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We study A = 2 supersymmetric gauge theories on RP? x S! and compute the superconformal index

by using the localization technique. We consider not only the round real projective plane RP? but also the

squashed real projective plane RPZ which turns back to RP? by taking a squashing parameter b as 1.
In addition, we find that the result is independent of the squashing parameter b. We apply our new
superconformal index to check the simplest case of 3D mirror symmetry, i.e., the equivalence between
the N = 2 supersymmetric quantum electrodynamics (SQED) and the XYZ model on RP2? x S!. We prove
it by using a mathematical formula called the g-binomial theorem. We also comment on the N = 4 version
of mirror symmetry, mirror symmetry via generalized indices, and possibilities of generalizations from

mathematical viewpoints.
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I. INTRODUCTION

The remarkable recent progress in 3D supersymmetric
gauge theories is that we can exactly investigate theories
with interactions on various curved geometries by making
use of the localization [1-9]. One of the interesting
quantities to which we can apply this exact calculation
is the superconformal index (SCI) [10,11] defined as a
refinement of the Witten index. The SCI of ' = 2 super-
conformal theories is defined by [12]

T(x,eM) = Try (—l)ﬁx’{Q*Q?}xi’*}?Hei”“f“}, (1.1)

where H is the Hilbert space of the theory, and the trace is
taken over this Hilbert space (see Sec. III for details).
Basically, it counts the number of supersymmetric vacua,
so-called BPS states, with eigenvalues of certain operators
commuting with both the Hamiltonian {Q, Q"} and the
fermion number operator F. The SCI on S? x S' has been
computed by the localization in [13,14].

An application of the SCI is to study 3D mirror
symmetry [15-18] of which the duality between the
N =2  supersymmetric quantum  electrodynamics
(SQED) and the XYZ model is the simplest example.
Mirror symmetry on S? x S' based on SCIs has been
studied numerically in [14] and has been manifested in [19]
by using the g-binomial theorem and Ramanujan’s sum-
mation (the special case for SCIs with gauging flavor
symmetries called generalized indices also has been proven
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in the same way [20]). An advantage in utilizing the SCI
is that we can establish mirror symmetry rigorously in the
mathematical sense thanks to the localization.

On the other hand, one can construct 2D theories on the
real projective plane RP? by taking precise boundary
conditions of fields on the two-sphere S? under the antipodal
identification

(=8, 74 @)~ (9. 0), (1.2)

where 9, ¢ are coordinates of S%. The partition function on
RP? has been computed exactly in [21]. The authors also
showed how to define 2D supersymmetry (SUSY) theories
on the squashed real projective plane RP3 by turning on an
appropriate background U(1)g-gauge field. This method
was developed in [22] in the context of localization calculus
on the squashed two-sphere Si.

In this paper, we show that their constructions can be
lifted naturally to these on RP3 x S! by adding the third
coordinate y. We can get this curved space from S7 x S! by
identifying

(=97 4+¢.y)~ (8. 0.y), (1.3)

where 9 € [0, 7], € [0,27], and y € [0,2z]. Note that
there is no difference between S? x S! and RP3 x S! if
we only discuss the local quantities. The difference between
them comes from the global distinction of topology and the
boundary conditions of fields under the antipodal identi-
fication (1.3). With these setups, we calculate the SCI of
N = 2 supersymmetric gauge theories on RP2 x S! by the
localization. First of all, we take the Kaluza-Klein (KK)
expansion for all fields along the S! direction, which reduces
Lagrangians on R[P’% x S! to the sum of Lagrangians on
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[RIP’% over KK modes. Then, the one-loop determinant of the
vector multiplet and the matter multiplet can be obtained as
the product of one-loop determinants on RP; computed in
[21]. Furthermore, we specify parity conditions named the
B-parity condition, in order to make all fields consistent with
the antipodal identification. The B-parity condition is con-
cluded by plausible requirements from physical consider-
ation. The one-loop determinant is expressed by the
contribution of the Z,-holonomy even or odd sector due
to the B-parity condition. As a result, the SCI is written as the
sum of each contribution when the vector multiplet is
considered. This is different from the case where the SCI
on S7 x S! receives the contribution of the monopole as the
infinite sum over integers. In addition, the one-loop deter-
minants and the SCI on RP; x S! are independent of the
squashing parameter b.

With our exact results, we check AV = 2 Abelian mirror
symmetry on RP? x S'. Again, the B-parity condition
carries a crucial role to establish this duality. We verify it
exactly as the equality of the SCIs involving the g-shifted
factorial and the basic hypergeometric series.' In this paper,
we do not discuss the non-Abelian case because there is a
slight difficulty in the classical configuration of the gauge
field. Its solutions of saddle point equations consistent
with the B parity are written by the flat connection on RP?
and the Wilson line phase along S! [see (3.10)]. After the
localization, the final form of the index becomes the
integration over the saddle points (i.e., Coulomb moduli).
Besides the one-loop determinants, we have the Jacobian
coming from fixing its integration measure onto the Cartan
subalgebla by using the gauge symmetry of the saddle
points. However, this factor is now undetermined since we
do not find the explicit form of the flat connection. It is
straightforward to extend all other arguments to non-
Abelian SUSY gauge theories. We put off this issue as a
future work.

The rest of this paper is organized as follows: In Sec. 1I,
we construct N = 2 supersymmetric gauge theories with
the U(1)-gauge group on RP; x S!. Also, we indicate the
B-parity condition for a single flavor and its generalization
to N flavors. In Sec. III, we show the main idea of the
localization computation on RP? x S! and the one-loop
determinant for the vector multiplet and the matter multi-
plet. In addition, we provide the general formula of the new
SCI for convenience. In Sec. IV, mirror symmetry on
RP? x S! is established as the relation of the SCI for the
SQED and the XYZ model with the appropriate identi-
fications of variables. We must take account of the B-parity
condition correctly to get these SCIs. We justify it math-
ematically by employing the g-binomial theorem. In
Sec. V, we summarize our results and comment on some

'We follow these names used in [19,23]. The authors of [20]
use the ¢ product instead of the g-shifted factorial.
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open questions. In Appendixes A and B, we explain
calculation details of the one-loop determinants. In addition
to mirror symmetry, there is another example called an
Abelian duality hold between a gauge field and a scalar
in a 3D Abelian gauge theory [24-26] to be able to check
the validity of our new SCI. We show how the SCI on
RPZ x S' precisely works on Abelian duality in
Appendix C. In Appendix D, we discuss mathematical
generalizations of our relation obtained as mirror
symmetry.

II. SUPERSYMMETRY ON RP? x S!

In this section, we show how to define 3D SUSY theories
with the U(1)-gauge group on RP? x S'. Of course, we can
also define the theories on S7 x S'. In fact, the arguments
in Secs. Il A-II C can be applied to the theories on S x S.
However, we omit explanations for the calculations of the
index on S7 x S! because the final results are free from the
squashing parameter and just reproduce the known results
on $% x S! [3,13,14]. On the other hand, discussions on
[R{[P’i x S! produce truly new results even though they are
free from the squashing parameter. Therefore, we concen-
trate on the explanations of the theories on RP? x S!.

A. Our background and conventions

We extend the construction of 2D Killing spinors and the
background U(1),-gauge field in [21,22] to the 3D case.

1. Our background

We consider the following dreibein and background
U(1)g-gauge field:

e =dy, (2.1)

VR :%(1 -]—f>d¢+;—;<1 —J—i)dy, (2.2)

where f(9)? = sin29 + cos9. We use latin alphabet
a, b, ¢ for the local Lorentz indices.

e? = Isin ddg,

2. Covariant derivative

The 3D covariant derivative is defined by

|
Dﬂ = 6/4 + Za);’bjab - lellf, (23)

where @@ is the spin connection computed from the

dreibein (2.1), and the 7, a8 are Lorentz generators of
the fields characterized by its spin:
spin-0 = \A7ab =0,

spin-1/2 = Ty = Yaps (24)
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TABLE I. Charge assignments for each field.
Killing spinor € €
Spin 1/2 1/2
R +1 —1
Field A, o A 7 D P w 7 F F
Spin 1 0o 12 1/2 0 0 0 1/2 1/2 0 0
R 0 0 +1 -1 0 -A A —(A-1) A-1 —(A-2) A=2
where y,;, are antisymmetrized gamma matrices defined in el = (_1)1+\€|~I/1I e, ey A= (-1 )IGI-W A7 46,
(2.7), and R is an R charge. See Table I for assignments of R (7.€)h = ey i, (ed) + (- )H\ o Me(é/l) + (8e)i =0,

charges to each field.

3. Killing spinors
Then, the spinors

sin
sin§
(0.9.y) = eFprin (2 25)
cos 5
satisfy the Killing spinor equations,
1 _ -1
D,e = ﬁy”ma D,e = > SV uY3E- (2.6)

4. Gamma matrices

The gamma matrices y,, are defined by the Pauli matrices

_(0 1) _(0 —i)
71 = 1 0) V2 = i 0 )

_(1 O) _1(
V3 = 0o -1/ }’ab—27a7b

5. Spinor bilinear

—vpa).  (2.7)

Let us denote generic spinors by ¢, €, and 1. We take
spinor bilinears as

a=te (5 4)(n)
erah = (& ez)(_ol é)y(j)

Using this convention, one can prove the following
formulas:

€
(=1)!H1elele(ea) + 2(ge)a + (=1)" @y, 2)r%e = 0,
where |e| means the spinor €’s statistics such that |¢| = 0 for
a bosonic € and |¢| = 1 for a fermonic e.

B. Supersymmetry

We show our definition of supersymmetry in this
subsection. There are two kinds of multiplets in the 3D
N =2 theory. The first one is the vector multiplet
composed of gauge field A, scalar o, gauginos 4, 2, and
an auxiliary field D. The supersymmetry for the vector
multiplet is given by

0cA, = —éﬁyﬂe, 0:A, = —ééyﬂ/l, (2.8)
8.0 = +l/_1€, 6.0 = —i—léﬂ, (2.9)
2 2

0 A = %y””eF — De + iy*eD,0 + f6y3€ 6:4 =0,
(2.10)

5.4 =0, 5.4 = %y’“’éF}w + De — iy*eéD,0 + f0y3€
(2.11)

6.D = +2D Ayte + 4if/_1y3€,

55D:—§ey D/1—|—4f€yg/1 (2.12)

where we use the same supersymmetry as in [27], which
takes 0, and J; to be purely fermionic. We use the Killing
spinors in (2.5) as supersymmetry parameters. f is the
function that appeared in (2.1). One can verify that the
above SUSY closes within the translation, rotation, R
symmetry, and the gauge transformation.

The second one is the matter multiplet composed of
scalars ¢, qZ spinors v, i, and auxiliary fields F, F, which
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couple to the vector multiplet via the gauge symmetry with
a charge g. Also, we have the following SUSY trans-
formations for the matter multiplet:

S.p=0, 8.0 = ey, (2.13)
5. = ey, 5:¢ = 0, (2.14)
Sy = iy*eDip + igeod) — %emﬁ, Oy = EF,
(2.15)
6= Fue. 0 = ip"eD)i+ igdot =2 et
(2.16)
5.F = iey* Dty — iqoey — igelp + %emyj,
5:F =0, (2.17)
5.F, =0,
5:F, = iey" Dy — iqe o + iqp e ] —%émp.
(2.18)

Of course, the SUSY algebra is closed within the trans-
lation, rotation, R symmetry, and the gauge transformation.
Here, we use the covariant derivative coupled with A,

Lia = —i(pr*Ditw) + iq(poy) — igh(Ay) —

+iqg(pA)p + ¢“DiadDip + ¢*po*p + igpDep —

A-1
f f

=5, (55%: [F, ] — i %56 W]) :

where i runs for 1,2, or equivalently, 9, ¢. Here, we define

v = eye, ® = €. (2.23)

We use these actions as “regulators” for the localization.
Thanks to the nilpotency (2.20), these terms are &;
invariant automatically.

2. Other terms

Of course, we can construct other SUS Y-invariant terms.
The famous one is the supersymmetric Chern-Simons term

VD~ 2" Lo — i
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Di® =D,®—igA,®, Dj®=D,P+iqPA,.
(2.19)

If one wants a neutral matter, it is achieved by turning off g.
In our convention, A, has the same dimension as 8”; thus,
the charge ¢ must be dimensionless, or, equivalently, g is
just a number. One of the most important features of the
above SUSY is nilpotency

2 =052=0. (2.20)

C. Lagrangians

1. SUSY-exact terms

In order to use the localization method, we need so-
called SUSY-exact terms for the vector multiplet and the
matter multiplet. For the vector multiplet, we can use the
super-Yang-Mills term as a SUSY-exact term. In fact, one
can verify

2

]
Lym =5 FuP" + D + D,0Dh + 7 % Fo+ %
+ i D,A - %Zm = 5.((6,piD)T) (2.21)

up to a total derivative term. The notation J,_,;+ is defined in
the same way in [27]. In addition, the following term for
the matter multiplet is also SUSY exact:

iA

o Praw) + F.F
SO~ i+ R
Az}l vi(pyaw) — iAZ} 1 o ()
(2.22)
|
Leg = Jlgem(AﬂapAi) - +2D6.  (2.24)

This term is, however, prohibited on IR[P’%7 x St as we will
explain later. We consider the U(1)-gauge group; therefore,
the Fayet-Iliopoulos term

1

EFI - D - ?A:; (225)

can be taken into account. If there is an additional

dynamical vector multiplet, say, (B#,&,/:l,;l,b), which
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has the same SUSY transformations as (2.8)—(2.12), then
we can write down the following BF-type coupling called
the supersymmetric BF term:

— 71—=JA+ 2Dé + 2Do.

1
‘CBF = 7{—]€”UA(BMFWI) (226)

However, this term is also prohibited on RP? x S!. In
addition, the superpotential terms for the matter multiplet
are also SUSY invariant. It may be interesting to construct
them explicitly on our curved space. For example, there is a
known result how to write them explicitly on S* [28].

D. Parity conditions

As studied in [21], we have to find parity conditions
compatible with the antipodal identification (1.3) for
component fields. Our guiding principles are as follows:

(1) The squared parity transformation becomes +1 for

bosons and —1 for fermions.

(i1) The regulator Lagrangians (2.21) and (2.22) must be

invariant under the parity.

(ii1) SUSY 6., §; must be consistent with the parity.

1. Vector multiplet

After simple calculus, we find a set of parity conditions
for the vector multiplet,

Az =9 7m+¢.y) = -A1(9,0.),
Ays(m =8, m+@.y) = +453(8, 0. y),
oz =8, 7+ ¢,y) = —0(8,9,y),
Mr =8, + @, y) = +iriA(9.9.y).
Ar=9.7+¢.y) = —iriA(9.0.y).
D(z—38,n+@,y) = +D(9,0.y). (2.27)

These are similar to the ones in [21] called B parity.
Therefore, we would like to call the conditions in (2.27) the
B-parity condition.

2. Matter multiplet

The one flavor matter multiplet has two choices:

pr =97 +q.y) =Ep(9,0,5).
p(x—=9,7+ ¢, y) = +(9,9,y),

w(r =397 +¢,y) = Finyd.¢.y),

gz =97+ ¢,y) = Linwg(9,0.5).
Frn=9.n+¢.y) =+F(9,0.y),
F,(r=8,7+¢,y)=%xF, (8 0¢,). (2.28)

The existence of the compatible two choices can be

PHYSICAL REVIEW D 91, 105023 (2015)

regarded as the existence of a holonomy with respect to
a background U(1)g,,, flat gauge field BI&°r. In other
words, the parity conditions are characterized by the

flavor
holonomy of By,

11— HIRT (2.29)
where 7 is a noncontractible cycle on RP?, and f is the
corresponding U(1)y,,., charge defined by f® = f®. f is a
flavor charge operator used later in the definition of the
superconformal index. This is an analogue of the back-
ground U(1),,., monopole gauge field on S? x S! in [20].
If we have many flavors, we can generalize these con-
ditions. Let us denote a multiflavor field by

P,
b— (2.30)
By,
Then, the generic B-parity condition is
P(r— 9.7+ ¢.y) =Mp(9.9.y),
P(n—= 9.7+ ¢.y) = Ng(9.9.y).
(-9, 7+ ¢.y) =—iyyMy(9, 0., y),
(= 9.7+ ¢.y) = inNw (9, 9.y),
i“(n 9.7+ ¢,y) = ME(9,9,y),
(7[ 9,7+ @¢,y) =NF,(8,0,y), (2.31)

where M and N are Ny x N, matrices constrained by

NM=1  M2=N2=1. (2.32)

3. Comments on the B-parity condition

There are two comments. The first one is related to the
vector multiplet. In order to use Ly (2.21) as a regulator
when we perform the localization, we would like to
maintain it to be invariant under the B parity (2.27) as
we noted in our guiding principles. In fact, Ly is invariant
under (2.27). On the other hand, Lcg (2.24) and Lz (2.26)
become parity odd

Lespr(m =8, 7+ @,y) = —Lese(9, 9, y).  (2.33)
It means that we cannot take it on RP7 x S' as we
commented just below (2.24) and (2.26).

The second comment concerns the matter multiplet.
Suppose we have two flavors and the B-parity condition
described by the 2 x 2 matrices

105023-5
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0 1
M=N-= ( ) (2.34)
1 0
Then we can lift its Lagrangian on RP? x S! to the one on
S; x S' by defining a new matter multiplet on S7 x S' as

(I)l('97 @, y)’ I e {O’%]’

D,(9,0,y), d€]| (2.35)

5(0..5) - {

, 7).

IR

The authors of [21] also commented on this fact. This is
quite similar to the doubling trick in string theory.
In Sec. IV, we use such B-parity condition exactly in the
context of 3D mirror symmetry.

III. LOCALIZATION CALCULUS ON RP? x S!

In this section, we calculate the SCI,
I(x,a) =Try,, [(=1)F xRl yfiths gl (3.1)
b

where £ is the fermion number operator, & is the energy
operator, R is the R-charge operator, j; is the third
component of the orbital angular momentum operator
which acts on RPZ, and f is the flavor charge operator.
Note that we have opposite R-charge assignments com-
pared with [14,19,20,29]. HRPg represents the Hilbert
space of the theory on RP?. The squashing procedure is
compatible with the definition (3.1) because this procedure

preserves the isometry generated by j;. We take each
fugacity as

X =eh, x=e", a=eH, (3.2)

where yp is a chemical potential and define the relations

)
Q= R
B+ P

where we introduce the parameter Q for later simplicity.

2
Pr+pr= 7” (3.3)

A. Vector multiplet contribution

First, we have to identify the locus of the Lagrangian
Ly (2.21) characterized by Lyy = 0. In order to find it, it
is useful to introduce the combination of the fields

1 1
FH = Ee”f"’Fp(, —1—8”04-?5'3'6- (34)

The Lagrangian Ly, can be rewritten as
Lym = F,F* + D* + iJy" Dy — ézyﬂ (3.5)
up to total derivative. Now, the locus is obtained by

F, =0, (3.6)

u

PHYSICAL REVIEW D 91, 105023 (2015)

D=0, A=0, A=0. (3.7)

1. Locus on IRIPZ x St

A nontrivial equation is (3.6). This is equivalent to the
following equation expressed by differential forms:

3

>)<F+da+67a:O. (3.8)

We have to know the configuration invariant under the
B-parity condition (2.27) which satisfies (3.8). It can be
characterized by

(3.9)

The first equation in (3.9) means, of course, the flat
connection. The flat connection A on RP?xS' is
expressed by

0
A :Aﬂat—dey, (310)

where Ag, is a flat connection of RP? related to the

holonomy along the noncontractible cycle y of RP2.
There are two choices for Ag, = Agt) characterized by

exp (i]{Agﬂg) = +1. (3.11)
14
Also, there is a constraint on 6 as
0~0+42r. (3.12)

Therefore, we have to sum up these contributions weighted
by the Gaussian parts, or, equivalently, the one-loop
1-loop>

27 d0 (+) 27 dO (=)
I(X,(X)ZA ﬂzl»loop_F 0 ﬂzl»loop'

One important thing is that we can perform calculus even if
we do not know the explicit form of Agg. This is similar to

the calculation of the partition function on IRIP% in [21].

determinants Z (&)

(3.13)

2.3D to 2D

One might think that the U(1) vector multiplet contri-
bution is trivial because the result on S? x S' was so
[3,13,14]. However, there is a nontrivial contribution once
we put the theory on RP? x S'. We can use results of 2D
calculations [21] to compute our 3D SCI (3.13). Let us
show how it works. First, we expand each component field
around the loci (3.7), (3.9), and (3.10), then we get the
following linearized Lagrangians:

105023-6
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1
[’boson = 5 [ayAy - ayAM]z + ((9”0)2
2
O o2
+ €3MD‘? [0,A,—0,A,] + 7 (3.14)
= i -
Lsermion = lﬂ}/"Dﬂﬂ - 2173/1- (315)

Here, our starting Lagrangian has only a U(l)-gauge
symmetry. In other words, (2.21) is the one of a
Gaussian-type theory. Therefore, the above Lagrangians
have nothing but the same form as the original one (2.21).

Usually, in the context of localization calculus, one
expand these fields with respect to the direct product of
some harmonic functions on RP? and Kaluza-Klein modes
of S!. Here, however, we take a much quicker route. We
expand each field with respect to the Kaluza-Klein modes
only:

1 L Bi-br
A — el A (9, i=12), (3.16
27 M(0.0) (=12). (.16)
1 (n)
Az = i >A 9, 3.17
|
AN T —(x2d)* + 1
J§E£§Z§? = Ag_n) Ny | =i, *o dxy
6(_n> _|_]1_C *2 d

Lo - ><zﬂ> +y3<hn+ 219))10”, (3.24)

where *, is the Hodge star of RP2, and the exterior
derivative d and the gauge field A" are 1-forms on
RPZ. The symbol §, represents an operator defined by

[ A
I]n = —<n +ZQJ3>

The Lagrangians (3.23) and (3.24) are quite similar to the
ones on IRIF’%7 in [21] by identifying §, ~ a - 6. Although, in
the fermionic term (3.24), a slightly different contribution
exists, we can do the same procedure performed in the
Appendix in [21]. See Appendix A for details.

(3.25)

*When one generalizes it with the non-Abelian gauge group,
one should replace J,, by the covariant derivative defined by the
precise flat connection Agag in (3.21) corresponding to the locus
around which the fluctuation fields are expanded.

PHYSICAL REVIEW D 91, 105023 (2015)

1 .
2 : (in-21722]3)y () 9, 3.18
o e 2 o [ .
— \2r ( ) ( )
1= 2 : zn+ —J3)2,,+]12,,>yj,( n) 3, 0), 3.19
- z: elint(=1 ) )y (n ), 3.20
\/27: ( ) ( )

where J5 is the orbital angular momentum opelrator2

J3 = —id,. (3.21)
Then, one can get the sum of 2D Lagrangians £2P(") of
Kaluza-Klein fields labeled by n after performing the

integral along S!,
/ dx\/g3L = / dx\/gy L2, (3.22)

The bosonic part and the fermionic part are as follows:

—iY,d — %y d5 A
—(%,d)? 0 Al |, (3.23)
0 —(x,d)? +fl2+ b2 oM
I
3. One-loop determinant
The final result is
2o () = 2o () = 2750 (x)
=1
= xt¥ — m 3.26
oy (31l ). (326
x2 x*
fvector(x) = -4 - -4 (327)

where the prefactor preceding the exponent is the Casimir
energy explained in detail in Appendixes A and B. As the
end of the discussion here, we would like to mention the
origin of the U(1) vector one-loop determinant. Intuitively,
it is concluded as the difference of spins of bosonic and
fermionic fields. More precisely, Z,-holonomy splits the
eigenvalues of j; into two sets of integers which are
assigned to each sector according to the spins of the fields.
As a result, the eigenvalues run for odd integers in the
bosonic sector and even integers in the fermionic sector
under the B-parity condition (2.27). This mismatch of the
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eigenvalues leads to the nontrivial one-loop determinant for
U(1)-gauge group. The readers can see this explicitly also
in Appendix A 1.

B. Singlet matter multiplet contribution

Second, we have to know the locus of the matter
Lagrangian L, (2.22). However, it is somewhat trivial
because the configuration is realized by turning off all
fields in the matter multiplet. Therefore, by expanding
around it, we get the following linearized Lagrangians:

‘cboson WVDA¢DA¢ - _¢DA¢ - f2 ¢¢ + R¢¢

f
_A- vi(}Dm (3.28)
Lfermion = _I(JIYMD/[} ) - lz_f (W}/3l//) 2} Ui(lilj/il//)
A-1
—i 27 o(py). (3.29)

Here, the superscript A means the covariant derivative
(2.19) defined with the locus value of the gauge field (3.10).

1. 3D to 2D

By expanding Kaluza-Klein modes first, we can get the
2D action as well as the case of the vector multiplet. In
order to preserve SUSY, we have to read the precise
boundary conditions from the fugacities in the index (3.1):

L cash i
¢<197 (ﬂ7.y) - Z —2_”6(”1+( A 12)2ﬂ+112n 2 V¢ ( ’go)’
(3.30)
_ © 1 i
$O.0.9) = > ird elin+ (AT T2 N G0 (9, ),
(3.31)
- 1 ) _ b2_ifn
l//(19, (,07)’) = Z \/—2_ﬂe<’”+( —A+1 h)z,,JrJ%zf, o yw (19 (ﬂ)
(3.32)
19 ?, y Z m+ (+A- 1—]3),K+j;22+'f”) ( )(& (ﬂ)

(3.33)

where J; is the orbital angular momentum operator
Jj3 = —i(0, — igAl). (3.34)

Note that there is a nontrivial contribution from the gauge
field on the locus because the matter multiplet couples with

PHYSICAL REVIEW D 91, 105023 (2015)

the vector multiplet via the gauge symmetry. This effect is
absent in the vector multiplet’s case because it is neutral
when the gauge group is U(1).

Now, once we perform the integral over S' as for the
vector multiplet, we can get 2D Lagrangians,

y - ’ A\
‘Cicl?s(gn) _ ¢(—n) (_gl]D?ﬂalD?ﬂal + (pn _ IZQ)

A2 -2A A A-1 .
- "= L ZR- ZD.A”‘“ (n)
T L
(3.35)
2 n — (—n . at . A - 1
Licmion = 7' ><—W D™~ 3 (Pn —i—; 9)
i A-1 A—1 )
Evie i oy VriTi e v
(3.36)
where the symbol p, represents an operator defined by
RN q0 + fu
=- -Q . 3.37
P @+ln)+ 5 (3.37)

The Lagrangians (3.3) and (3.36) are also similar to the
ones on IRIP%, in [21] by identifying p,, ~ 6. As we can see in
the fermionic part of the Lagrangian for the vector
multiplet, there are also distinctions between (3.35),
(3.36), and the corresponding ones in [21]. Even with
these extra terms, we can perform exact calculations.
See more details in Appendix A.

2. One-loop determinant

The final result is
ZA( ) (equ X, af) _ x+A4le+4qHa+4f

1-loop
E‘X’ 1 (+) imqf m mf
X exp %fmatter(e X" a ) s

m=1

(3.38)

A 2-A

+ i . X . X

fEnazter(elq‘q’ X, af) = €+’q‘9a+f1 — A — e~ 40y~ -

(3.39)
i flavor

for the even holonomy sector which gives e fr(qA”“‘Jrf Bia™) —

+1. The other final form is

zA0)

6 _ A 6
lloop( Iq ) Xy af> X 4 e 4q J

21 .
x exp (Z (0, amf>),
m=1

(3.40)
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() (pi : xta . x4-A
fmalter(elqe» X, af) = ettt — — e 40y~ Tt

(3.41)

when we have the odd holonomy  sector

o At B

C. Doublet matter multiplet contribution

If we have a doublet matter multiplet constructed from
two matter multiplets
D, P, (3.42)

with the matrix (2.34),

0 1
M:N:< )
1 0

in the parity condition (2.31), then, we can regard them as
one matter multiplet on Si x S! as commented above.

(3.43)

1. One-loop determinant

Therefore, we can get the corresponding one-loop
determinant just by quoting the one in the zero-monopole
sector on S7 x S! [14]:

A(2 i - 1 2 im mm
Zl_<10)op(e qg’ x’ af) N exp (Z Efgnz)mer(e qe?x ’ a f) k)
m=1

(3.44)
(2) ; . ) x2—A
fmatter(elq07 X, af> = eta0gtf —2 g‘"laa—fl —
(3.45)

Note that there is (1 —x?) in the denominator of (3.45)
different from (1 — x4) in (3.39) and (3.41).

D. Formulas of the SCI on RP; x S'

Now, we summarize the relevant formulas of the SCI on
RPZ x S! for later use in the check of 3D mirror symmetry.
We specify with two types of theories. The first one is a
class of matter theories. The second one is a class of
U(1)-gauge theories. Before proceeding to the details of
the formulas, we rewrite one-loop determinants in (3.26),
(3.38), and (3.40) as more convenient forms. We now focus
on the exponential part called the plethystic exponential of
the one-loop determinant of the vector multiplet (3.26). It
can be rewritten as follows. We use a geometric series for
the one-particle index (3.27) and perform the sum over m.
Then, the plethystic exponential becomes

PHYSICAL REVIEW D 91, 105023 (2015)

exp <Z fVCCtOl’ )

m>1

=exp (Z{log(l — x*x¥) —log(1 — x? 4")})
=0
(1 = x4x) 4. .4
_ H XX (xz, x4)oo , (346)
50 ( (1 —x*x (x%3x%) o

where we use the g-shifted factorial defined by [23]

1 for n =0,
(Z:q), =< [[i5(1-24")  forn>1,  (3.47)
[T, (1 =2zg ™)™t forn< -1,

where Z and ¢ are complex numbers and (Z;q), =
lim,_(Z;q), with 0 < |g| < 1. For simplicity, we will
use the notation

(21,25, . Z,39) 0 = (Z21:9)06(Z2: @) o -+ - (Z1319) oo

(3.48)

The plethystic exponential of (3.38), (3.40), and (3.44) can
be written in the same manner with the g-shifted factorial,

7 9a T xR )
exXp <Z fmatter m’xm,afm)> = ( ) )

r~ (zHaTxB; x4,

(3.49)

exXp <Z f mdtter am x afm)

m>1

B (Z_qa_fx(4_A);x4)oo
o (Z+qa+fx(2+A);x4)oo ’

(3.50)
(Z_qa_fx(2_A>; xz)oo
(zHax2 %),

(3.51)

eXp <Z f matler

m>1

,xm,af’")> =

where we define z := /. Combining the Casimir energy
(B6), (B8), and (B10) together, we have the following
one-loop determinants for each multiplet:

4.4
2y (x) = x4 Ej;,;;w
7 9a T xR )
(o xB
(z‘qa_fx<4_A); x4)oo
(T X2, %)
(z79a7x2=2);x2)
(a5, 2)

ZIA-(I(J)ro)p(Zq’ X, af) B X+%Z+%qa+}f (

Z ool ) = oY

ZM (4 x of) =

1-loop (352)
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1. SCI for matter theory

First of all, for later use, we consider a theory constructed
only by multimatter multiplets as follows:
(i) Singlet matter multiplets with the upper sign in
(2.28): 4.8, a=1,2,....N
(ii) Singlet matter multiplets w1th the lower sign in
(2.28): @2, 8%, b=1,2,....N}’
(iii) Doublet matter multiplets with the parity by (2.34):

Pty Bty A=1.2,... NP,
We can turn on arbitrary superpotentials. However, we
assume here that we turn a certain superpotential which
restricts the flavor symmetries to one global U(1) symmetry,
and we denote the corresponding fugacity by a. In this case,
the SCI does not contain any summation or integral over the

configuration of the gauge field, and our result is

(3.53)

V — Z{$ always in (3.52),

1-loop

PHYSICAL REVIEW D 91, 105023 (2015)

where flavor charges f', f},.f 4 for the global U(1) symmetry
and R charges A,,A,,A, are assigned to the matter
multiplets &4, ®?, and @1 ,, respectively.

2. SCI for gauge theory

The second example is a U(l)-gauge theory con-
structed from
(i) a vector multiplet: V,
(i1) singlet matter multiplets with the upper sign in
(2.28): 4,94, a=1,2,.
(iii) singlet matter multiplets Wlth the lower sign in
(2.28): @, @b, b =1,2,. ,
(iv) doublet matter multiplets w1th the parity by (2.34):
oy, Bty A=1,2,... NV,
In addition to the global U(1) symmetry and R charges, we
assign U(1)-gauge charges q,.q,.q4 € Z for ¢, ®°, CID‘;"z,
respectively. As noted in (3.13), we have a summation over
two terms coming from two distinct loci Ap, = Agt) and an
integral over loci 8 € [0, 2z|. With the results (3.26), (3.38),
and (3.40) obtained by the localization, the one-loop

determinants for the multiplets are given as follows:

‘”E

\A
\_/

(I)a q)a N Zl llloop depending on the Sigl’l eiﬁ<q4Aﬂm+fuBﬁa() _ +ei‘fy(anﬂa()’
b, b - 22 Yoop depending on the sign e S At oBr) —eifr(quﬂ“‘),

oy, P, - 28 always in (3.52).

1-loop

A()
1-loop

multiplet is slightly complicated, and let us give a detailed
explanation here. For the A, = Agg

3€<qA‘“‘ = (e ifA‘;‘)‘l = (+1)7 = +1, and then we get
the one-loop determinants for ¢, as Z AE) (3.52),

1-loop
respectively.
On the other hand, for the Ag, = AE]_> sector, we have

at
e fq ﬂd!

The one-loop determinant Z for a singlet matter

sector, we have

= (' §,4 )4 — (~1)9, and its value depends on

I(x,a) =

N

¢
+I_IZI ‘loop (2745 %, 07) HZI “loop ( (29, x, f) HZ“OOP (294, x, ol 1)

25 () e f ,
(sym) ?i( 27z HZ] lOOp (29, x, ) HZ] loop (22, x, of?) HZI loop

the parity of g € Z. For simplicity, we assume the follow-
ing circumstances:

Each charge ¢q,, q,, takes its value in odd integers.
(3.54)

This is satisfied in the latter part of this paper Then, we get
in (3.52) with

Afjat = Aﬁlat) sector. Under the condition (3.54), we arrive at
the following formula for the SCI by defining z = e:

the one-loop determinants for ®,. as z¢ L. loop

2)

N Jve
70, x, /1)
b=1 A=1

N

f }
A=1

(3.55)

105023-10



SUPERCONFORMAL INDEX ON ...

The integration contour C, is defined by |z| = 1 because
|z| = |e®| = 1 by definition. The symbol (sym) represents
degrees of a redundant symmetry between two sectors

eifrA““‘ = +1. If the first integrand is identical to the
second one, it is 2. If not, it is 1.

IV. ABELIAN MIRROR SYMMETRY

We start with the review of Abelian mirror symmetry for
3D N = 2 theories [15-18] with a single flavor. Then, we
explain how this duality can be realized in terms of the SCIs
for theories on RP? x S! in the physical sense and provide
the mathematically exact verification to it.

A. Review of 3D mirror symmetry

N = 2 mirror symmetry states the duality between the
SQED and the XYZ model. From the renormalization
group point of view, these two theories are defined in the
UV region and flow to the same IR fixed point. The N = 2
SQED has one vector multiplet V and one flavor consisting

of two chiral fields Q, Q with charges ¢ = 41, —1 under
the U(1)-gauge group, respectively. This theory possesses
extra U(1) global symmetries: one is a topological U(1),,
and the other is a flavor symmetry U(1), with a charge
f = +1 which rotates Q and 0 by the phase with the same
weight as seen in Table II. On the other hand, the XYZ
model is the theory containing three chiral fields® X .Y, and
Z interacting through the superpotential W = XYZ. This
theory has two U(1) global symmetries named U(1), and
U(1), in [20], whose charges assigned on each field are
shown in Table III.

U(1), and U(1), in the SQED are identified with U(1),,
and U(1), in the XYZ model, respectively, and the currents
J 4 associated with each U(1) , are mapped with flipping the
sign (see Table 1V). Furthermore, there exists the corre-
spondence between the moduli spaces of those theories
(at least on the flat space). The moduli parameters of the
SQED are QQ characterizing the Higgs branch and (¢ +
ip) where p is the dual photon defined by

F* = 0,p. (4.1)

5 Cuwp
The expectation values of two chiral superfields
elotin)/¢ o=(otip)/e* (¢ is a coupling constant) parametrize
the corresponding regions of the Coulomb branch. In the
context of mirror symmetry, we can identify e(®t¥)/ e
e~(etin)/¢ and QQ with X, Y, and Z on the moduli space of
the XYZ model, respectively (Table IV).
We can also construct the N =4 version of mirror
symmetry. In the SQED, we introduce an adjoint (uncharged)

chiral field S coupling to QQ. Similarly for the XYZ model,

’In the literature [14,19,20], they are named ¢, g, and S,
respectively.
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TABLE II. Charges in the SQED.

u(l) U(1), U(l), R
0 +1 0 +1 -A
0 -1 0 +1 -A
TABLE III. Charges in the XYZ model.

U(l)y U(l), R

X +1 +1 —(1-A4)
Y -1 +1 —(1-4)
z 0 -2 —2A
TABLE IV. The mirror map.
SQED XYz
u(1), < U(l)y
U(1)4, Ja < U(1)y, =J4
elotin)/e®  o=(o+ip)/e? <~ X, Y
00 <~ Z

Z is added via the superpotential ZZ making Z and Z
massive. We can obtain the (twisted) free theory with chiral
fields X and Y by integrating out Z and Z. The duality
between those theories is referred to as N =4 mirror
symmetry.

Let us now consider gauging a flavor symmetry and
denote a corresponding background gauge field by Bflaver,
In addition to J,, there is a topological current’ Jr =*F
associated with U(1), where * is the Hodge star defined by
a 3D metric. The flavor symmetry can be gauged by
coupling Ba°r with J, which is the same thing as adding
a BF term to the original action [17,30]. This fact can be
employed to demonstrate mirror symmetry with general N,
in terms of generalized indices [20].

B. Physical derivation on R[P’i x S!

In this subsection, we construct Abelian mirror sym-
metry on RP? x S! from physical viewpoints. Here, we
should note that U(1), in the SQED and U(1),, in the XYZ
model on RP? x S! cannot be turned on. This is because,
for U(1),, a BF term is parity odd under the B-parity
condition as well as the Chern-Simons term [see (2.26) and
(2.33)]. On the dual side, since o receives the change of
sign by the antipodal identification (2.27), X and Y seem to
be interchanged from each other from the mirror map (the
third line of Table IV). However, this violates U(1),
because X has its charge opposite to that of Y. This is

*For non-Abelian theories, a topological current should be in
the form J; = *TrF.
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why there do not exist variables in the SCIs parametrizing
U(1),; and U(1),, in the latter argument.

1. SOED

The SCI should be the sum of the even and odd
holonomy sector of the dynamical gauge field as described
in (3.55). We consider the following situations:

dz A(+)

PHYSICAL REVIEW D 91, 105023 (2015)

(i) the vector multiplet V with the parity condition
(2.27), and _
(i) the matter multiplets Q, Q with the upper sign of
the parity condition in (2.28).
Then, by taking into account the charge assignments in
Table II, we get the SCI for the SQED immediately from
the general formula (3.55) as

A(+) /- A= A=)
Tum(x.0) = 2y (0 § S {20 2 + 2, ) 2 ) (@2)
0
To make the SCI easy to deal with, we introduce new variables,
q=x% a=a2x>1-8), (4.3)
Then, we get the following representation:
2. 2 d =14+ 3 o+l g+ 3 o2 1,433 41+ 3. 2
ISQED(X, a) — q+% (q 7q2 )oo‘% Z {a_% (Z a 21q217z a lquzvq )oo + a+7|1 (Z a IC]?Z a ]Qj q )oo} (44)
(q; q )oo Co 2ﬂ'lZ (Z'Ha_iqi’ Z_la_iqi; qz)oo Z""la_iqi’ z la_iqi qZ)oo
[
We follow the way of [19,20] tq peﬁorm th.e above (aq-Zj;q2)oo: (—l)fafq‘f(j+')(a‘lqz;qQ)j(a;qz)w, (4.8)
integrals. We start to handle the first integral in (4.4).
There are many single poles coming from the origin and the 5
g-shifted factorial. Those poles can be separated into the set (¢ q?)., = (:97) (4.9)
inside and outside the unit circle Cy. We set |¢| < 1 for the TR (g:4%) i ' '
convergence of the ¢-shifted factorial and assume
|a‘%q%| < 1. Then, the poles we should take into account  With above expressions, (4.7) reduces to
are the ones inside the unit circle,
s v (a,q:4%) (a'¢*.a'q:q%);,
= a‘iqfr?]’ j=0,1,2,.... (4.5) a i 3 (; Z 3 )
(a7'9.9% %) 5 (4:9°); (% 4%);

We can relax the assumption by analytic continuation .,
after obtaining the f.ina.l result. In addition, we assume = a%%z%(d_l ?.a'qq:4% a),
0 < A < 1 because picking up the pole on the origin leads (@'9.9%:9%)
to the infinite product (4.10)

(4.6)

ﬁa _ Ha—zqu—A)’

(o]
Jj=0 J=0

except the Casimir energy. «a is just a phase, and this
product converges to zero if and only if we impose such
condition on A with |g| < 1. Eventually, we can ignore the
contribution of the pole on the origin. Then, the integral
over z with these assumptions gives the sum over residues
from (4.5) as

e LY it W
a 4 - - .
(@4, %) (4710,

(4.7)

We also rewrite the sum over j as follows. The dummy
index j in arguments of the g-shifted factorial can be
subtracted outside such as

where we use the basic hypergeometric series defined
by [23]

B3 q.2)
_Z(al,az,...,ar;q)j 7/
>0 (ﬁl?vﬁwq)] (Q’Q)j

r(ps(al’a% "'7ar;ﬂlv o

{(=1)ighiU-Dy1+sr,

(4.11)

The convergence radius of the basic hypergeometric series
is oo, 1, or 0 for r—s<1, r—=s=1, or r—s5>1,
respectively. Now, we proceed the same way for the second
integral in (4.4). We pick up the poles again inside the unit
circle C,

7= aigt,

j=0,1,2,..., (4.12)
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and then the sum over residues in terms of the basic
hypergeometric series becomes

3.2
1 (a,q > )
at R

@R ) (4.13)

20 (a7 P a7 ¢ g ¢Pa),

where the residue of the origin is not included as discussed
in (4.6). Thus, (4.4) results in

ISQED<x’a)
(4% 4%)eo {a—i (@.9:9°) o
(4:9%) oo (a9, 4% ¢%)ws
X0, (a7'¢* a7 q: 45 ¢%, a)
(a.4%:¢%)
(a'¢. 4% 4%

+

ool—

=q

+ats
(4.14)

In terms of original variables, the index (4.14) is given by

Zsqep(x, @)
— +£M TS s (a_zxz(l—A)’xz;xﬂw
(x2;x4)0° (a+2x2A’ x4;x4)m

(o 222041 #2328 20 34 g2y 2(1-0))

X9

Al 1 (a‘zxz(l_A), x6;x4)

(a2x22+8) x4 %)

o0

[Se]

12 D(AF1) 42 2(24A). 6. 4 2 2(1-A
X, (a 2B g2, 2(2H8), 16 34 =232 ))}

(4.15)

2. XYZ model

We must determine the suitable pair of B-parity con-
dition for three chiral fields which is “mirror” to the pair of
parity condition (i) and (ii) for the SQED to obtain the
correct results. As described above, X turns into Y under the
antipodal identification and vice versa. We assume that this
observation also holds for the quantum fluctuations of the
XYZ model. Then, we set the B-parity condition for these
fields as

X(ﬂ'—lg,ﬁ"'@’y) - Y(&,go,y),
Y(ﬂ_19,ﬂ'+€07)’) :X(lg,(ﬂ,y),

Zn=9n+¢.y) =Z(%,¢.y). (4.16)
This means that X and Y form the doublet that appears in
the previous section and provides the contribution of a
single field on S? x S'. With the charge assignments
summarized in Table III, we get the following contribution
from X and Y:

o (a7 a7 ¢ s g a)}.
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(&—lx(l—s-A);xz)

(1-4)(2) S — ©
21 1oop (Lxd) = m
(@743 9)e
(@7 q)e

where we define a fugacity a for the U(1), global
symmetry in the XYZ model and also & := a*2x>(1-2)
for later use. On the other hand, because Z is a scalar
invariant under the antipodal identification, the contribution
of Z corresponds to that of the even holonomy sector in the
matter multiplet with the R charge —2A,

| (&+2x2(1_A) : x4)

(2A)(+) ~F\ 28-1 ~ _ 0
Zl—loop (l’x’af) - )C+ a2 (&_ZXZA;X’A)oo
L (@67
= qtat 5 s (4.18)

Because of the formula in (3.53), the SCI for the XYZ
model results in

_ 1 (@2q:9)s (@34°)
IXYZ(x,a):q%a‘% = 2 S
(@%:9)s (0760

(4.19)

Equivalently, (4.19) with original variables is written by
s T2) (22080 )
@ (a+1x(1—A);x2)oo ((NZ_ZXQA;)C4)OO

(4.20)

o0

Txyz(x,@) = x

In the expressions of the SCIs, the usual mirror map for a
flavor symmetry is realized by the identification a ~ a~!,
or, equivalently, @ ~a in our notation. Accordingly, we
declare A/ = 2 Abelian mirror symmetry on RP3 x S! as
the equality

Isqep(¥, @) = Ixyz(x, &) (4.21)
Note that (4.21) should be true with an arbitrary A, whereas
the R charge in theories without anomalous dimensions
must take the canonical value as mentioned in [14]. In the
next subsection, we will show the mathematically rigorous
proof of (4.21).

3. N = 4 mirror symmetry

As explained above, we can obtain N =4 mirror
symmetry by introducing an adjoint chiral field Z. In the
XYZ model, the fact that the superpotential ZZ must be
uncharged for a flavor symmetry and have the R-charge 2
determines the U(1), charge and the R charge of Z to be
+2and 2(1 + A), respectively. For the SCIs, the effect of Z
is identical with moving the contribution of Z (4.18) in the
rhs of (4.21) to the lhs. Concretely, we have the equality for
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N = 4 mirror symmetry as

(a7 g? a7 g q: % a)

a'q.4%q )
+at Ea—1q3 q.qz; 201(a7 ¢ a7 g P a)
(a—q:q)
=& L (4.22)
(@75q)

One can easily conform the correctness of (4.22)
because this emerges on the way of the proof in the next
subsection.

4. Generalized index

The generalized index is defined as the SCI with gauging
flavor symmetries [20]. In our context, we introduce a
background flat gauge field B2°" by gauging the U(1),
flavor symmetry, and the parity conditions must be clas-
sified in terms of both the holonomy for the dynamical

gauge field Ag, and the holonomy for ng{“‘, that is,

o § (@At B +1, (4.23)

as explained in Appendix A 2. Since our argument for
theories with a single flavor does not change, our gener-
alized indices are still (4.4) and (4.19), and mirror sym-
metry with gauging a flavor symmetry can also be
concluded as (4.21). The generalized index carries much
more important roles when one discusses the multiflavor
case of mirror symmetry.

C. Mathematical proof of RP? x S!

In this subsection, we give the proof of our new relation
(4.21). At first, we review the g-binomial theorem [23]
derived mainly by Cauchy [31] and Heine [32],

(ax; 9) o

, lx| < 1.
(¥ @)oo

190(a:—:1q.x) = (4.24)

This formula is the g analogue of the binomial theorem

an n —=da
2F1(a,c;c;Z)=1Fo(a;—;Z)=E:Ln)' & =({1-27
n>0 :

(4.25)

where |z| < 1. (a), is the classical shifted factorial
(a),=ala+1)...(a+n-1), and (a), =1. We prove
our new relation (4.21) by utilizing the g-binomial theorem.
The starting point is the SCI for the XYZ model (4.19),
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1 ~
- (a2q:q), (@:q%)
T xX,a) = qJrl ]( X __ o
_ it B ([@00)
(@'q:4%) (a2 q),
~. 2
1~_1 ((l,q )oo ~_—1 ~41
=qai o5 (@' qs = q,a™)
(@ 'q:9%) """

~. 2 ~—1 .
4l~ 1 (a’q )oo (Cl q; q)n ~1l\n
qsaTi— g a2
(@) (@), @)

a:a? ala: ]
~(_1’ q )200 {Z( q; Q)Zm (a+§)2m

(@7'q:4" ) L5455 (439)2m

+ ZLCI)Z’”H (~+-)2m+1}

>0 (95 Cl)zm+1

4l~_1

=q'8a™s

(4.26)

We remark that there are the following relations:

(Cl; (’I>2m = (Cl, aq; qz)m’

(@:@)apsr = (1 —a)(aq.aq*;q?),,.  (4.27)

We apply the relations (4.27) to (4.26),

1~_1
q+§a_Z

~(_511;q );o {Z(a q; Q)zm(~ +hyom

(@'¢:0%)e 555 (@34)2

i Z a q q 2m+1( +%)2m+1}

>0 (g:9) 2m+1

1~_1 (a;q )oo (a_lq’ &_lqz;q)m ~\m
e (e

(@a'q:q S (@) (@)
. (a q & q D }
i+ = (a)"
1—q Zg (@ q%),
- (@ ‘I) { ~_ 1 ~—1 72 2 ~
=qghat 21 (@ 'q.a" P g 4% a
(@'q:¢") P! )
1-a'q ol .
+a”ﬁz(m(a 'g*.a 1613;613;612,(1)}.
(4.28)
The part (1 —a'q)/(1 — q) can be rewritten as
1 -1 ala:a? 3. 2
a'q (099" (0:07) (4.29)

1-¢ (@' (@)

Combining the relations (4.28) and (4.29), we have
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1 (347 S A o epl=alq .
q* '(a_lq. ) (@ 'g.a 1q2;q;q2,a)+a+;ﬁzfm(0 '¢.a'g% g’ 7 a)
’ )
~. 2 ~—1 . 2 3. 2
o (@) {a—% ey 20 (07000) 6 (039 )s sy 0 s 3 3 o -
- wi(@'q. a7 q7 g5 9%, a) + ati - (@ 'q*.a ¢ q% 9%, a)
(@'9:¢%) s a0 (6:07)e
2.2 ~ .2 ~ 3. .2
G50 ) e [~ (4,497 A e (4,447 o 5
:q+g (q'qz) {a (ﬁ_lq qz‘qz) 2¢](a lq’a qu;q;qZ,a)+a+4—(a_lq3 qz'qz) 2¢l(a 1q2’a 16]3;613;6]2"1) .
(4.30)
Therefore, we obtain the conclusion
~_1 ~ ~
i (@2q:q), (@q7) () [0 (a.9:4%) o .
P N ey W v el Ll o e ICIU UL LA
+~+i (Zl,q3 2)00 (~—1 2 ~-1.3. 3. 2 i) (4.31)
P ) e Yy '

V. DISCUSSION

We presented how to define N' =2 supersymmetric
gauge theories on RPZ x S! and got the exact form of the
superconformal index with an arbitrary number of vector
multiplets and matter multiplets with a U(1)-gauge sym-
metry. As commented, the results are not dependent on /
and [, that is, the squashing parameter b. This fact is
expected because it is verified in 2D cases [21,22]. Also,
we gave the exact check of AV =2 and N' =4 Abelian
mirror symmetry with the simplest case Ny =1 and
Abelian duality (Appendix C) on RPZ x S! by using the
g-binomial theorem essentially. In the rest of this section,
we would like to comment briefly on some open questions
and future directions.

A. Open questions and future directions

The first question is related to a subtlety in our
computation of the superconformal index. We used an
ad hoc way to regulate the Casimir energy presented in
[14,33] (see Appendixes A and B). They showed that the
precise Chern-Simons level shift on S? x S! emerges
within this regularization scheme. However, as noted in
Sec. 1I, we cannot take the Chern-Simons term into
account. Therefore, we cannot adopt the level shift as
the guiding principle of the regularization and do not know
why our regularization of the Casimir energy works so
well. It is interesting to find more fundamental treatment to
resolve it. As the second one, we would like to know the
origin of our B-parity condition on the XYZ model side. We
took a little bit of an ad hoc way to determine it based on
the correspondence between the moduli spaces. In addition,
we should check precisely whether our B parity is unique or
not. One straightforward way to solve this problem is using
the brane construction of mirror symmetry [34]. We expect

I
that the generalized mathematical formulas will emerge if
this program is accomplished. The third question is related
to the so-called “factorization” property of 3D exact results
[35-38]. The partition functions on S; and the super-
conformal indices on S? x S! can be decomposed into the
product of more fundamental quantities called holomorphic
blocks. This property of both cases naively comes from the
fact that each curved space is characterized by solid-torus
decomposition. However, RP? x S' cannot be expressed
simply by using solid-torus decomposition. Instead, one
can get RP? x S' by gluing the surface of a solid torus in
an appropriate manner. One may find the unexpected
description of our results in terms of holomorphic blocks
via this method. The final comment is concerned with an
extension of our arguments. There are obvious open
problems; we did not perform the check of Abelian mirror
symmetry with general N flavors. Also, we did not present
the generalization of the exact calculation with a non-
Abelian gauge symmetry as mentioned in the Introduction.
We hope to complete these problems in the near future.
Moreover, we found generalized mirror symmetry
equalities in Appendix D. In Appendix D 1, we provided
the generalized equality with the parameter 1 and its proof
in terms of the g-binomial theorem. In Appendix D 2, we
showed another relation derived by the properties of the
theta function of Jacobi. The idea of the proof comes from
connection problems on linear q-difference equations
[39,40]. The generalized relation also gives the connection
formula for the ¢ (4; —;q. Z)-type equation between the
solutions of the linear g-difference equations around the
origin and around infinity. The important point is that we
obtain the same relation (4.21) as the special case even
though these relations in the subsections are essentially
different from each other. These formulas suggest the
possibility to add one more parameter to our system,
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and its physical meaning may be found in the brane
construction. If these are derived from string theory
generally, our mathematical conclusion will give us new
physical perspective.
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APPENDIX A: CALCULATION DETAILS

In this appendix, we show the details of the calculations
for one-loop determinants. Our method discussed below is
similar to the one discussed in [21,22]. Their way did not
respect the symmetry generated by J;, whereas we derive
(3.26) with preserving J; structure explicitly because it has
an important meaning in our SCI (3.1). In the latter
discussions, we get the following type of an infinite product
in each final step:

H H 2zin + 2z (k)
n<Z 150 2min + 2z, (k)’

(A1)

where the z;/,(k)’s represent certain k-dependent func-
tions. By using the infinite product formula of sinh z, we
can deform it to

H2s1nhzf (k) <H 4k )
e
k>02smhzb (k) ¥50

X eXp <Z -1 Z (e=2may(k

=1 k>0

e v<k>>).

(A2)

We call the first part in (A2) the Casimir energy which must
be regularized (see Appendix B for our regularization
scheme) and the second part,

_Z(e_zz/(k) _ e—2zz7(k)) = f(x,...),

k>0

(A3)

the ome-particle index. As one can verify later, both the
Casimir energy and the one-particle index do not depend on
x'. In this appendix, we use 2D Killing spinors

~ /cos? ~ /sin?
)=o) woa=e(P)

S 2 CcoS )
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which satisfy

Die = %7,-738, Die = —gmse
where i runs for §,¢p. We must consider the B-parity
condition in order to get the index on RP? x S'. If we
ignore the B-parity condition, then, of course, we can
get the index on S? x S!. However, as noted in the
beginning of Sec. II, the results do not depend on the
squashing parameter. Consequently, the results without
the B-parity condition reproduce the known results on
S? x S! [3,13,14].

(AS)

1. Vector multiplet
a. Gauge fixing

By repeating the same argument for the “shortcut” way
of the gauge fixing [5,21,22], we can restrict the path
integral onto the configuration satisfying

(A6)
*2d *9 A(n) =0 (A7)

for all n’s without any Fadeev-Popov determinants. Then,
we need to consider the operator’s determinant

det A"
—_— (AB)
det A"
where
(n) _(*Zd)2 + f)% loy) dj_lf
Ayt = 1 21 2 ) (A9)
+7*2d _(*2d> +j72+hn

A< =iy'Di+73 (f)n +2ZQ> (A10)

In addition, we can make this problem simpler by notifying

dets)"” = \/detAl” (A11)
up to the sign where
j —%yd
(n) ih, *2
= . Al2

Namely, the one-loop determinant, which we should
know” is

>The insertion of 73 in the numerator does not spoil the validity
and make the problem simple [21,22].
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det Y3 A g(‘n)

Zvector — (A13)
toop g det sy

As one can see, the contribution of the U(1) vector

multiplet already does not have the dependence on the

holonomy. Therefore, we omit the superscript = from

now on.

b. Pairing structure

The calculation is based on the eigenvalues pairing
structure as follows. Let (A, ¢)T and 4 be the eigenmodes,

557"><“:> = —iM(“j), (Al14)
A2 = M. (A15)

Then, we can map the one side to the other by defining

A = (y3y' A; + ioys)e, (Al6)
B\ [ —=i(M+Y,)eyle’ — d(&y32)
(x)=( (M +15,)e1 ) @

The modes which have no pair only contribute to the one-
loop determinant (A13). In other words, we have to find the
eigenvalues constrained by the following conditions:

M = M, which satisfies (A.14) and (A.16) =0, (A13)
M = M which satisfies (A.15) and (A.17) = 0.  (A19)
The constraints (A.16) = 0 and (A.17) = 0 are solved by
taking
A ..b e! + icosde?
— etton,(9)( ¢ ' . (A20)

c isind
A= (Mf +5, + éQ) eijg’/’hf(&)é, (A21)

where j; e z. Substituting these representations into
(Al4) and (A15), we get the following sets of equations:

b
{fgg)a&hb( 45 (=)@ =0 )
Myl = i((Q = 1)j5 —iln),
S i1
{ﬁ&ohf(&) + g (%19) + jST> hr(8) = 0. (A23)
Ml =i((Q- D0 = 1) = iln).
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One can get the conditions of j; as jg > 1 for bosons and
jg < 0 for fermions because, around & ~ 0, one can easily
solve the equation for /,,(9) and h¢(9) in (A22) and (A23),
respectively, as

hy(9) ~ sinti1 g, (A24)

hy(8) ~ sin /9. (A25)
Note that the coefficients of differential equations with
respect to 9 in (A22) and (A23) are invariant under the
antipodal identification (1.2), that is,

hyy (= 9) = hy4(9). (A26)
c. B-parity condition

Usually, j; takes an arbitrary value in integers Z.
Therefore, one may think that jg’ =1,2,3,... and
jg =0,-1,—- .; however, it is not in our case because
of the B-parity condition. We can determine the possible
values for jg/ ! from the explicit forms of the eigenmodes
(A20) and (A21), the invariance of h;,; (A26), and the B-

parity condition (2.27). Combining these arguments, one
can get the condition

et = 1. (A27)
This means that we have
M, =L((Q—1)2k+ 1) —iln),
{ b i(( )( ) ‘) (A28)
where k =0, 1,2, ..., and n € Z. Note that the eigenvalues

for bosons shift by one from those of fermions, which
results in the nontrivial one-loop determinant for the U(1)
vector multiplet.

d. One-loop determinant

We can get the explicit form of (A13) just by substituting
all relevant eigenvalues (A28) into it:

Q)(2k +2) —iln
1)(2k + 1)—iln>

~T(I g
(I

nez k>0

(A29)

where ~ represents the equality up to the sign. This
regularization is guaranteed in the 2D case [21]. From
the above expression, substituting
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22(k) =26, (2k +2),  2z,(k) = 2/,(2k + 1) (A30)

into (A2), we can get (3.26) and (3.27). The Casimir energy
can be regularized by using the zeta function regularization
formula (B4) explained in Appendix B.

2. Matter multiplet

We start with the pairing structure of (3.35) and (3.36).
To make our argument comprehensive, we define the

differential operators Af/)”) and Af,," ) acting on ¢ and
1//<”>, respectively, as

L A 2 AZ_2A
A‘(ﬁn) _ _gl]D?ﬂatDjAﬂat + <pn _ iz_lQ> +

412
A A-1 .
*R— l'DAﬂal, A31
+GR-E D, (A3)
n YA A1 1
Ay = —iy' DI — s (Pn —i— Q) EYiA
A-1 . A-1
—i T v'y -—17(0 (A32)

where D?““‘ is defined with a flat connection Agy,.

a. Pairing structure

Let ¢ and y be the eigenmodes for Afl)") and Al(,," ), ie.,

" A
Ay p = —M<M—2<pn —12—IQ>>¢, (A33)

730y = My. (A34)
Then,
(o) =, o )
v, B iy SDAﬂalqs +v 8([f]” ] + lzf)¢ ,
(A35)
> =ay (A36)

satisfy the equations
y3A(n) (qll > _ < —2(p —_ l 211 Q) 1) <‘I]1 >
C\w ) AMM - 2p, - i%5Q) 0\

(A37)
Ao = —m(m=2(p,-ila))e (A38)
¢ n Zl .
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As discussed in [5,21,22], one can find the relevant spectra
characterized by

M = M, which satisfies (A.33)and ¥, = MV,  (A39)
M = M,, which satisfies (A.34) and (A.36) = (A40)
Then, we take each relevant mode as
b = ' W giltop, (9), (A41)
v — eifleAﬂateijé"ﬂhf(&)E‘, (A42)
where jg’/ ez Substituting these forms into W, = M, W,

and (A.36) = 0, we get the following sets of equations:

{;asm )+ (AL 4 ) (9) =,
Myl =i(1-Q)(j5+5%) +is[2nn—q0 —fu]).

(A43)

+579))hs(9) =0,

i3 [22n — q6 — fu)).
(A44)

{lashf( )—%(ff—@)_—(h
Ml =i((Q—1)(j, +252) -

One can get also the conditions of j3 as j’3’ > 0 for bosons
and j§ <0 for fermions because the behaviors of /2, /7(9)

around 9 ~ 0 become

hy(8) ~ sin/39, (A45)

hy(8) ~ sin 9. (A46)
Note that these functions Eqs. (A43) and (A44) have the
symmetry (A26).

b. B-parity condition

We have to limit j; to preserve the B-parity condition

(2.31) as we have done in the vector multiplet, but an

additional issue occurs because the matter is charged

through ¢. The permitted region depends on the B-parity

choice 4 and the value of the holonomy,

R (A47)

Here, it is found that the consistent two choices of the B-

parity condition correspond to the background U(1)
holonomies

flavor

flavor

+1 = HIR (A48)

where f is the appropriate flavor charge. Therefore, we
can get
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oiim — o B (A49)

It means that we have

i avor M)l:i I_Q 2k‘|’A —|—Z'L277,'I’l— 9_ N
oty [ (1= 0)3844) 14— a0 ) aso
M, =i((Q—1)(=2k=1+73) —i5.[27n — g6 — fu]),
i flavor Ml:i 1_9 2k—|—1—|—é—|—iizﬂ'l’l— 9_ )
(e ﬁ(qAﬂat+fB:}al ) — _1) = { @ (( )( Z)A 2.711[ q f,LtD (ASI)
M, =i((Q—1)(=2k=2+7%) — i3 [2zn — q0 — fu]).

ﬂav(sr
Therefore, the one-loop determinant changes its form depending on the value of the total holonomy e f (@Aactf Bpa™)

¢. One-loop determinant

We can get each one-loop determinant by calculating

M
¥, (A52)
all Mcﬁ

We read the eigenvalue of each holonomy sector from (A50) and (A51), and the corresponding infinite products (A52) are
written as

i avor 1 - 2k 1 .L 2 - 0 -
(¢! $ @B _ gy o < (A.52) HH( r1og)- . ,12”[ =1 M>, (A53)
n€Z k20 )(2k + )—f—zﬁ[Zﬂn—qG—f,u]
; )2k +2—3) — iy [2nn—q0 -
(e jgy(qAnal"‘fBgdt ) _ _1) ( A 52 H H + A) 2”[ m—4q fﬂ]) (A54)
s e I—Q) (2k +1+%) + i [272n — g6 — fu]

After substituting

(¢ Pl _ ) <2z 7 (k) = i(g0 +fp) + 28,2k + 1 -3), > (A55)
2z, (k) = —i(q0 + fu) + 25, (2k +2).
(eiﬁ(qAﬂa[Jrfng;'or) BRI < 2z4(k) = i(q0 +fu) + 26,2k +2 = 93), ) (A56)
2z (k) = —i(q0 +fu) +2B2(2k + 1 +%)

|
into (A2) and regularizing the Casimir energies by using ~ We make use of (B1) to regularize the Casimir energy of the

(B4), we can get the results (3.38)—(3.41). vector multiplet and the matter multiplet. Those forms
shown explicitly in (A2) are generally written as the infinite
product

APPENDIX B: ZETA FUNCTION
REGULARIZATION (x2HC1 )
In general, an infinite product is not well defined and 1l (x2k+Ca)r? (B2)

must be regulated by an appropriate method. Here, we
adopt the zeta function regularization given as [33]

[ I (k) = exp ( > (k) )

k>0 k>0

where C;,C,, and r are constants independent of
k. Applying (B1) to the above expression, we expand

(B1) the numerator and the denominator around s =20
so that
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-2+ 6C-3C?

d hrcys L
ds ;(x )= 25% log x - 12

(B3)

Although this form is obliviously diverged at s =0,
unwanted terms can be canceled by taking a ratio of such
infinite products. Consequently, (B2) with s — 0 results in

(x2k+C| )r
11 (2 Coyr
-2+6C, —3C2 -2+6C,-3C3
=exp|r B - 2 log x

= x~1(C-G)(C1+C-2) (B4)
It is straightforward to apply this formula to each Casimir
energy. First, for the vector multiplet, its k-dependent

functions (A30) correspond to setting

r=1, C,=2. (BS)

Then, we can obtain the Casimir energy as
Xt (B6)

Second, for the matter multiplet in the even holonomy
sector, its k-dependent functions (AS55) correspond to
setting

A
=1, Ci==+0,
r 1 ) +
A 6 a6 fL
G, =1 -5= 0, x9 = (et9a ). (B7)
Then, we can obtain the Casimir energy as
x T ettt (B8)

logx + O(s).
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Last, for the matter multiplet in the odd holonomy sector,
its k-dependent functions (A56) correspond to setting

A A
C1:1+§+®, C2:2—5—® (B9)

r=1,

Then, we can obtain the Casimir energy as

x~ e 0o (B10)

APPENDIX C: ABELIAN DUALITY

As recently discussed in [26] for the purely bosonic case,
though Abelian duality looks trivial on a flat space, its
validity becomes nontrivial on the curved space because of
topological obstructions. In this section, we utilize Abelian
duality to justify our prescription (mainly, of the integration
contour in the index).

Abelian duality in 3D between the free U(1)-gauge
theory and the free matter theory [24,25] can be realized
by the equality of the action,

/d3x\/§<%Fﬂ,,F””) = /d3x\/§(8ﬂp8”p) (C1)

via the equality in (4.1). We naturally can supersymmetrize
this duality. For example, see [41]. In our language, we can
describe a (on-shell) matter multiplet (¢, ¢, w, %) in terms
of a vector multiplet [A,(— p), 0,4, 4] as follows:

(€2)

P = o+ ip, P = o —ip,

ey =1, ey = —A1. (C3)
Through those identifications, one can show the following
relationship between the U(1) vector multiplet action and

the matter multiplet action®:

1 1 o - i -
;/ d3x\/§<§ FﬂDFﬂD + 8”08”0 + (:'3/)0?}7/,0_ + l/l}’ﬂpﬂl — ﬁ/l]@/l)

_ 1- ]
— / d3x\/§<3ﬂ¢5”¢ +B0s — i Dy + iu‘rw) :

f

The matter action above seems to be the on-shell part of
Lo With zero R charge, A = 0. In fact, the dual matter
fields under the identifications (C2) and (C3) can correctly
reproduce the boundary conditions along S' (3.30)—(3.33)
setting A = (. Moreover, the consistent B-parity condition
for the vector multiplet (2.27) takes the one for the dual

®Note that the duality equation (4.1) is valid on a Minkowski
background. In order to make it a Euclidean one, we have to
multiply (—i) by the third coordinate.

37 (c4)

matter contents to be with negative sign in (2.31) repre-
senting the odd holonomy. Thus, we conclude that the
matter multiplet comprised by the vector multiplet7 belongs
to the odd holonomy sector with A = 0.

"Note that, as explained in [26], the invariance of the classical
action (C1) and the relation (4.1) under scale transformations
requires the coupling constant e to scale nontrivially such that >
has a scaling dimension one. This means that ¢ and p in (C2) have
effectively the same scaling dimension as that of the square of the
coupling constant.
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While the dual prescription shown here holds on the on-
shell fields, we could reconstruct an off-shell action with
A =0 and the supersymmetry for the dual matters by
adding auxiliary fields appropriately to on-shell quantities
(as the Gaussian form in the action). Actually, the action
(C4) is just the on-shell sector having A = 0 of the off-shell
action

Lo+ 00,125 1001,

As a result, because the matter action (C5) is written by a
SUSY-exact deformation, we can perform the localization
leading to the one-loop determinant for the corresponding
dual matter fields. Therefore, the expected identity for
Abelian duality is

(C5)

A=0)(~
IU<1)(X) = Ix(n:;ltter)< )(x>

(Co)
The left-hand side can be computed by the formula (3.55).

Since we have just one vector multiplet, the contributions
()

. idA
from the holonomies e f/ fla — 41 become the same ones:

4. 4)
Zvector (1) — 4 (X X ©
]—loop( ) ()CZ; x4) -

(C7)

This means that there is a residual symmetry of inter-
changing the flat connection for the even holonomy and for

the odd holonomy AE];) < gl;t) , and we must take (sym) =
2 in the formula (3.55):
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On the other hand, we can get the contribution from the
dual matter multiplet via the formula in (3.53) with

A=q=f=0,N" =N =0 and N\ =1:

I(AZO)(_) ()C) _ Z(AZO)(_>(1,X, 1)

matter - 1-loop

1
= X4

and this is identical to the one in (C8). Our new formulas to
the index on RPZ x S! can precisely provide Abelian
duality as well as 3D mirror symmetry.

APPENDIX D: MATHEMATICAL
GENERALIZATIONS OF (4.21)

In this section, we consider mathematical generalizations
of the relation (4.21). In Appendix D 1, we give (4.21) as
the special case of the generalization via the g-binomial
theorem. In Appendix D 2, we also give (4.21) by using the
connection formula of ;¢ (4; —; ¢, z). We remark that these
formulas in each subsection are completely different, but
we can derive the relation (4.21) as their special case.

1. From the g-binomial theorem

First, we derive a more general form of (4.21) from the
g-binomial theorem and its alternative representation. The
g-binomial theorem is

210 (%) dz
- A2, 9) o
IUU)(X) 2 fco 2miz (I+1) ((Z(])) =,00(4—=9,2), ¥ lz| < 1,|q| <1,
4. .4 ®
_ e (C8)
(%5 x%) and ¢, (4; —; ¢, z) can be deformed from its definition as
|
(49),
po(As—39.2) = "
o ; (4:9),
_ (A';q)Zm 2m (’1’ q)2m+1 22m+1
2=5(4:9)om 255 (@3 @) omr
(4, 49; 4°) oy, =4 (q.29%: ) 2
= T ()" + z Z—(z7)"
(G ) (@5 a8 ) l-¢ %(Q%qz)m(qz;qz)m

l-¢q

=,0,(4Aq: 4% 2%) +

(4% (4%d%)

20149, 2% ¢, ¢*. 2%)

© 20129, 2¢% ¢*; ¢, 2%)

=,0,(LAq; q; 4% ) + (

(%0 [ (467

= {(q2' 7 201 (A g 4397, ) +

(4:9%) oo

2% 0% (4:4%)oo

(4.0 4%

091 (24,267 6% 7. 2) ¢
AP 20129, 49%5 475 47, 27)
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Therefore, we acquire the alternative representation of the
g-binomial theorem

PHYSICAL REVIEW D 91, 105023 (2015)

We now define the weight function

(2% 4%)

(@4 (6161) - —+l--7
o= 2) = i ) ) Meda)=aiain . (02
G 7’ 9 oo (1. 24 2 o ,
(P % P) 201(A0.26%:4°:4°. ). 1o make the generalization of the relation (4.21) clear.
Multiplying the weight function (D2) by the alternative
(D1) representation (D1), we obtain
|
Az; %% (423
W(Z,/I; q) ( < Q)oo — C]JF%Z_% (Z q2 )oo ( < Q)oo
(9 (40700 (239)o0
2. 2 2. 2 .2 3.
l_l(z > q )oo(q > q )oo{(q7q)oo 2 .2 (’Lq ’q)
=qgtsz2 ¢, (A Aq 9, q°.2°) + 20129, 2%, ¢, %, 2
Gd)e @ d)a D" )T ). 2 )
(@) { (6w (2%, 4% 0%
=g 2 @, (Aq: q: 47, 2%) + 27 $1(29. 247 4% 47, 2%) ¢
(@) U (hdha)e (A4*. 4% qP)e !
namely,
(42;9) L (6% 4%) (244w L (22,6507
w(z, 4 q) = =g =427 01424 4: 47, 27) + 20 500, (29,447 475 7L )
(%49)w (¢4 U (hdha)e (A% 4% q%)e

When we put z > @z and A — a~'q, i.e., Az > a2q in
(D3), we obtain the relation (4.21).

2. From the triple product identity of the
theta function of Jacobi

Next, we prove the relation (4.21) in terms of the theta
function of Jacobi. The idea of the proof comes from the
connection problems on linear g-difference equations [40].
The local theory and irregularity for g-difference equations
are studied by Ramis et al. [39] by using the Newton
polygon. Recently, Zhang and Morita provided some
connection formulas with the irregular singular case. In
the connection problems, we study the elliptic functions
associated with the relations between the local solutions
around the origin and around infinity. In this subsection, we
deal with the first-order g¢-difference equation (see
Remark 1 for details). We begin with the review of the
theta function [40]. The theta function is given by

= an(nfl)x”, VxecC.

nez

The theta function has the triple product identity

0(x) = (q, —x,—%;q)oo.

(D3)

|
For any k € Z, the theta function satisfies the g-difference
equation

k(k=1)

0(q*x) = ¢ = x7*0(x). (D5)
The theta function also has the inversion formula
0(1/x) = 6(x)/x. (D6)

The function ;¢ (4;
theta function as

—; ¢, z) can be rewritten by using the

(125 q) oo

(9) oo

_0(-42) (4/29)w
0(—z) (9/22:9)

0(—Az) q
A=iq.5- ), (D7
9(_1) 1(P0< q Az ( )
provided that |z| < 1.

Remark 1: The function ¢, (4;
first-order g-difference equation

oA —3q9.2) =

—;q,z) satisfies the

(1 =Az)u(qz) + (z = 1u(z) = 0. (D8)

We can check that Eq. (D8) has the solution around infinity
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Uso(2) = %((/1;)) 190 <’1; - %%)-

With this solution, the relation (D7) can be rewritten as

(D9)

190(4 =34, 2) = Cg(2) e (2),

where

q s (a2 | (A 230 (4
Ai=iq.— | = AAgiqiqt, | — o Aq,Aq7q°5q7, | — .
lcoo( q/lz) zfﬂ1< q:9:9 (/12> )‘F(ﬂqg’q;qz)mlzz(ﬂl q:49°:97; q 2
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Here, the function C,(z) is the elliptic function, namely, g
periodic and unique valued:

Cq(qz) = Cq(z)v Cq(ezmz) = Cq(z)'

Therefore, the function C,(z) gives the “true” connection
coefficient [40] between the function ,¢,(4;—;¢,z) and

U (2)-
The function ,¢,(4; —; ¢. q/Az) also has the alternative
representation (D1) as

(D10)

Combining the relations (D7), (D10), and the weight function w(z, 4; ¢) defined in Appendix D 1, we also obtain the

following relation:

w(z,4; q)

(50w _ 1 1(167)e (12 9)

(2390
_ (64470 F)

(40" 0 (59

(4:4%) 0(=2)

g (50

o

220 % 4%)

2 .2 2
L (Z » 454 )oo e A2 1
{Z G (ﬂ’ﬂq’q’q ’ <ﬂZ> )

2
1.0 P :
(i (2)))

(D11)

Equation (D11) gives the relation between the basic hypergeometric series ¢, around the origin and the basic

hypergeometric series ,¢, around infinity.

If we set z —> a2 and A+ a~lq, i.e., Az —> @ 2q, we again acquire the relation (4.21).
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