ÞJ in the SQED and Uð1ÞV in the XYZ
model on RP2

b × S1 cannot be turned on. This is because,
for Uð1ÞJ, a BF term is parity odd under the B-parity
condition as well as the Chern-Simons term [see (2.26) and
(2.33)]. On the dual side, since σ receives the change of
sign by the antipodal identification (2.27), X and Y seem to
be interchanged from each other from the mirror map (the
third line of Table IV). However, this violates Uð1ÞV
because X has its charge opposite to that of Y. This is

TABLE II. Charges in the SQED.

U(1) Uð1ÞJ Uð1ÞA R̂

Q þ1 0 þ1 −Δ
~Q −1 0 þ1 −Δ

TABLE III. Charges in the XYZ model.

Uð1ÞV Uð1ÞA R̂

X þ1 þ1 −ð1 − ΔÞ
Y −1 þ1 −ð1 − ΔÞ
Z 0 −2 −2Δ

TABLE IV. The mirror map.

SQED XYZ

Uð1ÞJ ↔ Uð1ÞV
Uð1ÞA, JA ↔ Uð1ÞA, −JA
eðσþiρÞ=e2 , e−ðσþiρÞ=e2 ↔ X, Y

Q ~Q ↔ Z

3In the literature [14,19,20], they are named q; ~q, and S,
respectively.

4For non-Abelian theories, a topological current should be in
the form JT ¼ �TrF.
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why there do not exist variables in the SCIs parametrizing
Uð1ÞJ and Uð1ÞV in the latter argument.

1. SQED

The SCI should be the sum of the even and odd
holonomy sector of the dynamical gauge field as described
in (3.55). We consider the following situations:

(i) the vector multiplet V with the parity condition
(2.27), and

(ii) the matter multiplets Q; ~Q with the upper sign of
the parity condition in (2.28).

Then, by taking into account the charge assignments in
Table II, we get the SCI for the SQED immediately from
the general formula (3.55) as

ISQEDðx; αÞ ¼ Zvector
1-loopðxÞ

I
C0

dz
2πiz

fZΔðþÞ
1-loopðzþ1x; αÞZΔðþÞ

1-loopðz−1; x; αÞ þ ZΔð−Þ
1-loopðzþ1x; αÞZΔð−Þ

1-loopðz−1; x; αÞg ð4:2Þ

To make the SCI easy to deal with, we introduce new variables,

q ¼ x2; a ¼ α−2x2ð1−ΔÞ: ð4:3Þ

Then, we get the following representation:

ISQEDðx; αÞ ¼ qþ
1
8
ðq2; q2Þ∞
ðq; q2Þ∞

I
C0

dz
2πiz

�
a−

1
4
ðz−1aþ1

2q
1
2; zþ1aþ1

2q
1
2; q2Þ∞

ðzþ1a−
1
2q

1
2; z−1a−

1
2q

1
2; q2Þ∞

þ aþ1
4
ðz−1aþ1

2q
3
2; zþ1aþ1

2q
3
2; q2Þ∞

ðzþ1a−
1
2q

3
2; z−1a−

1
2q

3
2; q2Þ∞

�
: ð4:4Þ

We follow the way of [19,20] to perform the above
integrals. We start to handle the first integral in (4.4).
There are many single poles coming from the origin and the
q-shifted factorial. Those poles can be separated into the set
inside and outside the unit circle C0. We set jqj < 1 for the
convergence of the q-shifted factorial and assume
ja−1

2q
1
2j < 1. Then, the poles we should take into account

are the ones inside the unit circle,

z ¼ a−
1
2q

1
2
þ2j; j ¼ 0; 1; 2;…: ð4:5Þ

We can relax the assumption by analytic continuation
after obtaining the final result. In addition, we assume
0 < Δ < 1 because picking up the pole on the origin leads
to the infinite product

Y∞
j¼0

a ¼
Y∞
j¼0

α−2qð1−ΔÞ; ð4:6Þ

except the Casimir energy. α is just a phase, and this
product converges to zero if and only if we impose such
condition on Δ with jqj < 1. Eventually, we can ignore the
contribution of the pole on the origin. Then, the integral
over z with these assumptions gives the sum over residues
from (4.5) as

a−
1
4

X
j≥0

ðaq−2j; q1þ2j; q2Þ∞
ða−1q1þ2j; q2; q2Þ∞

1

ðq−2j; q2Þj
: ð4:7Þ

We also rewrite the sum over j as follows. The dummy
index j in arguments of the q-shifted factorial can be
subtracted outside such as

ðaq−2j;q2Þ∞¼ð−1Þjajq−jðjþ1Þða−1q2;q2Þjða;q2Þ∞; ð4:8Þ

ðq1þ2j; q2Þ∞ ¼ ðq; q2Þ∞
ðq; q2Þj

: ð4:9Þ

With above expressions, (4.7) reduces to

a−
1
4

ða; q; q2Þ∞
ða−1q; q2; q2Þ∞

X
j≥0

ða−1q2; a−1q; q2Þj
ðq; q2Þj

aj

ðq2; q2Þj

¼ a−
1
4

ða; q; q2Þ∞
ða−1q; q2; q2Þ∞ 2φ1ða−1q2; a−1q;q;q2; aÞ;

ð4:10Þ
where we use the basic hypergeometric series defined
by [23]

rφsðα1; α2;…; αr; β1;…; βs; q; zÞ

¼
X
j≥0

ðα1; α2;…; αr; qÞj
ðβ1;…; βs; qÞj

zj

ðq; qÞj
fð−1Þjq1

2
jðj−1Þg1þs−r:

ð4:11Þ
The convergence radius of the basic hypergeometric series
is ∞, 1, or 0 for r − s < 1, r − s ¼ 1, or r − s > 1,
respectively. Now, we proceed the same way for the second
integral in (4.4). We pick up the poles again inside the unit
circle C0,

z ¼ a−
1
2q

3
2
þ2j; j ¼ 0; 1; 2;…; ð4:12Þ
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and then the sum over residues in terms of the basic
hypergeometric series becomes

aþ1
4

ða; q3; q2Þ∞
ða−1q3; q2; q2Þ∞ 2φ1ða−1q2; a−1q3; q3; q2; aÞ; ð4:13Þ

where the residue of the origin is not included as discussed
in (4.6). Thus, (4.4) results in

ISQEDðx; αÞ

¼ qþ1
8
ðq2; q2Þ∞
ðq; q2Þ∞

�
a−

1
4

ða; q;q2Þ∞
ða−1q; q2; q2Þ∞

× 2φ1ða−1q2; a−1q; q; q2; aÞ

þ aþ1
4

ða; q3; q2Þ∞
ða−1q3; q2; q2Þ∞ 2φ1ða−1q2; a−1q3; q3; q2; aÞ

�
:

ð4:14Þ

In terms of original variables, the index (4.14) is given by

ISQEDðx; αÞ

¼ xþ1
4
ðx4; x4Þ∞
ðx2; x4Þ∞

�
xþΔ−1

2 αþ1
2
ðα−2x2ð1−ΔÞ; x2; x4Þ∞
ðαþ2x2Δ; x4; x4Þ∞

× 2φ1ðαþ2x2ðΔþ1Þ; αþ2x2Δ; x2; x4; α−2x2ð1−ΔÞÞ

þ x−
Δ−1
2 α−

1
2
ðα−2x2ð1−ΔÞ; x6; x4Þ∞
ðαþ2x2ð2þΔÞ; x4; x4Þ∞

× 2φ1ðαþ2x2ðΔþ1Þ; αþ2x2ð2þΔÞ; x6; x4; α−2x2ð1−ΔÞÞ
�
:

ð4:15Þ

2. XYZ model

We must determine the suitable pair of B-parity con-
dition for three chiral fields which is “mirror” to the pair of
parity condition (i) and (ii) for the SQED to obtain the
correct results. As described above, X turns into Y under the
antipodal identification and vice versa. We assume that this
observation also holds for the quantum fluctuations of the
XYZ model. Then, we set the B-parity condition for these
fields as

Xðπ − ϑ; π þ φ; yÞ ¼ Yðϑ;φ; yÞ;
Yðπ − ϑ; π þ φ; yÞ ¼ Xðϑ;φ; yÞ;
Zðπ − ϑ; π þ φ; yÞ ¼ Zðϑ;φ; yÞ: ð4:16Þ

This means that X and Y form the doublet that appears in
the previous section and provides the contribution of a
single field on S2

b × S1. With the charge assignments
summarized in Table III, we get the following contribution
from X and Y:

Zð1−ΔÞð2Þ
1-loop ð1; x; ~αf Þ ¼ ð ~α−1xð1þΔÞ; x2Þ∞

ð ~αþ1xð1−ΔÞ; x2Þ∞
¼ ð ~a−1

2q; qÞ∞
ð ~aþ1

2; qÞ∞
; ð4:17Þ

where we define a fugacity ~α for the Uð1ÞA global
symmetry in the XYZ model and also ~a ≔ ~αþ2x2ð1−ΔÞ
for later use. On the other hand, because Z is a scalar
invariant under the antipodal identification, the contribution
of Z corresponds to that of the even holonomy sector in the
matter multiplet with the R charge −2Δ,

Zð2ΔÞðþÞ
1-loop ð1; x; ~αf Þ ¼ xþ2Δ−1

4 ~α−
1
2
ð ~αþ2x2ð1−ΔÞ; x4Þ∞
ð ~α−2x2Δ; x4Þ∞

¼ qþ1
8 ~a−

1
4

ð ~a; q2Þ∞
ð ~a−1q; q2Þ∞

: ð4:18Þ

Because of the formula in (3.53), the SCI for the XYZ
model results in

IXYZðx; ~αÞ ¼ qþ1
8 ~a−

1
4
ð ~a−1

2q; qÞ∞
ð ~aþ1

2; qÞ∞
ð ~a; q2Þ∞

ð ~a−1q; q2Þ∞
: ð4:19Þ

Equivalently, (4.19) with original variables is written by

IXYZðx; ~αÞ ¼ xþ2Δ−1
4 ~α−

1
2
ð ~α−1xð1þΔÞ; x2Þ∞
ð ~αþ1xð1−ΔÞ; x2Þ∞

ð ~αþ2x2ð1−ΔÞ; x4Þ∞
ð ~α−2x2Δ; x4Þ∞

:

ð4:20Þ

In the expressions of the SCIs, the usual mirror map for a
flavor symmetry is realized by the identification α ∼ ~α−1,
or, equivalently, a ∼ ~a in our notation. Accordingly, we
declare N ¼ 2 Abelian mirror symmetry on RP2

b × S1 as
the equality

ISQEDðx; αÞ ¼ IXYZðx; ~α−1Þ: ð4:21Þ

Note that (4.21) should be true with an arbitrary Δ, whereas
the R charge in theories without anomalous dimensions
must take the canonical value as mentioned in [14]. In the
next subsection, we will show the mathematically rigorous
proof of (4.21).

3. N ¼ 4 mirror symmetry

As explained above, we can obtain N ¼ 4 mirror
symmetry by introducing an adjoint chiral field ~Z. In the
XYZ model, the fact that the superpotential Z ~Z must be
uncharged for a flavor symmetry and have the R-charge 2
determines the Uð1ÞA charge and the R charge of ~Z to be
þ2 and 2ð1þ ΔÞ, respectively. For the SCIs, the effect of ~Z
is identical with moving the contribution of Z (4.18) in the
rhs of (4.21) to the lhs. Concretely, we have the equality for
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N ¼ 4 mirror symmetry as

2φ1ða−1q2; a−1q; q; q2; aÞ

þ aþ1
2
ða−1q; q3; q2Þ∞
ða−1q3; q; q2Þ∞ 2φ1ða−1q2; a−1q3; q3; q2; aÞ

¼ ða−1
2q; qÞ∞

ðaþ1
2; qÞ∞

: ð4:22Þ

One can easily conform the correctness of (4.22)
because this emerges on the way of the proof in the next
subsection.

4. Generalized index

The generalized index is defined as the SCI with gauging
flavor symmetries [20]. In our context, we introduce a
background flat gauge field Bflavor

flat by gauging the Uð1ÞA
flavor symmetry, and the parity conditions must be clas-
sified in terms of both the holonomy for the dynamical
gauge field Aflat and the holonomy for Bflavor

flat , that is,

e
i
H
γ
ðqAflatþfBflavor

flat Þ ¼ �1; ð4:23Þ

as explained in Appendix A 2. Since our argument for
theories with a single flavor does not change, our gener-
alized indices are still (4.4) and (4.19), and mirror sym-
metry with gauging a flavor symmetry can also be
concluded as (4.21). The generalized index carries much
more important roles when one discusses the multiflavor
case of mirror symmetry.

C. Mathematical proof of RP2
b × S1

In this subsection, we give the proof of our new relation
(4.21). At first, we review the q-binomial theorem [23]
derived mainly by Cauchy [31] and Heine [32],

1φ0ða;−; q; xÞ ¼
ðax; qÞ∞
ðx; qÞ∞

; jxj < 1: ð4:24Þ

This formula is the q analogue of the binomial theorem

2F1ða; c; c; zÞ ¼ 1F0ða;−; zÞ ¼
X
n≥0

ðaÞn
n!

zn ¼ ð1 − zÞ−a;

ð4:25Þ

where jzj < 1. ðaÞn is the classical shifted factorial
ðaÞn ¼ aðaþ 1Þ…ðaþ n − 1Þ, and ðaÞ0 ¼ 1. We prove
our new relation (4.21) by utilizing the q-binomial theorem.
The starting point is the SCI for the XYZ model (4.19),

IXYZðx; ~αÞ ¼ qþ
1
8 ~a−

1
4
ð ~a−1

2q;qÞ∞
ð ~aþ1

2;qÞ∞
ð ~a;q2Þ∞

ð ~a−1q;q2Þ∞

¼ qþ1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q;q2Þ∞

ð ~a−1
2q;qÞ∞

ð ~aþ1
2;qÞ∞

¼ qþ
1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q;q2Þ∞ 1φ0ð ~a−1q;−;q; ~aþ

1
2Þ

¼ qþ1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q;q2Þ∞

X
n≥0

ð ~a−1q;qÞn
ðq;qÞn

ð ~aþ1
2Þn

¼ qþ1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q;q2Þ∞

�X
m≥0

ð ~a−1q;qÞ2m
ðq;qÞ2m

ð ~aþ1
2Þ2m

þ
X
m≥0

ð ~a−1q;qÞ2mþ1

ðq;qÞ2mþ1

ð ~aþ1
2Þ2mþ1

�
: ð4:26Þ

We remark that there are the following relations:

ða; qÞ2m ¼ ða; aq; q2Þm;
ða; qÞ2mþ1 ¼ ð1 − aÞðaq; aq2; q2Þm: ð4:27Þ

We apply the relations (4.27) to (4.26),

qþ1
8 ~a−

1
4

ð ~a; q2Þ∞
ð ~a−1q; q2Þ∞

�X
m≥0

ð ~a−1q; qÞ2m
ðq;qÞ2m

ð ~aþ1
2Þ2m

þ
X
m≥0

ð ~a−1q; qÞ2mþ1

ðq; qÞ2mþ1

ð ~aþ1
2Þ2mþ1

�

¼ qþ
1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q; q2Þ∞

�X
m≥0

ð ~a−1q; ~a−1q2; qÞm
ðq; q2Þmðq2; q2Þm

ð ~aÞm

þ ~aþ1
2
1 − ~a−1q
1 − q

X
m≥0

ð ~a−1q2; ~a−1q3; qÞm
ðq3; q2Þmðq2; q2Þm

ð ~aÞm
�

¼ qþ1
8 ~a−

1
4

ð ~a;q2Þ∞
ð ~a−1q; q2Þ∞

�
2φ1ð ~a−1q; ~a−1q2; q; q2; ~aÞ

þ ~aþ
1
2
1 − ~a−1q
1 − q 2φ1ð ~a−1q2; ~a−1q3; q3; q2; ~aÞ

�
:

ð4:28Þ

The part ð1 − ~a−1qÞ=ð1 − qÞ can be rewritten as

1 − ~a−1q
1 − q

¼ ð ~a−1q∶q2Þ∞
ð ~a−1q3; q2Þ∞

ðq3; q2Þ∞
ðq; q2Þ∞

: ð4:29Þ

Combining the relations (4.28) and (4.29), we have
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qþ
1
8 ~a−

1
4

ð ~a; q2Þ∞
ð ~a−1q; q2Þ∞

�
2φ1ð ~a−1q; ~a−1q2; q; q2; ~aÞ þ ~aþ1

2
1 − ~a−1q
1 − q 2φ1ð ~a−1q2; ~a−1q3; q3; q2; ~aÞ

�

¼ qþ1
8

ð ~a; q2Þ∞
ð ~a−1q;q2Þ∞

�
~a−

1
42φ1ð ~a−1q; ~a−1q2; q; q2; ~aÞ þ ~aþ1

4
ð ~a−1q∶q2Þ∞
ð ~a−1q3;q2Þ∞

ðq3; q2Þ∞
ðq;q2Þ∞ 2φ1ð ~a−1q2; ~a−1q3; q3; q2; ~aÞ

�

¼ qþ
1
8
ðq2; q2Þ∞
ðq; q2Þ∞

�
~a−

1
4

ð ~a; q;q2Þ∞
ð ~a−1q; q2; q2Þ∞ 2φ1ð ~a−1q; ~a−1q2; q;q2; ~aÞ þ ~aþ1

4
ð ~a; q3; q2Þ∞

ð ~a−1q3; q2; q2Þ∞ 2φ1ð ~a−1q2; ~a−1q3; q3; q2; ~aÞ
�
:

ð4:30Þ

Therefore, we obtain the conclusion

qþ1
8 ~a−

1
4
ð ~a−1

2q; qÞ∞
ð ~aþ1

2; qÞ∞
ð ~a; q2Þ∞

ð ~a−1q; q2Þ∞
¼ qþ1

8
ðq2; q2Þ∞
ðq; q2Þ∞

�
~a−

1
4

ð ~a; q;q2Þ∞
ð ~a−1q; q2; q2Þ∞ 2φ1ð ~a−1q; ~a−1q2; q; q2; ~aÞ

þ ~aþ1
4

ð ~a; q3; q2Þ∞
ð ~a−1q3; q2; q2Þ∞ 2φ1ð ~a−1q2; ~a−1q3; q3; q2; ~aÞ

�
: ð4:31Þ

V. DISCUSSION

We presented how to define N ¼ 2 supersymmetric
gauge theories on RP2

b × S1 and got the exact form of the
superconformal index with an arbitrary number of vector
multiplets and matter multiplets with a U(1)-gauge sym-
metry. As commented, the results are not dependent on l
and ~l, that is, the squashing parameter b. This fact is
expected because it is verified in 2D cases [21,22]. Also,
we gave the exact check of N ¼ 2 and N ¼ 4 Abelian
mirror symmetry with the simplest case Nf ¼ 1 and
Abelian duality (Appendix C) on RP2

b × S1 by using the
q-binomial theorem essentially. In the rest of this section,
we would like to comment briefly on some open questions
and future directions.

A. Open questions and future directions

The first question is related to a subtlety in our
computation of the superconformal index. We used an
ad hoc way to regulate the Casimir energy presented in
[14,33] (see Appendixes A and B). They showed that the
precise Chern-Simons level shift on S2 × S1 emerges
within this regularization scheme. However, as noted in
Sec. II, we cannot take the Chern-Simons term into
account. Therefore, we cannot adopt the level shift as
the guiding principle of the regularization and do not know
why our regularization of the Casimir energy works so
well. It is interesting to find more fundamental treatment to
resolve it. As the second one, we would like to know the
origin of our B-parity condition on the XYZmodel side. We
took a little bit of an ad hoc way to determine it based on
the correspondence between the moduli spaces. In addition,
we should check precisely whether our B parity is unique or
not. One straightforward way to solve this problem is using
the brane construction of mirror symmetry [34]. We expect

that the generalized mathematical formulas will emerge if
this program is accomplished. The third question is related
to the so-called “factorization” property of 3D exact results
[35–38]. The partition functions on S3

b and the super-
conformal indices on S2 × S1 can be decomposed into the
product of more fundamental quantities called holomorphic
blocks. This property of both cases naively comes from the
fact that each curved space is characterized by solid-torus
decomposition. However, RP2 × S1 cannot be expressed
simply by using solid-torus decomposition. Instead, one
can get RP2 × S1 by gluing the surface of a solid torus in
an appropriate manner. One may find the unexpected
description of our results in terms of holomorphic blocks
via this method. The final comment is concerned with an
extension of our arguments. There are obvious open
problems; we did not perform the check of Abelian mirror
symmetry with generalNf flavors. Also, we did not present
the generalization of the exact calculation with a non-
Abelian gauge symmetry as mentioned in the Introduction.
We hope to complete these problems in the near future.
Moreover, we found generalized mirror symmetry
equalities in Appendix D. In Appendix D 1, we provided
the generalized equality with the parameter λ and its proof
in terms of the q-binomial theorem. In Appendix D 2, we
showed another relation derived by the properties of the
theta function of Jacobi. The idea of the proof comes from
connection problems on linear q-difference equations
[39,40]. The generalized relation also gives the connection
formula for the 1φ0ðλ;−; q; zÞ-type equation between the
solutions of the linear q-difference equations around the
origin and around infinity. The important point is that we
obtain the same relation (4.21) as the special case even
though these relations in the subsections are essentially
different from each other. These formulas suggest the
possibility to add one more parameter to our system,
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and its physical meaning may be found in the brane
construction. If these are derived from string theory
generally, our mathematical conclusion will give us new
physical perspective.

ACKNOWLEDGMENTS

We would like to thank Heng-Yu Chen, Dongmin Gang,
Kazuo Hosomichi, Yosuke Imamura, Yu Nakayama,
Yousuke Ohyama, Satoshi Yamaguchi, and Yutaka
Yoshida. We are grateful to the Yukawa Institute for
Theoretical Physics at Kyoto University for hospitality
during the workshop YITP-W-14-4 “Strings and Fields,”
where part of this work was carried out. The work of A. T.,
H. M., and T. M. was supported in part by the JSPS
Research Fellowship for Young Scientists.

APPENDIX A: CALCULATION DETAILS

In this appendix, we show the details of the calculations
for one-loop determinants. Our method discussed below is
similar to the one discussed in [21,22]. Their way did not
respect the symmetry generated by ĵ3, whereas we derive
(3.26) with preserving ĵ3 structure explicitly because it has
an important meaning in our SCI (3.1). In the latter
discussions, we get the following type of an infinite product
in each final step:

Y
n∈Z

Y
k≥0

2πinþ 2zfðkÞ
2πinþ 2zbðkÞ

; ðA1Þ

where the zf=bðkÞ’s represent certain k-dependent func-
tions. By using the infinite product formula of sinh z, we
can deform it to

Y
k≥0

2sinhzfðkÞ
2sinhzbðkÞ

¼
�Y

k≥0
ezfðkÞ−zbðkÞ

�

×exp

�X∞
m¼1

−1
m

X
k≥0

ðe−2mzfðkÞ−e−2mzbðkÞÞ
�
:

ðA2Þ

We call the first part in (A2) the Casimir energywhich must
be regularized (see Appendix B for our regularization
scheme) and the second part,

−
X
k≥0

ðe−2zfðkÞ − e−2zbðkÞÞ ≕ fðx;…Þ; ðA3Þ

the one-particle index. As one can verify later, both the
Casimir energy and the one-particle index do not depend on
x0. In this appendix, we use 2D Killing spinors

εðϑ;φÞ ¼ e
i
2
φ

�
cos ϑ

2

sin ϑ
2

�
; ε̄ðϑ;φÞ ¼ e−

i
2
φ

�
sin ϑ

2

cos ϑ
2

�
ðA4Þ

which satisfy

Diε ¼
1

2f
γiγ3ε; Diε̄ ¼ −

1

2f
γiγ3ε̄; ðA5Þ

where i runs for ϑ;φ. We must consider the B-parity
condition in order to get the index on RP2

b × S1. If we
ignore the B-parity condition, then, of course, we can
get the index on S2

b × S1. However, as noted in the
beginning of Sec. II, the results do not depend on the
squashing parameter. Consequently, the results without
the B-parity condition reproduce the known results on
S2 × S1 [3,13,14].

1. Vector multiplet

a. Gauge fixing

By repeating the same argument for the “shortcut” way
of the gauge fixing [5,21,22], we can restrict the path
integral onto the configuration satisfying

AðnÞ
3 ¼ 0; ðA6Þ

�2d �2 AðnÞ ¼ 0 ðA7Þ

for all n’s without any Fadeev-Popov determinants. Then,
we need to consider the operator’s determinant

Y
n∈Z

detΔðnÞ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detΔðnÞ
b

q ; ðA8Þ

where

ΔðnÞ
b ¼

�−ð�2dÞ2 þ h2n − �2 d 1
f

þ 1
f �2 d −ð�2dÞ2 þ 1

f2 þ h2n

�
; ðA9Þ

ΔðnÞ
f ¼ iγiDi þ γ3

�
hn þ

i
2l
Ω
�
: ðA10Þ

In addition, we can make this problem simpler by notifying

det δðnÞb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΔðnÞ

b

q
ðA11Þ

up to the sign where

δðnÞb ¼
� ihn − �2 d
�2d 1

f þ ihn

�
: ðA12Þ

Namely, the one-loop determinant, which we should
know5 is

5The insertion of γ3 in the numerator does not spoil the validity
and make the problem simple [21,22].
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Zvector
1-loop ¼

Y
n∈Z

det γ3Δ
ðnÞ
f

det δðnÞb

: ðA13Þ

As one can see, the contribution of the U(1) vector
multiplet already does not have the dependence on the
holonomy. Therefore, we omit the superscript � from
now on.

b. Pairing structure

The calculation is based on the eigenvalues pairing
structure as follows. Let ðA; σÞT and λ be the eigenmodes,

δðnÞb

�
A

σ

�
¼ −iM

�
A

σ

�
; ðA14Þ

ΔðnÞ
f λ ¼ −Mλ: ðA15Þ

Then, we can map the one side to the other by defining

Λ ≔ ðγ3γiAi þ iσγ3Þε; ðA16Þ
�
B

Σ

�
≔

�
−iðM þ hnÞε̄γiλei − dðε̄γ3λÞ

ðM þ hnÞε̄λ

�
: ðA17Þ

The modes which have no pair only contribute to the one-
loop determinant (A13). In other words, we have to find the
eigenvalues constrained by the following conditions:

M ¼ Mb which satisfies ðA:14Þ and ðA:16Þ ¼ 0; ðA18Þ

M ¼ Mf which satisfies ðA:15Þ and ðA:17Þ ¼ 0: ðA19Þ

The constraints ðA:16Þ ¼ 0 and ðA:17Þ ¼ 0 are solved by
taking

�
A

σ

�
¼ eij

b
3
φhbðϑÞ

�
e1 þ i cos ϑe2

i sin ϑ

�
; ðA20Þ

λ ¼
�
Mf þ hn þ

i
2l
Ω
�
eij

f
3
φhfðϑÞε̄; ðA21Þ

where jb=f3 ∈ Z. Substituting these representations into
(A14) and (A15), we get the following sets of equations:

(
1

fðϑÞ ∂ϑhbðϑÞ þ cos ϑ
sinϑ

	
1

fðϑÞ −
jb
3

l



hbðϑÞ ¼ 0;

Mbl ¼ iððΩ − 1Þjb3 − ilnÞ;
ðA22Þ

(
1

fðϑÞ ∂ϑhfðϑÞ þ cos ϑ
sinϑ

	
1

fðϑÞ þ
jf
3
−1
l



hfðϑÞ ¼ 0;

Mfl ¼ iððΩ − 1Þðjf3 − 1Þ − ilnÞ:
ðA23Þ

One can get the conditions of j3 as jb3 ≥ 1 for bosons and
jf3 ≤ 0 for fermions because, around ϑ ∼ 0, one can easily
solve the equation for hbðϑÞ and hfðϑÞ in (A22) and (A23),
respectively, as

hbðϑÞ ∼ sinðj
b
3
−1Þϑ; ðA24Þ

hfðϑÞ ∼ sin−j
f
3ϑ: ðA25Þ

Note that the coefficients of differential equations with
respect to ϑ in (A22) and (A23) are invariant under the
antipodal identification (1.2), that is,

hb=fðπ − ϑÞ ¼ hb=fðϑÞ: ðA26Þ

c. B-parity condition

Usually, j3 takes an arbitrary value in integers Z.
Therefore, one may think that jb3 ¼ 1; 2; 3;… and
jf3 ¼ 0;−1;−2;…; however, it is not in our case because
of the B-parity condition. We can determine the possible
values for jb=f3 from the explicit forms of the eigenmodes
(A20) and (A21), the invariance of hb=f (A26), and the B-
parity condition (2.27). Combining these arguments, one
can get the condition

eij3π ¼ −1: ðA27Þ

This means that we have

�
Mb ¼ i

l ððΩ − 1Þð2kþ 1Þ − ilnÞ;
Mf ¼ i

l ð−ðΩ − 1Þð2kþ 2Þ − ilnÞ; ðA28Þ

where k ¼ 0; 1; 2;…, and n ∈ Z. Note that the eigenvalues
for bosons shift by one from those of fermions, which
results in the nontrivial one-loop determinant for the U(1)
vector multiplet.

d. One-loop determinant

We can get the explicit form of (A13) just by substituting
all relevant eigenvalues (A28) into it:

ðA13Þ ¼
Y
all

Mf

Mb

¼
Y
n∈Z

�Y
k≥0

ð1 − ΩÞð2kþ 2Þ − iln
ðΩ − 1Þð2kþ 1Þ − iln

�

∼
Y
n∈Z

�Y
k≥0

ð1 − ΩÞð2kþ 2Þ þ iln
ð1 − ΩÞð2kþ 1Þ þ iln

�
; ðA29Þ

where ∼ represents the equality up to the sign. This
regularization is guaranteed in the 2D case [21]. From
the above expression, substituting
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2zfðkÞ ¼ 2β2ð2kþ 2Þ; 2zbðkÞ ¼ 2β2ð2kþ 1Þ ðA30Þ

into (A2), we can get (3.26) and (3.27). The Casimir energy
can be regularized by using the zeta function regularization
formula (B4) explained in Appendix B.

2. Matter multiplet

We start with the pairing structure of (3.35) and (3.36).
To make our argument comprehensive, we define the

differential operators ΔðnÞ
ϕ and ΔðnÞ

ψ acting on ϕðnÞ and

ψ ðnÞ, respectively, as

ΔðnÞ
ϕ ¼ −gijDAflat

i DAflat
j þ

�
pn − i

Δ
2l
Ω
�

2

þ Δ2 − 2Δ
4f2

þ Δ
4
R −

Δ − 1

f
viDAflat

i ; ðA31Þ

ΔðnÞ
ψ ¼ −iγiDAflat

i − γ3

�
pn − i

Δ − 1

2l
Ω
�
− i

1

2f
γ3

− i
Δ − 1

2f
viγi − i

Δ − 1

2f
ω; ðA32Þ

where DAflat
i is defined with a flat connection Aflat.

a. Pairing structure

Let ϕ and ψ be the eigenmodes for ΔðnÞ
ϕ and ΔðnÞ

ψ , i.e.,

ΔðnÞ
ϕ ϕ ¼ −M

�
M − 2

�
pn − i

Δ
2l
Ω
��

ϕ; ðA33Þ

γ3Δ
ðnÞ
f ψ ¼ Mψ : ðA34Þ

Then,

�
Ψ1

Ψ2

�
¼

� γ3εϕ

iγiεDAflat
i ϕþ γ3εð½hn − i Δ

2lΩ� þ i Δ
2fÞϕ

�
;

ðA35Þ

Φ ¼ ε̄ψ ðA36Þ

satisfy the equations

γ3Δ
ðnÞ
ψ

�
Ψ1

Ψ2

�
¼

� −2ðpn − i Δ−1
2l ΩÞ 1

MðM − 2ðpn − i Δ−1
2l ΩÞÞ 0

��
Ψ1

Ψ2

�
;

ðA37Þ

ΔðnÞ
ϕ Φ ¼ −M

�
M − 2

�
pn − i

Δ
2l
Ω
��

Φ: ðA38Þ

As discussed in [5,21,22], one can find the relevant spectra
characterized by

M ¼ Mϕ which satisfies ðA:33Þ andΨ2 ¼ MΨ1; ðA39Þ

M ¼ Mψ which satisfies ðA:34Þ and ðA:36Þ ¼ 0: ðA40Þ

Then, we take each relevant mode as

ϕ ¼ e
i
H
γ
qAflateij

b
3
φhbðϑÞ; ðA41Þ

ψ ¼ e
i
H
γ
qAflateij

f
3
φhfðϑÞε̄; ðA42Þ

where jb=f3 ∈ Z. Substituting these forms into Ψ2 ¼ MϕΨ1

and ðA:36Þ ¼ 0, we get the following sets of equations:� 1
f ∂ϑhbðϑÞ þ cosϑ

sinϑ ð Δ
2fðϑÞ−

1
l ðjb3 þ Δ

2
ÞÞhbðϑÞ ¼ 0;

Mϕl¼ iðð1−ΩÞðjb3 þ Δ
2
Þ þ i l

2π ½2πn− qθ− fμ�Þ;
ðA43Þ

� 1
f ∂ϑhfðϑÞ − cos ϑ

sinϑ ð Δ−22fðϑÞ −
1
l ðjf3 þ Δ−2

2
ÞÞhfðϑÞ ¼ 0;

Mψ l ¼ iððΩ − 1Þðjf3 þ Δ−2
2
Þ − i l

2π ½2πn − qθ − fμ�Þ:
ðA44Þ

One can get also the conditions of j3 as jb3 ≥ 0 for bosons
and jf3 ≤ 0 for fermions because the behaviors of hb=fðϑÞ
around ϑ ∼ 0 become

hbðϑÞ ∼ sinj
b
3ϑ; ðA45Þ

hfðϑÞ ∼ sin−j
f
3ϑ: ðA46Þ

Note that these functions Eqs. (A43) and (A44) have the
symmetry (A26).

b. B-parity condition

We have to limit j3 to preserve the B-parity condition
(2.31) as we have done in the vector multiplet, but an
additional issue occurs because the matter is charged
through q. The permitted region depends on the B-parity
choice � and the value of the holonomy,

e
i
H
γ
qAflateij3π ¼ �1: ðA47Þ

Here, it is found that the consistent two choices of the B-
parity condition correspond to the background Uð1Þflavor
holonomies

�1 ¼ e
i
H
γ
fBflavor

flat ; ðA48Þ
where f is the appropriate flavor charge. Therefore, we
can get
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eij3π ¼ e
i
H
γ
ðqAflatþfBflavor

flat Þ
: ðA49Þ

It means that we have

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ þ1Þ ⇒
�
Mϕl ¼ iðð1 − ΩÞð2kþ Δ

2
Þ þ i l

2π ½2πn − qθ − fμ�Þ;
Mψ l ¼ iððΩ − 1Þð−2k − 1þ Δ

2
Þ − i l

2π ½2πn − qθ − fμ�Þ; ðA50Þ

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ −1Þ ⇒
�
Mϕl ¼ iðð1 −ΩÞð2kþ 1þ Δ

2
Þ þ i l

2π ½2πn − qθ − fμ�Þ;
Mψ l ¼ iððΩ − 1Þð−2k − 2þ Δ

2
Þ − i l

2π ½2πn − qθ − fμ�Þ: ðA51Þ

Therefore, the one-loop determinant changes its form depending on the value of the total holonomy e
i
H
γ
ðqAflatþfBflavor

flat Þ
.

c. One-loop determinant

We can get each one-loop determinant by calculating

Y
all

Mψ

Mϕ
: ðA52Þ

We read the eigenvalue of each holonomy sector from (A50) and (A51), and the corresponding infinite products (A52) are
written as

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ þ1Þ ⇒
�
ðA:52Þ ¼

Y
n∈Z

Y
k≥0

ð1 − ΩÞð2kþ 1 − Δ
2
Þ − i l

2π ½2πn − qθ − fμ�
ð1 −ΩÞð2kþ Δ

2
Þ þ i l

2π ½2πn − qθ − fμ�
�
; ðA53Þ

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ −1Þ ⇒
�
ðA:52Þ ¼

Y
n∈Z

Y
k≥0

ð1 −ΩÞð2kþ 2 − Δ
2
Þ − i l

2π ½2πn − qθ − fμ�
ð1 − ΩÞð2kþ 1þ Δ

2
Þ þ i l

2π ½2πn − qθ − fμ�
�
: ðA54Þ

After substituting

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ þ1Þ ⇒
�
2zfðkÞ ¼ iðqθ þ fμÞ þ 2β2ð2kþ 1 − Δ

2
Þ;

2zbðkÞ ¼ −iðqθ þ fμÞ þ 2β2ð2kþ Δ
2
Þ;

�
; ðA55Þ

ðei
H
γ
ðqAflatþfBflavor

flat Þ ¼ −1Þ ⇒
�

2zfðkÞ ¼ iðqθ þ fμÞ þ 2β2ð2kþ 2 − Δ
2
Þ;

2zbðkÞ ¼ −iðqθ þ fμÞ þ 2β2ð2kþ 1þ Δ
2
Þ

�
ðA56Þ

into (A2) and regularizing the Casimir energies by using
(B4), we can get the results (3.38)–(3.41).

APPENDIX B: ZETA FUNCTION
REGULARIZATION

In general, an infinite product is not well defined and
must be regulated by an appropriate method. Here, we
adopt the zeta function regularization given as [33]

Y
k≥0

fðkÞ ¼ exp

�
d
ds

X
k≥0

fðkÞs
�����

s¼0

: ðB1Þ

Wemake use of (B1) to regularize the Casimir energy of the
vector multiplet and the matter multiplet. Those forms
shown explicitly in (A2) are generally written as the infinite
product

Y
k≥0

ðx2kþC1Þr
ðx2kþC2Þr ; ðB2Þ

where C1; C2, and r are constants independent of
k. Applying (B1) to the above expression, we expand
the numerator and the denominator around s ¼ 0
so that
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d
ds

X
k≥0

ðx2kþCÞs ¼ 1

2s2 log x
þ −2þ 6C − 3C2

12
log xþOðsÞ:

ðB3Þ

Although this form is obliviously diverged at s ¼ 0,
unwanted terms can be canceled by taking a ratio of such
infinite products. Consequently, (B2) with s → 0 results in

Y
k≥0

ðx2kþC1Þr
ðx2kþC2Þr

¼ exp

�
r

�
−2þ 6C1 − 3C2

1

12
−
−2þ 6C2 − 3C2

2

12

�
log x

�
¼ x−

r
4
ðC1−C2ÞðC1þC2−2Þ: ðB4Þ

It is straightforward to apply this formula to each Casimir
energy. First, for the vector multiplet, its k-dependent
functions (A30) correspond to setting

r ¼ 1; C1 ¼ 1; C2 ¼ 2: ðB5Þ
Then, we can obtain the Casimir energy as

xþ1
4: ðB6Þ

Second, for the matter multiplet in the even holonomy
sector, its k-dependent functions (A55) correspond to
setting

r ¼ 1; C1 ¼
Δ
2
þ Θ;

C2 ¼ 1 −
Δ
2
− Θ; xΘ ≔ ðeþiqθαþf Þ12: ðB7Þ

Then, we can obtain the Casimir energy as

xþΔ−1
4 eþi

4
qθαþ1

4
f : ðB8Þ

Last, for the matter multiplet in the odd holonomy sector,
its k-dependent functions (A56) correspond to setting

r ¼ 1; C1 ¼ 1þ Δ
2
þ Θ; C2 ¼ 2 −

Δ
2
− Θ: ðB9Þ

Then, we can obtain the Casimir energy as

x−
Δ−1
4 e−

i
4
qθα−

1
4
f : ðB10Þ

APPENDIX C: ABELIAN DUALITY

As recently discussed in [26] for the purely bosonic case,
though Abelian duality looks trivial on a flat space, its
validity becomes nontrivial on the curved space because of
topological obstructions. In this section, we utilize Abelian
duality to justify our prescription (mainly, of the integration
contour in the index).
Abelian duality in 3D between the free U(1)-gauge

theory and the free matter theory [24,25] can be realized
by the equality of the action,

Z
d3x

ffiffiffi
g

p �
1

2
FμνFμν

�
¼

Z
d3x

ffiffiffi
g

p ð∂μρ∂μρÞ ðC1Þ

via the equality in (4.1). We naturally can supersymmetrize
this duality. For example, see [41]. In our language, we can
describe a (on-shell) matter multiplet ðϕ; ϕ̄;ψ ; ψ̄Þ in terms
of a vector multiplet ½Aμð→ ρÞ; σ; λ; λ̄� as follows:

e2ϕ ¼ σ þ iρ; e2ϕ̄ ¼ σ − iρ; ðC2Þ

e2ψ ¼ λ; e2ψ̄ ¼ −λ̄: ðC3Þ

Through those identifications, one can show the following
relationship between the U(1) vector multiplet action and
the matter multiplet action6:

1

e2

Z
d3x

ffiffiffi
g

p �
1

2
FμνFμν þ ∂μσ∂μσ þ ϵ3ρσ

σ

f
Fρσ þ iλ̄γμDμλ −

i
2f

λ̄γ3λ

�

¼ e2
Z

d3x
ffiffiffi
g

p �
∂μϕ̄∂μϕþ 1

f
ϕ̄∂3ϕ − iψ̄γμDμψ þ i

2f
ψ̄γ3ψ

�
: ðC4Þ

The matter action above seems to be the on-shell part of
Lmat with zero R charge, Δ ¼ 0. In fact, the dual matter
fields under the identifications (C2) and (C3) can correctly
reproduce the boundary conditions along S1 (3.30)–(3.33)
setting Δ ¼ 0. Moreover, the consistent B-parity condition
for the vector multiplet (2.27) takes the one for the dual

matter contents to be with negative sign in (2.31) repre-
senting the odd holonomy. Thus, we conclude that the
matter multiplet comprised by the vector multiplet7 belongs
to the odd holonomy sector with Δ ¼ 0.

6Note that the duality equation (4.1) is valid on a Minkowski
background. In order to make it a Euclidean one, we have to
multiply ð−iÞ by the third coordinate.

7Note that, as explained in [26], the invariance of the classical
action (C1) and the relation (4.1) under scale transformations
requires the coupling constant e to scale nontrivially such that e2
has a scaling dimension one. This means that σ and ρ in (C2) have
effectively the same scaling dimension as that of the square of the
coupling constant.
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While the dual prescription shown here holds on the on-
shell fields, we could reconstruct an off-shell action with
Δ ¼ 0 and the supersymmetry for the dual matters by
adding auxiliary fields appropriately to on-shell quantities
(as the Gaussian form in the action). Actually, the action
(C4) is just the on-shell sector havingΔ ¼ 0 of the off-shell
action

Lmat þ δϵ̄δϵ

�
i
Δ − 1

f
½ϕ̄ϕ�

�
: ðC5Þ

As a result, because the matter action (C5) is written by a
SUSY-exact deformation, we can perform the localization
leading to the one-loop determinant for the corresponding
dual matter fields. Therefore, the expected identity for
Abelian duality is

IUð1ÞðxÞ ¼ I ðΔ¼0Þð−Þ
matter ðxÞ: ðC6Þ

The left-hand side can be computed by the formula (3.55).
Since we have just one vector multiplet, the contributions

from the holonomies e
i
H
γ
Að�Þ
flat ¼ �1 become the same ones:

Zvector
1-loopðxÞ ¼ x

1
4
ðx4; x4Þ∞
ðx2; x4Þ∞

: ðC7Þ

This means that there is a residual symmetry of inter-
changing the flat connection for the even holonomy and for

the odd holonomy AðþÞ
flat ↔ Að−Þ

flat , and we must take ðsymÞ ¼
2 in the formula (3.55):

IUð1ÞðxÞ ¼
Zvector

1-loopðxÞ
2

I
C0

dz
2πiz

ð1þ 1Þ

¼ x
1
4
ðx4; x4Þ∞
ðx2; x4Þ∞

: ðC8Þ

On the other hand, we can get the contribution from the
dual matter multiplet via the formula in (3.53) with

Δ ¼ q ¼ f ¼ 0, NðþÞ
f ¼ Nð2Þ

f ¼ 0, and Nð−Þ
f ¼ 1:

I ðΔ¼0Þð−Þ
matter ðxÞ ¼ ZðΔ¼0Þð−Þ

1-loop ð1; x; 1Þ

¼ x
1
4
ðx4; x4Þ∞
ðx2; x4Þ∞

; ðC9Þ

and this is identical to the one in (C8). Our new formulas to
the index on RP2

b × S1 can precisely provide Abelian
duality as well as 3D mirror symmetry.

APPENDIX D: MATHEMATICAL
GENERALIZATIONS OF (4.21)

In this section, we consider mathematical generalizations
of the relation (4.21). In Appendix D 1, we give (4.21) as
the special case of the generalization via the q-binomial
theorem. In Appendix D 2, we also give (4.21) by using the
connection formula of 1φ0ðλ;−; q; zÞ. We remark that these
formulas in each subsection are completely different, but
we can derive the relation (4.21) as their special case.

1. From the q-binomial theorem

First, we derive a more general form of (4.21) from the
q-binomial theorem and its alternative representation. The
q-binomial theorem is

ðλz; qÞ∞
ðz; qÞ∞

¼ 1φ0ðλ;−; q; zÞ; ∀ jzj < 1; jqj < 1;

and 1φ0ðλ;−; q; zÞ can be deformed from its definition as

1φ0ðλ;−; q; zÞ ¼
X
n≥0

ðλ; qÞn
ðq; qÞn

zn

¼
X
m≥0

ðλ; qÞ2m
ðq; qÞ2m

z2m þ
X
m≥0

ðλ; qÞ2mþ1

ðq; qÞ2mþ1

z2mþ1

¼
X
m≥0

ðλ; λq; q2Þm
ðq; q2Þmðq2; q2Þm

ðz2Þm þ 1 − λ

1 − q
z
X
m≥0

ðλq; λq2; q2Þm
ðq3; q2Þmðq2; q2Þm

ðz2Þm

¼ 2φ1ðλ; λq; q; q2; z2Þ þ
1 − λ

1 − q
z2φ1ðλq; λq2; q3; q2; z2Þ

¼ 2φ1ðλ; λq; q; q2; z2Þ þ
ðλ; q2Þ∞
ðλq2; q2Þ∞

ðq3; q2Þ∞
ðq; q2Þ∞

z2φ1ðλq; λq2; q3;q2; z2Þ

¼ ðq2; q2Þ∞
ðq; q2Þ∞

� ðq; q2Þ∞
ðq2; q2Þ∞ 2φ1ðλ; λq; q; q2; z2Þ þ

ðλ; q3; q2Þ∞
ðλq2; q2; q2Þ∞

z2φ1ðλq; λq2; q3; q2; z2Þ
�
:
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Therefore, we acquire the alternative representation of the
q-binomial theorem

1φ0ðλ;−; q; zÞ ¼
ðq2;q2Þ∞
ðq; q2Þ∞

� ðq; q2Þ∞
ðq2; q2Þ∞ 2φ1ðλ; λq; q; q2; z2Þ

þ ðλ; q3; q2Þ∞
ðλq2; q2; q2Þ∞

z2φ1ðλq; λq2; q3;q2; z2Þ
�
:

ðD1Þ

We now define the weight function

wðz; λ;qÞ ≔ qþ1
8z−

1
2
ðz2; q2Þ∞
ðλ; q2Þ∞

ðD2Þ

to make the generalization of the relation (4.21) clear.
Multiplying the weight function (D2) by the alternative
representation (D1), we obtain

wðz; λ; qÞ ðλz; qÞ∞ðz; qÞ∞
¼ qþ1

8z−
1
2
ðz2; q2Þ∞
ðλ;q2Þ∞

ðλz; qÞ∞
ðz; qÞ∞

¼ qþ
1
8z−

1
2
ðz2; q2Þ∞
ðλ;q2Þ∞

ðq2; q2Þ∞
ðq; q2Þ∞

� ðq; q2Þ∞
ðq2; q2Þ∞ 2φ1ðλ; λq; q; q2; z2Þ þ

ðλ; q3; q2Þ∞
ðλq2; q2; q2Þ∞

z2φ1ðλq; λq2; q3;q2; z2Þ
�

¼ qþ1
8
ðq2; q2Þ∞
ðq; q2Þ∞

�
z−

1
2
ðz2; q;q2Þ∞
ðλ; q2; q2Þ∞ 2φ1ðλ; λq; q; q2; z2Þ þ zþ1

2
ðz2; q3; q2Þ∞
ðλq2; q2; q2Þ∞ 2φ1ðλq; λq2; q3; q2; z2Þ

�
;

namely,

wðz; λ; qÞ ðλz; qÞ∞ðz; qÞ∞
¼ qþ1

8
ðq2; q2Þ∞
ðq; q2Þ∞

�
z−

1
2
ðz2; q;q2Þ∞
ðλ; q2; q2Þ∞ 2φ1ðλ; λq; q; q2; z2Þ þ zþ1

2
ðz2; q3; q2Þ∞
ðλq2; q2; q2Þ∞ 2φ1ðλq; λq2; q3; q2; z2Þ

�
:

ðD3Þ

When we put z ↦ ~aþ1
2 and λ ↦ ~a−1q, i.e., λz ↦ ~a−

1
2q in

(D3), we obtain the relation (4.21).

2. From the triple product identity of the
theta function of Jacobi

Next, we prove the relation (4.21) in terms of the theta
function of Jacobi. The idea of the proof comes from the
connection problems on linear q-difference equations [40].
The local theory and irregularity for q-difference equations
are studied by Ramis et al. [39] by using the Newton
polygon. Recently, Zhang and Morita provided some
connection formulas with the irregular singular case. In
the connection problems, we study the elliptic functions
associated with the relations between the local solutions
around the origin and around infinity. In this subsection, we
deal with the first-order q-difference equation (see
Remark 1 for details). We begin with the review of the
theta function [40]. The theta function is given by

θðxÞ ¼
X
n∈Z

q
nðn−1Þ

2 xn; ∀ x ∈ C:

The theta function has the triple product identity

θðxÞ ¼
�
q;−x;−

q
x
; q

�
∞
: ðD4Þ

For any k ∈ Z, the theta function satisfies the q-difference
equation

θðqkxÞ ¼ q−
kðk−1Þ

2 x−kθðxÞ: ðD5Þ

The theta function also has the inversion formula

θð1=xÞ ¼ θðxÞ=x: ðD6Þ

The function 1φ0ðλ;−; q; zÞ can be rewritten by using the
theta function as

1φ0ðλ;−; q; zÞ ¼
ðλz; qÞ∞
ðz; qÞ∞

¼ θð−λzÞ
θð−zÞ

ðq=z; qÞ∞
ðq=λz; qÞ∞

¼ θð−λzÞ
θð−zÞ 1φ0

�
λ;−;q;

q
λz

�
; ðD7Þ

provided that jzj < 1.
Remark 1: The function 1φ0ðλ;−; q; zÞ satisfies the

first-order q-difference equation

ð1 − λzÞuðqzÞ þ ðz − 1ÞuðzÞ ¼ 0: ðD8Þ

We can check that Eq. (D8) has the solution around infinity
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u∞ðzÞ ≔
θðλzÞ
θðzÞ 1φ0

�
λ;−; q;

q
λz

�
: ðD9Þ

With this solution, the relation (D7) can be rewritten as

1φ0ðλ;−; q; zÞ ¼ CqðzÞu∞ðzÞ;

where

CqðzÞ ¼
θð−λzÞ
θð−zÞ

θðzÞ
θðλzÞ :

Here, the function CqðzÞ is the elliptic function, namely, q
periodic and unique valued:

CqðqzÞ ¼ CqðzÞ; Cqðe2πizÞ ¼ CqðzÞ:

Therefore, the function CqðzÞ gives the “true” connection
coefficient [40] between the function 1φ0ðλ;−; q; zÞ and
u∞ðzÞ.
The function 1φ0ðλ;−; q; q=λzÞ also has the alternative

representation (D1) as

1φ0

�
λ;−; q;

q
λz

�
¼ 2φ1

�
λ; λq; q; q2;

�
q
λz

�
2
�
þ ðλ; q3; q2Þ∞
ðλq2; q; q2Þ∞

q
λz 2φ1

�
λq; λq2; q3; q2;

�
q
λz

�
2
�
: ðD10Þ

Combining the relations (D7), (D10), and the weight function wðz; λ; qÞ defined in Appendix D 1, we also obtain the
following relation:

wðz; λ; qÞ ðλz; qÞ∞ðz; qÞ∞
¼ qþ

1
8z−

1
2
ðz2; q2Þ∞
ðλ; q2Þ∞

ðλz; qÞ∞
ðz; qÞ∞

¼ qþ1
8
ðq2; q2Þ∞
ðq; q2Þ∞

θð− q
λzÞ

θð−zÞ
�
z−

1
2
ðz2; q; q2Þ∞
ðλ; q2; q2Þ∞ 2φ1

�
λ; λq; q; q2;

�
q
λz

�
2
�

þ z−
1
2
q
λz

ðz2; q3; q2Þ∞
ðλq2; q2; q2Þ∞ 2φ1

�
λq; λq2; q3; q2;

�
q
λz

�
2
��

: ðD11Þ

Equation (D11) gives the relation between the basic hypergeometric series 1φ0 around the origin and the basic
hypergeometric series 2φ1 around infinity.
If we set z ↦ ~aþ1

2 and λ ↦ ~a−1q, i.e., λz ↦ ~a−
1
2q, we again acquire the relation (4.21).
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