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Green’s function method for handling radiative
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We introduce a Green’s function method for handling radiative effects on false vacuum decay.
In addition to the usual thin-wall approximation, we achieve further simplification by treating the bubble
wall in the planar limit. As an application, we take the 1®* theory, extended with N additional heavier
scalars, wherein we calculate analytically both the functional determinant of the quadratic fluctuations
about the classical soliton configuration and the first correction to the soliton configuration itself.
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I. INTRODUCTION

The association of the still recently discovered 125 GeV
scalar particle [1,2] with the Higgs boson of the Standard
Model (SM) places the stability of the electroweak vacuum
under question [3—6]. This instability, arising at an energy
scale around 10! GeV [7,8], results from the renormali-
zation-group (RG) running of the Higgs self-coupling,
whose value is driven negative by contributions dominated
by top-quark loops. State-of-the-art calculations suggest
that the electroweak vacuum is metastable, having a life-
time longer than the present age of the Universe and lying
at the edge of the stable region [7—-10], where seemingly
small corrections may have a material impact upon pre-
dictions. The uncertainty in such predictions remains, at
present, dominated by that of the top-quark pole mass
[11,12]. Even so, it has been suggested [13—17] that,
regardless of any improved precision in the experimental
determination of the latter, the presence of Planck-scale
operators may weaken the claim of metastability.
Nevertheless, having, as yet, no experimental evidence
of additional stabilizing physics between the electroweak
and Planck scales, it is provident to consider approaches to
the calculation of tunneling rates that can consistently
account for radiative corrections.

The degree of vacuum metastability provides a strong
criterion for the phenomenological viability of extensions
to the SM. For example, supersymmetric scenarios can be
ruled out if the electroweak symmetry-breaking vacuum
decays into a color-breaking one in a timescale shorter than
the age of the Universe [18-25]. In addition, transitions
between vacua can also occur at finite temperature [26,27].
In the context of early-Universe cosmology, this is of
interest because the corresponding first-order phase tran-
sitions may leave behind relic gravitational waves [28-30].
Moreover, such phase transitions may turn out to be pivotal
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for generating the cosmic matter-antimatter asymmetry
[31,32]. As a consequence of these applications and the
wide range of phenomenological models, there are now
routine methods for computing transition rates at both
vanishing and finite temperature [33,34].

Vacuum transitions in scalar theories can be described in
the following way [35-38]. In the event that there are two
nondegenerate vacua, an initially homogeneous system
lying in the false vacuum will spontaneously nucleate
bubbles of true vacuum, leading to the production of
domain walls or “kinks.” The latter are the topological
solitons that interpolate between regions of true and false
vacuum. The study of these “solitary wave” solutions to
nonlinear equations of motion (see e.g. Ref. [39]) has a long
history [40-45], and archetypal examples of such field
configurations arise in the sine-Gordon model [46,47] and
the 1®* theory with tachyonic mass m? < 0. The semi-
classical [38] and quantum [48] descriptions of false
vacuum decay in the latter theory were presented in the
seminal works by Coleman and Callan (see also Ref. [49]).
Early expansion on these works included induced vacuum
decay [50] and the incorporation of gravity [51].

In order to decide whether a vacuum configuration is
unstable, i.e. whether there exists a lowest-lying true
vacuum, it is often necessary to account for the impact
of radiative corrections. This is of particular relevance when
the appearance or disappearance of minima is entirely a
radiative effect [52], such as occurs for the Coleman-
Weinberg (CW) mechanism of spontaneous symmetry
breaking [53] or in symmetry restoration at finite temper-
ature [54-56]. In phenomenological studies, this is com-
monly done by calculating the tunneling rate from the
effective potential [57,58] of a homogeneous field con-
figuration [34,59,60], which is subsequently promoted to a
space-time-dependent configuration. This practice is prob-
lematic for two reasons. First, the temporal and spatial
inhomogeneity of the solitonic background is not fully
taken into account [61]. Second, in the presence of
tachyonic instabilities, e.g. when there are nonconvex
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regions in the tree-level potential, the perturbatively calcu-
lated effective potential receives a seemingly pathological
imaginary part. The latter has been shown [62] to have a
physical interpretation as a decay rate for an initially
homogeneous field configuration (see also Ref. [63]).
However, this subtlety can be circumvented by using
constructions such as the coarse-grained effective action
[64—71] or, as is often employed in lattice simulations, the
constraint effective potential [72] (cf. Ref. [73]). In addi-
tion, within the context of the SM, the standard RG
improvement of the effective potential has recently been
questioned [74]. For the above reasons, it is reasonable to
conclude that the use of the effective potential to calculate
transition rates is neither satisfactory nor justifiable, and it
is desirable to consider alternative methods for determining
quantum corrections, which can be applied to a wide range
of models that feature vacuum decay.

The first quantum corrections [48] to the tunneling rate
are those arising from the functional determinant over the
quadratic fluctuations about the classical soliton configu-
ration. In the case of one-dimensional operators, these
determinants may be calculated using the Gel’fand-Yaglom
theorem [75], which may be generalized to higher dimen-
sions in the case of radially symmetric operators [76-78].
General numerical techniques may then be obtained [79,80]
for calculating tunneling rates beyond the so-called thin-
wall approximation, in which the width of the bubble wall
is much smaller than its radius. These approaches have also
been applied to radially separable Yang-Mills backgrounds
[81,82] and scenarios in curved spacetime [83]. Alternatively,
as we will employ, the functional determinant may be
calculated by means of the so-called heat kernel method
(see e.g. Refs. [84-87]), based upon the Schwinger proper-
time representation and zeta function regularization [88].
Previously, this approach has been used to derive approximate
analytic results for the one-loop fluctuation determinant
beyond the thin-wall approximation [89], as well as one-
loop corrections to sphaleron rates [90-92]. The latter have
also been calculated by direct integration of the Green’s
function [93-97].

Recently, it has been shown that properties of topological
solitons may be studied nonperturbatively using Monte Carlo
and lattice simulations by considering correlation functions
directly [98—100]. Other authors have proposed methods for
calculating quantum corrections based upon functional
renormalization techniques [101].

In this article, we derive an analytic result for the Green’s
function of the A®* theory in the background of the
classical kink solution. Within the thin- and planar-wall
approximations, we illustrate that this Green’s function
may be used to determine analytically the leading quantum
corrections to both the semiclassical bounce action and the
kink solution itself, thereby allowing us to compute the
tunneling rate at the two-loop level, while isolating its
diagrammatic interpretation. The latter calculation is
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performed within the context of a toy model extended
with an additional N heavier scalars, where the parametric
dependence on N allows the identification of a concrete
example in which the calculated two-loop corrections
dominate over the neglected higher-loop corrections. We
illustrate that the problem of calculating these radiative
corrections may be reduced to one of solving one-
dimensional ordinary differential equations and integrals.
Thus, we anticipate that this methodical development may
have numerical applications in the study of the decay rates
of radiatively generated metastable vacua, such as occur in
the massless CW model [53] or the Higgs potential of the
SM. Similar methods based upon Green’s function tech-
niques have been used previously to determine self-
consistent bounce solutions numerically in the Hartree
approximation of the pure 1®* theory in both two and
four dimensions [102-105].

The remainder of this article is organized as follows: In
Sec. II, we review the calculation, a la Coleman and
Callan [38,48], of the classical “bounce” configuration,
describing the semiclassical tunneling rate between two
quasi-degenerate vacua and its first quantum corrections.
In Sec. III, we outline a Green’s function method for the
evaluation of the functional determinant over the quantum
fluctuations about the classical bounce, making comparison
with existing calculations. Subsequently, in Sec. IV, we
illustrate that this Green’s function method may be used to
calculate analytically and self-consistently the first quan-
tum corrections to the bounce itself. In Sec. V, we conclude
our discussions and highlight potential applications and
future directions. Finally, a number of mathematical
appendices are included, outlining the technical details
of the calculations summarized in Secs. III and IV.

II. SEMICLASSICAL BOUNCE

We consider a real scalar field ® = ®(x), with four-
dimensional Euclidean Lagrangian £ = (9,9)*/2+ U
and classical potential

1 g A
_ 2 32 3 4
U—2!m(I,<I> +3!<I> +4!(I> + Uy. (1)
The mass squared is m3, = —u? < 0, g is of mass dimen-

sion 1, A4 is dimensionless, U, is a constant, and 8ﬂ =
0/ 0x,, denotes the derivative with respect to the Euclidean
spacetime coordinate x, = (X, x4). Throughout, we omit
spacetime and field arguments for notational convenience
when no ambiguity results.

The classical potential in Eq. (1) has nondegenerate
minima at

7%\ 1
(pzvi::tv<1+—2> -, (2)
v
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as depicted in Fig. 1 (left panel), where we have defined

v =+/6u’/A and © = (3g)/(24). The separation of the
minima Av = v, —v_ = 2d and the difference in their
energy densities AU = U, — U,_ = 2¢ may be written in
terms of the parameters

N
d:v<1+v—2>2zv, (3a)
v
2 2 2
e gu v gv
—=— (1435 | ~r=—, 3b
d 6 < + v2> 6 (3b)

where the approximations are valid in the limit » > 7, i.e.
g*/u* < 81/3. For g— 0, ¢ > 0, and the minima at
@ = v become degenerate, as we would expect.

Finally, the constant U is chosen so that the potential
vanishes in the false vacuum at ¢ = +wv, requiring U, =
(uv/2)? — gv*/6 and thus giving the barrier height to be
h=Uy+2e~ (uv/2)? + e and U(—v) = —gv*/3.

The semiclassical probability for tunneling between the
false (p = +v) and true (@ = —v) vacua and its first
quantum corrections were described in the seminal works
by Coleman and Callan [38,48], which we now review. The
classical equation of motion

~0%p+ U'(p) =0, 4)

where ’ denotes the derivative with respect to the field ¢, is
analogous to that of a particle moving in a potential —U.
The boundary conditions of the “bounce” are ¢|, ., =
+v and @l,,_y =0, where - denotes the derivative with
respect to x4. These correspond to a particle initially at v
rolling through the valley in —U, reaching a turning point
close to —wv, before rolling back to 4w, see Fig. 1 (right
panel). Finally, in order to ensure that the action of the
bounce is finite, we require ¢|y_q, = +v.

Translating to four-dimensional hyperspherical coordi-
nates, Eq. (4) takes the form

where r* = x? 4+ x3. The boundary conditions become

¢, = +v and dg/dr|,_, = 0, where the latter ensures
that the solution is well defined at the origin. Thus, the
bounce corresponds to a four-dimensional bubble of
some radius R, which separates the false vacuum
(¢ = +v) outside from the true vacuum inside (¢ = —v).
Analytically continuing to Minkowski spacetime
(x4 = ixg), the O(4) symmetry of the bounce becomes
an SO(1,3) symmetry, with the bubble expanding along
the hyperbolic trajectory R> = x> — 2%
The bounce action is

B = /d4x B (i—f)z + U((p)}, (6)

PHYSICAL REVIEW D 91, 105021 (2015)

Up) —-Ul(y)
¥
—v +v
NS
N/ +o

FIG. 1. The classical potential U (left panel) and the inverted
potential —U (right panel). The arrow (right panel) indicates the
trajectory of the “bounce” in imaginary time 7.

which can be written as B = B gace + Bvacuum» Where

+v d(p
Bsurface = 27°R? /—1) d(ﬂa, (73)
R
Buseum = 27 / drPU (=) (7b)
0

are the contributions from the surface tension of the bubble
and the energy of the true vacuum, respectively. In writing
Eq. (7a), we have used the fact that for 9,9 # 0, i.e. for
r ~ R, we may show that the bounce ¢ satisfies the virial
theorem

(%) -200 -0 ®

i.e. it is the configuration of zero total energy density.
Notice that there is no contribution to the bounce action
[Eq. (6)] from the exterior of the bubble, since the choice of
the potential Eq. (1), viz. U, ensures that the false vacuum
has zero energy density.

In the thin-wall approximation, we may safely neglect
the damping term in Eq. (5) and the contribution from the
cubic self-interaction gg°, as will be the case for the
remainder of this article. We then obtain the well-known
kink solution [40]

¢(r) = veanh[y(r - R)], ©)

with y = 4/+/2. The radius R of the bubble is then obtained
by extremizing the bounce action [Eq. (6)], that is by
minimizing the energy difference between the surface
tension of the bubble and the true vacuum. This gives

12y

R .
qgu

(10)

By considering the invariance of the bounce action in
Eq. (6) under general coordinate transformations, i.e.
¢ = ¢ +x,0,p, we may show that

| wod
B—§ﬂ2R3/. d(pd—(f. (11)
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This is to say that

3
_ZBsurface’ (12)

Bvacuum =

in which case we find

_ 822R3y3

1 ’ 4
B = _ngacuum = _gR U(_U) (13)
The decay rate of the false vacuum, i.e. the probability
per unit time for the nucleation of a bubble of true vacuum,
has the generic form [38,48]

I'=AVe B/, (14)

Here, V is the three-volume within which the bounce
may occur, arising from integrating over the center of the
bounce, and A contains the quantum corrections to
the classical bounce action B that are the subject of the
remainder of this article.

The tunneling probability in Eq. (14) may be obtained
from the path integral

Z[0] = / [dP]eSLPl/n (15)
via
I =2[ImZ[0]|/T, (16)
where T is the Euclidean time of the bounce.
In order to evaluate the functional integral over ®, we

first expand around the classical bounce ¢, whose equation
of motion [Eq. (4)] is obtained from

5S[®]

—5 =0 (17)

D=¢

Writing ® = ¢ + 7!/2®, where the factor of /!/2 is written
explicitly for bookkeeping purposes, we find

h A A
S[®] = S[g] + 2/ d*x®(x)G™! (@; x)®(x) + O(RY/?),
(18)
where S[p| = B is the classical bounce action and

55(®]

G p:x) = 532(0)

=AW LU (p;x),  (19)
=g

in which A® is the four-dimensional Laplacian.

Before proceeding to perform the functional integration
over the quadratic fluctuations about the bounce, we must
consider the spectrum of the operator G~!(¢; x), which is
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not positive definite. By differentiating the equation of
motion [Eq. (4)] with respect to x, and comparing with the
eigenvalue equation

(=AD + U (0)p(ny = AnyPiny- (20)

it is straightforward to show that there exist 4 zero
eigenmodes ¢, =N 0,, transforming as a vector of
SO(4) and resulting from the translational invariance of
the bounce. The normalization A follows from Eq. (11),
since

/ d*xgg, = %N 28, / d*x(9,9)* = N?B5,,. (21)

Thus, ¢, = B_l/zaﬂ(p.

Differentiating Eq. (5) with respect to r and subsequently
setting » = R in those terms originating from the damping
term, we can show that there also exists a discrete
eigenmode ¢y = B~'/20,¢. This eigenmode transforms
as a scalar of SO(4), corresponding to dilatations of the
classical bounce solution, and has the negative eigenvalue

18°B 3

== 22
B SR? R? (22)

0
It is this lowest mode that is responsible for the path integral
in Eq. (15) obtaining the nonzero imaginary part in
Eq. (16) [106].

Alternatively, we may solve the eigenvalue problem
directly in hyperspherical coordinates (see Appendix B),
by making the substitution ¢y,, = ¢,;/ P! Neglecting the
damping term and setting » = R in the centrifugal potential,
we obtain the eigenspectrum

jG+2)-3
lnj = }/2(4 - n2) + R2 .

(23)
The radial parts of the eigenfunctions are the associated
Legendre polynomials of the first kind and of order 2, i.e.
P%(¢/v). Thus, demanding normalizability, the quantum
number 7 is restricted to the set {1,2}.

From Eq. (23), we see that the negative mode corre-
sponds to Ay = A,y (n =2, j=0), and the zero modes
correspond to A,y (n =2, j=1), having degeneracy
(j + 1)? = 4. The lowest two positive-definite eigenvalues
arello = 2]/2 - 3/R2 (I’l = 1,] = 0) al’ldl]l = 2}’2 (n =1,
j =1). Thus, for R large, the “continuum” of positive-
definite modes begins at A,y &~ A;; = 2y?, cf. Ref. [86].

In order to perform the functional integral over the
five negative-semidefinite discrete modes, we expand

d = Z?:o a;¢p; + ¢, where ¢, comprises the continuum

'We note that this substitution differs from that used in
Ref. [48].
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of positive-definite eigenmodes. The functional measure
then becomes

4

= [dp,] [ [(22n)~"da;. (24)
i=0

The functional integral over the 4 zero eigenmodes
(i=1,...,4) is traded for an integral over the collective
coordinates of the bounce [107] (see Appendix A) and

yields a factor
B \2
VT (2;1 h) (25)

The integral over the negative eigenmode (i = 0) may be
performed using the method of steepest descent, giving an
overall factor of —i|ly|~'/?/2. Here, the overall sign is
unphysical [48] and depends on the choice of analytic
continuation, thereby justifying the modulus sign in
Eq. (16).

Finally, the Gaussian integral over the continuum of
positive eigenmodes ¢, may be performed in the usual
manner, and we obtain

tG)G-1!
j’Ode G ((p) 2’ (26)

iZ[0] = e~B/h
l [ ] e 2”h) (4y2)5det(5)G_1(v)

3 (VT)*(

in which det®, cf. Ref. [86], denotes the determinant
calculated only over the continuum of positive-definite
eigenmodes, i.e. omitting the zero and negative eigenm-
odes, whose contributions are included explicitly. In
addition, we have normalized the determinant to that of
the operator G~!'(v), evaluated in the false vacuum.
Substituting Eq. (26) into Eq. (16), we find the tunneling
rate per unit volume

UV—(%Q%Mﬂ%W%4}%B+MWﬂ,(N)

where
1
B — Etr(S) (InG'(p) —InG~'(v)) (28)

contains the one-loop corrections from the quadratic
fluctuations around the classical bounce. Here, tr'®) indi-
cates that we are to trace over only the positive-definite
eigenmodes.

III. GREEN’S FUNCTION METHOD

In this section, we outline the derivation of the Green’s
function of the operator in Eq. (19). The technical
details are included for completeness in Appendix B.
Subsequently, we use this Green’s function to evaluate
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the functional determinant in Eq. (26) and obtain the
correction from quadratic fluctuations. In addition, we
calculate analytically the tadpole contribution to the effec-
tive equation of motion and point out that this may be used
to calculate the first quantum corrections to the bounce.
We have the inhomogeneous Klein-Gordon equation
(=AW + U (¢10))G(pix,2) = 8W (x = 2),  (29)
where 6“4 (x —x’) is the four-dimensional Dirac delta
function. Working in hyperspherical coordinates and writ-
ing x,(,/) =l )er@, where e, are four-dimensional unit
vectors, the Green’s function may be expanded as

G(p:x.x) :%Z (J+1)G,(g;r,r)U;(cosf), (30)
=0

where cos@ = e, - e, and U;(z) are the Chebyshev poly-
nomials of the second kind (see Appendix B). The radial
functions G(r, r') satisty the inhomogeneous equation

+ U//(r):| Gj(§0; r, }’/) _ 5(rr/—3 r’) )

{_gﬁ_gd JjGi+2)
2

(31)

For the thin wall, we safely neglect the damping term and
approximate the centrifugal term by j(j + 2)/R?. For self-
consistency of this approximation, we also replace the
discontinuity on the ths of Eq. (31) with 8(r — #’)/R>. For
generality of notation in what follows, it is then convenient
to define

G(u,u',m)=R3G(g;r, 1), (32)

being a function only of the normalized bounce

U]
uwzﬂr)zmmﬂM—Rn (33)
v
and the parameter
JG+2)\:
m= 2(1 + 4R ) . (34)

The full Green’s function may then be written

G(p;x,xX')=G(u,u',0)
2R3Z j+1HU

With the above approximations, the lhs of Eq. (31) is of
Poschl-Teller form [108], having general solutions that may
be expressed in terms of the associated Legendre functions

;(cosO)G(u,u',m).  (35)
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(see Appendix B). We are then able to find the full analytic

solution
1 1 5/14+u
= |9u—-u
2ym[ (u u><1—|—u> <1—u)

(1 (I—u)(1+m+u)
(13 a+m@+m)>

x (1 -3 (1(_1{);1)(_2"_1 ;)”/)> + (1o u’)] ,

G(u,u',m)

(36)

where 9(z) is the generalized unit-step function.
Taking the coincidence limit u = u/, @ = 0, the local

contribution to the Green’s function G(u) = G(u, u,0) in
Eq. (35) takes the form
I N )
G(u) = W;U + 1)°G(u, m), (37)
where
G(u,m)=G(u,u,m)

2 ”n—l—uz)
> E |

(38)

1
= 1+3(1 -
2ym[+ u?

In Eq. (38), the summation over n = 1, 2 corresponds to the
contributions from the two towers of positive-definite
eigenmodes of the operator G~!(¢; x), see Eq. (23).

For R large, we may approximate the summation over j

by an integral over a continuous variable k~m (see
Appendix B). In which case, we obtain
1 o0
Gw:j/dwawa (39)
2 0
with
2\
m=2(1+). (40)

The continuum limit described above is entirely equiv-
alent to the so-called planar-wall approximation. Therein,
for R large, we align a set of coordinates (z, ,z) with the
bubble wall, as shown in Fig. 2. We may then Fourier-
transform with respect to the coordinates z that lie within
the three-dimensional wall, introducing a three-momentum
k, ie.

3k
Glgix) = [ et

) VG(p:2.7.K),  (41)

where we have let z =z, for notational convenience.
The three-momentum-dependent Green’s  function
G(@;z,7,k) satisfies the inhomogeneous Klein-Gordon
equation
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(02 + K+ U"(:2))G(g;2. 2. k) =8z — 7). (42)
We may then show straightforwardly that

G(p;z,7 k) = G(u,u',m), (43)

where G(u, u', m) is as presented in Eq. (36), with m given
by Eq. (40). This planar-wall approximation is employed
for the remainder of this article.

A. Quantum-corrected bounce

Before making use of the Green’s function calculated in
the preceding section, we first derive the equation of
motion for the quantum-corrected bounce. This calculation
was first suggested by Goldstone and Jackiw [42] and, in
the following sections, we will illustrate that, within the
thin- and planar-wall approximations, it may be completed
analytically.

The one-particle irreducible (1PI) effective action [57] is
given by the Legendre transform

[[¢] = —hnZ[J] +/d4xJ(x)¢(x), (44)

where
o) =5 (45)
is a functional of the source J(x) = 3 (/)Eqs]) and
ZlJ] = /[d@] exp {—% <S[<I>] —/d“x](x)@(x))}
(46)

In order to obtain the quantum corrections to the bounce
@, we wish to evaluate the functional integral in Eq. (46) by
expanding around the configuration ¢("), which is the
solution to the quantum equation of motion

AN
\NZjN Z1
NN

FIG. 2. Schematic representation of the planar-wall approxi-
mation, illustrating the alignment of the three-dimensional hyper-
surface and associated coordinate system.
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or'[¢]

b | =0 (47)

¢=p)

Here, the superscript “(1)” indicates that ¢(!) contains the
first quantum corrections to . It follows from Eq. (47) that

o) cannot extremize the classical action in the absence of
the source J, i.e.

5S[®]
5P (x)

= J(x) #£0. (48)
=)

Writing & = ¢V + 7!/28!"), where the factor of 7'/? is
again written explicitly for bookkeeping, we proceed as in
Sec. II, expanding

S[@] = S[gV] + A1/2 / dx (1)) (x)

h A A
+ 2/ d*xd ()G (95 0) M (x) + - -

(49)

=AW + U"(pW;x). (50)
D=¢p()

O
KA
S
—~
=
N>

We now write ¢(!) = ¢ + Adp and expand about the
quadratic fluctuations evaluated around the classical
bounce ¢. Thus, in performing the functional integral,
we consider the same spectrum of negative and zero
eigenmodes as in Sec. II. Finally, by expanding the
effective action I'[¢] in Eq. (44) around @' = ¢ — hdy
(see Ref. [109]), we obtain

inh
Flp) = SlpV) + 5= + n2BV[g]

) 2odet®) G~ ()
+5 15 2(_ B \4(4,2\5de(5) (G-1 L
2 1(VT) (%) (4y*)>det®) G (v)
(51)
where
1
B = [ atadplx)
GG (M
L0 4G (gl) 52)
SpW(x) " detdG 1 (v) |0,

Functionally differentiating Eq. (51) with respect to ¢(!),
we obtain the equation of motion for the corrected bounce

=09V (x) + Ul (9V:x) = 0, (53)
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where

Uly(pW;x) = UpW;x) + hll(g; x)p(x),  (54)

containing the tadpole contribution

M(pix) = 5 Glix. ). (55)

Comparing the functional derivative of Eq. (51) with
Egs. (47) and (48), we see that this evaluation of the
effective action is self-consistent so long as the source

J(x) = —All(g; x)p(x), (56)

which is, as expected, nonvanishing.
We may show that the correction to the classical bounce
o satisfies the equation of motion

G~ x)8p(x) = —T1(¢; x)p(x). (57)

The corrected bounce action S[p!)] contains contribu-
tions at order 72, Specifically,

h2
Sl) = slol + % [ d*xan(G (g )dp(x) + O(R).

(58)

where we have used Eqgs. (17) and (19). Thus, using
Eq. (57), we may write

Sl¢!M] = B+ n>B?), (59)
where
B = [ dpWnsm).  (60)
Hence, we obtain the tunneling rate per unit volume
/v = 2[Ime T2/ (vT)
~ (55) @Ml

(B+ B + n2B® + 2B |

S| =

< exp [_
(61)

where B is the classical bounce action; B, given in
Eq. (28), contains the corrections from quadratic fluctations
about the classical bounce; and B, given in Eq. (60),
contains the contribution arising from the quantum correc-
tions to the bounce itself. We note that

B — _2B0®. (62)
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such that the O(h) corrections to the quadratic fluctuations
flip the sign of the contribution to the bounce action from
the O(#) corrections to the bounce itself.

B. Tadpole contribution

We will now proceed to calculate explicitly the tadpole
contribution appearing in Eq. (55).

Introducing an ultraviolet cutoff A, the k integral can be
performed in Eq. (39), and we obtain

2 TA2 72

pred e 2 - (1-3) In 5 - V3m(1 —u?)|.
(63)

We choose to define the physical mass and coupling in the

. . 2 .
homogeneous nonsolitonic background.” The renormaliza-
tion conditions are then as follows:

ateff((/’) 2 A 2
_— = — — = 2 2, 64
o |, " 50T =2u (64a)
o™ |,=,

where U is the CW effective potential [53]. The resulting
mass and coupling counterterms are

ﬂ}’ AZ },2
5m2 = 16]7; ( P— 31 s (653.)
3/12 },2
5 =— 322(1 F+5> (65b)

We then arrive at the renormalized tadpole correction

A 2y?
R (u) = EG(M) +om? + %5/1142

:%V; [6+ (1-u2) (5 —%Lﬂ)} (66)

C. Functional determinant

We may calculate the traces appearing in the exponent of
Eq. (27), which arise from the functional determinant of the
operator G~!(¢) in Eq. (26), by using the heat kernel
method (see e.g. Ref. [87]). Specifically, the trace may be
written in the form

’It is natural to define the renormalized quantities in the false
vacuum, since this is where the physical measurements of these
quantities are performed. If it were the case that such measure-
ments were taking place in the true vacuum, or indeed within the
wall itself, then the decay rate would be of little concern.

PHYSICAL REVIEW D 91, 105021 (2015)

/d4/ T K(pxalr). (67)

The heat kernel K (¢; x, x'|7) is the solution to the heat-flow
equation

tr® InG!

0K (g:x,X|7) = G (p:x)K (s x. ') (68)

and satisfies the condition K(¢;x,x'|0) = 6% (x — x').

It is convenient to work in terms of the Laplace transform
of the heat kernel

Kipxxls) = [T ae ke sl (©9)
0

which is the solution to
(—82 + 54+ U"(@;x)K(g; x,x'|s) = 5@ (x=x"). (70)

In the planar-wall approximation, we take

d’k
o

where IC(¢; z, 7/, k|s) satisfies

IC((ﬂ;x,x'|S)—/ KO (2,2 Ks), (T1)

(=02 + K> + s+ U"(9;2))K(p; 2, 7. K|s) = 8(z = 2).
(72)

Comparing Eq. (72) with Eq. (42), we see that
K(@;z,7',Kk|s) is nothing other than the Green’s function
G(u,u',m) in Eq. (36) with the replacement k> — k* + s in
m, see Eq. (40). Thus, we may write

1 A oo o
W ———/ dkkz/ %/ drr L3t )(z),
2 Jo o 7Jo
(73)
where we have defined
G(u,m) = G(u,m) — G(1,m), (74)
and
1 ds _
LG(u,m)|(r) = | =—e ”G(u m) (75)

c 2w

is the inverse Laplace transform with respect to s, with C
indicating the Bromwich contour.

We may perform the integrals in Eq. (73) analytically,
proceeding in order from right to left and beginning with
the inverse Laplace transform. We then obtain the unrenor-
malized correction to the bounce action
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31 A2 7?
B =B — 1 7
(16e) iz ) 09

The technical details of the relevant integrations are
included in Appendix B. Adding the counterterm

5B /d“ ( sm*(p* — v )+l,5/1(f/’4 —v“))

:B<16ﬂ><A2+1 %—21) (77)

we obtain the final renormalized result

B) = —B <%) ( f+ 21) (78)

In Appendix B, we r ?roduce this result by the method
presented in Ref. [86].

IV. RADIATIVE CORRECTIONS TO THE BOUNCE

We now discuss an example of the role played by loop
corrections to the bounce itself. Within the perturbation
expansion, one should expect that these lead to second-
order corrections to the classical action of the soliton
simply because the latter is evaluated for a stationary path.
There are, however, important situations, in which all one-
loop contributions must be resummed in order to capture
the leading quantum corrections to the action. Examples
include situations where the symmetry-breaking minima of
the potential emerge radiatively through the CW mecha-
nism [53]. In the absence of a soliton, this implies that the
classical solution, i.e. the homogeneous expectation value
of the field, has to be found consistently by minimizing the
one-loop effective potential as a function of the field
expectation value itself. Analogously, in order to find the
decay rate of the false vacuum, the bounce must be
computed consistently from the one-loop effective action,
which is a functional of the bounce itself. The methods
presented in this article reduce the problem of tunneling in
radiatively generated potentials to one-dimensional ordi-
nary differential equations and integrals. It is anticipated
that it should be possible to derive numerical solutions in
future work.

For the purpose of illustration, however, we remain
herein on the ground of analytic and perturbative

3Using the same renormalization conditions as in Eq. (64),
Ref. [86] finds (in the notation employed here)

3 T 50
B — —g( ) (720,
<16n2) <3\/§+ 3)
Repeating the analysis presented therein, as outlined in

Appendix B, we find a result in agreement with Eq. (78) reported
here, suggesting a numerical error in the factor of 50 above.

PHYSICAL REVIEW D 91, 105021 (2015)

approximations. In order to enhance the corrections to
the bounce compared to other quantum effects that appear
at second order in perturbation theory, we extend the model
in Eq. (1) with N copies of an additional scalar field y by
adding to the Lagrangian the terms

N

Ly = Z{;‘(aﬂ,) —|—1m22+/1¢> } (79)

i=1

Here, we have chosen the coupling 1 to be identical to the
self-coupling of ® for the sake of simplicity in the Green’s
function of the y fields. Since (y;) =0, the additional
scalars do not impact upon the classical bounce in Sec. II or
the discussion of the Green’s function in Sec. IIL

The Klein-Gordon equation for y; takes the form

A
[—5‘2 +m2+ E(pz] S(p;x,x') =6W(x=x).  (80)
Comparing with that of ® in Eq. (29), we see that the
Green’s function S(u, u’,m) may be obtained straightfor-
wardly from G(u,u’,m) in Eq. (36) by making the
replacement

k2 2\ 1
m — \/6<1 + 6—’_2’")()2. (81)
4

The renormalized tadpole contribution from each y;
field, integrated over the three-momentum Kk, is given by

2R(u) = g;—é [72 + (1 — u?)(40 - 3u?)], (82)

where we have assumed m > y* for simplicity. The full
form of S(u) and the relevant counterterms are provided in
Appendix C.

The renormalized correction to the classical bounce d¢ is
governed by the equation of motion

4 =507 o = () g, (83)

cf. Eq. (57). We obtain the solution by making use of the
Green’s function G(u,u',2) = G(u, u', m)|;_,, writing

a2 1t + NS,
(34

where we have used Eq. (33) in order to substitute ¢.

We note at this point that G(u, u, m) is singular as k — 0
(or, equivalently, m — 2). Nonetheless, the integral in
Eq. (84) remains finite, since G(u,u’',m) is multiplied
with an odd function, whereas the singularity resides in its
even part. It is therefore useful to define
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GYu,u') == (G(u,u',2) — G(u,—u', 2)). (85)

Within the domain 0 < u,u’ <1, this function can be
expressed as

odd / / 1 1-u / 7]
G (u,u):19(u—u)3—2y1_u/2 2u' (5 = 3u’%)
1 !
—|—3(1—u’2)21n1—fu,]+(u<—>u’). (86)
Defining in addition
! ! dd /
pO(u)_Y/_ldu _ /2G0 (U,M)
1—u?[ 2u 14+u
= 1 , 87
8 {l—uer l—u] (87a)
|
pi(u) = y/ du't/ G*Y (u, u')
-1
1—-u?> 1+u
= 1 , 87b
8§ l-u (87)
I
pa(i) = [ du'u G
-1
1—u? 1+u 4
- 2 87
8 [ 1—u 3”}’ (87¢)

we find the result

3iv 8y?
Sp(u) = “los {6(WN+ l)po(u)
¥

#5(3n -+ 1 )i - (on+ 2 ot

g SNV

(88)

In Fig. 3, we plot 8¢ as a function of y(r — R) for a range of
values of Ny?/mZ. We see from Fig. 4, which plots the
corrected bounce ¢ + 6 (A = 1) for the same range, that
the impact of this correction is to lower the height and
broaden the width of the bubble wall. We note that this
behavior is in qualitative agreement with the results of the
self-consistent numerical analysis in Ref. [102], presented
there for the pure A®* theory in 1 + 1 dimensions.

Substituting Eq. (88) into Eq. (60), we find the correction
to the bounce action

PHYSICAL REVIEW D 91, 105021 (2015)

30F T . . , _
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FIG. 3. The correction to the bounce d¢ as a function of
y(r—R) for Ny*/m} = 0 (solid), 0.5 (dashed), 1 (dash-dotted)
and 1.5 (dotted).

B + B? = %/ d*xg(u) (TR (u) + NZR (u))5¢(u)

__B(3\1 37a 5w
36’ 8 4.3 563

2 4
(@ - @L) FAVIEL LN A
2 42 \/§ m}{ 14 mf{
(89)
1001 | | —"T:.-'.Z‘.':'.'.'.ZZ‘
— ,;{f.’-‘- ................
” /2
[ 7 ]
a %0 /5{'
a f
& o
X
S
_sol Y A
& ” ..';"3’/'
_100 [E==am=miTe=s ]
—4 o 0 5 ;
y(r-R)
z o i
S ' /’:",‘. ---- 1
s At
« ,_f-:'-""-
& o
X I >
S t ,_.-:L;ﬁ’
‘o ,.-".”/
by [ e PRty
\% -50 j-::;.:;’,/’ ]
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FIG. 4. The corrected bounce ¢ + ¢ as a function of y(r — R)
for Ny?/m7 = 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5
(dotted). We see clearly that the impact of the tadpole correction
is to broaden the bubble wall.
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In order to obtain a finite result for Eq. (89), we have added
to U, the correction

9/ 31\2, (8> 2
sUy = (2 ) 22 (SN 1), 90
0 4(16;;2) re <m§ + > (90)

ensuring that the potential continues to vanish in the false
vacuum.

The corrections appearing in Eq. (89) should be com-
pared to the renormalized logarithm of the determinants of
the Klein-Gordon operators of the y fields in the back-
ground given by ¢, which are given by

30\ 2542 [ /A
-B|— | — |—5+0O(—]|N. (91
<167z2> 15 [m)z{ + <m4 G

X

B =

In comparison, the leading term in Eq. (89) is suppressed
by a factor ~Au?/m?/(16x%). The one-loop corrections B!

and B)(fl) are both negative, thereby increasing the tunneling
rate. It is interesting to note that, although the contribution
B®@ to the tunneling action from the corrections to the
bounce itself is positive, the net contribution of B?) 4+ B2/
is still negative, again increasing the tunneling rate.

In Fig. 5, we present a diagrammatic representation of
the corrections to the bounce action. It is also useful in
order to see that there appear no contributions of O(4>N?)
relative to the bounce action B in addition to those from
B®. In order to avoid proliferation, we only show the
leading contributions in 1/N for a given type of diagram.
At one-loop order, there is the vacuum bubble in terms of
the propagator S of the y fields, Fig. 5(a), which gives the

contribution O(AN) relative to B from B)((l) in Eq. (91). On
substituting d¢ in the form of Eq. (84) into the action

FIG.5. Diagrammatic representation of various contributions to
the effective action: (a) is the one-loop term B(l), (b) is the
O(4>N?) contribution to B, and (c) and (d) are O(A>N) terms.
Solid lines represent the propagator G(¢;x,x’), dotted lines
S(g;x,x"). Crosses denote insertions of the bounce ¢.

PHYSICAL REVIEW D 91, 105021 (2015)

[Eq. (58)], we see that the diagram corresponding to the
O(2N?) term in B(?) /B is given by Fig. 5(b), where, when
counting the powers of 4, one should note that each explicit
insertion of ¢ contributes a factor of 1/+/A. Finally, at two-
loop order, there are the diagrams Figs. 5(c) and 5(d), which
we do not compute, but yield contributions of O(A2N)
relative to B. These contributions are therefore suppressed
by a relative factor of 1/N relative to the O(4°N?) in
B®@) /B, as is familiar from the standard approximation
scheme known as the 1/N expansion [110]. We should
remark that these arguments do not hold, of course, for the
contribution to B®?) from the ® tadpole, which we include
here for completeness. The latter is formally the same order
as other two-loop diagrams, involving only &, that are not
captured in the 1PI approximation employed here. This
observation is true also of the Hartree approximation for the
pure A®* theory analyzed numerically in Refs. [102—105].
Nevertheless, these additional two-loop diagrams remain
subdominant compared to the O(4*N) and O(A*N?) con-
tributions from the y tadpole in Eq. (89).

Finally, we note that approximating ¢ as a small
perturbation to ¢, using Eq. (84), requires for consistency
that 6NAy*/(m2n?) < 1, such that within the range of
validity of present approximations, we cannot obtain
|B? + B@’| > |BU)|. Nevertheless, for large N, B?) +
B@’ can be the dominant two-loop contribution to the
effective action.

V. CONCLUSIONS

Within the context of A®* theory, we have described a
Green’s function method for handling radiative effects on
false vacuum decay. By this means and employing the thin-
and planar-wall approximations, we have been able to
calculate analytically and in a straightforward manner both
the functional determinant of the quadratic fluctuations
about the classical soliton configuration and the first
correction to the configuration itself.

This Green’s function method is well suited to numeri-
cal evaluation and, as a consequence, should be applicable
to potentials of more general form. As such, we anticipate
that it may be of particular use when the nondegeneracy of
minima is purely radiatively generated. Examples of the
latter include the spontaneous symmetry breaking of
the massless CW model [53] or the instability of the
electroweak vacuum. Other applications might include
the calculation of corrections to inflationary potentials in
the time-dependent inflaton background, for instance in
inflection-point or A-term inflation [111-114], which
exploit the flat directions and saddle points of the
MSSM potential. Furthermore, the use of Green’s func-
tions naturally admits the introduction of finite-
temperature effects or extension to nontrivial background
spacetimes.
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Green’s functions have proved to be central objects
within perturbative calculations throughout quantum field
theory, and it is therefore unsurprising that we find these
suitable to treat solitons in A®* theory as well. We take this
as an encouragement that further theoretically and phe-
nomenologically interesting systematic results on false
vacuum decay may be within reach.

ACKNOWLEDGMENTS

The authors would like to thank Jiirgen Baacke, Daniel
Litim and Holger Gies for helpful correspondence and
discussions. The work of P. M. is supported by a University
Foundation Fellowship (TUFF) from the Technische
Universitidt Miinchen. The work of B. G. is supported by
the Gottfried Wilhelm Leibniz programme of the Deutsche
Forschungsgemeinschaft (DFG). Both authors acknowl-
edge support from the DFG cluster of excellence Origin
and Structure of the Universe.

APPENDIX A: ZERO-MODE
FUNCTIONAL MEASURE

In order to perform the functional integration over the
zero modes, we insert four copies of unity in Faddeev-
Popov form [107]:

1= [an ol fob). (AD
Here, p is not summed over, and
700) = [ dxex =)o plx—y) = Ba,. (A2)
where we recall that
4
<I>=¢+_§_;ai¢i+¢+. (A3)
It follows that
o 1) == [ ax@pte -y =B, (A4
ignoring terms that are formally O(!/?). Thus,
1=8B / dy,8(B'?a,) = B'/? / dy,8(a,).  (AS)

We then have
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APPENDIX B: GREEN’S FUNCTION

In this appendix, we include the technical details of the
calculations outlined in Secs. III and IV. All functional
identities used in what follows may be found in Ref. [115].

1. Expansion in hyperspherical harmonics

In d dimensions, the Green’s function satisfies the
inhomogeneous Klein-Gordon equation
(=AW 4+ U" ()G (i x,x) = 6D (x =), (BI)
where 6(9) (x — x') is the Dirac delta function and A(@ is the
Laplacian. Given the O(d) invariance of the bounce ¢, it is
convenient to work in hyperspherical coordinates, in which
case the Laplacian takes the form
A = p1=49 4719, + Agas, (B2)
where Ag-1 is the Laplace-Beltrami operator on the d — 1
sphere.

We proceed by performing a partial-wave decomposition
of the Green’s function:

ZG o;r,r)

i}

) (@3 x,x') (B3)

{f} (er’)Yj{f} (er)7

where x = re,, x' =r'ey, and Y (e,) are the hyper-
spherical harmonics (see e.g. Ref. [116]), satisfying the
eigenvalue equation

A Yoy = =j(j+d=2)Yjip, (B4)
with {¢} =7¢,,¢,,...,€4,. The hyperradial function
Gj(q); r,r') satisfies

d o d jj+d=-2)
|:_r1 dard la—’— r + U”( ) Gj(qo;r, r/)

= 1=ds(r = 7). (BS)

Since, for each j, the {#} modes are degenerate, we may
use the sum rule [116]

ZY;{K} (er’)Yj{f} (e,)
{¢}

2 j+x (. 1 (k—d =)
=————+—|\jtx+5]) P; 7 ¥(cosl
T i), A o)
(B6)
where k =d/2—1, cosf =e,-e,,
['(z+n)
=—— B7
O =115 (87)
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is the Pochhammer symbol, and the Pﬁa’ﬂ ) (z) are the Jacobi

polynomials.
Ford =1,k =-1/2, cosf € {—1,+1}, and we have

D41y =0, (BS)
(—1-1),_ _sinzj (1, j=0
P; ( 1)_—ﬂj = {0’ i£0° (B9)

Hence, G(l)((p;x, x') = Gylg;r, 1), as we would expect.
For d = 2, k = 0, and we have

T;(z)

(4
P72 (Z) = - ,
Va(j+3)

J

(B10)

where T';(z) is the Chebyshev polynomial of the first kind.
We then obtain

G (g;x,x') = ZCOSJHG (psr, 1), (B11)
j =0
where we have wused the trigonometric form
T ;(cos @) = cos jO.
Ford =3,k =1/2, and
0.0
PP (@) = Pi(a). (B12)

where P;(z) are the Legendre polynomials. Thus, we
obtain the familiar three-dimensional expansion

1 (o)
G (p; =—) (2 0)Gi(gp;r, 7).
(3 x,x) ﬂ; j+ 1)P;(cos )G (g;r. 1)

(B13)
Finally, for d =4, x =1, and
b 2 j+2
P (z) = —=— U;(z), (B14)
! Va(j+3);

where U(z) are the Chebyshev polynomials of the second
kind. Hence, we find

(cos0)G (g1, 7")
(B15)

as appearing in Eq. (30).
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2. Continuum approximation

In the coincident limit x = x’, cos@ = 1, and we have

Alternatively, in d dimensions, we may use
@p)qy @t
P71 = B17
in Eq. (B6), giving
G (ix. ') = 2(4ﬂ)_dT
sV F(%)
- I'(j+d-2)
d2—1)—=—=G(p;r,1).
(B18)

Completing the square in the centrifugal potential in
Eq. (B5), we make the following approximation for large R:

jU+d=2) (+x?> ¥ (j+x)?
R2 TR R R

(B19)

where k = d/2 — 1, as before. We may then promote
(j + x)/R to a continuous variable k, obtaining

1 0

G (g x, x) ——/ dkG (u, m), (B20a)
7.Jo
1 ©

G® (p;x,x) = —/ dkkG(u, m), (B20b)
27 0
1 ©

G (pix.x) == / dkk2G (1, m), (B20c)
2w 0

d 2(4”)_% o0 d=2
G\ (¢p;x,x) =T dkk4=2G(u, m), (B20d)
SN 0

2

where we have used the general notation employed in
Sec. III, see Eq. (38), with m given by Eq. (40). We note
that for d > 4, we have dropped terms O(k/R) and higher
within the integrand.

3. Radial function

For large R, we neglect the damping term in the radial
equation [Eq. (B5)] and set r = R in the centrifugal
potential and discontinuity, giving
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& j+d-2) 5(r—r)
TR R
(B21)

U () |Gilgirr) =

Since the solution depends only on the normalized bounce
u = tanh[y(r — R)], it is convenient to define
G(u,u',m) = Rd_lGj((p; r,r), (B22)

cf. Sec. III. Equation (B21) may then be recast in the form

d d m?
a(l —uz)@—m+n(n+ 1)}G(u,u’,m)
— (). (B23)
where
Jjj+d=-2) 3

Splitting around the discontinuity at u =u/, we
decompose

G(u,u',m)=8u—u)G” (u,u',m)
+ 9 —u)G~(u,u',m), (B25)

where G=(u, u', m) are the solutions to the homogeneous
equation

d d m2 >
a(l_uz)a—m—‘-n(n-l—l) G<(u,u’,m):O.
(B26)

The latter is the associated Legendre differential equation,
and we obtain the general solutions
G=(u,u',m) = AZP2(u) + B2 Q% (u), (B27)
where P'(z) and Q9 (z) are the associated Legendre
functions of the first and second kind, respectively.

Matching around the delta function in the inhomo-
geneous equation, we require

(A” = A<)PE() + (B> — B<)QU (') =0,  (B28a)
> < d m !

(7 - a%) L P
+ (B - B<)%Q2’"(u’) _ ‘y(Tlua)' (B28b)

Thus, we find
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! Q1 ()

(=) WIPE (), QF ()]
1 Py ()

/(1= ) WIQE (). PR ()]

where W[P"(z), Q" (z)] is the Wronskian, having the
explicit form

A” =A< = (B29a)

B> — B< =

(B29b)

(n—m—l— 1>2m

WIPE (). 0(2)] = = (B30)

with the Pochhammer symbol defined in Eq. (B7). We also

require the boundary condition that G(u, ', m) go to zero
as u — %1, giving

Al /4 "
— = ——cotmr,
2

B.=0.
B. =

(B31)

We may now solve for the remaining nonzero coeffi-
cients and obtain

T 1

G (u,u',m) = Py (u) Py (u'), (B32)

2_7/ sinmn

with G=(u,u’,m) = G~ (u', u, m). Here, we have used the
identity

a(n—m+1),,

pia
Py7(z) = S cotma PI(z) — Q(2).
2 sin mzw ""(2) 2 COHMA (2) - 07(2)

(B33)

Finally, we employ the representation

Pr(z) = (EJ—F 11>%(n —m+ 1), P () (B34)

of the associated Legendre function of the first kind in
terms of the Jacobi polynomials. For n = 2, the polynomial
expansion of the latter terminates, and we have

PERT (2) = 114 m)(2 % m)

—3QEm)(1—u)+3(1-u)?.  (B35)

After some algebraic simplification, we then arrive at
the final analytic solution, as presented in Eq. (36) of
Sec. III.

4. Functional determinant

The normalized heat kernel /~C((0; z,7,k|7), see Sec. III,
is given in terms of the inverse Laplace transform

K(p:z.7. K|7) = LG, m))(7), (B36)
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where

K2+ s\2
=2(1 .
" <+ 4r2>

The inverse Laplace transform may be performed by
using the shift, scaling and division properties

(B38)

L3 (F(s + D)(@) = e (0), (B39%)
£ (F@s))(e) = - f(e/a).  (B39b)
O = [wr@. (3%

where f(7) = L3'[F(s)](z), as well as the elementary
transformation
1 !
SsTE =—, R 0. B40
L0 = e Ree> (B40)
We find
72
L5 ™ (2 = )] (1) = L e PR lserf (7).
n
(B41)
where
erf(z) = 2 / “dre" (B42)
) =— e
VT Jo

is the error function. Hence, we have

K(p:z.7 . Kkl7)

3 2
= —57’(1 —u?)e kT
2
1
X Z(—w( +n” - 1)672(”2‘4)Ted(nyﬁ). (B43)
n=1

Generalizing to d dimensions, using the continuum limit
in Eq. (B20d), the correction to the bounce action arising
from the functional determinant is therefore

PHYSICAL REVIEW D 91, 105021 (2015)

_d-1
B(l) _ _égd<47[) 2 /oo dkkd—z /wge—sz
2 (&Y o 0o 7T

X /oo drrd=y (1 — u?)
0
2 1+ M2 2
1) -1 yr(n>—4)z £ ,
<) (S5 1) ety

(B44)

where Q; = 22%?/T'(d/2) is the solid angle subtended by
the (d — 1)-dimensional hypersphere. The integral over r is
dominated by r ~ R, such that (for n = 1,2)

0 1 2 2
(—1)"/ drrly(1 - uz)( T 1) ~ —Z R4,
0 n 3

(B45)
We are then left with
d—1
) — Qa4 TR 1/00 dkkd‘2/0°(he‘k27
NG| 0 o 7
2
x Y et et (ny V). (B46)
n=1

cf. the form presented in Ref. [86].

We may now proceed in one of two ways: (i) performing
the 7 integration first, we must regularize the k integral,
for instance by introducing an ultraviolet cutoff A; or
(i) performing the k integral first, we must instead
regularize the 7 integral. The latter is the approach
presented in Ref. [86], which we reproduce in what follows
for comparison.

(i) Performing the 7 integral first gives

ZQd(47r)‘_Rd I/A dek=2
0

r(%h

X E arcsinh

B =

= ( — (B47)

Subsequently, performing the k integral for d =4, we
obtain the result in Eq. (78).
(ii) Instead, performing the k integral first, we obtain

d+1

1 a o0
B = ZQde_l(“-ﬂ')_le/ der— 2
0

2

x D el e (ny 1),

n=1

(B48)

which is regularized by introducing a large mass M as
follows:
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dr

1
B = —Q R (47)~T1i
3R )= M =

2
> T—%Jre Z eyz(ﬂz—“)ferf(n}/\/;). (B49)
n=1

We may proceed by using the series representation of the
error function

[Se]

erf -z2 2f+1’
ne ; 2/+

(B50)

where !! denotes the double factorial. The z integral may
now be performed, and we obtain

d 1 [M?*\¢
B = (yR)-'Q ,7~5lim —
(vR) aft Lodel"( ) (4}/2)

2 LT /22f+1
D> 2Z+

n=1 £=0

T(e+¢+1-d/2). (B51)

Considering the derivative with respect to €, we have

dl(e+¢+1-4d/2) <M2)€

de I(e) 4y?
Te+7+1-4d/2) <1v12>
I(e) 4y?
MZ
{ln4 s—wle) tyle+¢+1- d/2)} , (B52)

where (z) is the digamma function. In order to take the
limit ¢ — 0 safely, we must take note of the poles occurring
inI'(z) and y/(z) for nonpositive integers. Such poles occur
in even dimensions for £ =0,1,...,d = 3.

After treating the limit ¢ — 0, we find for d odd
(including d = 1)

BY = —(yR)d—lszdﬂ—%
2f n/2 )24+
T(¢+1-d/2). (BS3)
On the other hand, for d even, we find
B = _(VR)d_leﬂ_%l
2 @, 27 20+1
2% (n/2)>"
x S T(¢+1-d)2
n=1 |:;f’ d-2 (2f+1)” ( / )
d-3 zf(n/2)2f+l (—l)d/z—f—l
= Qe+ D! (d/2-2-1)!
M2
X <1n4y2 +Hgpr )] (B54)
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where

=

I =

H, =
k=1

(B55)

are the harmonic numbers, which we have supplemented
with H, = 0 for notational simplicity.
For d = 4, we then obtain

f n 2¢0+1
—2R3 32[2221/?(/ 2)!

| 20+1 1-7 2

2) 1 M

n/ ( ) ln—2+H1_f .
Z e+ -0\ gy

=

(B56)

Lastly, performing the summations, we arrive at the result

3 4y?
B = —B(— —-2+1
(for) o2 m3)

Defining the counterterms in the proper-time represen-
tation, see Ref. [86], and fixing the renormalization con-
ditions as in Eq. (64), we find the counterterms

(BS57)

iy2 4}/

322 4y?
oA = — In 3 B58b
3272 < m ) ( )

giving
31 4y?

6BY) = B[ —= ) (In-55-23 ). B59
<167z2> ( e (B39)

Adding these to Eq. (B57), we obtain agreement with
Eq. (78).

APPENDIX C: RENORMALIZATION OF
THE N-FIELD MODEL

In this final appendix, we highlight the main technical
details of the derivation of the Green’s function and
corrections to the bounce from the y fields.

Proceeding as for the isolated ¢ case, see Sec. III, the
renormalization is fixed using the CW effective potential
[53], evaluated in a homogeneous false vacuum. The
renormalization conditions are then

o*U.
e =47’, (Cla)
@=,y;=0
o0*U.
angf = 6y% + mZ, (C1b)
i lo=vy;=0
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U.ce
o o = (Clc)

8§0 @p=vy;=0
o*u

L = (C1d)
0P 0N | p=v,4,=0
U

o =0, (Cle)
a)(i 8)(] p=0y;=0

where the effective potential is

U = U, x) +6U (9. x)

N—1 [A
dkkz(,/k2 MZ—k)
+ 472 /0 + My

1 A
+4—ﬂz/ dkk2(\/k2+M2++\/k2+M%—2k),
0

(C2)
with
A
M2 =m2 + E(pz’ (C3a)
M2 = =2y? +£(p2 +4;ﬁ (C3b)
¢ 2 24
M2 +M2 M2_M2 2 1/2
M? = "’2 X:I:[( (’)2 X) +/12(p2)(l<2} , (C3¢)
and
Loy b by 15,
Ulg.x) = =5 070" + 5 mxi + 540" + 1407y,
(C4a)
oU = 15 2 p? 15 2,2 15/1 4
((PJ()—+§ My®” T 570MXi T 47040
1 1
+ 4 5/1(,)){(#2)(,2 + 4 5}%)(12)(?- (C4b)

In Egs. (C3) and (C4), the summations over i, j = 1, ..., N
have been left implicit for notational convenience.

Solving the resulting system, we obtain the set of
counterterms

Ayt (A? e 216y?
om? = — —-In‘"5-134+——"+
" 167° (yz a2 * m; + 6y
360y2 . 6y + m?
-— 51In =, (C5a)
my, + 2y 4y
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l)/2 A2 7/2

2 62 2 2 22 2
+Nﬂ<lnM+1>+27N<w) ]

2y? 4A2 m + 6y
(C5b)
3/12 2
6 2 2 2 2 2\ 2
+NIHL2mZ_3N % . (C50)
4A m;, + 6y
2 2 672 L 2
A 4 "+
oA,, = ———(In-5+4In——=
v 3272 A2 4A2
136y2 . 6y> + m? 2 _2y?
! Y In /4 me m;z( }'2>’ (C54)
my + 2y 4y my, + 6y

2 (1 2 —10y2)? + 432¢*
Oy = =753 _lny_z"'(ml 27/) —21_2 !
3275 \2 A (my +2y%)
(m)% =2y = 112p*  6y* + mf(
(my +27%)° 4y

+ 24y2

). (CSe)

Proceeding as for ¢, we find the unrenormalized tadpole
contribution of the y fields

2 TA2 6 2 2 672 2
S(u) = LA O (1, O
16z~ |y 2y 4A
6 2 2
_3(1_M2)1nw

4A\?
2

—6(1—u?)> (=1)"(n—1-1?)

n=1

62 +my  \: 62 +m2  \}
X <%— 1>zarccot(%— 1)2].
nwy nwy

After adding the counterterms, we obtain

3y2 m2 4 2y*\ 2
SR(u) =211 -5u* =303 —u?)| 2—=
(1) 167[2{ " ( " )(m)2(—|—6y2

2

=2(1=u?) Y (=1)"(n—1-u?)

n=1

6 2+ 2 1 6 2_|_ 2 L
X <y2—2m)(—1)2arccot<y272ml—l>2].
nwy nvy
(C7)

We note that the expression in Eq. (C7) agrees with the
renormalized tadpole contribution from ® in Eq. (66) for

m2 = —u?, as we would expect. Assuming mZ > y?, we

X
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may expand Eq. (C7) to leading order in y?/
Eq. (82).

The one-loop correction to the bounce action from the
determinant over the quadratic fluctuations in the y fields is

given by
© d
BY / dkk? / ‘ / drr

x L33 (u, m))(z).

m2, giving

(C8)

where S'(u, m) is obtained from Egs. (38) and (74) with

K+ s +my\s
m= %(1 +%)2. (C9)
oy
Continuing as in Sec. III, we find
R [ A2 4 672 2
B ——N=L 353 my A O g
2 2y 4A
2 3
mx+2y Z (6]/ +mx 1)2
6y* + >
X arccot <% — 1>2} . (C10)
nwy
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Adding the counterterm

3

2 2
(1) 3.5 [A ny,
0B, =—-NR — =20+ —%+21
# T [}'2 T (

m2 + 2y*\ 2
mﬁ + 6y2

m2 +4y>  6y* + m2
X x
+ 2 In 1A } , (C11)
obtained in analogy with Eq. (77), we find
R3,3 +2 24 9,2\2
B}({):_N_J/ 63 — 41727/—63 %
2 2y m;, + 6y
IEAN (67/ +m; ) (672+m2 H
= —1) arccot| ——=—-1] |.
3 Z: e
(C12)

The result in Eq. (C12) reduces to that found in Eq. (78) for
m% = —2y? and N = 1, as we would expect. Instead, taking

m > y*, we obtain the expression in Eq. (91).
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