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New results for the fermion propagator in a laser background are presented. We show that the all orders
electron propagator can be written in a compact and appealing form as a sum of sideband poles with a
matrix wave function renormalization and a matrix valued mass shift. This last result is essential in the
fermionic theory if we are to maintain that both the mass and its square pick up a correction only at order e2.
A perturbative verification of our results is carried out.
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I. INTRODUCTION

In this paper we will discuss fermionic propagation in
background fields. Specifically we are interested in elec-
trons propagating in a plane wave background [1]. This is
important for understanding recent work with high power
laser facilities [2,3]. The result we will obtain is simple and
has a clear physical interpretation. A surprise is that all the
renormalization factors are matrices.
The propagator is one of the basic building blocks

linking physical processes with the structure of quantum
field theory. We recall that for a scalar field, ϕðxÞ, the
Feynman propagator is given by the time ordered
product

h0jTϕðxÞϕ†ðyÞj0i ¼
Z

đ4pe−ip·ðx−yÞ
i

p2 −m2 þ iϵ
; ð1Þ

where the fields are taken to be free and the bar in the
measure indicates appropriate factors of 2π. In the presence
of loop corrections the form of the propagator is preserved
and typically becomes

h0jTϕðxÞϕ†ðyÞj0i ¼
Z

đ4pe−ip·ðx−yÞ
iZ2

p2− ðm2þ δm2Þþ iϵ
;

ð2Þ

which can be interpreted as the propagation of renormal-
ized fields with a renormalized mass.
A similar, but richer, structure in the propagator is found

when the scalar field interacts with a laser plane wave
background [4–14]

X∞
n¼−∞

Z
đ4pe−ip·ðx−yÞ

iZðnÞ
2

ðpþ nkÞ2 − ðm2 þ δm2Þ þ iϵ
; ð3Þ

where we see a sum over so-called sideband states [15–17]
and note that the mass shift is common to all sidebands. The
exact form of the mass and the momentum dependent wave
function renormalization factors depend on the details of

the laser background. For a linearly polarized background,
the propagator has the form

X∞
n¼−∞

Z
đ4pe−ip·ðx−yÞ

iJ2nðeup; e2vpÞ
ðpþ nkÞ2 −m2� þ iϵ

; ð4Þ

where up and vp are laser parameters that we define in (20).
The mass shift is here given bym2� ¼ m2 − 1

2
e2a2 where aμ

is the (spacelike) laser amplitude and this mass shift does
not acquire higher order corrections. The wave function
renormalization for the various sidebands is written in
terms of a product of generalized Bessel functions which
can be expressed in terms of normal Bessel functions as

Jnðeup; e2vpÞ ¼
X∞
r¼−∞

Jn−2rðeupÞJrðe2vpÞ: ð5Þ

The fine details in (4) are polarization dependent but the
broad structures for a plane wave laser background,
including the sum over sidebands and the mass shift being
at order e2 only, are common.
Note that in the literature, the two point function in a

laser background is widely referred to as the propagator.
However, through interactions with the background, this
two point function includes diagrams where the initial and
final momenta of the matter field are distinct. In this paper,
and in our summary above, the focus is on the diagonal part
of the two point function which does not include momen-
tum altering vertex effects. This is what we call the
propagator in this paper and this is given for the scalar
theory in (4).
As in our previous work, we are guided below by

experience from infrared physics. A charge propagating
in a laser is indistinguishable from a charge which absorbs
and emits the same number of laser photons. These laser
induced degeneracies parallel the soft and collinear degen-
eracies of the infrared regime in QED and QCD [18–21].
Understanding the mass shift in a laser background may
also help to clarify the current versus constituent mass
distinction in QCD [22].
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Turning now to fermionic QED, the perturbative propa-
gator without a background has the form

h0jTψðxÞψ̄ðyÞj0i ¼
Z

đ4pe−ip·ðx−yÞ
iZ2

p − ðmþ δmÞ þ iϵ
;

¼
Z

đ4pe−ip·ðx−yÞ
iZ2ðpþmþ δmÞ

p2 − ðmþ δmÞ2 þ iϵ
;

ð6Þ

where we note the presence of single powers of m.
The extension of this theory to plane wave laser back-

grounds has been previously considered [4,5,23,24]. The
results obtained also display the sideband structure of the
scalar theory but the two point function is quite involved,
see, e.g., (5.7) and (5.8) in Ref. [4], and does not clearly
resemble a renormalized propagator. In particular in the
numerator of the propagator obtained by Reiss and Eberly
[4] there are two gamma matrix structures, one proportional
to p − eAþm and one proportional to the laser momen-
tum, k, each multiplied by combinations of Bessel func-
tions. Similarly, additional gamma matrix structures are
obtained in Appendix A of Brown and Kibble [5] and by
Ritus [11].
The mass shift in the fermionic theory also satisfies the

spin-independent relation [4,5]

m2� ¼ ðmþ δmÞ2 ¼ m2 −
1

2
e2a2; ð7Þ

to all orders in the coupling. This might naturally suggest,
see for example Sec. 40 of [25] and more recently [26], that

m� ¼ mþ δm ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e2a2

2m2

r
; ð8Þ

which would, however, mean that δm would acquire
corrections to all orders in the coupling through an
expansion of the above.
Below we will first show that an explicit perturbative

calculation disagrees with this expectation for the mass
shift. We will then present an all orders calculation of the
fermion propagator which will reveal a simple form which
can be interpreted, as for the scalar theory, in terms of mass
and wave function renormalization factors. An unexpected
feature is that all the renormalization factors we find,
including the mass shift, are matrices. The mass shift will
itself only be corrected at order e2, but will still satisfy (7)
to all orders. As this is surprising we will independently
verify all of the structures we obtain via a low order
perturbative calculation. Finally we will present some
conclusions. Some technical details are presented in the
appendixes.

II. PERTURBATIVE EXPANSION

The Lagrangian density describing the interactions of a
fermion with the laser is

L ¼ ψ̄ðiD −mÞψ : ð9Þ

In this the covariant derivative is given by Dμ ¼ ∂μ þ ieAμ

and, in a linearly polarized background,

AμðxÞ ¼ aμ cosðk · xÞ; ð10Þ

where k ¼ k0ð1; 0; 0; 1Þ is the null vector characterizing the
laser. Note that the gauge fixing condition used is k · a ¼ 0.
The Feynman rules for the vertices in this linearly

polarized theory are given in Fig. 1. For this polarization,
the rules are identical for the absorption and the emission of
a laser photon. The two diagrams that contribute at lowest
order in the coupling are shown in Fig. 2.
The first diagram yields after a partial fraction expansion

ie2

16ðp · kÞ2 ðpþmÞaðpþ kþmÞaðpþmÞ

×

�
−

1

p2 −m2
þ 2p · k
ðp2 −m2Þ2 þ

1

ðpþ kÞ2 −m2

�
; ð11Þ

and the second diagram is obtained by replacing k → −k.
In our perturbative calculations we suppress the iϵ pre-
scription. The gamma matrix structures are now expanded
depending upon whether the denominator contains poles in
p2 −m2 or is in an adjacent sideband. In this initial
discussion, we shall restrict ourselves to the central side-
band alone. In the double pole coefficient the k term alone
survives when the two diagrams are added, while in the
single pole coefficient the k term cancels. Thus the two
diagrams contribute to the central sideband

ie2

8ðp · kÞ2
�
−ðpþmÞaðpþmÞaðpþmÞ 1

p2 −m2

þ ðpþmÞakaðpþmÞ 2p · k
ðp2 −m2Þ2

�
: ð12Þ

FIG. 1. The three point Feynman rules for linear polarization.

FIG. 2. Leading order corrections to the propagator.
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In the first term we rewrite

ðpþmÞaðpþmÞaðpþmÞ
¼ ðpþmÞað−ðp2 −m2Þaþ 2p · aðpþmÞÞ: ð13Þ

The first part here will not contribute any pole to the central
sideband and we have verified that the sum of all such terms
without poles cancel when the contributions from all
sidebands are summed. We will therefore just drop them
below. The double pole term in (12) will also generate
single pole terms in a similar fashion. The sum of all the
terms containing poles in the central sideband is found to be

ie2
�
−

ðp · aÞ2
2ðp · kÞ2

pþm
p2 −m2

þ a2k
4p · k

1

p2 −m2

−
1

2
a2

pþm
ðp2 −m2Þ2

�
: ð14Þ

We should now compare this with the general form of (6).
At this leading order we expect three contributions. Writing

Zð0Þ
2 ¼ 1þ δZð0Þ

2 [where δZð0Þ
2 is expected to have a matrix

form] this would give

ie2
�
δZð0Þ

2 ðpþmÞ
p2 −m2

þ δm
1

p2 −m2
−
1

2
a2

1

ðp2 −m2Þ2
�
;

ð15Þ

where we have used (7) in the last term.
In (14) the double pole term is the expected mass shift

from the expansion of the denominator of the central
sideband. The first term gives us information about the
wave function renormalization factor. However, the second
term in (14), which involves a2 as would be expected of a
mass shift, contains a k factor and is not obtained by simply
expanding the numerator in (6). We will therefore now
carry out an all orders calculation of the propagator to
resolve this puzzle and also to determine the form of ZðnÞ

2 .

III. VOLKOV FERMION

We now want to construct the spinor field ψVðxÞ which
satisfies

ðiD −mÞψVðxÞ ¼ 0: ð16Þ

This Volkov equation (16) is solved by

ψVðxÞ ¼
Z

đ3p
m
E�
p
ðF lðx; p̄ÞDlðx; p̄ÞUðαÞ

V ðpÞaðαÞV ðpÞ

þ F lðx;−p̄ÞDlðx;−p̄ÞVðαÞ
V ðpÞb†ðαÞV ðpÞÞ: ð17Þ

There is a lot of structure to this solution that we need to
unpack carefully.

The on-shell momentum p̄μ ¼ ðE�
p; pÞ satisfies the

shifted on-shell condition of the quasimomentum:

p̄2 −m2� ¼ E�2
p − p2 −m2� ¼ 0: ð18Þ

Just as for the scalar case, plane waves are distorted in
this background and become equal to

Dlðx; p̄Þ ¼ e−ip̄·xeiðeup̄ sinðk·xÞþe2vp̄ sinð2k·xÞÞ;

¼ e−ip̄·x
X∞
n¼−∞

eink·xJnðeup̄; e2vp̄Þ: ð19Þ

In this expression we have defined the laser variables up̄
and vp̄ by

up̄ ¼ −
p̄ · a
p̄ · k

and vp̄ ¼ a2

8p̄ · k
: ð20Þ

The rest of Eq. (17) reflects the fermionic nature of QED.
Focusing initially on the first term in ψVðxÞ, we see that in
the Volkov equation the derivative will only act on the
factors F lðx; p̄ÞDlðx; p̄Þ. The prefactor F lðx; p̄Þ is a
matrix given by

F lðx; p̄Þ ¼
�
1þ e

kAðxÞ
2p̄ · k

�
: ð21Þ

The action of the covariant derivative is then given by

iDF lðx; p̄ÞDlðx; p̄Þ ¼ F lðx; p̄ÞDlðx; p̄Þðp̄þ 2e2vp̄kÞ:
ð22Þ

Similarly, in the second part of (17) we get

iDF lðx;−p̄ÞDlðx;−p̄Þ
¼ F lðx;−p̄ÞDlðx;−p̄Þð−p̄ − 2e2vp̄kÞ: ð23Þ

The Volkov spinors are then introduced to satisfy

ðp̄þ 2e2vp̄kÞUðαÞ
V ðpÞ ¼ mUðαÞ

V ðpÞ ð24Þ

and

ðp̄þ 2e2vp̄kÞVðαÞ
V ðpÞ ¼ −mVðαÞ

V ðpÞ: ð25Þ

The precise form for these Volkov spinors is presented in
Appendix A.
Combining these results we see that ψVðxÞ as defined by

Eq. (17) does indeed satisfy the Volkov equation (16).
Having constructed the Volkov field, ψVðxÞ, we now

simply state the expression for the Dirac adjoint
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ψ̄VðyÞ ¼
Z

đ3q
m
E�
q
ðŪðβÞ

V ðqÞF lðy;−q̄ÞD†
lðy; q̄Þa†ðβÞV ðqÞ

þ V̄ðβÞ
V ðqÞF lðy; q̄ÞD†

lðy;−q̄ÞbðβÞV ðqÞÞ: ð26Þ

Returning to the on-shell condition (24) for the Volkov
spinors, we can directly reinterpret this as

p̄UðαÞ
V ðpÞ ¼ ðm − 2e2vp̄kÞUðαÞ

V ðpÞ; ð27Þ

that is, in the spinor theory, the mass shift has a matrix form
with m� ¼ mþ δm̄ with

δm̄ ¼ −2e2vp̄k ¼ −
e2a2

4p̄ · k
k: ð28Þ

Let us now show that this is consistent with the result
familiar from the scalar theory. We multiply both sides of
(27) by p̄ and anticommute the p̄ factor through the k to
obtain

p̄2UðαÞ
V ðpÞ ¼ ðmp̄ − 4e2vp̄p̄ · kþ 2e2vp̄kp̄ÞUðαÞ

V ðpÞ: ð29Þ

We now reuse (27) in the final term and, recalling that
k2 ¼ 0, obtain the spin-independent on-shell result

p̄2UðαÞ
V ðpÞ ¼ m2�U

ðαÞ
V ðpÞ ¼

�
m2 −

1

2
e2a2

�
UðαÞ
V ðpÞ: ð30Þ

Note that this requires δm̄ to be a matrix, as one would
otherwise generate corrections to m2 at order e4.
However, we cannot yet identify δm in (15) from this, as

if we were to replace δm by δm̄ we would obtain (14) but
with the wrong sign for the k term. We shall though see
later that the result for δm̄ is correct and that the naive
expectation (15) is wrong.

IV. THE PROPAGATOR

We are now in a position to calculate the Volkov
propagator

Vh0jTψVðxÞψ̄VðyÞj0iV ¼ θðx0− y0ÞVh0jψVðxÞψ̄VðyÞj0iV
− θðy0 − x0ÞVh0jψ̄VðyÞψVðxÞj0iV;

ð31Þ

where the Volkov vacuum is identified through the modes
in (17) and (26). Note that the creation and annihilation
operators satisfy

faðαÞV ðpÞ; a†ðβÞV ðqÞg ¼ ð2πÞ3 E
�
p

m
δαβδð3Þðp − qÞ: ð32Þ

Looking at the first vacuum expectation value we have

Vh0jψVðxÞψ̄VðyÞj0i

¼
Z

đ3p
1

2E�
p
F lðx; p̄Þðp̄þm − δm̄Þ

× F lðy;−p̄ÞDlðx; p̄ÞD†
lðy; p̄Þ: ð33Þ

In a similar way we obtain

Vh0jψ̄VðyÞψVðxÞj0iV
¼

Z
đ3p

1

2E�
p
F lðx;−p̄Þðp̄ −m − δm̄ÞF lðy; p̄Þ

×Dlðx;−p̄ÞD†
lðy;−p̄Þ: ð34Þ

We now use these to build up the propagator. To this end we
require the following results which follow from (19)

F lðx; p̄ÞDlðx; p̄Þ

¼
X∞
n¼−∞

e−ip̄·xeink·x
�
J nðp̄Þ þ e

ka
4p̄ · k

J Δ
n ðp̄Þ

�
; ð35Þ

where we have condensed our notation for the generalized
Bessel function so that

J nðp̄Þ ¼ Jnðeup̄; e2vp̄Þ ð36Þ

and

J Δ
n ðp̄Þ ¼ J n−1ðp̄Þ þ J nþ1ðp̄Þ: ð37Þ

In a similar way we obtain

F lðx;−p̄ÞDlðx;−p̄Þ

¼
X∞
n¼−∞

eip̄·xeink·x
�
J nð−p̄Þ þ e

ak
4p̄ · k

J Δ
n ð−p̄Þ

�
; ð38Þ

while

F lðy;−p̄ÞD†
lðy; p̄Þ

¼
X∞
n¼−∞

eip̄·ye−ink·y
�
J nðp̄Þ þ e

ak
4p̄ · k

J Δ
n ðp̄Þ

�
ð39Þ

and

F lðy; p̄ÞD†
lðy;−p̄Þ

¼
X∞
n¼−∞

e−ip̄·ye−ink·y
�
J nð−p̄Þ þ e

ka
4p̄ · k

J Δ
n ð−p̄Þ

�
:

ð40Þ

Inserting these expansions into (33) and (34) and using the
decomposition
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ψVðxÞ ¼
X∞
n¼−∞

ψnðxÞ; ð41Þ

gives the propagator defined through the diagonal contri-
butions to the two point function

Vh0jψnðxÞψ̄nðyÞj0iV
¼
Z

đ3p
1

2E�
p
e−ip̄·ðx−yÞeink·ðx−yÞ

�
J nðp̄Þþe

ka
4p̄ ·k

J Δ
n ðp̄Þ

�

×ðp̄þm−δm̄Þ
�
J nðp̄Þþe

ak
4p̄ ·k

J Δ
n ðp̄Þ

�
; ð42Þ

and

Vh0jψ̄nðyÞψnðxÞj0iV
¼
Z

đ3p
1

2E�
p
eip̄·ðx−yÞeink·ðx−yÞ

�
J nð−p̄Þþe

ak
4p̄ ·k

J Δ
n ð−p̄Þ

�

×ðp̄−m−δm̄Þ
�
J nð−p̄Þþe

ka
4p̄ ·k

J Δ
n ð−p̄Þ

�
: ð43Þ

The Volkov propagator then becomes equal to the sum over
n of

−
Z

dp0

2π

đ3p
2E�

p

i
p0 − iϵ

�
eiðp0−E�

pþnk0Þðx0−y0Þeiðp−nkÞ·ðx−yÞ

×

�
J nðp̄Þ þ e

ka
4p̄ · k

J Δ
n ðp̄Þ

�
ðp̄þm − δm̄Þ

×

�
J nðp̄Þ þ e

ak
4p̄ · k

J Δ
n ðp̄Þ

�
− e−iðp0−E�

p−nk0Þðx0−y0Þe−iðpþnkÞ·ðx−yÞ

×

�
J nð−p̄Þ þ e

ak
4p̄ · k

J Δ
n ð−p̄Þ

�
ðp̄ −m − δm̄Þ

×

�
J nð−p̄Þ þ e

ka
4p̄ · k

J Δ
n ð−p̄Þ

��
: ð44Þ

Combining the variables p0 and pi into an off shell four
moment pμ (details of which are given in Appendix B) we
can write the fermionic Volkov propagator as

X∞
n¼−∞

Z
đ4pe−ip·ðx−yÞ

�
J nðpþnkÞþ e

ka
4p · k

J Δ
n ðpþnkÞ

�

×
iðpþnkþm− δmÞ
ðpþnkÞ2−m2� þ iϵ

×

�
J nðpþnkÞþ e

ak
4p · k

J Δ
n ðpþnkÞ

�
: ð45Þ

Note that here we have removed the bar over the mass shift
matrix defined earlier in (28) since the momentum in (45) is
now off shell.

V. INTERPRETATION

The naive expectation might have been that we would
find a result of the form

X∞
n¼−∞

Z
đ4pe−ip·ðx−yÞZðnÞ

2

iðpþ nkþmþ δmÞ
ðpþ nkÞ2 −m2� þ iϵ

; ð46Þ

however, what we have found in (45) looks very different. It
contains matrix dependent wave function renormalization
constants on both sides of the usual gamma matrix structure
expected in a fermionic propagator as well as a minus sign
in the mass shift, δm in the numerator of (45), which we
will now explain.
Setting n ¼ 0 for simplicity and ignoring the iϵ, we

make the simple observation that because the mass shift is a
matrix, then it can naturally be regrouped as

1

p − ðmþ δmÞ ¼
1

ðp − δmÞ −m
; ð47Þ

which means when we carry out the standard algebraic
rearrangement we obtain

1

ðp − δmÞ −m
¼ p − δmþm

ðp − δmÞ2 −m2
;

¼ pþm − δm
p2 þ e2a2=2 −m2

;

¼ pþm − δm
p2 −m2�

: ð48Þ

Here we recognize the standard mass shift in the
denominator and the minus sign present in the numerator
of (45).
We finally define the wave function renormalization

matrix by

ffiffiffiffiffiffiffiffi
ZðnÞ
2

q
¼ J nðpþ nkÞ þ e

ak
4p · k

J Δ
n ðpþ nkÞ; ð49Þ

and note that

ffiffiffiffiffiffiffiffi
Z̄ðnÞ
2

q
≔ γ0

ffiffiffiffiffiffiffiffi
ZðnÞ
2

q †
γ0

¼ J nðpþ nkÞ þ e
ka

4p · k
J Δ

n ðpþ nkÞ: ð50Þ

This yields a very appealing way to write the sideband
propagator. If we reinstate the sum over sidebands, we
see that the Volkov propagator for fermions can be written
as
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X∞
n¼−∞

Vh0jTψnðxÞψ̄nðyÞj0iV

¼
X∞
n¼−∞

Z
đ4pe−ip·ðx−yÞ

ffiffiffiffiffiffiffiffi
Z̄ðnÞ
2

q

×
i

pþ nk − ðmþ δmÞ þ iϵ

ffiffiffiffiffiffiffiffi
ZðnÞ
2

q
: ð51Þ

VI. DOES THIS AGREE WITH
PERTURBATION THEORY?

Wewill now check that our result for the propagator (51)
agrees with perturbation theory by calculating the lowest
order corrections to the free propagator extending our
earlier result (14) to the adjacent sidebands.
We will require the expansions of the generalized Bessel

functions

J 0ðpÞ ¼ J0ðeup; e2vpÞ ¼ 1 −
e2u2p
4

þOðe4Þ;

J �1ðpÞ ¼ J�1ðeup; e2vpÞ ¼ � eup
2

þOðe3Þ: ð52Þ

We should immediately note that (51) is indeed an
expansion in e2. In (45) we see that for any value of n
the bracketed terms containing the combinations of gen-
eralized Bessel functions are either both odd or both even in
e due to the property Jnð−x; yÞ ¼ ð−1ÞnJnðx; yÞ. As there
are two bracketed terms, the overall propagator will be an
expansion in e2.
Let us first consider the central sideband at leading order.

The wave function renormalization factors are

ffiffiffiffiffiffiffiffi
Zð0Þ
2

q
¼

ffiffiffiffiffiffiffiffi
Z̄ð0Þ
2

q
¼ 1 − e2

�
p · a
p · k

�
2

; ð53Þ

as the matrix factors cancel at this order here. Using δm it is
now simple to reproduce all of (14) from an expansion of
(51). This calculation is sensitive to both the matrix form of
the mass shift and the sign in the numerator of (48).
In the first upper sideband we proceed similarly to (13)

but adding and subtracting k terms as follows

ðpþmÞaðpþ kþmÞaðpþmÞ
¼ ðpþmÞaðpþ kþmÞaðpþ kþm − kÞ; ð54Þ

which may also be repeated on the left. This generates zero
pole terms that cancel with those found in the central
sideband and from the first lower sideband. The terms
containing poles in the first upper sideband are thus found
to be

ie2
�
1

4

�
p ·a
p ·k

�
2 pþkþm
ðpþkÞ2−m2

þ1

4

p ·a
p ·k

a
1

ðpþkÞ2−m2

−
1

4

�
p ·a
p ·k

�
2

k
1

ðpþkÞ2−m2
−
1

8

p ·a
p ·k

a2k
1

ðpþkÞ2−m2

�
;

ð55Þ

and similarly with k → −k for the first lower sideband.
(The adjacent sidebands will first acquire mass shifts at the
next order in the coupling.)
This calculation also agrees with (51) at this order. In the

first upper sideband, we note thatffiffiffiffiffiffiffiffi
Z̄ð1Þ
2

q
¼ e

�
−
1

2

p · a
p · k

þ ka
4p · k

�
; ð56Þ

at leading order in e. There is a similar expression forffiffiffiffiffiffiffiffi
Zð1Þ
2

q
. Substituting this into (51) yields (55). The final

a2-dependent term in (55) may appear surprising in this
sideband as there is no contribution from the mass shift in
the perturbative expansion at this order. It arises via a
product of two a factors in the gamma matrix structures.
We note that this calculation is sensitive to the matrix
structure of the wave function renormalization factors. The
first lower sideband is again simply reproduced by chang-
ing k → −k everywhere in (55).
As the agreement across these three sidebands depends

upon the form of the various structures in (51), it verifies
the emergence of a matrix mass shift and matrix wave
function structures ordered to the left and right.
We also comment here that the propagator in the laser

background cannot be written in the form

i
p −m − Σ

; ð57Þ

with −iΣ being the self-energy. This is because the usual
derivation of (57) involves the identification of the pertur-
bative expansion

i
p −m

þ i
p −m

ð−iΣÞ i
p −m

þ � � � ; ð58Þ

as a Taylor expansion of (57). However, this requires that p
and Σ commute. This is true in normal perturbative QED
since the self-energy then only depends on p and scalars.
However, in the laser context, there are k and a factors
which do not commute with p and hence obstruct an
expression of the form (57).

VII. CONCLUSIONS

In this paper we have derived an expression for the
fermion propagator in a linearly polarized plane wave. In
QED, as well as in the scalar theory, all of the laser induced
structures in the propagator can be understood as
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multiplicative renormalizations of the free propagator. The
distinctive feature highlighted in this paper is that for
fermionic QED these multiplicative factors are matrices.
Matrix structures have already been seen in earlier work
[4,5,11], but here we have seen that the electron mass shift
is a matrix such that both the mass and also the mass
squared only pick up corrections at leading order in the
coupling. Although we have focused in this paper on
linearly polarized lasers, our approach can be generalized to
other polarizations, see [13]. We expect that such a matrix
valued mass shift will persist in more realistic models of
laser pulses [27]. We note that matrix wave function
renormalization constants have been seen previously in
studies of the infrared [28] although the mass shift did not
there involve a matrix. We have also checked our all orders
calculations through a first order perturbative expansion of
the propagator which tested all of the key features of our
overall result (51).
The results presented in this paper will be important for

calculating scattering processes in QED in laser back-
grounds, see for example [29] where the propagator is used
to calculate double Compton scattering, and also [30,31]
for this process. More generally see [32–35] for other
processes. It is intriguing to speculate how the matrix
renormalization constants impact upon the calculation of S-
matrix elements and the physical predictions of QED in a
laser background.
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APPENDIX A: VOLKOV SPINORS

The defining equations (24) and (25) allow us to
construct the Volkov spinors by suitably boosting the static
spinors

Uð1Þð0Þ ¼

0
BBB@

1

0

0

0

1
CCCA; Uð2Þð0Þ ¼

0
BBB@

0

1

0

0

1
CCCA;

Vð1Þð0Þ ¼

0
BBB@

0

0

1

0

1
CCCA; Vð2Þð0Þ ¼

0
BBB@

0

0

0

1

1
CCCA: ðA1Þ

To this end, we define

UðαÞ
V ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðmþ E�
p þ 2e2vp̄k0Þ

q
× ðp̄þ 2e2vp̄kþmÞUðαÞð0Þ ðA2Þ

and

VðαÞ
V ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðmþ E�
p þ 2e2vp̄k0Þ

q
× ð−p̄ − 2e2vp̄kþmÞVðαÞð0Þ: ðA3Þ

With these conventions we have the inner products

ŪðαÞ
V ðpÞUðβÞ

V ðpÞ ¼ δαβ and V̄ðαÞ
V ðpÞVðβÞ

V ðpÞ ¼ −δαβ;

ðA4Þ

as well as the tensor products

UðαÞ
V ðpÞŪðαÞ

V ðpÞ ¼ p̄þ 2e2vp̄kþm

2m
ðA5Þ

and

VðαÞ
V ðpÞV̄ðαÞ

V ðpÞ ¼ p̄þ 2e2vp̄k −m

2m
: ðA6Þ

APPENDIX B: VOLKOV PROPAGATOR
DETAILS

The argument taking us from the initial expression for
the Volkov propagator in Eq. (44) to the final covariant
expression (45) involves several key steps that we out-
line below.
Starting from (44) we make the substitution p0 → E�

p −
p0 − nk0 in the first part and p0 → p0 þ E�

p þ nk0 in the
second to give

−
Z

đ4p
2E�

p

�
i

E�
p − p0 − nk0 − iϵ

e−ip
0ðx0−y0Þeiðp−nkÞ·ðx−yÞ

×

�
J nðp̄Þ þ e

ka
4p̄ · k

J Δ
n ðp̄Þ

�
ðp̄þm − δm̄Þ

×

�
J nðp̄Þ þ e

ak
4p̄ · k

J Δ
n ðp̄Þ

�

−
i

E�
p þ p0 þ nk0 − iϵ

e−ip
0ðx0−y0Þe−iðpþnkÞ·ðx−yÞ

×

�
J nð−p̄Þ þ e

ak
4p̄ · k

J Δ
n ð−p̄Þ

�
ðp̄ −m − δm̄Þ

×

�
J nð−p̄Þ þ e

ka
4p̄ · k

J Δ
n ð−p̄Þ

��
: ðB1Þ

If we now shift the three-momentum in the first part by
p → pþ nk and by p → −p − nk in the second (noting a
change in sign in δm̄) then we have
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−
Z

đ4p
2E�

pþnk
e−ip·ðx−yÞ

�
i

E�
pþnk − p0 − nk0 − iϵ

�
J nðpþ nkÞ þ e

ka

4ðpþ nkÞ · kJ
Δ
n ðpþ nkÞ

�

× ðpþ nkþm − δm̄Þ
�
J nðpþ nkÞ þ e

ak

4ðpþ nkÞ · kJ
Δ
n ðpþ nkÞ

�

−
i

E�
pþnk þ p0 þ nk0 − iϵ

�
J nðepþ nkÞ þ e

ak

4eðpþ nkÞ · kJ
Δ
n ðepþ nkÞ

�

× ð−epþ nk −mþ δ ~mÞ
�
J nðepþ nkÞ þ e

ka

4eðpþ nkÞ · kJ
Δ
n ðepþ nkÞ

��
: ðB2Þ

In this we have simply shifted on-shell momenta in the first part but in the second part we have noted that under the shift

p̄ → ðEpþnk;−p − nkÞ;
¼ −ð−Epþnk; pþ nkÞ;
¼ −epþ nk; ðB3Þ

where we denote by the tilde the negative energy on-shell four-momenta.
Combining these terms over a common denominator allows us to extract the covariant propagator and we get

Z
đ4p

2E�
pþnk

ie−ip·ðx−yÞ

ðpþ nkÞ2 −m2� þ iϵ

�
ðE�

pþnk þ p0 þ nk0Þ
�
J nðpþ nkÞ þ e

ka

4ðpþ nkÞ · kJ
Δ
n ðpþ nkÞ

�

× ðpþ nkþm − δm̄Þ
�
J nðpþ nkÞ þ e

ak

4ðpþ nkÞ · kJ
Δ
n ðpþ nkÞ

�

− ðE�
pþnk − p0 − nk0Þ

�
J nðepþ nkÞ þ e

ak

4eðpþ nkÞ · kJ
Δ
n ðepþ nkÞ

�

× ð−epþ nk −mþ δ ~mÞ
�
J nðepþ nkÞ þ e

ka

4eðpþ nkÞ · kJ
Δ
n ðepþ nkÞ

��
: ðB4Þ

We now recognize the two terms as simply the residues associated with the two poles of the covariant denominator. Hence
we recover the covariant expression (45).
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