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We calculate the Casimir interaction energy in d ¼ 2 spatial dimensions between two (zero-width)
mirrors—one flat and the other slightly curved—upon which imperfect conductor boundary conditions are
imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE)
approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus
on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit
of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one,
consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same
boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
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I. INTRODUCTION

The static Casimir force is a physical effect which
manifests itself in systems consisting of a fluctuating
(quantum, thermal, …) field in the presence of nontrivial,
time-independent boundary conditions [1]. The corre-
sponding Casimir energy may be characterized as a real-
valued functional of function(s) which, under a certain
parametrization, define the geometry of the boundaries.
This observation can be used as the starting point for an
approximation scheme, the derivative expansion (DE)
originally proposed in Ref. [2] (for subsequent develop-
ments see Ref. [3]). The DE adopts its simplest form when
the boundary conditions considered are “perfect”; i.e., they
do not involve any parameter, and the geometry of the
system is sufficiently simple, yet nontrivial. One has two
boundaries, and one of them, R, is smoothly curved and
describable in terms of a single-valued “height function” ψ ,
which measures the vertical distance of each one of its
points to the flat boundary, L, i.e., such that R can be
projected in terms of a single Monge patch, with L the
projection plane.
Under the assumptions above, one is clearly left with an

energy which is a functional of a single function, ψ , and
also possibly a function of the parameters eventually
appearing in the definition of the boundary conditions
(specially when they are imperfect). The DE is an
approximation scheme for that functional, such that its
leading-order term is tantamount to the proximity force
approximation (PFA) [4].
The nature of the next-to-leading-order (NTLO) term, on

the other hand, depends on the type of boundary condition
being imposed on the field. For Dirichlet boundary

conditions, it has been shown that it is always quadratic
in the derivatives of the smooth functions ψ , regardless of
the number of spatial dimensions, d [5]. Therefore its
contribution to the Casimir energy is the integral of a local
function. The same happens for perfect Neumann con-
ditions when d ≠ 2, but the situation is qualitatively
different when d ¼ 2: the NTLO term becomes nonlocal
in coordinate space, a phenomenon which, we have argued,
is a manifestation of the existence of a massless excitation
for the fluctuating field [5]. A similar effect may be seen to
appear for the case of the EM field with perfect boundary
conditions, also in d ¼ 2. This is, as we shall show below,
no coincidence, as both theories, scalar with Neumann
conditions and EM field with perfect boundary conditions
are equivalent.
In order to gain more insight about this issue, namely,

the special nature of the NTLO contribution for the EM
field in 2þ 1 spacetime dimensions with perfect boundary
conditions, we perform here the following analysis: we
consider a system with imperfect-conductor boundary
conditions on both surfaces, and evaluate the leading
and NTLO contributions to the DE.
This study is of interest because of several reasons: on

the one hand, one knows that the perfect-conductor con-
dition is an approximation to a real, imperfect mirror.
Besides, it will provide a way to cope with the infrared
divergences which would appear for perfect conditions.
Finally, note that, in spite of the fact that the system is
defined in 2þ 1 dimensions, this analysis may be useful
even when one considers the 3þ 1-dimensional case at
finite temperature. Indeed, thermal effects mean that one
should take into account the contribution of the Matsubara
modes [6]. Among them, the thermal zero mode behaves as
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a d ¼ 2 field and, as we have shown, an entirely analogous
effect to the one has in d ¼ 2 is induced [5]. The same
can be said of a fluctuating electromagnetic (EM) field
with perfect boundary conditions at a finite temperature,
since it can be shown to accommodate a Neumann-like
contribution.
This paper is organized as follows: in Sec. II we define

the system, starting by a description of the duality between
the scalar and EM field models, and then constructing the
model for the EM field coupled to the two boundaries. We
then define the respective effective action, functional of the
shape of the deformed mirror. In Sec. III we present results
about the expansion of the effective action to second order
in the departure with respect to the case of flat parallel
mirrors. Then, in Sec. IV we deal with the DE for the
Casimir energy, based on the results obtained in the
previous Section. In Sec. V we present some examples
where the NTLO correction is evaluated for imperfect
Neumann boundary conditions in 2þ 1 dimensions.
Section VI contains our conclusions. Some technical details
about the evaluation of the effective action to the second
order in the deformation are presented in an Appendix.

II. THE SYSTEM AND ITS EFFECTIVE ACTION

A. Scalar field/EM field duality

Let us first see how a real scalar field in 2þ 1
dimensions with Neumann conditions may be described,
alternatively, in terms of an EM field with conductor
boundary conditions.
We first assume that we want to study a massless quantum

real scalar field φðxÞ, satisfying perfect Neumann boundary
conditions on two static curves, denoted by L and R, the
former assumed to be straight and the latter slightly curved.
We use Euclidean conventions, such that x ¼ ðxμÞ, with
μ ¼ 0; 1; 2, denote the ð2þ 1Þ-dimensional spacetime coor-
dinates (x0 ≡ imaginary time). Besides, we shall use the
notation v∥ for a vector on a 1þ 1 dimensional spacetime,
e.g. v∥ ¼ ðvαÞ ¼ ðv0; v1Þ. We have introduced the conven-
tion, that we follow in the rest of this paper, that indices from
the beginning of the greek alphabet (α; β;…) run over the
values 0 and 1. No distinction will me made between upper
and lower indices, and their vertical position will only be
decided having notational clarity in mind.
The free Euclidean action for the vacuum field φ is

given by

S0 ¼
1

2

Z
d3xð∂φÞ2; ð1Þ

which is complemented by the assumption of Neumann
boundary conditions on L and R. Regarding the Casimir
energy calculation, we just need static boundaries, but
it is nevertheless useful to consider a more general, time-
dependent expression for the curved boundary R. Thus,

L and R are defined as the regions in spacetime satisfying
the equations

ðLÞ x2 ¼ 0;

ðRÞ x2 ¼ ψðx∥Þ; ð2Þ

respectively.
The reason to allow for such a time dependence is

twofold; on the one hand the treatment of the problem is
more symmetrical, and the physical case may still be
recovered at the end by setting ψ ¼ ψðx1Þ. On the other
hand, the Euclidean effective action which we shall
calculate can be used (reinterpreted) as the high temper-
ature limit of the free energy for a model in 3þ 1
dimensions, with boundaries defined by x3 ¼ 0 and
x3 ¼ ψðx1; x2Þ (after a straightforward relabelling of the
spacetime coordinates).
The form of the boundary conditions imposed on the

field at the boundaries (regarded as spacetime surfaces) is
then

∂2φðxÞjx2¼0 ¼ 0; ∂nφðxÞjx2¼ψðx∥Þ ¼ 0; ð3Þ

where ∂n denotes the directional derivative along the
direction defined by the unit normal to R, nμðx∥Þ:

nμðx∥Þ≡ δμ2 − δμα∂αψðx∥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∂ψðx∥Þj2

q : ð4Þ

The scalar field φ may then be mapped into the 3-
potential Aμ for an EM field, by means of the duality
transformation,

∂μφ ↔ ϵμνρ∂νAρ; ð5Þ

where Aμ is a vector field. It is an immediate consistency
condition of the above, by taking the divergence on both
sides, that φ is massless, □φ ¼ 0, which we shall assume.
Now, the boundary conditions (3) corresponds, via the

duality transformation, to

ϵαβ∂αAβðx∥; 0Þ ¼ 0

½nμðx∥Þϵμνρ∂νAρ�jx2¼ψðx∥Þ ¼ 0; ð6Þ

for the Aμ field. This may be expressed equivalently as the
vanishing of the component of the EM field tensor which is
“parallel” to the respective surface; namely, the component
of its dual (a pseudovector) parallel to the normal at each
point vanishes. Since the situation for Lmay be obtained as
a particular case, namely, ψ ¼ 0, let us consider that for R,
introducing the projected component of the gauge field,
Aαðx∥Þ,
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Aαðx∥Þ≡ eμαðx∥ÞAμðx∥;ψðx∥ÞÞ
eμαðx∥Þ≡ δμα þ δμ3∂αψðx∥Þ; ð7Þ

one gets on the surface the boundary condition

ϵαβ∂αAβðx∥Þ ¼ 0; ð8Þ

which for L simplifies to

ϵαβ∂αAβðx∥; 0Þ ¼ 0; ð9Þ

i.e., the E1 component of the electric field vanishes
for x2 ¼ 0.
So, regarding the boundary conditions, we have a

mapping between Neumann and perfect conductor; for
the respective free Euclidean Lagrangians, we note that,
from (5),

1

2
∂μφ∂μφ ¼ 1

4
FμνFμν ð10Þ

so that the free scalar field action is mapped into the
Maxwell action:

1

2

Z
d3xð∂φÞ2 ¼ S0½φ� ↔ S0½A� ¼

1

4

Z
d3xF2

μνðAÞ:
ð11Þ

Now we want to deal with approximate boundary con-
ditions that, for the scalar field, would correspond to adding
to the action an interaction term SI localized on two mirrors
and would contain the parameter μ, with the dimensions of
a mass, such that perfect conditions are recovered when
μ → 0. More explicitly,

SI½φ� ¼
1

2μ

Z
d3x

�
δðx2Þð∂2φðxÞÞ2

þ
ffiffiffiffiffiffiffiffiffiffiffi
gðx∥Þ

q
δðx2 − ψðx∥ÞÞð∂nφðxÞÞ2

�
; ð12Þ

where gðx∥Þ ¼ 1þ ½∂ψðx∥Þ�2 is the determinant of the
induced metric on R, required to have reparametrization
invariance. We use the same μ on both mirrors, since we
will assume them to have identical properties, differing just
in their position and geometry.

B. The EM field model

The approximate Neumann boundary conditions are then
introduced in terms of the EM field by adding to the EM
field action the respective interaction term. Thus, we will
work with the action

SðAÞ ¼ S0ðAÞ þ SIðAÞ; ð13Þ

where

S0ðAÞ ¼
1

4

Z
d3xFμνFμν; ð14Þ

and

SIðAÞ ¼ SLðAÞ þ SRðAÞ: ð15Þ
where

SRðAÞ ¼
1

4μ

Z
d2x∥

ffiffiffiffiffiffiffiffiffiffiffi
gðx∥Þ

q
F αβðx∥ÞF αβðx∥Þ ð16Þ

with F αβðx∥Þ the EM field associated to Aαðx∥Þ, and μ the
parameter introduced for the scalar field. The factor SLðAÞ
is defined by a similar expression, obtained by setting
ψ ≡ 0:

SLðAÞ ¼
1

4μ

Z
d2x∥Fαβðx∥; 0ÞFαβðx∥; 0Þ: ð17Þ

The interaction terms reproduce Eq. (12) when written in
terms of the dual scalar field.
Following standard procedures [7], we rewrite the action

in an equivalent form, by using two auxiliary fields, ξL and
ξR, living on each one of the surfaces, to linearize the form
of the terms localized on the mirrors. Those auxiliary fields
are introduced in such a way that, if integrated out, they
reproduce the original action, S½A�.
The corresponding equivalent action, thus, becomes

SðA; ξL; ξRÞ ¼ S0ðAÞ þ S0ðξL; ξRÞ − i
Z

d3xJμðxÞAμðxÞ
ð18Þ

with

JμðxÞ ¼ δðx2Þδμαϵαβ∂βξLðx∥Þ
þ δðx2 − ψðx∥ÞÞeμαðx∥Þϵαβ∂βξRðx∥Þ; ð19Þ

and

S0ðξL; ξRÞ ¼
μ

2

Z
d2x∥

�
ðξLðx∥ÞÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffi
gðx∥Þ

q
ðξRðx∥ÞÞ2

�
;

ð20Þ
with gðx∥Þ ¼ 1þ ∂αψ∂αψ .
The action SðA; ξL; ξRÞ may be seen to be invariant

under gauge transformations, AμðxÞ → AμðxÞ þ ∂μωðxÞ as
a consequence of the fact that the “current” Jμ is conserved.
Since our next step amounts to integrating our the Aμ,
that action should be first given a gauge fixing. Gauge
invariance assures the results are going to be independent of
the gauge-fixing adopted, thus our choice is dictated by
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simplicity. In this case that is the Feynman gauge, whereby
one adds a gauge-fixing action SgfðAÞ to S0ðAÞ, to get the
free gauge fixed action SGðAÞ:

S0ðAÞ → SGðAÞ ¼ S0ðAÞ þ
1

2

Z
d3xð∂ · AÞ2: ð21Þ

Nowwe define the effective action Γ½ψ � by the functional
integral:

e−Γ½ψ � ¼
R
DADξLDξRe

−SGðAÞþi
R

d3xJμðxÞAμðxÞR
DAe−SGðAÞ ; ð22Þ

where the denominator has been introduced in order to
get rid of one infinite factor which is irrelevant to our
calculation: the effective action corresponding to the EM
field in the vacuum, i.e., in the absence of mirrors. There are
other factors we will get rid of in Γ, associated to the self-
energies of the mirrors. These have the distinctive feature
of being independent of the distance between the mirrors,
and therefore they do not contribute to the Casimir force
between them.
We then integrate A, obtaining for Γ½ψ � a formal

expression where we have to integrate over the auxiliary
field, which are endowed with an action we denote by
SeffðξL; ξRÞ,

e−Γ½ψ � ¼
Z

DξLDξRe−SeffðξL;ξRÞ; ð23Þ

where

SeffðξL; ξRÞ ¼
1

2

Z
d3xd3x0JμðxÞGμνðx; x0ÞJμðx0Þ

¼ 1

2

Z
d2x∥d3x0∥ξAðx∥ÞKABðx∥; x0∥ÞξBðx0∥Þ;

ð24Þ

where

Gμνðx; x0Þ ¼ δμν

Z
d3k
ð2πÞ3

eik·ðx−x0Þ

k2
; ð25Þ

is the Aμ propagator in the Feynman gauge, and we have
introduced the four objects KABðx∥; x0∥Þ, where A and B
adopt the values L and R. Their form is obtained by
substitution of the explicit form of Jμ in terms of the
auxiliary fields, performing integrations by parts, and using
the respective δ functions. Since we will use an expansion
in powers of the deformation η, we only need them up to the
second order in that expansion. See the Appendix for their
explicit forms.
We conclude this section by writing the effective action

as follows,

Γ½ψ � ¼ 1

2
Tr log½K�; ð26Þ

where K is the 2 × 2 matrix of components defined by the
kernels KAB, while the trace operation acts over the A, B
indices, as well as over the spacetime dependencies.

III. EXPANSION OF Γ½ψ� UP TO SECOND
ORDER IN η

As we have already done in previous applications of the
DE, we consider the effective action for an, in principle,
time-dependent function ψ , taking the static limit at the end
of the calculation. In that limit, the effective action becomes
equal to the vacuum energy E, times T, the length of the
time coordinates.
Setting then ψðx∥Þ ¼ aþ ηðx∥Þ, we introduce the expan-

sion of Γ in powers of η, up to the second order. Thus,

Γða; ηÞ ¼ Γð0ÞðaÞ þ Γð1Þða; ηÞ þ Γð2Þða; ηÞ þ…; ð27Þ

where the index denotes the order in η. The first-order term
can be made to vanish by a proper definition of a, and we
consider the relevant zeroth- and second-order terms in the
following subsections,

Γð0Þ ¼ 1

2
Tr½logKð0Þ�

Γð2Þ ¼ Γð2;1Þ þ Γð2;2Þ; ð28Þ

where

Γð2;1Þ ¼ 1

2
Tr½ðKð0ÞÞ−1Kð2Þ�

Γð2;2Þ ¼ −
1

4
Tr½ðKð0ÞÞ−1Kð1ÞðKð0ÞÞ−1Kð1Þ�: ð29Þ

A. Leading order

The leading-order term may be obtained rather straight-
forwardly since the zeroth-order kernel is block-diagonal
in momentum space, and the trace operation is then two-
dimensional, the result being

Γð0Þ ¼ TL
1

2

Z
d2k∥
ð2πÞ2 log½1 − r2ðjk∥jÞe−2jk∥ja�; ð30Þ

with

rðxÞ≡ x
xþ 2μ

; ð31Þ

while T and L denote the extent of the time and length
dimensions of the system. We have extracted from Γð0Þ an
a-independent contribution.
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Thus, the energy density to this order has the form

Eð0Þ ¼ 1

4πa2

Z
∞

0

dρρ log

�
1 −

�
ρ

ρþ 2μa

�
2

e−2ρ
�
: ð32Þ

This expression is well defined for any value of μa; in
particular, in the two limiting regimes corresponding to
semitransparent mirrors, μa ≫ 1,

Eð0Þ ≃ −
3

128π

1

μ2a4
; ð33Þ

as well as for perfect mirrors, μa ≪ 1,

Eð0Þ ≃ −
ζð3Þ
16π

1

a2
: ð34Þ

This result corresponds, of course, to that of perfect
Neumann boundary conditions.

B. Next-to-leading order

The second-order term Γð2Þ, being quadratic in η, can be
represented in Fourier space as

Γð2Þ ¼ 1

2

Z
d2k∥
ð2πÞ2 f

ð2Þðk∥Þj~ηðk∥Þj2 ð35Þ

in terms of the kernel fð2Þ.
Collecting the two contributions to fð2Þ presented in the

Appendix, we obtain its full form. It may be represented
as the sum of two terms: fl, which is just quadratic in
momentum and therefore gives rise to a local contribution
to the effective action, plus another one, fnl, where the
dependence in k is inside the integrand of an integral over
another momentum (p∥), and gives a nonlocal contribution
to the effective action, namely,

fð2Þðk∥Þ ¼ flðk∥Þ þ fnlðk∥Þ; ð36Þ

with

flðk∥Þ ¼ k2∥

�Z
d2p∥

ð2πÞ2 Bðjp∥jÞr3ðjp∥jÞ
μ

jp∥j
�

ð37Þ

and

fnlðk∥Þ ¼ −
Z

d2p∥

ð2πÞ2 e
2jp∥þk∥jafr3ðjp∥jÞ

þ rðjp∥jÞrðjp∥ þ k∥jÞ þ r2ðjp∥jÞr2ðjp∥ þ k∥jÞ
− r3ðjp∥jÞr2ðjp∥ þ k∥jÞe−2jp∥þk∥jag

× Bðjp∥jÞBðjp∥ þ k∥jÞ
½p∥ · ðp∥ þ k∥Þ�2
jp∥jjp∥ þ k∥j

; ð38Þ

where we have introduced the function

BðxÞ ¼ 1

e2ax − r2ðxÞ : ð39Þ

It is quite straightforward to check that the previous
expressions render the proper limit for the perfect-
conductor case, μ → 0, under which r → 1,

fð2Þðk∥Þ → fð2ÞN ðk∥Þ

fð2ÞN ðk∥Þ ¼ −2
Z

d2p∥

ð2πÞ2
1

ðe2jp∥ja − 1Þð1 − e−2jp∥þk∥jaÞ

×
½p∥ · ðp∥ þ k∥Þ�2
jp∥jjp∥ þ k∥j

; ð40Þ

where fð2ÞN also equals the kernel for a real scalar field with
Neumann boundary conditions [5].

IV. DERIVATIVE EXPANSION

The Casimir energy E, we have argued, is a functional of
ψ . Up to the second order, and recalling that ψ depends on
just one coordinate (x1), EDE, has the form

EDE½ψ � ¼
Z

∞

−∞
dx1

�
Vðψðx1ÞÞ þ Zðψðx1ÞÞ

�
dψðx1Þ
dx1

�
2
�
;

ð41Þ

where V and Z are local functions of ψ and μ. Taking into
account the dimensions of the objects involved, we can
write a more explicit form for V and Z,

V ¼ c0ðμψÞ
½ψðx1Þ�2

Z ¼ c2ðμψÞ
½ψðx1Þ�2

; ð42Þ

where c0 and c2, which determine the zeroth- and second-
order terms, respectively, are dimensionless functions of
their (also dimensionless) arguments.
Regarding the c0 coefficient, we find that

c0ðμaÞ ¼
1

4π

Z
∞

0

dxx log

�
1 −

�
x

xþ μa

�
2

e−2x
�
: ð43Þ

Note that, as shown in Fig. 1, c0ðμaÞ interpolates between
zero in the limit of large μa, and −ζð3Þ=ð16πÞ for μa → 0,
the result that corresponds to perfect Neumann boundary
conditions [see Eq. (34)].
On the other hand, the c2 coefficient can be extracted

from the kernel appearing in the second-order term for the
effective action, Γð2Þ, as follows: in the Taylor expansion
around zero momentum, we denote by α the coefficient of
the term quadratic in the momentum:
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fð2Þðk∥Þ ¼ fð2Þð0Þ þ αk2∥ þ…: ð44Þ

Then, the c2 coefficient is given by c2ðμaÞ ¼ a2
2
α.

The contribution to c2 coming from fl can be
obtained from Eq. (37). Performing the angular inte-
gration, it reads

c2lðμaÞ ¼
μa
4π

Z
∞

0

dx
x3

ðxþ 2μaÞ
1

ðxþ 2μaÞ2e2x − x2
:

ð45Þ
The calculation of the other contribution to c2, coming

from fnl, is lengthy but straightforward. We expand the
integrand in Eq. (38) in powers of k∥ keeping just quadratic
terms. Performing the angular integration, we obtain

c2nlðμaÞ ¼
−1
4π

Z
∞

0

dx
1

ð2μaþ xÞðx2 − e2xð2μaþ xÞ2Þ4 x
3fe2xx4ð2μaþ xÞ½8ðμaÞ2ð2x2 þ x− 1Þ

þ 4μaxð4xðxþ 1Þ− 3Þ þ x2ð4xð2xþ 3Þ− 5Þ� þ e4xx2ð2μaþ xÞ½32ðμaÞ4ðx− 4Þð2x− 1Þ
þ 8ðμaÞ3xð4xð4x− 15Þ þ 23Þ þ 4ðμaÞ2x2ð28x2 − 94xþ 29Þ þ 2μax3ð8xð3x− 8Þ þ 19Þ þ x4ð4xð2x− 3Þ þ 7Þ�
− e6xð2μaþ xÞ3½−32ðμaÞ4 − 16ðμaÞ3x− 12ðμaÞ2x2 þ 12μax3 þ 3x4� þ x7g: ð46Þ

We have analyzed the behavior of c2 ¼ c2l þ c2nl both
numerically and analytically. As expected, c2 vanishes as
μa → ∞, which corresponds to the absence of mirrors. The
most interesting limit is μa ≪ 1, since this case corre-
sponds to almost-perfect Neumann boundary conditions, a
situation where the problems inherent to this case should
start to manifest themselves. Indeed, to begin with, one can
readily check that the integrand of Eq. (46) goes like ∼1=x
for μa ∼ 0, signalling the emergence of an infrared diver-
gence, as anticipated in our previous work. Moreover, it can
be shown analytically that when μa ≪ 1,

c2ðμaÞ≃ c2nlðμaÞ≃ −
1

16π
logðμaÞ: ð47Þ

We have also checked this result by computing numerically
the logarithmic derivative of c2 with respect to μa, which
indeed tends to −1=ð16πÞ in the small-μa limit. These
results are illustrated in Figs. 2 and 3. Figure 2 depicts c2 as
a function of μa, showing that it vanishes for large μa,

while it diverges in the opposite limit. As a quantitative
check for the small-μa behavior given in Eq. (47), in
Fig. 3 we show the plot of the logarithmic deriva-
tive μadc2nl=dμa.
Collecting the results of this section, we can say that (up

to the second order) the DE approximation to the Casimir
energy reads, for small μa (i.e., close to the perfect case),

EDE½ψ � ¼ −
1

16π

Z
∞

−∞
dx1

1

ψðx1Þ2
�
ζð3Þ

þ log½μψðx1Þ�
�
dψðx1Þ
dx1

�
2
�
; ð48Þ

and this constitutes one of our main results. The first term is
the PFA for the Casimir energy (EPFA). The second term
contains the first nontrivial correction to PFA (ENTLO) for
an arbitrary boundary defined by ψ. This equation shows
that although the DE is ill defined for Neumann boundary
conditions in 2þ 1 dimensions, the nonanalyticities in the
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FIG. 2 (color online). Coefficient c2 as a function of μa.
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FIG. 1 (color online). Coefficient 16πc0=ζð3Þ as a function
of μa.
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DE appear only in the case of perfect boundary conditions;
that is, the parameter μ acts as an infrared regulator. The
physical interpretation anticipated in Ref. [5] for the
appearance of nonanalyticities for Neumann boundary
conditions is confirmed by this calculation. Indeed, for
μ ¼ 0 the field contains massless modes that are not present
for μ ≠ 0. Besides, note that the relation between the
Casimir energies computed for different values of μ is
encoded in the simple differential equation

μ
dEDE

dμ
¼ −

1

16π

Z
∞

−∞
dx1

1

ψðx1Þ2
�
ζð3Þ þ

�
dψðx1Þ
dx1

�
2
�
;

ð49Þ

under the assumption that μψ ≪ 1.

V. EXAMPLES

Let us consider a function ψ describing a parabolic
boundary ψðx1Þ ¼ aþ 1

2
x21=R facing a straight line and

approximate (μ ≠ 0) boundary conditions (EM or
Neumann, depending on the field considered).
Note that a plays the role of the minimum distance

between the two boundaries, while R is the curvature radius
of the parabola at its vertex. From Eq. (48), we obtain the
DE approximation to the Casimir energy, expected to be
reliable, in this example, when ϵ≡ a=R ≪ 1.
The zeroth-order (PFA) term, calculated from the first

line in Eq. (48), reads

EPFA ¼ −
ζð3Þ
16πR

Z þ∞

−∞

du

ðϵþ u2
2
Þ2 ¼ −

ζð3Þ
16

ffiffiffi
2

p
R

1

ϵ
3
2

: ð50Þ

The NTLO correction comes from the second term in
Eq. (48). To evaluate the integral, we change the integration
variable to ψðx1Þ ¼ za, so that

ENTLO ¼ −
1

8πR

ffiffiffi
2

ϵ

r Z þ∞

1

dz

ffiffiffiffiffiffiffiffiffiffi
z − 1

p

z2
log ðμRϵzÞ

¼ −
1

16R

ffiffiffi
2

ϵ

r
½1þ logð4μRϵÞ�: ð51Þ

As expected, the NTLO correction to the DE expansion
diverges logarithmically in the limit of perfect (μ ¼ 0)
Neumann boundary conditions, but is finite in the imper-
fect case.
Besides, we have found it noteworthy that, fixing the

value of μ and taking the limit ϵ → 0, the ratio between the
NTLO and PFA terms becomes independent of μ and reads

ENTLO

EPFA
≃ 2

ζð3Þ ϵ log ϵ: ð52Þ

This ϵ log ϵ behavior can be contrasted with the case of
perfect Dirichlet boundary conditions; in Ref. [5] we have
shown that, in 2þ 1 dimensions,

EðDÞ
DE ½ψ � ¼ −

1

16π

Z
∞

−∞
dx1

1

ψðx1Þ2
�
ζð3Þ

þ ½1þ 6ζð3Þ�
12

�
dψðx1Þ
dx1

�
2
�
; ð53Þ

where the upper ðDÞ denotes Dirichlet boundary conditions.
Computing explicitly the integrals for the same example,
we find

EðDÞ
NTLO

EðDÞ
PFA

¼ ð1þ 6ζð3ÞÞ
24ζð3Þ ϵ; ð54Þ

which is linear in ϵ, in contrast with the quasiperfect
Neumann case that involves a logarithm.
Let us now consider another example that allows us to

make contact with previous results in the literature [8]: a
circle in front of a straight line, which is the dimensionally
reduced version of the cylinder-plane case. Here, the
function ψ defining the curved contour is given by
ψðx1Þ ¼ aþ Rð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x21=R

2
p

Þ, where R is the radius
of the cylinder and a is, again, the minimum distance
between the circle and the straight line.Onphysical grounds,
weexpect the results for either a circleor aparabola in frontof
a line to be very similar in the ϵ ≪ 1 limit. To check this
assertion, since the integrals in Eq. (48) cannot be computed
analytically for the circle, we have performed a numerical
evaluation; in Fig. 4 we plot the ratio,

χ ¼
ENTLO
EPFA

2
ζð3Þ ϵð1þ log½4μRϵ�Þ ; ð55Þ

which compares the ratio between NTLO and PFA terms to
thevalue it shouldhave for theparabolic case, as a functionof
ϵ. As expected, χ → 1 for small values of ϵ, exhibiting a
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FIG. 3 (color online). Logarithmic derivative−16πμadc2nl=dμa
as a function of μa.
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similar behavior to the parabola-line case. Therefore, we
conclude that the NTLO correction to PFA is proportional to
ϵ log ϵ also for the circle-line geometry, a result that was
conjectured for perfect Neumann boundary conditions
in Ref. [8].

VI. CONCLUSIONS

In this work, we present results which, we believe, may
shed light on some of the properties of the DE approxi-
mation to the Casimir energy. In particular, we have studied
a phenomenon pointed out in [5]; namely, that for perfect
Neumann boundary conditions in 2þ 1 dimensions, the
NTLO correction to the PFA cannot be written as the
integral of a local term involving ψ and up to two
derivatives of that function. However, as the calculations
presented here show explicitly, the NTLO is perfectly well
defined and local when the mirrors are imperfect. In other
words, the nonanalyticity is an artifact of the idealization
of the boundary conditions, and this is corrected by an
imperfection, no matter how tiny.
It is worth emphasizing that perhaps a taming of the

nonanalyticity might also be obtained by introducing other,
cruder infrared cutoffs, like a mass term for the field.
However, as we have shown, it is sufficient to include a
rather mild and physically justified modification into the
game, which consists of an imperfection in the Neumann
conditions, parametrized by a constant that can be tuned to
vary the mirrors’ properties.
The same problem can be seen to appear when consid-

ering the high temperature limit (for Neumann conditions)
in 3þ 1 dimensions [5]. Mathematically, the integral in
momentum space that defines ZðψÞ has an infrared
divergence. Based on analogies with results in the context
of quantum field theory in nontrivial backgrounds, we
argued previously that the physical reason for the emer-
gence of nonlocal corrections is the existence of gapless

modes, which happens only for Neumann boundary con-
ditions. We have also argued there that, were that the case,
for imperfect (and therefore more realistic) boundary
conditions, the problem should be cured. We have shown
here that this is indeed the case, by providing an explicit
example.
We considered the case of the EM field in 2þ 1

dimensions, but in what may be considered a byproduct
of our study, we have seen that it is dual to a real scalar field
in the understanding that perfect or imperfect conductor
boundary conditions for the electromagnetic field corre-
spond, respectively, to perfect of imperfect Neumann
boundary conditions for the scalar field.
Regarding explicit results and examples, we have

obtained the coefficients of the second-order DE, depend-
ing on a parameter μ which measures the departure from
perfect boundary conditions, and applied them to evaluate
the Casimir energy for the case of a parabola and a circle
in front of a line. This enabled us to pinpoint the effect of
the would-be infrared dominant contribution to the DE on
the resulting energy for specific geometries. We have also
compared the results with those corresponding to Dirichlet
boundary conditions, where the problem of nonanalyticity
of the NTLO correction is not present.
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APPENDIX: INTERMEDIATE RESULTS ON THE
PERTURBATIVE EXPANSION FOR Γ

We present here some technical details and intermediate
results corresponding to the calculation of the effective
action to the second order in the function η. We assume that
ψðx∥Þ ¼ aþ ηðx∥Þ, with a equalling the average of ψ .
The term of order 1 vanishes, and the others can be

written in terms of the expanded matrices K, of elements
KAB (A;B ¼ L;R), which have expressions that we present
now. The zeroth-order one,

Kð0Þðx∥; x0∥Þ ¼ Kð0Þðx∥ − x0∥Þ

¼
Z

d2k∥
ð2πÞ2 e

ik∥·ðx∥−x0∥Þ ~Kð0Þðk∥Þ; ðA1Þ

where

~Kð0Þðk∥Þ ¼
jk∥j þ 2μ

2

�
1 rðjk∥jÞe−jk∥ja

rðjk∥jÞe−jk∥ja 1

�
;

ðA2Þ
and rðxÞ≡ x

xþ2μ.

Regarding Kð1Þ, we see that

Kð1Þ
RR ¼ Kð1Þ

LL ¼ 0; ðA3Þ
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FIG. 4 (color online). χ (55) as a function of ϵ ¼ a=R (circle-
line geometry) for μR ¼ 0.1. χ goes to 1 for small values of ϵ,
showing that the NTLO correction in this case is similar to the
one of the parabola-line configuration.
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and the off-diagonal elements are given by

Kð1Þ
LRðx∥; x0∥Þ ¼ Kð1Þ

RLðx0∥; x∥Þ

¼ −
1

2

Z
d2k∥
ð2πÞ2 e

ik∥·ðx∥−x0∥Þe−jk∥ja

× ½jk∥j2ηðx∥Þ þ ikα∂αηðx∥Þ�: ðA4Þ

Finally, to the second order, Kð2Þ
LL ¼ 0, and

Kð2Þ
RRðx∥; x0∥Þ ¼

Z
d2k∥
ð2πÞ2 e

ik∥·ðx∥−x0∥Þ

×

�
−
1

2

�
jk∥j3 þ

kαkβ

jk∥j
∂α∂ 0

β

�
ηðx∥Þηðx0∥Þ

− ijk∥jηðx∥Þð∂αηðx∥Þ þ ∂ 0
αηðx0∥ÞÞ

�
: ðA5Þ

On the other hand, both Kð2Þ
LR and Kð2Þ

LR are nonvanishing,
but it may be seen that they do not contribute to the
second-order term under the assumption that the average
of η vanishes.
The Fourier transform of the inverse of Kð0Þ (we need it

to calculate the second-order term) is given by

ð ~Kð0ÞÞ−1ðk∥Þ ¼
2

ðjk∥j þ 2μÞð1 − r2ðjk∥jÞe−2jk∥jaÞ

×

�
1 −rðjk∥jÞe−jk∥ja

−rðjk∥jÞe−jk∥ja 1

�
:

ðA6Þ

The second-order term, Γð2Þ, receives two contributions,
which we have denoted by Γð2;1Þ and Γð2;2Þ in (28). For each
one of them we introduce a momentum kernel,

Γð2;aÞ ¼ 1

2

Z
d2k∥
ð2πÞ2 f

ð2;aÞðk∥Þj~ηðk∥Þj2; a ¼ 1; 2:

ðA7Þ
An explicit evaluation of those two kernels yields

fð2;1Þðk∥Þ ¼ k2∥

�Z
d2p∥

ð2πÞ2
r2ðjp∥jÞ

e2ajp∥j − r2ðjp∥jÞ
μ

jp∥j þ 2μ

�

−
Z

d2p∥

ð2πÞ2
r3ðjp∥jÞ

e2ajp∥j − r2ðjp∥jÞ
½p∥ · ðp∥ þ k∥Þ�2
jp∥jjp∥ þ k∥j

;

ðA8Þ
and

fð2;2Þðk∥Þ ¼ −
Z

d2p∥

ð2πÞ2
�

r2ðjp∥jÞr2ðjp∥ þ k∥jÞ
ðe2ajp∥j − r2ðjp∥jÞÞðe2ajp∥þk∥j − r2ðjp∥ þ k∥jÞÞ

þ rðjp∥jÞrðjp∥ þ k∥jÞ
ðe2ajp∥j − r2ðjp∥jÞÞð1 − r2ðjp∥ þ k∥jÞe−2ajp∥þk∥jÞ

� ½p∥ · ðp∥ þ k∥Þ�2
jp∥jjp∥ þ k∥j

: ðA9Þ
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