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Fermionic propagator in an intense background
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New results for the fermion propagator in a laser background are presented. We show that the all orders
electron propagator can be written in a compact and appealing form as a sum of sideband poles with a
matrix wave function renormalization and a matrix valued mass shift. This last result is essential in the

fermionic theory if we are to maintain that both the mass and its square pick up a correction only at order e?.
A perturbative verification of our results is carried out.

DOI: 10.1103/PhysRevD.91.105022

I. INTRODUCTION

In this paper we will discuss fermionic propagation in
background fields. Specifically we are interested in elec-
trons propagating in a plane wave background [1]. This is
important for understanding recent work with high power
laser facilities [2,3]. The result we will obtain is simple and
has a clear physical interpretation. A surprise is that all the
renormalization factors are matrices.

The propagator is one of the basic building blocks
linking physical processes with the structure of quantum
field theory. We recall that for a scalar field, ¢(x), the
Feynman propagator is given by the time ordered
product

i

(O[Tp(x)¢" ()]0) = / & pe-ivte-y) (1)

p*—m? +ie’

where the fields are taken to be free and the bar in the
measure indicates appropriate factors of 2z. In the presence
of loop corrections the form of the propagator is preserved
and typically becomes

iz,
p*— (m?+6m?) +ie’

(2)

which can be interpreted as the propagation of renormal-
ized fields with a renormalized mass.

A similar, but richer, structure in the propagator is found
when the scalar field interacts with a laser plane wave
background [4-14]

(O[TP ()" (¥)[0) = / & pe-inte-y)

> i) A
—ip(x—y 3
n;oo/ pe (p + nk)* = (m?> + 6m?) + ie’ (3)

where we see a sum over so-called sideband states [15—17]
and note that the mass shift is common to all sidebands. The
exact form of the mass and the momentum dependent wave
function renormalization factors depend on the details of
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the laser background. For a linearly polarized background,
the propagator has the form

i (eu,, e’v,)

d*pe—ir(x-y) L ; 4
Z/ pe (p + nk)> —m? + ie )

n=—00

where u,, and v, are laser parameters that we define in (20).
The mass shift is here given by m? = m* — 1 ¢?a* where a,,
is the (spacelike) laser amplitude and this mass shift does
not acquire higher order corrections. The wave function
renormalization for the various sidebands is written in
terms of a product of generalized Bessel functions which
can be expressed in terms of normal Bessel functions as

Tu(euy 0,) = S Jualeu)d(ev,). (5)

r=—o0

The fine details in (4) are polarization dependent but the
broad structures for a plane wave laser background,
including the sum over sidebands and the mass shift being
at order e? only, are common.

Note that in the literature, the two point function in a
laser background is widely referred to as the propagator.
However, through interactions with the background, this
two point function includes diagrams where the initial and
final momenta of the matter field are distinct. In this paper,
and in our summary above, the focus is on the diagonal part
of the two point function which does not include momen-
tum altering vertex effects. This is what we call the
propagator in this paper and this is given for the scalar
theory in (4).

As in our previous work, we are guided below by
experience from infrared physics. A charge propagating
in a laser is indistinguishable from a charge which absorbs
and emits the same number of laser photons. These laser
induced degeneracies parallel the soft and collinear degen-
eracies of the infrared regime in QED and QCD [18-21].
Understanding the mass shift in a laser background may
also help to clarify the current versus constituent mass
distinction in QCD [22].
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Turning now to fermionic QED, the perturbative propa-

gator without a background has the form

_ _ —ip-(x—y) izz
O ())0) = [ perieos —— Lo

Cip(emy) _Za(p +m A+ 6m)
:/d4pg p(x=y) 5 5 —,
p°— (m+6m)”> + ie

(6)

where we note the presence of single powers of m.

The extension of this theory to plane wave laser back-
grounds has been previously considered [4,5,23,24]. The
results obtained also display the sideband structure of the
scalar theory but the two point function is quite involved,
see, e.g., (5.7) and (5.8) in Ref. [4], and does not clearly
resemble a renormalized propagator. In particular in the
numerator of the propagator obtained by Reiss and Eberly
[4] there are two gamma matrix structures, one proportional
to p — eA + m and one proportional to the laser momen-
tum, K, each multiplied by combinations of Bessel func-
tions. Similarly, additional gamma matrix structures are
obtained in Appendix A of Brown and Kibble [5] and by
Ritus [11].

The mass shift in the fermionic theory also satisfies the
spin-independent relation [4,5]

1
m? = (m+ ém)* = m?> — Eezaz, (7)

to all orders in the coupling. This might naturally suggest,
see for example Sec. 40 of [25] and more recently [26], that

m,=m+dém=m\/1 ——, (8)
2m

which would, however, mean that ém would acquire
corrections to all orders in the coupling through an
expansion of the above.

Below we will first show that an explicit perturbative
calculation disagrees with this expectation for the mass
shift. We will then present an all orders calculation of the
fermion propagator which will reveal a simple form which
can be interpreted, as for the scalar theory, in terms of mass
and wave function renormalization factors. An unexpected
feature is that all the renormalization factors we find,
including the mass shift, are matrices. The mass shift will
itself only be corrected at order e, but will still satisfy (7)
to all orders. As this is surprising we will independently
verify all of the structures we obtain via a low order
perturbative calculation. Finally we will present some
conclusions. Some technical details are presented in the
appendixes.
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II. PERTURBATIVE EXPANSION

The Lagrangian density describing the interactions of a
fermion with the laser is

L=y(iD—my. ©)

In this the covariant derivative is given by D, = 0, + ieA,
and, in a linearly polarized background,

A, (x) = a,cos(k - x), (10)

where k = k(1,0,0, 1) is the null vector characterizing the
laser. Note that the gauge fixing condition used is k - a = 0.
The Feynman rules for the vertices in this linearly
polarized theory are given in Fig. 1. For this polarization,
the rules are identical for the absorption and the emission of
a laser photon. The two diagrams that contribute at lowest
order in the coupling are shown in Fig. 2.

The first diagram yields after a partial fraction expansion
fe” (p+m)dp+k+mdp+m)
— m m m

16(p- k2" 4 i
2p -k 1

1
g <_p2—m2+(p2—m2)2+(p+k)2—m2)’ =

and the second diagram is obtained by replacing k — —k.
In our perturbative calculations we suppress the ie pre-
scription. The gamma matrix structures are now expanded
depending upon whether the denominator contains poles in
p>—m? or is in an adjacent sideband. In this initial
discussion, we shall restrict ourselves to the central side-
band alone. In the double pole coefficient the ¥ term alone
survives when the two diagrams are added, while in the
single pole coefficient the ¥ term cancels. Thus the two
diagrams contribute to the central sideband

ie?

1
> <—(ﬁ+ m)d(p + m)d(p + m) P — 2

8(p - k) -
2p -k
+ (p + m)aka(p + m) (1,211—,,,12)2)' (12)
L{ ) f "2
p p+k p p—k

FIG. 1. The three point Feynman rules for linear polarization.

. |

p—k p
FIG. 2. Leading order corrections to the propagator.
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In the first term we rewrite

(7 +m)d(p +m)d(p+m)
= (p+m)d(—=(p* —m*)d +2p - a(p+ m)). (13)

The first part here will not contribute any pole to the central
sideband and we have verified that the sum of all such terms
without poles cancel when the contributions from all
sidebands are summed. We will therefore just drop them
below. The double pole term in (12) will also generate
single pole terms in a similar fashion. The sum of all the
terms containing poles in the central sideband is found to be

2 2
. 1
ie2<—(p a) ﬁ+m+ a*k

2(p-k)?>p>—m> 4p-kp*—m?

1, p+m
L N Al 14
2¢ (pz—mz)z) 1

We should now compare this with the general form of (6).
At this leading order we expect three contributions. Writing

( ) =1+ 5Z [where 52( ) is expected to have a matrix
form] this would give

522 (1’4' m) Sm 1 1, 1
P — —m 2% (P —m))’
(15)

where we have used (7) in the last term.

In (14) the double pole term is the expected mass shift
from the expansion of the denominator of the central
sideband. The first term gives us information about the
wave function renormalization factor. However, the second
term in (14), which involves a? as would be expected of a
mass shift, contains a X factor and is not obtained by simply
expanding the numerator in (6). We will therefore now
carry out an all orders calculation of the propagator to
resolve this puzzle and also to determine the form of Zé"

III. VOLKOV FERMION

We now want to construct the spinor field y+ (x) which
satisfies

(i = m)yry(x) = 0. (16)

This Volkov equation (16) is solved by

W)= [ @ g (F ol IDs U () ()

+ Fo(x.=p)Dp(x. —p)W (p)by“ (p)).  (17)

There is a lot of structure to this solution that we need to
unpack carefully.
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The on-shell momentum p, = (Ej, p) satisfies the
shifted on-shell condition of the quasimomentum:

p*—mi=E}—p*—mi=0. (18)

Just as for the scalar case, plane waves are distorted in
this background and become equal to

Df(x ﬁ) — e_ip'xei(e”i’ sin(k-x)+evy, sin(2k-x))

’

= e7iPx Z ek, (eup, e2vp).  (19)

n=-—oo

In this expression we have defined the laser variables up
and v; by

U, =——— and v, = . (20)

The rest of Eq. (17) reflects the fermionic nature of QED.
Focusing initially on the first term in yy (x), we see that in
the Volkov equation the derivative will only act on the
factors F,(x, p)Ds(x, p). The prefactor F,(x,p) is a
matrix given by

KA\
Fo(x, 1 21
)= (145 (1)
The action of the covariant derivative is then given by

iDF +(x, P)Dy(x. p) = Fr(x. p)Dy(x. p) (7 + 2€°v,K).

(22)
Similarly, in the second part of (17) we get

iDF;(x,—p)Ds(x,—p)
= F(x.=p)Dy(x, —p)(—F — 2¢*vk).  (23)

The Volkov spinors are then introduced to satisfy

(7 + 2620, 00U (p) = mUd (p) (24)

and

(P + 22000 (p) = =mV (p). (25)
The precise form for these Volkov spinors is presented in
Appendix A.
Combining these results we see that y (x) as defined by
Eq. (17) does indeed satisfy the Volkov equation (16).
Having constructed the Volkov field, yv(x), we now
simply state the expression for the Dirac adjoint
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w0 = [ @age @ @F -0} 0l )

+ V() F(v.2)DL(y. —2)b¥ (9)). (26)

Returning to the on-shell condition (24) for the Volkov
spinors, we can directly reinterpret this as

U (p) = (m = 2620, KU (), (27)

that is, in the spinor theory, the mass shift has a matrix form
with m, = m + 61 with
e’a’

4p -k

oim = —2e*vpk = — k. (28)

Let us now show that this is consistent with the result
familiar from the scalar theory. We multiply both sides of
(27) by p and anticommute the p factor through the ¥ to
obtain

U (p) = (mp—4e2v,p - k+ 220, kp)U (p). (29)

We now reuse (27) in the final term and, recalling that
k*> = 0, obtain the spin-independent on-shell result

- a a 1 a
DU (p) =t (p) = (2 =32 U (). (20

Note that this requires 67 to be a matrix, as one would
otherwise generate corrections to m? at order e*.

However, we cannot yet identify ém in (15) from this, as
if we were to replace om by 0#t we would obtain (14) but
with the wrong sign for the ¥ term. We shall though see
later that the result for 67 is correct and that the naive
expectation (15) is wrong.

IV. THE PROPAGATOR
We are now in a position to calculate the Volkov
propagator
v{OITyry (x)iry (¥)10)y = O(x* = 3°)y (Olyry (x)ipry (¥)[0)y
=00 =x°)y (Ory (»)wrv (¥)[0)y .
(31)

where the Volkov vacuum is identified through the modes
in (17) and (26). Note that the creation and annihilation
operators satisfy

(6 (p). @l (@)} = rf L5950 (p—g).  (32)

Looking at the first vacuum expectation value we have
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v{Olyy (x)ry (v)|0)

1
= [ @po Folx, p)(F + m — i)
/ 2Ep ¢

X Fo(v.~P)D¢(x. P)D}(y. P). (33)
In a similar way we obtain

v {O[ry (¥)yry (x)[0)y

1
— [ @pop Fole =)= m =) F (3. p)
P

x Dy(x,~p)D}(y. ~p)- (34)

We now use these to build up the propagator. To this end we
require the following results which follow from (19)

F¢(x,p)De(x, p)

N DX i ka
= n:Z_OO e~ iPx pinkx (jn(p) +€41_7 - kJﬁ(ﬁ)), (35)

where we have condensed our notation for the generalized
Bessel function so that

Tu(P) = Ju(eup. evp) (36)
and
Tw(P) =Tt (P) + Twir(P)- (37)
In a similar way we obtain
Fo(x.=p)Ds(x.—p)

= Z eiﬁ»xeink-x (jil(_p)+e

n=-—0o

ak
4p -k

Jﬁ(—m), (38)
while

Fe(y,=P)Dy(y, P)

=D etrerh (J W(D) +e

n=—oo

ak
4p -k

Jﬁ(ﬁ)) (39)
and

Fo(y.p)Dy(y.—P)

[Se]

_ Z oDy gminksy (jn(_p) +e ka Jﬁ(-ﬁ)).

"= 4p -k

Inserting these expansions into (33) and (34) and using the
decomposition
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=Y o),

n=—oo

(41)

gives the propagator defined through the diagonal contri-
butions to the two point function

v (Ol (X)) [0)y

1 ) ka
3 —lp-(x—y) ink-(x—y) = A+
/d P3E; e <j (p)+e T L (p)>

<(pem-om) (TP e TN @)
and
v {0, (¥)w,(x)[0)y
/d3 1 zp(x ) ink-(x—y) j ( )+ jA(—_)
2E* p e p-ko" P
<(p=m=om) (T, (=) ey ,x—ﬁQ. @3)

The Volkov propagator then becomes equal to the sum over
n of

d_PO &p i i (PP =E;+nk®)(x"=y0) ,i(p=nk)-(x=y)
2r 2FE;, PP —ie
< (29 + 5 T3P ) (= om)

x(JAm+w ak

:0)

— o—i(pP°—E;=nk)(x"—°) ,=i(p+nk)-(x=y)
ak
< (T2(p) + eqmr TP ) (7 = om

(44)

Combining the variables p® and p’ into an off shell four
moment p* (details of which are given in Appendix B) we
can write the fermionic Volkov propagator as

ka
nz_:oo/d“pe‘”’ *3) ( (Pt k) +eq kjﬁ(p+nk)>
i(p+nk+m-—om)
(p+nk)> —m? +ie
ak
X (jn(l’-l-nk)—i—e4p kJ" (p—l—nk)). (45)

Note that here we have removed the bar over the mass shift
matrix defined earlier in (28) since the momentum in (45) is
now off shell.
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V. INTERPRETATION

The naive expectation might have been that we would
find a result of the form

Z /d4pe_,'p.(x_y)zgn) l((ﬁ‘i‘ nk +m + 5m) (46)

p+nk)? —m?+ie’

however, what we have found in (45) looks very different. It
contains matrix dependent wave function renormalization
constants on both sides of the usual gamma matrix structure
expected in a fermionic propagator as well as a minus sign
in the mass shift, o# in the numerator of (45), which we
will now explain.

Setting n = 0 for simplicity and ignoring the ie, we
make the simple observation that because the mass shift is a
matrix, then it can naturally be regrouped as

1 1
P — (m+ ém) - (p— 6m) —

(47)

which means when we carry out the standard algebraic
rearrangement we obtain

1 _ p-dm+m
(p—om)—m  (p—om) -
gt m-—onm
C pE4erd?)2—m?
P+ m—om
=T (48)

Here we recognize the standard mass shift in the
denominator and the minus sign present in the numerator
of (45).

We finally define the wave function renormalization
matrix by

2y = J,(p+nk) + e Mp+nk).,  (49)
and note that
‘( Zg”) = 7/0
ka
=T.(p+nk)+e Jn(p+nk). (50)

4p - k

This yields a very appealing way to write the sideband
propagator. If we reinstate the sum over sidebands, we
see that the Volkov propagator for fermions can be written
as
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[Se]

z V<0|TWn (X)I,_Un (y) |0>V

Z /d4pe-lva\/7>

n=—0oo

’ zZ". (51)

ﬁ+nk—(m+5m)+ie

VI. DOES THIS AGREE WITH
PERTURBATION THEORY?

We will now check that our result for the propagator (51)
agrees with perturbation theory by calculating the lowest
order corrections to the free propagator extending our
earlier result (14) to the adjacent sidebands.

We will require the expansions of the generalized Bessel
functions

2.2
Tolp) = Jo(ety, e2v,) = 1 =7+ O(e),
Ta1(p) = Tui(eu,. e?v,) = £ 522+ O(e?). (52)

2

We should immediately note that (51) is indeed an
expansion in e”. In (45) we see that for any value of n
the bracketed terms containing the combinations of gen-
eralized Bessel functions are either both odd or both even in
e due to the property J,(—x,y) = (=1)"J,(x,y). As there
are two bracketed terms, the overall propagator will be an
expansion in e’.

Let us first consider the central sideband at leading order.

The wave function renormalization factors are

- a2
V20 =70 =1 - 2 <—p i) . (53)
p .

as the matrix factors cancel at this order here. Using o#i it is
now simple to reproduce all of (14) from an expansion of
(51). This calculation is sensitive to both the matrix form of
the mass shift and the sign in the numerator of (48).

In the first upper sideband we proceed similarly to (13)
but adding and subtracting X terms as follows

(F+m)dp+k+mdp+m)
=(p+map+k+map+k+m—k), (54)

which may also be repeated on the left. This generates zero
pole terms that cancel with those found in the central
sideband and from the first lower sideband. The terms
containing poles in the first upper sideband are thus found
to be
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(l(p_zp“—i—k—l—m lp-a 1
k) (p+k)? 4p-k (p+k)3*-

- p_
p-k p+k —m?

and similarly with k — —k for the first lower sideband.
(The adjacent sidebands will first acquire mass shifts at the
next order in the coupling.)

This calculation also agrees with (51) at this order. In the
first upper sideband, we note that

=(1) Ip-a ka
7 —(-P¢
’ e< 2pk Ak k)

at leading order in e. There is a similar expression for

\/Z{". Substituting this into (51) yields (55). The final
a’-dependent term in (55) may appear surprising in this
sideband as there is no contribution from the mass shift in
the perturbative expansion at this order. It arises via a
product of two & factors in the gamma matrix structures.
We note that this calculation is sensitive to the matrix
structure of the wave function renormalization factors. The
first lower sideband is again simply reproduced by chang-
ing k —» —k everywhere in (55).

As the agreement across these three sidebands depends
upon the form of the various structures in (51), it verifies
the emergence of a matrix mass shift and matrix wave
function structures ordered to the left and right.

We also comment here that the propagator in the laser
background cannot be written in the form

Ip-a 2 1
8p- [ (p+k)?—m?)’
(55)

(56)

i

P EE— 57
py—m-—X (57)
with —iX being the self-energy. This is because the usual
derivation of (57) involves the identification of the pertur-

bative expansion
i i i

+——(—i%)
pyF—m p—m y—m

toe o (58)

as a Taylor expansion of (57). However, this requires that p
and X commute. This is true in normal perturbative QED
since the self-energy then only depends on p and scalars.
However, in the laser context, there are ¥ and # factors
which do not commute with p and hence obstruct an
expression of the form (57).

VII. CONCLUSIONS

In this paper we have derived an expression for the
fermion propagator in a linearly polarized plane wave. In
QED, as well as in the scalar theory, all of the laser induced
structures in the propagator can be understood as
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multiplicative renormalizations of the free propagator. The
distinctive feature highlighted in this paper is that for
fermionic QED these multiplicative factors are matrices.
Matrix structures have already been seen in earlier work
[4,5,11], but here we have seen that the electron mass shift
is a matrix such that both the mass and also the mass
squared only pick up corrections at leading order in the
coupling. Although we have focused in this paper on
linearly polarized lasers, our approach can be generalized to
other polarizations, see [13]. We expect that such a matrix
valued mass shift will persist in more realistic models of
laser pulses [27]. We note that matrix wave function
renormalization constants have been seen previously in
studies of the infrared [28] although the mass shift did not
there involve a matrix. We have also checked our all orders
calculations through a first order perturbative expansion of
the propagator which tested all of the key features of our
overall result (51).

The results presented in this paper will be important for
calculating scattering processes in QED in laser back-
grounds, see for example [29] where the propagator is used
to calculate double Compton scattering, and also [30,31]
for this process. More generally see [32-35] for other
processes. It is intriguing to speculate how the matrix
renormalization constants impact upon the calculation of S-
matrix elements and the physical predictions of QED in a
laser background.
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APPENDIX A: VOLKOV SPINORS

The defining equations (24) and (25) allow us to
construct the Volkov spinors by suitably boosting the static
spinors

1 0
0 1
U (0) = , U0) = ,
(0) 0 (0) 0
0 0
0 0
0 0
v(l)(()) = , v(Z)(()) = (A1)
1 0
0 1
To this end, we define
a 1
Uy (p) =
\/Zm(m + Eb 4 2€*v;ko)
X (F 4 2¢*vpk + m)U@(0) (A2)
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and

I
W(p) =
\2m(m + Ej +260,k)

x (= — 2%v,k + m)V'@(0).

(A3)
With these conventions we have the inner products

W (PUY (p) =67 and W (p)Y (p) = -5,

(A4)
as well as the tensor products
o _ 7+ 2%k +m
U (U (p) == === (a3
m
and
a —(a ﬁ+2621j—k—m
WpW (p) =57 (A6)

APPENDIX B: VOLKOV PROPAGATOR
DETAILS

The argument taking us from the initial expression for
the Volkov propagator in Eq. (44) to the final covariant
expression (45) involves several key steps that we out-
line below.

Starting from (44) we make the substitution p® — E;, -
p° — nk® in the first part and p® — p® + Ej + nk” in the
second to give

_ / a'p i =i’ (30=1) i(p=nk)-(x-y)
2E, \E;, — p° — nk® —ie
_ ka
x (Jn(p) ek

Jﬁ(ﬁ)) (5 m — o)

< (7.(0) * o T )

_ e—ipo(xo—yo)e—i(£+”]_<)'(£—X>
E; + p 4+ nk® —ie

(B1)

If we now shift the three-momentum in the first part by
p — p +nkand by p - —p — nk in the second (noting a
change in sign in 671) then we have
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_/ dp e—"p'(x—y)< oi —
2E, E, . —p —nk —ie

x(ﬁ+nk+m—éﬁd)(jn(p+nk)+e

i
 + P04+ nk® —ie

T
Ep+n

x(—p‘—i—nk—m—i—éﬁi)(jn(p—l—nk)—ke

(Jn(p + nk) +e

ak
4(p + nk)

<Jn(p + nk) + em

4(p + nk)
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ka A—>
R ————— n + k
4(p+nk)-kj (p o+ nk)

_kmm))

“a* kJﬁ(}H—nk))

LT ) (82

In this we have simply shifted on-shell momenta in the first part but in the second part we have noted that under the shift

P = (Epiax, —p — nk),
= _(_Eernk’ p+ nlﬁ)y

- _p +nka

(B3)

where we denote by the tilde the negative energy on-shell four-momenta.

Combining these terms over a common denominator allows us to extract the covariant propagator and we get

/ d4p ie_ip'(x_y)
2B e (p & W) — 2

X (p—}—nk—l—m—&ﬁi)(jn(p—l—nk) +e
- (E:;Jrnk - pO - nko) <k7n(m) +e

x (—M—eréﬁz)(Jn(ernk) +e

T ((E;;Hk + p° + nk®) <jn(p +nk) + e

ak
4(p + nk) - k

ak Jp—
_—— k
4(p+nk)-kjn<p+n )>

A p + nk) -

ka P—
S . k
4(p—|—nk)-kj (pn >>

N <m>)

LT ). (B4)

We now recognize the two terms as simply the residues associated with the two poles of the covariant denominator. Hence

we recover the covariant expression (45).
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