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We introduce a Green’s function method for handling radiative effects on false vacuum decay.
In addition to the usual thin-wall approximation, we achieve further simplification by treating the bubble
wall in the planar limit. As an application, we take the λΦ4 theory, extended with N additional heavier
scalars, wherein we calculate analytically both the functional determinant of the quadratic fluctuations
about the classical soliton configuration and the first correction to the soliton configuration itself.
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I. INTRODUCTION

The association of the still recently discovered 125 GeV
scalar particle [1,2] with the Higgs boson of the Standard
Model (SM) places the stability of the electroweak vacuum
under question [3–6]. This instability, arising at an energy
scale around 1011 GeV [7,8], results from the renormali-
zation-group (RG) running of the Higgs self-coupling,
whose value is driven negative by contributions dominated
by top-quark loops. State-of-the-art calculations suggest
that the electroweak vacuum is metastable, having a life-
time longer than the present age of the Universe and lying
at the edge of the stable region [7–10], where seemingly
small corrections may have a material impact upon pre-
dictions. The uncertainty in such predictions remains, at
present, dominated by that of the top-quark pole mass
[11,12]. Even so, it has been suggested [13–17] that,
regardless of any improved precision in the experimental
determination of the latter, the presence of Planck-scale
operators may weaken the claim of metastability.
Nevertheless, having, as yet, no experimental evidence
of additional stabilizing physics between the electroweak
and Planck scales, it is provident to consider approaches to
the calculation of tunneling rates that can consistently
account for radiative corrections.
The degree of vacuum metastability provides a strong

criterion for the phenomenological viability of extensions
to the SM. For example, supersymmetric scenarios can be
ruled out if the electroweak symmetry-breaking vacuum
decays into a color-breaking one in a timescale shorter than
the age of the Universe [18–25]. In addition, transitions
between vacua can also occur at finite temperature [26,27].
In the context of early-Universe cosmology, this is of
interest because the corresponding first-order phase tran-
sitions may leave behind relic gravitational waves [28–30].
Moreover, such phase transitions may turn out to be pivotal

for generating the cosmic matter-antimatter asymmetry
[31,32]. As a consequence of these applications and the
wide range of phenomenological models, there are now
routine methods for computing transition rates at both
vanishing and finite temperature [33,34].
Vacuum transitions in scalar theories can be described in

the following way [35–38]. In the event that there are two
nondegenerate vacua, an initially homogeneous system
lying in the false vacuum will spontaneously nucleate
bubbles of true vacuum, leading to the production of
domain walls or “kinks.” The latter are the topological
solitons that interpolate between regions of true and false
vacuum. The study of these “solitary wave” solutions to
nonlinear equations of motion (see e.g. Ref. [39]) has a long
history [40–45], and archetypal examples of such field
configurations arise in the sine-Gordon model [46,47] and
the λΦ4 theory with tachyonic mass m2 < 0. The semi-
classical [38] and quantum [48] descriptions of false
vacuum decay in the latter theory were presented in the
seminal works by Coleman and Callan (see also Ref. [49]).
Early expansion on these works included induced vacuum
decay [50] and the incorporation of gravity [51].
In order to decide whether a vacuum configuration is

unstable, i.e. whether there exists a lowest-lying true
vacuum, it is often necessary to account for the impact
of radiative corrections. This is of particular relevance when
the appearance or disappearance of minima is entirely a
radiative effect [52], such as occurs for the Coleman-
Weinberg (CW) mechanism of spontaneous symmetry
breaking [53] or in symmetry restoration at finite temper-
ature [54–56]. In phenomenological studies, this is com-
monly done by calculating the tunneling rate from the
effective potential [57,58] of a homogeneous field con-
figuration [34,59,60], which is subsequently promoted to a
space-time-dependent configuration. This practice is prob-
lematic for two reasons. First, the temporal and spatial
inhomogeneity of the solitonic background is not fully
taken into account [61]. Second, in the presence of
tachyonic instabilities, e.g. when there are nonconvex
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regions in the tree-level potential, the perturbatively calcu-
lated effective potential receives a seemingly pathological
imaginary part. The latter has been shown [62] to have a
physical interpretation as a decay rate for an initially
homogeneous field configuration (see also Ref. [63]).
However, this subtlety can be circumvented by using
constructions such as the coarse-grained effective action
[64–71] or, as is often employed in lattice simulations, the
constraint effective potential [72] (cf. Ref. [73]). In addi-
tion, within the context of the SM, the standard RG
improvement of the effective potential has recently been
questioned [74]. For the above reasons, it is reasonable to
conclude that the use of the effective potential to calculate
transition rates is neither satisfactory nor justifiable, and it
is desirable to consider alternative methods for determining
quantum corrections, which can be applied to a wide range
of models that feature vacuum decay.
The first quantum corrections [48] to the tunneling rate

are those arising from the functional determinant over the
quadratic fluctuations about the classical soliton configu-
ration. In the case of one-dimensional operators, these
determinants may be calculated using the Gel’fand-Yaglom
theorem [75], which may be generalized to higher dimen-
sions in the case of radially symmetric operators [76–78].
General numerical techniques may then be obtained [79,80]
for calculating tunneling rates beyond the so-called thin-
wall approximation, in which the width of the bubble wall
is much smaller than its radius. These approaches have also
been applied to radially separable Yang-Mills backgrounds
[81,82] and scenarios in curved spacetime [83]. Alternatively,
as we will employ, the functional determinant may be
calculated by means of the so-called heat kernel method
(see e.g. Refs. [84–87]), based upon the Schwinger proper-
time representation and zeta function regularization [88].
Previously, this approachhas been used to derive approximate
analytic results for the one-loop fluctuation determinant
beyond the thin-wall approximation [89], as well as one-
loop corrections to sphaleron rates [90–92]. The latter have
also been calculated by direct integration of the Green’s
function [93–97].
Recently, it has been shown that properties of topological

solitons may be studied nonperturbatively usingMonte Carlo
and lattice simulations by considering correlation functions
directly [98–100]. Other authors have proposed methods for
calculating quantum corrections based upon functional
renormalization techniques [101].
In this article, we derive an analytic result for the Green’s

function of the λΦ4 theory in the background of the
classical kink solution. Within the thin- and planar-wall
approximations, we illustrate that this Green’s function
may be used to determine analytically the leading quantum
corrections to both the semiclassical bounce action and the
kink solution itself, thereby allowing us to compute the
tunneling rate at the two-loop level, while isolating its
diagrammatic interpretation. The latter calculation is

performed within the context of a toy model extended
with an additional N heavier scalars, where the parametric
dependence on N allows the identification of a concrete
example in which the calculated two-loop corrections
dominate over the neglected higher-loop corrections. We
illustrate that the problem of calculating these radiative
corrections may be reduced to one of solving one-
dimensional ordinary differential equations and integrals.
Thus, we anticipate that this methodical development may
have numerical applications in the study of the decay rates
of radiatively generated metastable vacua, such as occur in
the massless CW model [53] or the Higgs potential of the
SM. Similar methods based upon Green’s function tech-
niques have been used previously to determine self-
consistent bounce solutions numerically in the Hartree
approximation of the pure λΦ4 theory in both two and
four dimensions [102–105].
The remainder of this article is organized as follows: In

Sec. II, we review the calculation, à la Coleman and
Callan [38,48], of the classical “bounce” configuration,
describing the semiclassical tunneling rate between two
quasi-degenerate vacua and its first quantum corrections.
In Sec. III, we outline a Green’s function method for the
evaluation of the functional determinant over the quantum
fluctuations about the classical bounce, making comparison
with existing calculations. Subsequently, in Sec. IV, we
illustrate that this Green’s function method may be used to
calculate analytically and self-consistently the first quan-
tum corrections to the bounce itself. In Sec. V, we conclude
our discussions and highlight potential applications and
future directions. Finally, a number of mathematical
appendices are included, outlining the technical details
of the calculations summarized in Secs. III and IV.

II. SEMICLASSICAL BOUNCE

We consider a real scalar field Φ≡ ΦðxÞ, with four-
dimensional Euclidean Lagrangian L ¼ ð∂μΦÞ2=2þ U
and classical potential

U ¼ 1

2!
m2

ΦΦ
2 þ g

3!
Φ3 þ λ

4!
Φ4 þ U0: ð1Þ

The mass squared is m2
Φ ¼ −μ2 < 0, g is of mass dimen-

sion 1, λ is dimensionless, U0 is a constant, and ∂μ ≡
∂=∂xμ denotes the derivative with respect to the Euclidean
spacetime coordinate xμ ≡ ðx; x4Þ. Throughout, we omit
spacetime and field arguments for notational convenience
when no ambiguity results.
The classical potential in Eq. (1) has nondegenerate

minima at

φ ¼ v� ¼ �v

�
1þ v̄2

v2

�1
2

− v̄; ð2Þ
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as depicted in Fig. 1 (left panel), where we have defined
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
6μ2=λ

p
and v̄ ¼ ð3gÞ=ð2λÞ. The separation of the

minima Δv ¼ vþ − v− ¼ 2d and the difference in their
energy densities ΔU ¼ Uvþ −Uv− ¼ 2ε may be written in
terms of the parameters

d ¼ v

�
1þ v̄2

v2

�1
2

≈ v; ð3aÞ

ε

d
¼ gv2

6

�
1þ 3

v̄2

v2

�
≈
gv2

6
; ð3bÞ

where the approximations are valid in the limit v ≫ v̄, i.e.
g2=μ2 ≪ 8λ=3. For g → 0, ε → 0, and the minima at
φ ¼ �v become degenerate, as we would expect.
Finally, the constant U0 is chosen so that the potential

vanishes in the false vacuum at φ ¼ þv, requiring U0 ¼
ðμv=2Þ2 − gv3=6 and thus giving the barrier height to be
h ¼ U0 þ 2ε ≈ ðμv=2Þ2 þ ε and Uð−vÞ ¼ −gv3=3.
The semiclassical probability for tunneling between the

false (φ ¼ þv) and true (φ ¼ −v) vacua and its first
quantum corrections were described in the seminal works
by Coleman and Callan [38,48], which we now review. The
classical equation of motion

−∂2φþ U0ðφÞ ¼ 0; ð4Þ
where 0 denotes the derivative with respect to the field φ, is
analogous to that of a particle moving in a potential −U.
The boundary conditions of the “bounce” are φjx4→�∞ ¼
þv and _φjx4¼0 ¼ 0, where ⋅ denotes the derivative with
respect to x4. These correspond to a particle initially at þv
rolling through the valley in −U, reaching a turning point
close to −v, before rolling back to þv, see Fig. 1 (right
panel). Finally, in order to ensure that the action of the
bounce is finite, we require φjjxj→∞ ¼ þv.
Translating to four-dimensional hyperspherical coordi-

nates, Eq. (4) takes the form

−
d2

dr2
φ −

3

r
d
dr

φþ U0ðφÞ ¼ 0; ð5Þ

where r2 ¼ x2 þ x24. The boundary conditions become
φjr→∞ ¼ þv and dφ=drjr¼0 ¼ 0, where the latter ensures
that the solution is well defined at the origin. Thus, the
bounce corresponds to a four-dimensional bubble of
some radius R, which separates the false vacuum
(φ ¼ þv) outside from the true vacuum inside (φ ¼ −v).
Analytically continuing to Minkowski spacetime
(x4 ¼ ix0), the Oð4Þ symmetry of the bounce becomes
an SOð1; 3Þ symmetry, with the bubble expanding along
the hyperbolic trajectory R2 ¼ x2 − c2t2.
The bounce action is

B ¼
Z

d4x

�
1

2

�
dφ
dr

�
2

þ UðφÞ
�
; ð6Þ

which can be written as B ¼ Bsurface þ Bvacuum, where

Bsurface ¼ 2π2R3

Z þv

−v
dφ

dφ
dr

; ð7aÞ

Bvacuum ¼ 2π2
Z

R

0

drr3Uð−vÞ ð7bÞ

are the contributions from the surface tension of the bubble
and the energy of the true vacuum, respectively. In writing
Eq. (7a), we have used the fact that for ∂μφ ≠ 0, i.e. for
r ∼ R, we may show that the bounce φ satisfies the virial
theorem

�
dφ
dr

�
2

− 2UðφÞ ¼ 0; ð8Þ

i.e. it is the configuration of zero total energy density.
Notice that there is no contribution to the bounce action
[Eq. (6)] from the exterior of the bubble, since the choice of
the potential Eq. (1), viz. U0, ensures that the false vacuum
has zero energy density.
In the thin-wall approximation, we may safely neglect

the damping term in Eq. (5) and the contribution from the
cubic self-interaction gφ3, as will be the case for the
remainder of this article. We then obtain the well-known
kink solution [40]

φðrÞ ¼ v tanh½γðr − RÞ�; ð9Þ

with γ ¼ μ=
ffiffiffi
2

p
. The radius R of the bubble is then obtained

by extremizing the bounce action [Eq. (6)], that is by
minimizing the energy difference between the surface
tension of the bubble and the true vacuum. This gives

R ¼ 12γ

gv
: ð10Þ

By considering the invariance of the bounce action in
Eq. (6) under general coordinate transformations, i.e.
φ → φþ xμ∂μφ, we may show that

B ¼ 1

2
π2R3

Z þv

−v
dφ

dφ
dr

: ð11Þ

FIG. 1. The classical potential U (left panel) and the inverted
potential −U (right panel). The arrow (right panel) indicates the
trajectory of the “bounce” in imaginary time τ.
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This is to say that

Bvacuum ¼ −
3

4
Bsurface; ð12Þ

in which case we find

B ¼ −
1

3
Bvacuum ¼ −

π2

6
R4Uð−vÞ ¼ 8π2R3γ3

λ
: ð13Þ

The decay rate of the false vacuum, i.e. the probability
per unit time for the nucleation of a bubble of true vacuum,
has the generic form [38,48]

Γ ¼ AVe−B=ℏ: ð14Þ

Here, V is the three-volume within which the bounce
may occur, arising from integrating over the center of the
bounce, and A contains the quantum corrections to
the classical bounce action B that are the subject of the
remainder of this article.
The tunneling probability in Eq. (14) may be obtained

from the path integral

Z½0� ¼
Z

½dΦ�e−S½Φ�=ℏ; ð15Þ

via

Γ ¼ 2jImZ½0�j=T; ð16Þ

where T is the Euclidean time of the bounce.
In order to evaluate the functional integral over Φ, we

first expand around the classical bounce φ, whose equation
of motion [Eq. (4)] is obtained from

δS½Φ�
δΦ

����
Φ¼φ

¼ 0: ð17Þ

Writing Φ ¼ φþ ℏ1=2Φ̂, where the factor of ℏ1=2 is written
explicitly for bookkeeping purposes, we find

S½Φ� ¼ S½φ� þ ℏ
2

Z
d4xΦ̂ðxÞG−1ðφ; xÞΦ̂ðxÞ þOðℏ3=2Þ;

ð18Þ

where S½φ�≡ B is the classical bounce action and

G−1ðφ; xÞ≡ δ2S½Φ�
δΦ2ðxÞ

����
Φ¼φ

¼ −Δð4Þ þ U00ðφ; xÞ; ð19Þ

in which Δð4Þ is the four-dimensional Laplacian.
Before proceeding to perform the functional integration

over the quadratic fluctuations about the bounce, we must
consider the spectrum of the operator G−1ðφ; xÞ, which is

not positive definite. By differentiating the equation of
motion [Eq. (4)] with respect to xμ and comparing with the
eigenvalue equation

ð−Δð4Þ þ U00ðφÞÞϕfng ¼ λfngϕfng; ð20Þ

it is straightforward to show that there exist 4 zero
eigenmodes ϕμ ¼ N ∂μφ, transforming as a vector of
SOð4Þ and resulting from the translational invariance of
the bounce. The normalization N follows from Eq. (11),
since

Z
d4xϕ�

μϕν ¼
1

4
N 2δμν

Z
d4xð∂λφÞ2 ¼ N 2Bδμν: ð21Þ

Thus, ϕμ ¼ B−1=2∂μφ.
Differentiating Eq. (5) with respect to r and subsequently

setting r ¼ R in those terms originating from the damping
term, we can show that there also exists a discrete
eigenmode ϕ0 ¼ B−1=2∂rφ. This eigenmode transforms
as a scalar of SOð4Þ, corresponding to dilatations of the
classical bounce solution, and has the negative eigenvalue

λ0 ¼
1

B
δ2B
δR2

¼ −
3

R2
: ð22Þ

It is this lowest mode that is responsible for the path integral
in Eq. (15) obtaining the nonzero imaginary part in
Eq. (16) [106].
Alternatively, we may solve the eigenvalue problem

directly in hyperspherical coordinates (see Appendix B),
by making the substitution ϕfng ¼ ϕnj=r3.

1 Neglecting the
damping term and setting r ¼ R in the centrifugal potential,
we obtain the eigenspectrum

λnj ¼ γ2ð4 − n2Þ þ jðjþ 2Þ − 3

R2
: ð23Þ

The radial parts of the eigenfunctions are the associated
Legendre polynomials of the first kind and of order 2, i.e.
Pn
2ðφ=vÞ. Thus, demanding normalizability, the quantum

number n is restricted to the set f1; 2g.
From Eq. (23), we see that the negative mode corre-

sponds to λ0 ¼ λ20 (n ¼ 2, j ¼ 0), and the zero modes
correspond to λ21 (n ¼ 2, j ¼ 1), having degeneracy
ðjþ 1Þ2 ¼ 4. The lowest two positive-definite eigenvalues
are λ10 ¼ 2γ2 − 3=R2 (n ¼ 1, j ¼ 0) and λ11 ¼ 2γ2 (n ¼ 1,
j ¼ 1). Thus, for R large, the “continuum” of positive-
definite modes begins at λ10 ≈ λ11 ¼ 2γ2, cf. Ref. [86].
In order to perform the functional integral over the

five negative-semidefinite discrete modes, we expand
Φ̂ ¼ P

4
i¼0 aiϕi þ ϕþ, where ϕþ comprises the continuum

1We note that this substitution differs from that used in
Ref. [48].
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of positive-definite eigenmodes. The functional measure
then becomes

½dΦ� ¼ ½dϕþ�
Y4
i¼0

ð2πℏÞ−1=2dai: ð24Þ

The functional integral over the 4 zero eigenmodes
(i ¼ 1;…; 4) is traded for an integral over the collective
coordinates of the bounce [107] (see Appendix A) and
yields a factor

VT

�
B
2πℏ

�
2

: ð25Þ

The integral over the negative eigenmode (i ¼ 0) may be
performed using the method of steepest descent, giving an
overall factor of −ijλ0j−1=2=2. Here, the overall sign is
unphysical [48] and depends on the choice of analytic
continuation, thereby justifying the modulus sign in
Eq. (16).
Finally, the Gaussian integral over the continuum of

positive eigenmodes ϕþ may be performed in the usual
manner, and we obtain

iZ½0� ¼ e−B=ℏ
���� λ0detð5ÞG−1ðφÞ
1
4
ðVTÞ2ð B

2πℏÞ4ð4γ2Þ5detð5ÞG−1ðvÞ

����
−1
2

; ð26Þ

in which detð5Þ, cf. Ref. [86], denotes the determinant
calculated only over the continuum of positive-definite
eigenmodes, i.e. omitting the zero and negative eigenm-
odes, whose contributions are included explicitly. In
addition, we have normalized the determinant to that of
the operator G−1ðvÞ, evaluated in the false vacuum.
Substituting Eq. (26) into Eq. (16), we find the tunneling
rate per unit volume

Γ=V ¼
�

B
2πℏ

�
2

ð2γÞ5jλ0j−1
2 exp

�
−
1

ℏ
ðBþ ℏBð1ÞÞ

�
; ð27Þ

where

Bð1Þ ¼ 1

2
trð5ÞðlnG−1ðφÞ − lnG−1ðvÞÞ ð28Þ

contains the one-loop corrections from the quadratic
fluctuations around the classical bounce. Here, trð5Þ indi-
cates that we are to trace over only the positive-definite
eigenmodes.

III. GREEN’S FUNCTION METHOD

In this section, we outline the derivation of the Green’s
function of the operator in Eq. (19). The technical
details are included for completeness in Appendix B.
Subsequently, we use this Green’s function to evaluate

the functional determinant in Eq. (26) and obtain the
correction from quadratic fluctuations. In addition, we
calculate analytically the tadpole contribution to the effec-
tive equation of motion and point out that this may be used
to calculate the first quantum corrections to the bounce.
We have the inhomogeneous Klein-Gordon equation

ð−Δð4Þ þ U00ðφ; xÞÞGðφ; x; x0Þ ¼ δð4Þðx − x0Þ; ð29Þ

where δð4Þðx − x0Þ is the four-dimensional Dirac delta
function. Working in hyperspherical coordinates and writ-

ing xð0Þμ ¼ rð0Þerð0Þ , where erð0Þ are four-dimensional unit
vectors, the Green’s function may be expanded as

Gðφ;x;x0Þ¼ 1

2π2
X∞
j¼0

ðjþ1ÞGjðφ;r;r0ÞUjðcosθÞ; ð30Þ

where cos θ ¼ er · er0 and UjðzÞ are the Chebyshev poly-
nomials of the second kind (see Appendix B). The radial
functions Gjðr; r0Þ satisfy the inhomogeneous equation

�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

þU00ðrÞ
�
Gjðφ;r; r0Þ ¼

δðr− r0Þ
r03

:

ð31Þ

For the thin wall, we safely neglect the damping term and
approximate the centrifugal term by jðjþ 2Þ=R2. For self-
consistency of this approximation, we also replace the
discontinuity on the rhs of Eq. (31) with δðr − r0Þ=R3. For
generality of notation in what follows, it is then convenient
to define

Gðu; u0; mÞ≡ R3Gjðφ; r; r0Þ; ð32Þ

being a function only of the normalized bounce

uð0Þ ≡ φðrð0ÞÞ
v

¼ tanh½γðrð0Þ − RÞ� ð33Þ

and the parameter

m ¼ 2

�
1þ jðjþ 2Þ

4γ2R2

�1
2

: ð34Þ

The full Green’s function may then be written

Gðφ;x;x0Þ≡Gðu;u0;θÞ

¼ 1

2π2R3

X∞
j¼0

ðjþ1ÞUjðcosθÞGðu;u0;mÞ: ð35Þ

With the above approximations, the lhs of Eq. (31) is of
Pöschl-Teller form [108], having general solutions that may
be expressed in terms of the associated Legendre functions
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(see Appendix B). We are then able to find the full analytic
solution

Gðu;u0;mÞ ¼ 1

2γm

�
ϑðu− u0Þ

�
1− u
1þ u

�m
2

�
1þ u0

1− u0

�m
2

×

�
1− 3

ð1− uÞð1þmþ uÞ
ð1þmÞð2þmÞ

�

×
�
1− 3

ð1− u0Þð1−mþ u0Þ
ð1−mÞð2−mÞ

�
þ ðu↔ u0Þ

�
;

ð36Þ

where ϑðzÞ is the generalized unit-step function.
Taking the coincidence limit u ¼ u0, θ ¼ 0, the local

contribution to the Green’s function GðuÞ≡Gðu; u; 0Þ in
Eq. (35) takes the form

GðuÞ ¼ 1

2π2R3

X∞
j¼0

ðjþ 1Þ2Gðu;mÞ; ð37Þ

where

Gðu;mÞ≡Gðu; u;mÞ

¼ 1

2γm

�
1þ 3ð1 − u2Þ

X2
n¼1

ð−1Þnðn − 1 − u2Þ
m2 − n2

�
:

ð38Þ
In Eq. (38), the summation over n ¼ 1; 2 corresponds to the
contributions from the two towers of positive-definite
eigenmodes of the operator G−1ðφ; xÞ, see Eq. (23).
For R large, we may approximate the summation over j

by an integral over a continuous variable k ∼ jþ1
R (see

Appendix B). In which case, we obtain

GðuÞ ¼ 1

2π2

Z
∞

0

dkk2Gðu;mÞ; ð39Þ

with

m ¼ 2

�
1þ k2

4γ2

�1
2

: ð40Þ

The continuum limit described above is entirely equiv-
alent to the so-called planar-wall approximation. Therein,
for R large, we align a set of coordinates ðz⊥; z∥Þ with the
bubble wall, as shown in Fig. 2. We may then Fourier-
transform with respect to the coordinates z∥ that lie within
the three-dimensional wall, introducing a three-momentum
k, i.e.

Gðφ; x; x0Þ ¼
Z

d3k
ð2πÞ3 e

ik·ðz∥−z0∥ÞGðφ; z; z0;kÞ; ð41Þ

where we have let z ¼ z⊥ for notational convenience.
The three-momentum-dependent Green’s function
Gðφ; z; z0;kÞ satisfies the inhomogeneous Klein-Gordon
equation

ð−∂2
z þ k2 þU00ðφ; zÞÞGðφ; z; z0;kÞ ¼ δðz − z0Þ: ð42Þ

We may then show straightforwardly that

Gðφ; z; z0;kÞ ¼ Gðu; u0; mÞ; ð43Þ
where Gðu; u0; mÞ is as presented in Eq. (36), with m given
by Eq. (40). This planar-wall approximation is employed
for the remainder of this article.

A. Quantum-corrected bounce

Before making use of the Green’s function calculated in
the preceding section, we first derive the equation of
motion for the quantum-corrected bounce. This calculation
was first suggested by Goldstone and Jackiw [42] and, in
the following sections, we will illustrate that, within the
thin- and planar-wall approximations, it may be completed
analytically.
The one-particle irreducible (1PI) effective action [57] is

given by the Legendre transform

Γ½ϕ� ¼ −ℏ lnZ½J� þ
Z

d4xJðxÞϕðxÞ; ð44Þ

where

ϕðxÞ ¼ ℏ
δ lnZ½J�
δJðxÞ ð45Þ

is a functional of the source JðxÞ ¼ δΓ½ϕ�
δϕðxÞ and

Z½J� ¼
Z

½dΦ� exp
�
−
1

ℏ

�
S½Φ� −

Z
d4xJðxÞΦðxÞ

��
:

ð46Þ
In order to obtain the quantum corrections to the bounce

φ, we wish to evaluate the functional integral in Eq. (46) by
expanding around the configuration φð1Þ, which is the
solution to the quantum equation of motion

FIG. 2. Schematic representation of the planar-wall approxi-
mation, illustrating the alignment of the three-dimensional hyper-
surface and associated coordinate system.
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δΓ½ϕ�
δϕ

����
ϕ¼φð1Þ

¼ 0: ð47Þ

Here, the superscript “(1)” indicates that φð1Þ contains the
first quantum corrections to φ. It follows from Eq. (47) that
φð1Þ cannot extremize the classical action in the absence of
the source J, i.e.

δS½Φ�
δΦðxÞ

����
Φ¼φð1Þ

¼ JðxÞ ≠ 0: ð48Þ

Writing Φ ¼ φð1Þ þ ℏ1=2Φ̂ð1Þ, where the factor of ℏ1=2 is
again written explicitly for bookkeeping, we proceed as in
Sec. II, expanding

S½Φ� ¼ S½φð1Þ� þ ℏ1=2

Z
d4xJðxÞΦ̂ð1ÞðxÞ

þ ℏ
2

Z
d4xΦ̂ð1ÞðxÞG−1ðφð1Þ; xÞΦ̂ð1ÞðxÞ þ � � � ;

ð49Þ

where

G−1ðφð1Þ; xÞ≡ δ2S½Φ�
δΦ2ðxÞ

����
Φ¼φð1Þ

¼ −Δð4Þ þU00ðφð1Þ; xÞ: ð50Þ

We now write φð1Þ ¼ φþ ℏδφ and expand about the
quadratic fluctuations evaluated around the classical
bounce φ. Thus, in performing the functional integral,
we consider the same spectrum of negative and zero
eigenmodes as in Sec. II. Finally, by expanding the
effective action Γ½ϕ� in Eq. (44) around φð1Þ ¼ ϕ − ℏδφ
(see Ref. [109]), we obtain

Γ½φð1Þ� ¼ S½φð1Þ� þ iπℏ
2

þ ℏ2Bð2Þ0½φ�

þ ℏ
2
ln

���� λ0detð5ÞG−1ðφÞ
1
4
ðVTÞ2ð B

2πℏÞ4ð4γ2Þ5detð5ÞG−1ðvÞ

����þ � � � :

ð51Þ

where

Bð2Þ0½φ� ¼ 1

2

Z
d4xδφðxÞ

×
δ

δφð1ÞðxÞ ln
detð5ÞG−1ðφð1ÞÞ
detð5ÞG−1ðvÞ

����
φð1Þ¼φ

. ð52Þ

Functionally differentiating Eq. (51) with respect to φð1Þ,
we obtain the equation of motion for the corrected bounce

−∂2φð1ÞðxÞ þ U0
effðφð1Þ; xÞ ¼ 0; ð53Þ

where

U0
effðφð1Þ; xÞ≡U0ðφð1Þ; xÞ þ ℏΠðφ; xÞφðxÞ; ð54Þ

containing the tadpole contribution

Πðφ; xÞ ¼ λ

2
Gðφ; x; xÞ: ð55Þ

Comparing the functional derivative of Eq. (51) with
Eqs. (47) and (48), we see that this evaluation of the
effective action is self-consistent so long as the source

JðxÞ ¼ −ℏΠðφ; xÞφðxÞ; ð56Þ

which is, as expected, nonvanishing.
We may show that the correction to the classical bounce

δφ satisfies the equation of motion

G−1ðφ; xÞδφðxÞ ¼ −Πðφ; xÞφðxÞ: ð57Þ

The corrected bounce action S½φð1Þ� contains contribu-
tions at order ℏ2. Specifically,

S½φð1Þ� ¼ S½φ� þ ℏ2

2

Z
d4xδφðxÞG−1ðφ; xÞδφðxÞ þOðℏ3Þ;

ð58Þ
where we have used Eqs. (17) and (19). Thus, using
Eq. (57), we may write

S½φð1Þ� ¼ Bþ ℏ2Bð2Þ; ð59Þ

where

Bð2Þ ¼ −
1

2

Z
d4xφðxÞΠðφ; xÞδφðxÞ: ð60Þ

Hence, we obtain the tunneling rate per unit volume

Γ=V ¼ 2jIme−Γ½φð1Þ�=ℏj=ðVTÞ

¼
�

B
2πℏ

�
2

ð2γÞ5jλ0j−1
2

× exp
�
−
1

ℏ
ðBþ ℏBð1Þ þ ℏ2Bð2Þ þ ℏ2Bð2Þ0Þ

�
;

ð61Þ

where B is the classical bounce action; Bð1Þ, given in
Eq. (28), contains the corrections from quadratic fluctations
about the classical bounce; and Bð2Þ, given in Eq. (60),
contains the contribution arising from the quantum correc-
tions to the bounce itself. We note that

Bð2Þ0 ¼ −2Bð2Þ; ð62Þ
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such that the OðℏÞ corrections to the quadratic fluctuations
flip the sign of the contribution to the bounce action from
the OðℏÞ corrections to the bounce itself.

B. Tadpole contribution

We will now proceed to calculate explicitly the tadpole
contribution appearing in Eq. (55).
Introducing an ultraviolet cutoff Λ, the k integral can be

performed in Eq. (39), and we obtain

GðuÞ ¼ γ2

8π2

�
Λ2

γ2
þ 2 − ð1 − 3u2Þ ln γ2

Λ2
−

ffiffiffi
3

p
πu2ð1 − u2Þ

�
:

ð63Þ

We choose to define the physical mass and coupling in the
homogeneous nonsolitonic background.2 The renormaliza-
tion conditions are then as follows:

∂2UeffðφÞ
∂φ2

����
φ¼v

¼ −μ2 þ λ

2
v2 ¼ 2μ2; ð64aÞ

∂4UeffðφÞ
∂φ4

����
φ¼v

¼ λ; ð64bÞ

where Ueff is the CWeffective potential [53]. The resulting
mass and coupling counterterms are

δm2 ¼ −
λγ2

16π2

�
Λ2

γ2
− ln

γ2

Λ2
− 31

�
; ð65aÞ

δλ ¼ −
3λ2

32π2

�
ln

γ2

Λ2
þ 5

�
: ð65bÞ

We then arrive at the renormalized tadpole correction

ΠRðuÞ ¼ λ

2
GðuÞ þ δm2 þ 2γ2

λ
δλu2

¼ 3λγ2

16π2

�
6þ ð1 − u2Þ

�
5 −

πffiffiffi
3

p u2
��

: ð66Þ

C. Functional determinant

We may calculate the traces appearing in the exponent of
Eq. (27), which arise from the functional determinant of the
operator G−1ðφÞ in Eq. (26), by using the heat kernel
method (see e.g. Ref. [87]). Specifically, the trace may be
written in the form

trð5Þ lnG−1ðφ; xÞ ¼ −
Z

d4x
Z

∞

0

dτ
τ
Kðφ; x; xjτÞ: ð67Þ

The heat kernel Kðφ; x; x0jτÞ is the solution to the heat-flow
equation

∂τKðφ; x; x0jτÞ ¼ G−1ðφ; xÞKðφ; x; x0jτÞ ð68Þ

and satisfies the condition Kðφ; x; x0j0Þ ¼ δð4Þðx − x0Þ.
It is convenient to work in terms of the Laplace transform

of the heat kernel

Kðφ; x; x0jsÞ ¼
Z

∞

0

dτesτKðφ; x; x0jτÞ; ð69Þ

which is the solution to

ð−∂2 þ sþ U00ðφ; xÞÞKðφ; x; x0jsÞ ¼ δð4Þðx − x0Þ: ð70Þ

In the planar-wall approximation, we take

Kðφ; x; x0jsÞ ¼
Z

d3k
ð2πÞ3 e

ik·ðz∥−z0∥ÞKðφ; z; z0;kjsÞ; ð71Þ

where Kðφ; z; z0;kjsÞ satisfies

ð−∂2
z þ k2 þ sþU00ðφ; zÞÞKðφ; z; z0;kjsÞ ¼ δðz − z0Þ:

ð72Þ

Comparing Eq. (72) with Eq. (42), we see that
Kðφ; z; z0;kjsÞ is nothing other than the Green’s function
Gðu; u0; mÞ in Eq. (36) with the replacement k2 → k2 þ s in
m, see Eq. (40). Thus, we may write

Bð1Þ ¼ −
1

2

Z
Λ

0

dkk2
Z

∞

0

dτ
τ

Z
∞

0

drr3L−1
s ½ ~Gðu;mÞ�ðτÞ;

ð73Þ

where we have defined

~Gðu;mÞ ¼ Gðu;mÞ −Gð1; mÞ; ð74Þ

and

L−1
s ½ ~Gðu;mÞ�ðτÞ ¼

Z
C

ds
2πi

e−sτ ~Gðu;mÞ ð75Þ

is the inverse Laplace transform with respect to s, with C
indicating the Bromwich contour.
We may perform the integrals in Eq. (73) analytically,

proceeding in order from right to left and beginning with
the inverse Laplace transform. We then obtain the unrenor-
malized correction to the bounce action

2It is natural to define the renormalized quantities in the false
vacuum, since this is where the physical measurements of these
quantities are performed. If it were the case that such measure-
ments were taking place in the true vacuum, or indeed within the
wall itself, then the decay rate would be of little concern.

BJÖRN GARBRECHT AND PETER MILLINGTON PHYSICAL REVIEW D 91, 105021 (2015)

105021-8



Bð1Þ ¼ −B
�

3λ

16π2

��
π

3
ffiffiffi
3

p þ Λ2

γ2
þ ln

γ2

Λ2

�
: ð76Þ

The technical details of the relevant integrations are
included in Appendix B. Adding the counterterm

δBð1Þ ¼
Z

d4x

�
1

2!
δm2ðφ2 − v2Þ þ 1

4!
δλðφ4 − v4Þ

�

¼ B

�
3λ

16π2

��
Λ2

γ2
þ ln

γ2

Λ2
− 21

�
; ð77Þ

we obtain the final renormalized result

Bð1Þ ¼ −B
�

3λ

16π2

��
π

3
ffiffiffi
3

p þ 21

�
: ð78Þ

In Appendix B, we reproduce this result by the method
presented in Ref. [86].3

IV. RADIATIVE CORRECTIONS TO THE BOUNCE

We now discuss an example of the role played by loop
corrections to the bounce itself. Within the perturbation
expansion, one should expect that these lead to second-
order corrections to the classical action of the soliton
simply because the latter is evaluated for a stationary path.
There are, however, important situations, in which all one-
loop contributions must be resummed in order to capture
the leading quantum corrections to the action. Examples
include situations where the symmetry-breaking minima of
the potential emerge radiatively through the CW mecha-
nism [53]. In the absence of a soliton, this implies that the
classical solution, i.e. the homogeneous expectation value
of the field, has to be found consistently by minimizing the
one-loop effective potential as a function of the field
expectation value itself. Analogously, in order to find the
decay rate of the false vacuum, the bounce must be
computed consistently from the one-loop effective action,
which is a functional of the bounce itself. The methods
presented in this article reduce the problem of tunneling in
radiatively generated potentials to one-dimensional ordi-
nary differential equations and integrals. It is anticipated
that it should be possible to derive numerical solutions in
future work.
For the purpose of illustration, however, we remain

herein on the ground of analytic and perturbative

approximations. In order to enhance the corrections to
the bounce compared to other quantum effects that appear
at second order in perturbation theory, we extend the model
in Eq. (1) with N copies of an additional scalar field χ by
adding to the Lagrangian the terms

Lχ ¼
XN
i¼1

�
1

2!
ð∂μχiÞ2 þ

1

2!
m2

χχ
2
i þ

λ

4
Φ2χ2i

	
: ð79Þ

Here, we have chosen the coupling λ to be identical to the
self-coupling of Φ for the sake of simplicity in the Green’s
function of the χ fields. Since hχii ¼ 0, the additional
scalars do not impact upon the classical bounce in Sec. II or
the discussion of the Green’s function in Sec. III.
The Klein-Gordon equation for χi takes the form

�
−∂2 þm2

χ þ
λ

2
φ2

�
Sðφ; x; x0Þ ¼ δð4Þðx − x0Þ: ð80Þ

Comparing with that of Φ in Eq. (29), we see that the
Green’s function Sðu; u0; mÞ may be obtained straightfor-
wardly from Gðu; u0; mÞ in Eq. (36) by making the
replacement

m →
ffiffiffi
6

p �
1þ k2 þm2

χ

6γ2

�1
2

: ð81Þ

The renormalized tadpole contribution from each χi
field, integrated over the three-momentum k, is given by

ΣRðuÞ ¼ λγ2

8π2
γ2

m2
χ
½72þ ð1 − u2Þð40 − 3u2Þ�; ð82Þ

where we have assumed m2
χ ≫ γ2 for simplicity. The full

form of SðuÞ and the relevant counterterms are provided in
Appendix C.
The renormalized correction to the classical bounce δφ is

governed by the equation of motion
�
d2

dr2
þ μ2 −

λ

2
φ2

�
δφ ¼ ðΠRðuÞ þ NΣRðuÞÞφ; ð83Þ

cf. Eq. (57). We obtain the solution by making use of the
Green’s function Gðu; u0; 2Þ≡Gðu; u0; mÞjk¼0, writing

δφðuÞ ¼ −
v
γ

Z
1

−1
du0

u0Gðu; u0; 2Þ
1 − u02

ðΠRðu0Þ þ NΣRðu0ÞÞ;

ð84Þ
where we have used Eq. (33) in order to substitute φ.
We note at this point thatGðu; u0; mÞ is singular as k → 0

(or, equivalently, m → 2). Nonetheless, the integral in
Eq. (84) remains finite, since Gðu; u0; mÞ is multiplied
with an odd function, whereas the singularity resides in its
even part. It is therefore useful to define

3Using the same renormalization conditions as in Eq. (64),
Ref. [86] finds (in the notation employed here)

Bð1Þ ¼ −B
�

3λ

16π2

��
π

3
ffiffiffi
3

p þ 50

3

�
:

Repeating the analysis presented therein, as outlined in
Appendix B, we find a result in agreement with Eq. (78) reported
here, suggesting a numerical error in the factor of 50 above.
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Goddðu; u0Þ≡ 1

2
ðGðu; u0; 2Þ −Gðu;−u0; 2ÞÞ: ð85Þ

Within the domain 0 ≤ u; u0 ≤ 1, this function can be
expressed as

Goddðu; u0Þ ¼ ϑðu − u0Þ 1

32γ

1 − u2

1 − u02

�
2u0ð5 − 3u02Þ

þ 3ð1 − u02Þ2 ln 1þ u0

1 − u0

�
þ ðu ↔ u0Þ: ð86Þ

Defining in addition

p0ðuÞ ¼ γ

Z
1

−1
du0

u0

1 − u02
Goddðu; u0Þ

¼ 1 − u2

8

�
2u

1 − u2
þ ln

1þ u
1 − u

�
; ð87aÞ

p1ðuÞ ¼ γ

Z
1

−1
du0u0Goddðu; u0Þ

¼ 1 − u2

8
ln
1þ u
1 − u

; ð87bÞ

p2ðuÞ ¼ γ

Z
1

−1
du0u03Goddðu; u0Þ

¼ 1 − u2

8

�
ln
1þ u
1 − u

−
4

3
u

�
; ð87cÞ

we find the result

δφðuÞ ¼ −
3λv
16π2

�
6

�
8γ2

m2
χ
N þ 1

�
p0ðuÞ

þ 5

�
16γ2

3m2
χ
N þ 1

�
p1ðuÞ −

�
2γ2

m2
χ
N þ πffiffiffi

3
p

�
p2ðuÞ

�
:

ð88Þ

In Fig. 3, we plot δφ as a function of γðr − RÞ for a range of
values of Nγ2=m2

χ . We see from Fig. 4, which plots the
corrected bounce φþ δφ ðℏ ¼ 1Þ for the same range, that
the impact of this correction is to lower the height and
broaden the width of the bubble wall. We note that this
behavior is in qualitative agreement with the results of the
self-consistent numerical analysis in Ref. [102], presented
there for the pure λΦ4 theory in 1þ 1 dimensions.
Substituting Eq. (88) into Eq. (60), we find the correction

to the bounce action

Bð2Þ þ Bð2Þ0 ¼ 1

2

Z
d4xφðuÞðΠRðuÞ þ NΣRðuÞÞδφðuÞ

¼ −B
3

�
3λ

16π2

�
2
�
291

8
−
37

4

πffiffiffi
3

p þ 5

56

π2

3

þ
�
667

2
−
2897

42

πffiffiffi
3

p
�

γ2

m2
χ
N þ 5829

14

γ4

m4
χ
N2

�
:

ð89Þ

FIG. 3. The correction to the bounce δφ as a function of
γðr − RÞ for Nγ2=m2

χ ¼ 0 (solid), 0.5 (dashed), 1 (dash-dotted)
and 1.5 (dotted).

FIG. 4. The corrected bounce φþ δφ as a function of γðr − RÞ
for Nγ2=m2

χ ¼ 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5
(dotted). We see clearly that the impact of the tadpole correction
is to broaden the bubble wall.
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In order to obtain a finite result for Eq. (89), we have added
to U0 the correction

δU0 ¼
9

4

�
3λ

16π2

�
2

γ2v2
�
8γ2

m2
χ
N þ 1

�
2

; ð90Þ

ensuring that the potential continues to vanish in the false
vacuum.
The corrections appearing in Eq. (89) should be com-

pared to the renormalized logarithm of the determinants of
the Klein-Gordon operators of the χ fields in the back-
ground given by φ, which are given by

Bð1Þ
χ ¼ −B

�
3λ

16π2

�
2542

15

�
γ2

m2
χ
þO

�
γ4

m4
χ

��
N: ð91Þ

In comparison, the leading term in Eq. (89) is suppressed
by a factor ∼λμ2=m2

χ=ð16π2Þ. The one-loop corrections Bð1Þ

and Bð1Þ
χ are both negative, thereby increasing the tunneling

rate. It is interesting to note that, although the contribution
Bð2Þ to the tunneling action from the corrections to the
bounce itself is positive, the net contribution of Bð2Þ þ Bð2Þ0
is still negative, again increasing the tunneling rate.
In Fig. 5, we present a diagrammatic representation of

the corrections to the bounce action. It is also useful in
order to see that there appear no contributions of Oðλ2N2Þ
relative to the bounce action B in addition to those from
Bð2Þ. In order to avoid proliferation, we only show the
leading contributions in 1=N for a given type of diagram.
At one-loop order, there is the vacuum bubble in terms of
the propagator S of the χ fields, Fig. 5(a), which gives the

contribution OðλNÞ relative to B from Bð1Þ
χ in Eq. (91). On

substituting δφ in the form of Eq. (84) into the action

[Eq. (58)], we see that the diagram corresponding to the
Oðλ2N2Þ term in Bð2Þ=B is given by Fig. 5(b), where, when
counting the powers of λ, one should note that each explicit
insertion of φ contributes a factor of 1=

ffiffiffi
λ

p
. Finally, at two-

loop order, there are the diagrams Figs. 5(c) and 5(d), which
we do not compute, but yield contributions of Oðλ2NÞ
relative to B. These contributions are therefore suppressed
by a relative factor of 1=N relative to the Oðλ2N2Þ in
Bð2Þ=B, as is familiar from the standard approximation
scheme known as the 1=N expansion [110]. We should
remark that these arguments do not hold, of course, for the
contribution to Bð2Þ from the Φ tadpole, which we include
here for completeness. The latter is formally the same order
as other two-loop diagrams, involving only Φ, that are not
captured in the 1PI approximation employed here. This
observation is true also of the Hartree approximation for the
pure λΦ4 theory analyzed numerically in Refs. [102–105].
Nevertheless, these additional two-loop diagrams remain
subdominant compared to the Oðλ2NÞ and Oðλ2N2Þ con-
tributions from the χ tadpole in Eq. (89).
Finally, we note that approximating δφ as a small

perturbation to φ, using Eq. (84), requires for consistency
that 6Nλγ2=ðm2

χπ
2Þ ≪ 1, such that within the range of

validity of present approximations, we cannot obtain
jBð2Þ þ Bð2Þ0j > jBð1Þj. Nevertheless, for large N, Bð2Þ þ
Bð2Þ0 can be the dominant two-loop contribution to the
effective action.

V. CONCLUSIONS

Within the context of λΦ4 theory, we have described a
Green’s function method for handling radiative effects on
false vacuum decay. By this means and employing the thin-
and planar-wall approximations, we have been able to
calculate analytically and in a straightforward manner both
the functional determinant of the quadratic fluctuations
about the classical soliton configuration and the first
correction to the configuration itself.
This Green’s function method is well suited to numeri-

cal evaluation and, as a consequence, should be applicable
to potentials of more general form. As such, we anticipate
that it may be of particular use when the nondegeneracy of
minima is purely radiatively generated. Examples of the
latter include the spontaneous symmetry breaking of
the massless CW model [53] or the instability of the
electroweak vacuum. Other applications might include
the calculation of corrections to inflationary potentials in
the time-dependent inflaton background, for instance in
inflection-point or A-term inflation [111–114], which
exploit the flat directions and saddle points of the
MSSM potential. Furthermore, the use of Green’s func-
tions naturally admits the introduction of finite-
temperature effects or extension to nontrivial background
spacetimes.

FIG. 5. Diagrammatic representation of various contributions to
the effective action: (a) is the one-loop term Bð1Þ

χ , (b) is the
Oðλ2N2Þ contribution to Bð2Þ, and (c) and (d) are Oðλ2NÞ terms.
Solid lines represent the propagator Gðφ; x; x0Þ, dotted lines
Sðφ; x; x0Þ. Crosses denote insertions of the bounce φ.
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Green’s functions have proved to be central objects
within perturbative calculations throughout quantum field
theory, and it is therefore unsurprising that we find these
suitable to treat solitons in λΦ4 theory as well. We take this
as an encouragement that further theoretically and phe-
nomenologically interesting systematic results on false
vacuum decay may be within reach.
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APPENDIX A: ZERO-MODE
FUNCTIONAL MEASURE

In order to perform the functional integration over the
zero modes, we insert four copies of unity in Faddeev-
Popov form [107]:

1 ¼
Z

dyμj∂ðyÞ
μ fðyμÞjδðfðyμÞÞ: ðA1Þ

Here, μ is not summed over, and

fðyμÞ ¼
Z

d4xΦðx − yÞ∂ðxÞ
μ φðx − yÞ ¼ B1=2aμ; ðA2Þ

where we recall that

Φ ¼ φþ
X4
i¼0

aiϕi þ ϕþ: ðA3Þ

It follows that

∂ðyÞ
μ fðyμÞ ¼ −

Z
d4xð∂ðxÞ

μ φðx − yÞÞ2 ¼ −B; ðA4Þ

ignoring terms that are formally Oðℏ1=2Þ. Thus,

1 ¼ B
Z

dyμδðB1=2aμÞ ¼ B1=2

Z
dyμδðaμÞ: ðA5Þ

We then have

Z Y4
μ¼1

ð2πℏÞ−1=2daμ ¼
�

B
2πℏ

�
2
Z

d4y
Y4
μ¼1

Z
daμδðaμÞ

¼ VT

�
B
2πℏ

�
2

: ðA6Þ

APPENDIX B: GREEN’S FUNCTION

In this appendix, we include the technical details of the
calculations outlined in Secs. III and IV. All functional
identities used in what follows may be found in Ref. [115].

1. Expansion in hyperspherical harmonics

In d dimensions, the Green’s function satisfies the
inhomogeneous Klein-Gordon equation

ð−ΔðdÞ þ U00ðφÞÞGðdÞðφ; x; x0Þ ¼ δðdÞðx − x0Þ; ðB1Þ

where δðdÞðx − x0Þ is the Dirac delta function andΔðdÞ is the
Laplacian. Given the OðdÞ invariance of the bounce φ, it is
convenient to work in hyperspherical coordinates, in which
case the Laplacian takes the form

ΔðdÞ ¼ r1−d∂rrd−1∂r þ ΔSd−1 ; ðB2Þ

where ΔSd−1 is the Laplace-Beltrami operator on the d − 1
sphere.
We proceed by performing a partial-wave decomposition

of the Green’s function:

GðdÞðφ; x; x0Þ ¼
X
jflg

Gjðφ; r; r0ÞY�
jflgðer0 ÞYjflgðerÞ; ðB3Þ

where x ¼ rer, x0 ¼ r0er0 , and YjflgðerÞ are the hyper-
spherical harmonics (see e.g. Ref. [116]), satisfying the
eigenvalue equation

ΔSd−1Yjflg ¼ −jðjþ d − 2ÞYjflg; ðB4Þ

with flg ¼ l1;l2;…;ld−2. The hyperradial function
Gjðφ; r; r0Þ satisfies
�
−r1−d

d
dr

rd−1
d
dr

þ jðjþ d − 2Þ
r2

þ U00ðφÞ
�
Gjðφ; r; r0Þ

¼ r01−dδðr − r0Þ: ðB5Þ

Since, for each j, the flg modes are degenerate, we may
use the sum rule [116]
X
flg

Y�
jflgðer0 ÞYjflgðerÞ

¼ 2

ð4πÞκþ1
2

jþ κ

jþ 2κ

�
jþ κ þ 1

2

�
κþ1

2

P
ðκ−1

2
;κ−1

2
Þ

j ðcos θÞ;

ðB6Þ

where κ ¼ d=2 − 1, cos θ ¼ er · er0 ,

ðzÞn ¼
Γðzþ nÞ
ΓðzÞ ðB7Þ
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is the Pochhammer symbol, and the Pðα;βÞ
j ðzÞ are the Jacobi

polynomials.
For d ¼ 1, κ ¼ −1=2, cos θ ∈ f−1;þ1g, and we have

Pð−1;−1Þ
j ðþ1Þ ¼ 0; ðB8Þ

Pð−1;−1Þ
j ð−1Þ ¼ sin πj

πj
¼

�
1; j ¼ 0

0; j ≠ 0
: ðB9Þ

Hence, Gð1Þðφ; x; x0Þ ¼ G0ðφ; r; r0Þ, as we would expect.
For d ¼ 2, κ ¼ 0, and we have

P
ð−1

2
;−1

2
Þ

j ðzÞ ¼ TjðzÞffiffiffi
π

p ðjþ 1
2
Þ1
2

; ðB10Þ

where TjðzÞ is the Chebyshev polynomial of the first kind.
We then obtain

Gð2Þðφ; x; x0Þ ¼ 1

π

X∞
j¼0

cos jθGjðφ; r; r0Þ; ðB11Þ

where we have used the trigonometric form
Tjðcos θÞ ¼ cos jθ.
For d ¼ 3, κ ¼ 1=2, and

Pð0;0Þ
j ðzÞ ¼ PjðzÞ; ðB12Þ

where PjðzÞ are the Legendre polynomials. Thus, we
obtain the familiar three-dimensional expansion

Gð3Þðφ; x; x0Þ ¼ 1

4π

X∞
j¼0

ð2jþ 1ÞPjðcos θÞGjðφ; r; r0Þ:

ðB13Þ

Finally, for d ¼ 4, κ ¼ 1, and

P
ð1
2
;1
2
Þ

j ðzÞ ¼ 2ffiffiffi
π

p jþ 2

ðjþ 3
2
Þ3
2

UjðzÞ; ðB14Þ

where UjðzÞ are the Chebyshev polynomials of the second
kind. Hence, we find

Gð4Þðφ; x; x0Þ ¼ 1

2π2
X∞
j¼0

ðjþ 1ÞUjðcos θÞGjðφ; r; r0Þ

ðB15Þ

as appearing in Eq. (30).

2. Continuum approximation

In the coincident limit x ¼ x0, cos θ ¼ 1, and we have

Tjð1Þ ¼ 1; Pjð1Þ ¼ 1; Ujð1Þ ¼ jþ 1: ðB16Þ

Alternatively, in d dimensions, we may use

Pðα;βÞ
j ð1Þ ¼ ðαþ 1Þj

Γðjþ 1Þ ðB17Þ

in Eq. (B6), giving

GðdÞðφ;x;x0Þ ¼ 2ð4πÞ−d−1
2

Γðd−1
2
Þ

×
X∞
j¼0

ðjþd=2− 1ÞΓðjþd− 2Þ
Γðjþ 1Þ Gjðφ;r; r0Þ:

ðB18Þ

Completing the square in the centrifugal potential in
Eq. (B5), we make the following approximation for large R:

jðjþ d − 2Þ
R2

¼ ðjþ κÞ2
R2

−
λ2

4R2
≈
ðjþ κÞ2

R2
; ðB19Þ

where κ ¼ d=2 − 1, as before. We may then promote
ðjþ κÞ=R to a continuous variable k, obtaining

Gð2Þðφ; x; xÞ ¼ 1

π

Z
∞

0

dkGðu;mÞ; ðB20aÞ

Gð3Þðφ; x; xÞ ¼ 1

2π

Z
∞

0

dkkGðu;mÞ; ðB20bÞ

Gð4Þðφ; x; xÞ ¼ 1

2π2

Z
∞

0

dkk2Gðu;mÞ; ðB20cÞ

..

.

GðdÞðφ; x; xÞ ¼ 2ð4πÞ−d−1
2

Γðd−1
2
Þ

Z
∞

0

dkkd−2Gðu;mÞ; ðB20dÞ

where we have used the general notation employed in
Sec. III, see Eq. (38), with m given by Eq. (40). We note
that for d > 4, we have dropped terms Oðk=RÞ and higher
within the integrand.

3. Radial function

For large R, we neglect the damping term in the radial
equation [Eq. (B5)] and set r ¼ R in the centrifugal
potential and discontinuity, giving
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�
−

d2

dr2
þ jðjþ d − 2Þ

R2
þ U00ðφÞ

�
Gjðφ; r; r0Þ ¼

δðr − r0Þ
Rd−1 :

ðB21Þ

Since the solution depends only on the normalized bounce
u ¼ tanh½γðr − RÞ�, it is convenient to define

Gðu; u0; mÞ≡ Rd−1Gjðφ; r; r0Þ; ðB22Þ

cf. Sec. III. Equation (B21) may then be recast in the form

�
d
du

ð1 − u2Þ d
du

−
m2

1 − u2
þ nðnþ 1Þ

�
Gðu; u0; mÞ

¼ −γ−1δðu − u0Þ; ðB23Þ

where

n ¼ 2; m ¼ 2

�
1þ jðjþ d − 2Þ

4γ2R2

�1
2

: ðB24Þ

Splitting around the discontinuity at u ¼ u0, we
decompose

Gðu; u0; mÞ ¼ ϑðu − u0ÞG>ðu; u0; mÞ
þ ϑðu0 − uÞG<ðu; u0; mÞ; ðB25Þ

where G≷ðu; u0; mÞ are the solutions to the homogeneous
equation

�
d
du

ð1 − u2Þ d
du

−
m2

1 − u2
þ nðnþ 1Þ

�
G≷ðu; u0; mÞ ¼ 0:

ðB26Þ

The latter is the associated Legendre differential equation,
and we obtain the general solutions

G≷ðu; u0; mÞ ¼ A≷Pm
2 ðuÞ þ B≷Qm

2 ðuÞ; ðB27Þ

where Pm
n ðzÞ and Qm

n ðzÞ are the associated Legendre
functions of the first and second kind, respectively.
Matching around the delta function in the inhomo-

geneous equation, we require

ðA> − A<ÞPm
2 ðu0Þ þ ðB> − B<ÞQm

2 ðu0Þ ¼ 0; ðB28aÞ

ðA> − A<Þ d
du0

Pm
2 ðu0Þ

þ ðB> − B<Þ d
du0

Qm
2 ðu0Þ ¼ −

1

γð1 − u02Þ : ðB28bÞ

Thus, we find

A> − A< ¼ 1

γð1 − u02Þ
Qm

2 ðu0Þ
W½Pm

2 ðu0Þ; Qm
2 ðu0Þ�

; ðB29aÞ

B> − B< ¼ 1

γð1 − u02Þ
Pm
2 ðu0Þ

W½Qm
2 ðu0Þ; Pm

2 ðu0Þ�
; ðB29bÞ

where W½Pm
n ðzÞ; Qm

n ðzÞ� is the Wronskian, having the
explicit form

W½Pm
n ðzÞ; Qm

n ðzÞ� ¼
ðn −mþ 1Þ2m

1 − u02
; ðB30Þ

with the Pochhammer symbol defined in Eq. (B7). We also
require the boundary condition that Gðu; u0; mÞ go to zero
as u → �1, giving

A>

B>
¼ −

π

2
cotmπ; B< ¼ 0: ðB31Þ

We may now solve for the remaining nonzero coeffi-
cients and obtain

G>ðu; u0; mÞ ¼ π

2γ

1

sinmπ
P−m
2 ðuÞPm

2 ðu0Þ; ðB32Þ

with G<ðu; u0; mÞ ¼ G>ðu0; u; mÞ. Here, we have used the
identity

πðn −mþ 1Þ2m
2 sinmπ

P−m
n ðzÞ ¼ π

2
cotmπ Pm

n ðzÞ −Qm
n ðzÞ:
ðB33Þ

Finally, we employ the representation

Pm
n ðzÞ ¼

�
zþ 1

z − 1

�m
2 ðn −mþ 1ÞmPð−m;mÞ

n ðzÞ ðB34Þ

of the associated Legendre function of the first kind in
terms of the Jacobi polynomials. For n ¼ 2, the polynomial
expansion of the latter terminates, and we have

Pð�m;∓mÞ
2 ðzÞ ¼ 1

2
½ð1�mÞð2�mÞ

− 3ð2�mÞð1 − uÞ þ 3ð1 − uÞ2�: ðB35Þ

After some algebraic simplification, we then arrive at
the final analytic solution, as presented in Eq. (36) of
Sec. III.

4. Functional determinant

The normalized heat kernel ~Kðφ; z; z0;kjτÞ, see Sec. III,
is given in terms of the inverse Laplace transform

~Kðφ; z; z0;kjτÞ ¼ L−1
s ½ ~Gðu;mÞ�ðτÞ; ðB36Þ
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where

~Gðu;mÞ¼ 3

2γm
ð1−u2Þ

X2
n¼1

ð−1Þn ðn−1−u2Þ
m2−n2

; ðB37Þ

with

m ¼ 2

�
1þ k2 þ s

4γ2

�1
2

: ðB38Þ

The inverse Laplace transform may be performed by
using the shift, scaling and division properties

L−1
s ½Fðsþ bÞ�ðτÞ ¼ e−bτfðτÞ; ðB39aÞ

L−1
s ½FðasÞ�ðτÞ ¼ 1

a
fðτ=aÞ; ðB39bÞ

L−1
s ½s−1FðsÞ�ðτÞ ¼

Z
τ

0

dτ0fðτ0Þ; ðB39cÞ

where fðτÞ ¼ L−1
s ½FðsÞ�ðτÞ, as well as the elementary

transformation

L−1
s ½s−z�ðτÞ ¼ τz−1

ΓðzÞ ; Rez > 0: ðB40Þ

We find

L−1
s ½m−1ðm2 − n2Þ−1�ðτÞ ¼ γ2

n
e½γ2ðn2−4Þ−k2�τerfðnγ ffiffiffi

τ
p Þ;
ðB41Þ

where

erfðzÞ ¼ 2ffiffiffi
π

p
Z

z

0

dte−t
2 ðB42Þ

is the error function. Hence, we have

~Kðφ; z; z0;kjτÞ

¼ −
3

2
γð1 − u2Þe−k2τ

×
X2
n¼1

ð−1Þn
�
1þ u2

n
− 1

�
eγ

2ðn2−4Þτerfðnγ ffiffiffi
τ

p Þ: ðB43Þ

Generalizing to d dimensions, using the continuum limit
in Eq. (B20d), the correction to the bounce action arising
from the functional determinant is therefore

Bð1Þ ¼ −
3

2

Ωdð4πÞ−d−1
2

Γðd−1
2
Þ

Z
∞

0

dkkd−2
Z

∞

0

dτ
τ
e−k

2τ

×
Z

∞

0

drrd−1γð1 − u2Þ

×
X2
n¼1

ð−1Þn
�
1þ u2

n
− 1

�
eγ

2ðn2−4Þτerfðnγ ffiffiffi
τ

p Þ;

ðB44Þ

where Ωd ¼ 2πd=2=Γðd=2Þ is the solid angle subtended by
the (d − 1)-dimensional hypersphere. The integral over r is
dominated by r ∼ R, such that (for n ¼ 1; 2)

ð−1Þn
Z

∞

0

drrd−1γð1 − u2Þ
�
1þ u2

n
− 1

�
≈ −

2

3
Rd−1:

ðB45Þ

We are then left with

Bð1Þ ¼ Ωdð4πÞ−d−1
2 Rd−1

Γðd−1
2
Þ

Z
∞

0

dkkd−2
Z

∞

0

dτ
τ
e−k

2τ

×
X2
n¼1

eγ
2ðn2−4Þτerfðnγ ffiffiffi

τ
p Þ; ðB46Þ

cf. the form presented in Ref. [86].
We may now proceed in one of two ways: (i) performing

the τ integration first, we must regularize the k integral,
for instance by introducing an ultraviolet cutoff Λ; or
(ii) performing the k integral first, we must instead
regularize the τ integral. The latter is the approach
presented in Ref. [86], which we reproduce in what follows
for comparison.
(i) Performing the τ integral first gives

Bð1Þ ¼ −
2Ωdð4πÞ−d−1

2 Rd−1

Γðd−1
2
Þ

Z
Λ

0

dkkd−2

×
X2
n¼1

arcsinh
nγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − γ2ðn2 − 4Þ
p : ðB47Þ

Subsequently, performing the k integral for d ¼ 4, we
obtain the result in Eq. (78).
(ii) Instead, performing the k integral first, we obtain

Bð1Þ ¼ 1

2
ΩdRd−1ð4πÞ−d−1

2

Z
∞

0

dττ−
dþ1
2

×
X2
n¼1

eγ
2ðn2−4Þτerfðnγ ffiffiffi

τ
p Þ; ðB48Þ

which is regularized by introducing a large mass M as
follows:

GREEN’S FUNCTION METHOD FOR HANDLING … PHYSICAL REVIEW D 91, 105021 (2015)

105021-15



Bð1Þ ¼ 1

2
ΩdRd−1ð4πÞ−d−1

2 lim
ϵ→0

d
dϵ

M2ϵ

ΓðϵÞ
Z

∞

0

dτ

× τ−
dþ1
2
þϵ

X2
n¼1

eγ
2ðn2−4Þτerfðnγ ffiffiffi

τ
p Þ: ðB49Þ

We may proceed by using the series representation of the
error function

erfðzÞ ¼ 2ffiffiffi
π

p e−z
2
X∞
l¼0

2l

ð2lþ 1Þ!! z
2lþ1; ðB50Þ

where !! denotes the double factorial. The τ integral may
now be performed, and we obtain

Bð1Þ ¼ ðγRÞd−1Ωdπ
−d
2lim
ϵ→0

d
dϵ

1

ΓðϵÞ
�
M2

4γ2

�
ϵ

×
X2
n¼1

X∞
l¼0

2lðn=2Þ2lþ1

ð2lþ 1Þ!! Γðϵþ lþ 1 − d=2Þ: ðB51Þ

Considering the derivative with respect to ϵ, we have

d
dϵ

Γðϵþ lþ 1 − d=2Þ
ΓðϵÞ

�
M2

4γ2

�
ϵ

¼ Γðϵþ lþ 1 − d=2Þ
ΓðϵÞ

�
M2

4γ2

�
ϵ

×

�
ln
M2

4γ2
− ψðϵÞ þ ψðϵþ lþ 1 − d=2Þ

�
; ðB52Þ

where ψðzÞ is the digamma function. In order to take the
limit ϵ → 0 safely, we must take note of the poles occurring
in ΓðzÞ and ψðzÞ for nonpositive integers. Such poles occur
in even dimensions for l ¼ 0; 1;…; d − 3.
After treating the limit ϵ → 0, we find for d odd

(including d ¼ 1)

Bð1Þ ¼ −ðγRÞd−1Ωdπ
−d
2

×
X2
n¼1

X∞
l¼0

2lðn=2Þ2lþ1

ð2lþ 1Þ!! Γðlþ 1 − d=2Þ: ðB53Þ

On the other hand, for d even, we find

Bð1Þ ¼ −ðγRÞd−1Ωdπ
−d
2

×
X2
n¼1

� X∞
l¼d−2

2lðn=2Þ2lþ1

ð2lþ 1Þ!! Γðlþ 1 − d=2Þ

þ
Xd−3
l¼0

2lðn=2Þ2lþ1

ð2lþ 1Þ!!
ð−1Þd=2−l−1

ðd=2 − l − 1Þ!

×

�
ln
M2

4γ2
þHd=2−l−1

��
; ðB54Þ

where

Hn ¼
Xn
k¼1

1

k
ðB55Þ

are the harmonic numbers, which we have supplemented
with H0 ≡ 0 for notational simplicity.
For d ¼ 4, we then obtain

Bð1Þ ¼ −2R3γ3
X2
n¼1

�X∞
l¼2

2lðn=2Þ2lþ1

ð2lþ 1Þ!! ðl − 2Þ!

þ
X1
l¼0

2lðn=2Þ2lþ1

ð2lþ 1Þ!!
ð−1Þ1−l
ð1 − lÞ!

�
ln
M2

4γ2
þH1−l

��
:

ðB56Þ
Lastly, performing the summations, we arrive at the result

Bð1Þ ¼ −B
�

3λ

16π2

��
π

3
ffiffiffi
3

p − 2þ ln
4γ2

M2

�
: ðB57Þ

Defining the counterterms in the proper-time represen-
tation, see Ref. [86], and fixing the renormalization con-
ditions as in Eq. (64), we find the counterterms

δm2 ¼ λγ2

16π2

�
ln
4γ2

M2
þ 29

�
; ðB58aÞ

δλ ¼ −
3λ2

32π2

�
ln
4γ2

M2
þ 3

�
; ðB58bÞ

giving

δBð1Þ ¼ B

�
3λ

16π2

��
ln
4γ2

M2
− 23

�
: ðB59Þ

Adding these to Eq. (B57), we obtain agreement with
Eq. (78).

APPENDIX C: RENORMALIZATION OF
THE N-FIELD MODEL

In this final appendix, we highlight the main technical
details of the derivation of the Green’s function and
corrections to the bounce from the χ fields.
Proceeding as for the isolated φ case, see Sec. III, the

renormalization is fixed using the CW effective potential
[53], evaluated in a homogeneous false vacuum. The
renormalization conditions are then

∂2Ueff

∂φ2

����
φ¼v;χi¼0

¼ 4γ2; ðC1aÞ

∂2Ueff

∂χ2i
����
φ¼v;χi¼0

¼ 6γ2 þm2
χ ; ðC1bÞ
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∂4Ueff

∂φ4

����
φ¼v;χi¼0

¼ λ; ðC1cÞ

∂4Ueff

∂φ2∂χ2i
����
φ¼v;χi¼0

¼ λ; ðC1dÞ

∂4Ueff

∂χ2i ∂χ2j
����
φ¼v;χi¼0

¼ 0; ðC1eÞ

where the effective potential is

Ueff ¼ Uðφ; χÞ þ δUðφ; χÞ

þ N − 1

4π2

Z
Λ

0

dkk2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
χ

q
− k

�

þ 1

4π2

Z
Λ

0

dkk2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

−

q
− 2k

�
;

ðC2Þ

with

M2
χ ¼ m2

χ þ
λ

2
φ2; ðC3aÞ

M2
φ ¼ −2γ2 þ λ

2
φ2 þ λ

2
χ2i ; ðC3bÞ

M2
� ¼ M2

φ þM2
χ

2
�
��

M2
φ −M2

χ

2

�
2

þ λ2φ2χ2i

�
1=2

; ðC3cÞ

and

Uðφ; χÞ ¼ −
1

2!
μ2φ2 þ 1

2!
m2

χχ
2
i þ

1

4!
λφ4 þ 1

4
λφ2χ2i ;

ðC4aÞ

δUðφ; χÞ ¼ þ 1

2!
δm2

φφ
2 þ 1

2!
δm2

χχ
2
i þ

1

4!
δλφφ

4

þ 1

4
δλφχφ

2χ2i þ
1

4
δλχχ

2
i χ

2
j : ðC4bÞ

In Eqs. (C3) and (C4), the summations over i; j ¼ 1;…; N
have been left implicit for notational convenience.
Solving the resulting system, we obtain the set of

counterterms

δm2
χ ¼ −

λγ2

16π2

�
Λ2

γ2
− ln

γ2

Λ2
− 13þ 216γ2

m2
χ þ 6γ2

−
360γ2

m2
χ þ 2γ2

ln
6γ2 þm2

χ

4γ2

�
; ðC5aÞ

δm2
φ ¼ −

λγ2

16π2

�
ðN þ 1Þ

�
Λ2

γ2
− 30

�
−
�
ln

γ2

Λ2
þ 1

�

þ N
m2

χ

2γ2

�
ln
6γ2 þm2

χ

4Λ2
þ 1

�
þ 27N

�
m2

χ þ 2γ2

m2
χ þ 6γ2

�
2
�
;

ðC5bÞ

δλφ ¼ −
3λ2

32π2

�
ln

γ2

Λ2
þ 5ðN þ 1Þ

þ N ln
6γ2 þm2

χ

4Λ2
− 3N

�
m2

χ þ 2γ2

m2
χ þ 6γ2

�
2
�
; ðC5cÞ

δλφχ ¼ −
λ2

32π2

�
ln

γ2

Λ2
þ 4 ln

6γ2 þm2
χ

4Λ2

þ 136γ2

m2
χ þ 2γ2

ln
6γ2 þm2

χ

4γ2
þ 9

m2
χ − 2γ2

m2
χ þ 6γ2

�
; ðC5dÞ

δλχ ¼ −
λ2

32π2

�
1

2
ln

γ2

Λ2
þ ðm2

χ − 10γ2Þ2 þ 432γ4

ðm2
χ þ 2γ2Þ2

þ 24γ2
ðm2

χ − 2γ2Þ2 − 112γ4

ðm2
χ þ 2γ2Þ3 ln

6γ2 þm2
χ

4γ2

�
: ðC5eÞ

Proceeding as for φ, we find the unrenormalized tadpole
contribution of the χ fields

ΣðuÞ ¼ γ2λ

16π2

�
Λ2

γ2
þ 6γ2 þm2

χ

2γ2

�
ln
6γ2 þm2

χ

4Λ2
þ 1

�

− 3ð1 − u2Þ ln 6γ
2 þm2

χ

4Λ2

− 6ð1 − u2Þ
X2
n¼1

ð−1Þnðn − 1 − u2Þ

×

�
6γ2 þm2

χ

n2γ2
− 1

�1
2

arccot

�
6γ2 þm2

χ

n2γ2
− 1

�1
2

�
:

ðC6Þ

After adding the counterterms, we obtain

ΣRðuÞ ¼ 3γ2λ

16π2

�
11 − 5u2 − 3ð3 − u2Þ

�
m2

χ þ 2γ2

m2
χ þ 6γ2

�
2

− 2ð1 − u2Þ
X2
n¼1

ð−1Þnðn − 1 − u2Þ

×

�
6γ2 þm2

χ

n2γ2
− 1

�1
2

arccot

�
6γ2 þm2

χ

n2γ2
− 1

�1
2

�
:

ðC7Þ

We note that the expression in Eq. (C7) agrees with the
renormalized tadpole contribution from Φ in Eq. (66) for
m2

χ ¼ −μ2, as we would expect. Assuming m2
χ ≫ γ2, we
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may expand Eq. (C7) to leading order in γ2=m2
χ , giving

Eq. (82).
The one-loop correction to the bounce action from the

determinant over the quadratic fluctuations in the χ fields is
given by

Bð1Þ
χ ¼ −

N
2

Z
Λ

0

dkk2
Z

∞

0

dτ
τ

Z
∞

0

drr3

× L−1
s ½ ~Sðu;mÞ�ðτÞ; ðC8Þ

where ~Sðu;mÞ is obtained from Eqs. (38) and (74) with

m ¼
ffiffiffi
6

p �
1þ k2 þ sþm2

χ

6γ2

�1
2

: ðC9Þ

Continuing as in Sec. III, we find

Bð1Þ
χ ¼ − N

R3γ3

2

�
3
Λ2

γ2
þ 3

m2
χ þ 4γ2

2γ2
ln
6γ2 þm2

χ

4Λ2

−
m2

χ þ 2γ2

2γ2
þ 2

3

X2
n¼1

n3
�
6γ2 þm2

χ

n2γ2
− 1

�3
2

× arccot

�
6γ2 þm2

χ

n2γ2
− 1

�1
2

�
: ðC10Þ

Adding the counterterm

δBð1Þ
χ ¼ 3

2
NR3γ3

�
Λ2

γ2
− 20þ m2

χ

2γ2
þ 21

�
m2

χ þ 2γ2

m2
χ þ 6γ2

�
2

þm2
χ þ 4γ2

2γ2
ln
6γ2 þm2

χ

4Λ2

�
; ðC11Þ

obtained in analogy with Eq. (77), we find

Bð1Þ
χ ¼−N

R3γ3

2

�
63− 4

m2
χ þ 2γ2

2γ2
− 63

�
m2

χ þ 2γ2

m2
χ þ 6γ2

�
2

þ 2

3

X2
n¼1

n3
�
6γ2þm2

χ

n2γ2
− 1

�3
2

arccot

�
6γ2þm2

χ

n2γ2
− 1

�1
2

�
:

ðC12Þ

The result in Eq. (C12) reduces to that found in Eq. (78) for
m2

χ ¼ −2γ2 and N ¼ 1, as we would expect. Instead, taking
m2

χ ≫ γ2, we obtain the expression in Eq. (91).
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