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Long ago Coleman, Callan, Wess and Zumino (CCWZ) constructed the general effective Lagrangian for
nonlinearly realized symmetry by finding all possible nonlinear representations of the broken group G
which become linear when restricted to the unbroken group H. However, in the case of a single Nambu-
Goldstone boson (NGB), which corresponds to a broken Uð1Þ, the effective Lagrangian can also be
obtained by imposing a constant shift symmetry. In this work we generalize the shift symmetry approach to
multiple NGBs and show that, when they furnish a linear representation of H that can be embedded in a
symmetric coset, it is possible to derive the CCWZ Lagrangian by imposing (1) “the Adler’s zero
condition,” which requires scattering amplitudes to vanish when emitting a single soft NGB and (2) closure
of shift symmetry with the linearly realized symmetry. Knowledge of the broken group G is not required at
all. Using only generators of H, the NGB covariant derivative and the associated gauge field can be
computed to all orders in the NGB decay constant f.
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I. INTRODUCTION

Effective Lagrangians for nonlinearly realized symmetry
were first introduced by Gell-Mann and Lévy in Ref. [1] in
the context of SUð2ÞL × SUð2ÞR chiral symmetry breaking
in 1960 and later were found to play an essential role in
many areas of theoretical physics. In a pair of elegant
papers, Coleman, Callan, Wess and Zumino (CCWZ)
presented a general method to construct such effective
Lagrangians by starting from a broken group G in the UV
and considering all possible nonlinear representations of G
which become linear when restricted to the unbroken
subgroup H [2,3]. The NGBs then parametrize the coset
spaceG=H, giving rise to the familiar counting rule that the
number of NGBs equals the number of broken generators.
When there is only one NGB, corresponding to a broken

Uð1Þ group, CCWZ gives a particular simple form of
effective Lagrangian,

1

2
∂μπ∂μπ þOð∂4π2Þ; ð1Þ

where the NGB has no potential and is always derivatively
coupled. Alternatively, the above Lagrangian can also be
derived by imposing a constant shift in the NGB field,
π → π þ ϵ, which forbids any non-derivatively coupled
terms in the Lagrangian. The derivative coupling, or the
shift symmetry, manifests itself in the S-matrix elements as
the Adler’s zero [4], which states the scattering amplitudes
of NGBs must vanish when emitting a single soft NGB.
In this work we will generalize the shift symmetry

approach to multiple NGBs furnishing a linear representa-
tion of a simple Lie group H, by imposing only the Adler’s
zero condition and closure of the shift symmetry with the
linearly realized H symmetry. This does not always

happen, and we derive the closure condition when the
effective Lagrangian can be obtained in this way. The
closure condition turns out to be equivalent to the require-
ment that the representation can be embedded in a
symmetric coset G=H. In the end, we find the full
CCWZ Lagrangian can be reconstructed using only gen-
erators of the unbroken group H, without ever referring to
any broken group G in the UV.
Our finding suggests interactions of NGBs are deter-

mined by their transformation property under the group H
in the IR, and are independent of the broken group G in the
UV. This result has important implications in phenomeno-
logical models where the Higgs boson arises as a pseudo-
NGB and will be explored elsewhere [5].
This work is organized as follows. In the next section we

provide a lightning review of the CCWZ formalism,
followed by a discussion on the Adler’s zero condition
and the shift symmetry for a single flavor of NGB. Then in
Sec. IV we generalize the shift symmetry to the case of two
NGBs transforming under an unbroken Uð1Þ as a complex
scalar, while in Sec. V we consider the general shift
symmetry for a simple Lie group, deriving both the closure
condition and simple formulas for the NGB covariant
derivatives and the associated gauge field. Finally we
conclude and provide some discussions in Sec. VI.

II. A BRIEF OVERVIEW OF CCWZ

We will use the notation Ti for the unbroken group
generators in H and Xa the broken generators in G=H. In
general they have the following commutation relations:

½Ti; Tj� ¼ ifijkTk; ½Ti; Xa� ¼ ifiabXb;

½Xa; Xb� ¼ ifabiTi þ ifabcXc: ð2Þ
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The first set of commutators, ½Ti; Tj�, states that H is a
subgroup of G, while the second set of commutators,
½Ti; Xa�, imply that the broken generators Xa furnish a
linear representation of the algebra of H. For symmetric
coset fabc ¼ 0 and ½X;X� ∼ T.
The NGB is parametrized by the matrix

ξ ¼ eiΠ=f; Π ¼ πaXa; ð3Þ

where f is the analogue of the pion decay constant in the
QCD chiral Lagrangian. Notice that ξ ∈ G=H and, under
the action of a group element g ∈ G, transforms as

gξ ¼ ξ0Uðg; ξÞ; Uðg; ξÞ ∈ H: ð4Þ

The Goldstone-covariant derivative Dμ and the associated
gauge field Eμ are derived from the Cartan-Maurer
one-form [2,3]:

ξ†∂μξ ¼ iDa
μXa þ iEi

μTi ≡ iDμ þ iEμ: ð5Þ

The Goldstone-covariant derivative transforms homo-
geneously under the nonlinearly realized symmetry trans-
formation, while the associated gauge field transforms
nonhomogeneously:

Dμ → UDμU−1; Eμ → UEμU−1 − ð∂μUÞU−1: ð6Þ

Then the two-derivative interaction in the Lagrangian is
given by

L2 ¼
f2

2
TrðDμDμÞ; ð7Þ

while the associated gauge field can be used with ordinary
derivative to construct a covariant derivative, ∂μ þ Eμ, for
matter fields furnishing a linear representation of H.
As a demonstration, let’s apply the CCWZ to the coset

SUð2Þ=Uð1Þ, where the are two NGBs: ϕ1 and ϕ2. We will
choose a basis

Xa ¼ 1ffiffiffi
2

p σa; a ¼ 1; 2; T ¼ 1ffiffiffi
2

p σ3; ð8Þ

where fσ1; σ2; σ3g are the Pauli matrices and the group
generators are normalized to TrðXaXbÞ ¼ δab. The NGB
matrix can be written in terms of a complex scalar
ϕ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p

ξ ¼ eiΠ=f; Π ¼
X
a¼1;2

ϕaXa ¼
�

0 ϕ

ϕ� 0

�
: ð9Þ

The two-derivative Lagrangian following from Eq. (7) is

L2 ¼ j∂μϕj2 −
1

3f2
jϕ�∂μϕ − ϕ∂μϕ

�j2

þ 8

45f4
jϕ�∂μϕ − ϕ∂μϕ

�j2jϕj2

−
16

315f6
jϕ�∂μϕ − ϕ∂μϕ

�j2jϕj4 þ � � � : ð10Þ

Obviously SUð2Þ=Uð1Þ is not the only coset containing a
charged NGB. Next we consider a more complicated coset,
the well-known SUð5Þ=SOð5Þ coset from the littlest Higgs
model introduced in Ref. [6], which considered a nonlinear
sigma model arising from a 5 × 5 symmetric matrix Φ,
transforming under the global SUð5Þ symmetry as
Φ → VΦVT , with a vacuum expectation value

Σ0 ¼

0
B@

1

1

1

1
CA: ð11Þ

Σ0 breaks SUð5Þ → SOð5Þ. The NGB fields, Π ¼ πaXa,
are parametrized as

Σ ¼ ei2Π=fΣ0; ð12Þ

where Π contains a doublet under a SUð2Þ subgroup of the
SOð5Þ:

Π ¼

0
BB@

Hffiffi
2

p

H†ffiffi
2

p HTffiffi
2

p

H�ffiffi
2

p

1
CCA; ð13Þ

In components the doublet scalars are H ¼ ðhþh0ÞT .
Focusing on the upper component, hþ, the two-derivative
interactions are [6],1

L0
2 ¼

f2

4
j∂μΣj2

⊃ j∂μhþj2 −
1

48f2
jh−∂μhþ − hþ∂μh−j2

þ 1

1440f4
jh−∂μhþ − hþ∂μh−j2jhþj2

−
1

161280f6
jh−∂μhþ − hþ∂μh−j2jhþj4 þ � � � :

ð14Þ

L2 and L0
2 look different, but they are not, as we will

see later.

1We have ignored the gauge fields which are irrelevant for our
purpose.
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III. ADLER’S ZERO CONDITION
AND SHIFT SYMMETRY

A few years prior to CCWZ, Adler derived a condition
on pion scattering amplitudes as implied by the partially
conserved axial current (PCAC) hypothesis, which states
that the amplitude for the emission of a single soft pion
vanishes [4]. (See also Ref. [7] for a recent discussion.)
This “Adler’s zero” condition forbids a constant term in the
scattering amplitudes of NGBs and is often loosely
described as the NGB only has derivative interactions.
For simplicity let’s consider a single flavor of NGB for

now. In the n-point scattering amplitude of NGBs, using the
convention that all momenta are outgoing, the Adler’s zero
condition together with the Bose symmetry imply the
following form:

Aðππ � � � → ππ � � �Þ ∝ ðp1 þ p2 þ � � � þ pnÞ2 þOðp4Þ
∝ Oðp4Þ: ð15Þ

After imposing the conservation of momentum,
P

i pi ¼ 0,
self-interactions of a single flavor NGB must contain at
least four derivatives. The effective Lagrangian satisfying
the above property is simple and well-known,

L ¼ 1

2
∂μπ∂μπ þOð∂4Þ: ð16Þ

While the above effective Lagrangian can be derived
trivially using the apparatus of CCWZ, a slightly more
direct way is to impose a constant shift symmetry on the
NGB,

π → π þ ϵ; ð17Þ

where ϵ is an arbitrary constant. From the CCWZ per-
spective, the shift symmetry results from the action of the
NGB under an element g ¼ eiϵ of the broken Uð1Þ group,

g eiπ ¼ eiðπþϵÞ; g ∈ Uð1Þ: ð18Þ

The above equation is simply Eq. (4) when G ¼ Uð1Þ.
However, it is clear Eq. (4) will become quite complicated
for a less trivial symmetry breaking pattern.2 In particular,
the CCWZ perspective requires specifying the broken
group G in the UV.

IV. SHIFT SYMMETRY FOR TWO NGBS

The shift symmetry in a single NGB arising from G ¼
Uð1Þ is the simplest possibility of nonlinearly realized
symmetry. In this section we extend the shift symmetry

approach to the next-to-simplest case of two NGBs forming
a complex scalar, ϕ ¼ ðπ1 þ iπ2Þ= ffiffiffi

2
p

, charged under a
Uð1Þ subgroup of the unbroken group: H ⊃ Uð1Þ.
However, instead of going the route of CCWZ by speci-
fying the symmetry breaking pattern in the UV, wewill start
from the IR by imposing the Adler’s zero condition for
scattering amplitudes of NGBs of the same flavor,3

Aðπ1π1 � � � → π1π1 � � �Þ ¼ Oðp4Þ; ð19Þ

Aðπ2π2 � � � → π2π2 � � �Þ ¼ Oðp4Þ; ð20Þ

These two conditions simply state that, when turning off
one of the NGBs, the general shift symmetry must reduce to
πi → πi þ ϵi, i ¼ 1; 2, where ϵi are two arbitrary constants.
The only other condition we will impose, in addition to

the Adler’s zero condition, is that Uð1Þ symmetry be
realized linearly, since it is part of the unbroken group
H, which suggests the two arbitrary constants are combined
into ϵ ¼ ðϵ1 þ iϵ2Þ= ffiffiffi

2
p

. Then, working to linear order
in ϵ, the form of the general shift symmetry is completely
fixed,

ϕ ↦ ϕ0 ¼ ϕþ ϵ −
1

f2
ðϕ�ϵ − ϵ�ϕÞϕ

�X∞
n¼0

an
f2n

ðϕ�ϕÞn
�
;

ð21Þ

where an are numerical constants to be determined later and
f is the NGB decay constant. When turning off one of the
NGBs, say π1 ¼ 0, the general shift symmetry reduces to

ϕjπ1¼0 → ϕjπ1¼0 þ ϵjϵ1¼0; ð22Þ

which guarantees that the Adler’s zero condition is fulfilled
for π2, and vice versa.
To construct the effective Lagrangian for the NGBs, we

look for the NGB covariant derivative Dμϕ which trans-
forms by a ϕ- and ϵ-dependentUð1Þ phase under the action
of the general shift symmetry,

Dμϕ ↦ Dμϕ
0 ¼ eiαuðϕ;ϵÞ=fDμϕ; ð23Þ

where α is the Uð1Þ charge carried by ϕ. The forms of Dμϕ
and uðϕ; ϵÞ are also fixed by the Adler’s zero condition and
the linearly realized Uð1Þ symmetry,

Dμϕ ¼ ∂μϕ −
1

f2
ðϕ∂μϕ

� − ∂μϕϕ
�Þϕ

�X∞
n¼0

bn
f2n

ðϕ�ϕÞn
�
;

ð24Þ
2In fact, CCWZ avoids computing the transformation property

of the NGB completely by dealing with the Cartan-Maurer one-
form in Eq. (5).

3The Adler’s zero condition is an IR statement because it is a
statement on soft particles.
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uðϕ; ϵÞ ¼ 1

f
ðϵ�ϕ − ϕ�ϵÞ

�X∞
n¼0

cn
f2n

ðϕ�ϕÞn
�
; ð25Þ

where bn and cn are numerical constants. Again when
setting π1 ¼ 0, Dμ → ∂μπ

2 and u → 0, which ensure the
Adler’s zero condition for π2 is satisfied.
The numerical constants an; bn, and cn can be solved

order by order in 1=f by plugging Eqs. (21), (24) and (25)
into the transformation law for Dμ in Eq. (23). It turns out
that doing so allows one to determine all coefficients in
terms of one single parameter: a0. For example, the first
five coefficients are

ða0; a1; a2; a3; a4Þ

¼
�
a0;

2

5
a20;

8

35
a30;

24

175
a40;

32

385
a50

�

ðb0; b1; b2; b3; b4Þ

¼
�
−
1

2
a0;

3

20
a20;−

3

140
a30;

1

560
a40;−

3

30800
a50

�

ðc0; c1; c2; c3; c4Þ

¼ 1

α

�
−
3i
2
a0;−

3i
4
a20;−

9i
20

a30;−
153i
560

a40;−
93i
560

a50

�
:

In the end it is possible to obtain a compact expression for
the NGB covariant derivative, to all orders in 1=f,

Dμϕ¼ ∂μϕþϕ
∂μϕ

�ϕ− ∂μϕϕ
�

2jϕj2
�
1−

f
jϕj sin

jϕj
f

�
; ð26Þ

where jϕj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ1Þ2 þ ðπ2Þ2

p
. In the above the only

unknown coefficient, a0, has been absorbed into the
definition of the decay constant, f → f=

ffiffiffiffiffiffiffi
6a0

p
. In other

words, a0 reflects the arbitrariness in the normalization of
the decay constant f.
The two-derivative effective Lagrangian from Eq. (26) is

Lð2Þ ¼ DμϕDμϕ

¼ ∂μϕ
�∂μϕ −

j∂μϕ
�ϕ − ∂μϕϕ

�j2
4jϕj2

�
1 −

f2

jϕj2 sin
2
jϕj
f

�

ð27Þ

So we have managed to derive the effective Lagrangian for
a complex NGB charged under an unbroken Uð1Þ sub-
group, using only the IR properties: 1) invariance under H
and 2) the Adler’s zero condition. No symmetry breaking
pattern is specified and, as such, Eq. (27) is universal
among all possible cosets G=H. Moreover, working to the
first order in ϵ is sufficient to derive the effective
Lagrangian.
Going back to the two seemingly different effective

Lagrangians for a complex NGB in the Sec. II, it is now

easy to check that the only difference between the effective
Lagrangians from SUð2Þ=Uð1Þ and SUð5Þ=SOð5Þ for the
complex NGB is the normalization of the decay constant f.
Indeed, after a rescaling of f → 4f, L2 in Eq. (10) gives
precisely L0

2 in Eq. (14).
In addition to the NGB covariant derivative Dμϕ, one

could work out the associated gauge field EμðϕÞ in a similar
fashion. Specifically, Eμ transforms nonhomogeneously
and like a gauge field under Uð1Þ:

Eμ ↦ e−iuEμeiu − ie−iu∂μeiu ¼ Eμ þ ∂μuðϕ; ϵÞ: ð28Þ

Again postulating E to be of the following form:

Eμ ¼
1

f2
ðϕ�∂μϕ − ∂μϕ

�ϕÞ
�X∞
n¼0

dn
f2n

ðϕ�ϕÞn
�
: ð29Þ

Then solving for Eq. (28) order by order in 1=f, we obtain
the following compact expression,

Eμ ¼
i
α

∂μϕ
�ϕ − ∂μϕϕ

�

jϕj2 sin2
jϕj
2~f

; ð30Þ

where, as a reminder, α is the charge of ϕ under the
unbroken Uð1Þ.4
With Dμϕ and Eμ, the full effective Lagrangian for the

complex NGB can be constructed, without ever specifying
a UV cosetG=H. Moreover, from the IR viewpoint nothing
forces the decay constant f to be real. If an imaginary decay
constant f → if is chosen, one obtains the effective
Lagrangian for a noncompact coset.

V. THE GENERAL CASE FOR A SIMPLE GROUP

In this section we generalize the shift symmetry
approach to a general unbroken group H, taken to be a
simple Lie group, whose group generators are fTi; i ¼
1; 2; � � �g. Consider a set of scalars, πa, furnishing a linear
representation ofH such that, under the infinitesimal group
transformations,

πaðxÞ → πaðxÞ þ iαiðTiÞabπbðxÞ þOðα2Þ; ð31Þ

where αi are a set of real parameters and ðTiÞab is the
corresponding representation of the group generators. A
very basic statement, which nonetheless is worth emphasiz-
ing, is the behavior of πa under an infinitesimal H-rotation
is completely characterized by the action of the group
generators Ti on πa.
For unitary representations the generators Tis are her-

mitian, ðTiÞ† ¼ Ti, which we assume. It will be convenient

4In the case of SUð2Þ=Uð1Þ, using the normalization
TrðXaXbÞ ¼ δab, it is easy to check that α ¼ −

ffiffiffi
2

p
gives the

correct Eμ arising from the coset SUð2Þ=Uð1Þ, for ϕ has the
charge −

ffiffiffi
2

p
under the Uð1Þ represented by T ¼ σ3=

ffiffiffi
2

p
.
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to adopt a basis for the generators such that all generators
are purely imaginary and anti-symmetric, ðTiÞT ¼ −Ti and
ðTiÞ� ¼ −Ti. For real representations, πa are real fields and
this requirement follows automatically from unitarity of the
representation. For for a set of complex scalars ϕaðxÞ
furnishing a complex representation R, we can write
πaðxÞ ¼ ðReϕa; ImϕaÞ and the generators are

Ti ¼
�

i ImTi
R iReTi

R

−iReTi
R i ImTi

R

�
: ð32Þ

Notice that the hermiticity of TR implies ReTR is a
symmetric matrix while ImTR is an anti-symmetric matrix,
from which the anti-symmetricity of Ti follows.

A. The closure condition

We would like to consider a set of shift symmetries
acting on the πa such that, at leading order, πa →
πa þ ϵa þOð1=f2Þ, for arbitrary real parameters ϵa. Our
goal is to derive a closure condition such that the effect of
an infinitesimal nonlinear action on πa can be compensated
by a field-dependent H rotation,

jπi → jπ0i ≈ jπi þ jϵi þ iαiðϵ; πÞjTiπi; ð33Þ

where we have used the bra-ket notation and jTiπi≡ Tijπi.
Notice the parameter αi now is dependent on ϵ and πa.
Loosely speaking, Eq. (33) states that the action of any
nonlinearly realized symmetry cannot take πa outside of the
representation of H.
We are only interested in an infinitesimal nonlinear

transformation, implying we only work to the first order
in ϵ. Thus αi should be linear in ϵ. Adler’s zero condition
then requires that αiðϵ; πÞ vanishes when reducing to the
case of a single NGB by, for example, setting all but π1 and
ϵ1 to zero, much like Eq. (22) in the example ofH ¼ Uð1Þ.
A simple ansatz that realizes the Adler’s zero condition is,

αi ¼ 1

f2
hπTiϵi þO

�
1

f4

�
: ð34Þ

The general shift at order 1=f2 is then

jπi → jπ0i ¼ jπi þ jϵi þ A1

f2
jTiπihπTiϵi; ð35Þ

where A1 is a constant to be determined later. Next we
construct NGB covariant derivative Dπ which transforms
under the shift symmetry in Eq. (35) by a pure field-
dependent H-rotation,

jDπi → jDπ0i ¼ eiu
iðπ;ϵÞTi=fjDπi; ð36Þ

where, at this order in 1=f,

jDπi ¼ j∂πi þ B1

f2
jTiπihπTi∂πi; ð37Þ

uiðπ; ϵÞ ¼ C1

f
hπTiϵi: ð38Þ

Again B1 and C1 are some numerical constants. The above
two equations also realize the Adler’s zero condition when
setting all but one NGB field to zero. The advantage of
choosing a real basis in which the generators are anti-
symmetric is now evident; otherwise more structures will
be present. From Eq. (35) we see, under the nonlinear shift
symmetry, Dπ transforms as

jDπ0i ¼ jDπi þ A1

f2
ðjTi∂πihπTiϵi þ jTiπih∂πTiϵiÞ

þ B1

f2
ðjTiϵihπTi∂πi þ jTiπihϵTi∂πiÞ: ð39Þ

Expanding Eq. (36) to linear order in ϵ now gives

ðA1 þ iC1ÞjTi∂πihπTiϵi þ ðA1 − B1ÞjTiπih∂πTiϵi
þ B1jTiϵihπTi∂πi ¼ 0; ð40Þ

which is equivalent to

ðTiÞabðTiÞcd −
A1 þ iC1

B1

ðTiÞacðTiÞdb

þ A1 − B1

B1

ðTiÞadðTiÞbc ¼ 0: ð41Þ

A solution to Eq. (41) does not always exist. However,
when a solution does exist, we can contract any pair of
indices and use the traceless condition of generators to
derive

A1 − 2B1 ¼ 0; A1 þ B1 þ iC1 ¼ 0; ð42Þ

giving rise to the solution

B1 ¼
A1

2
; C1 ¼ −

3

2
iA1: ð43Þ

In turn, Eq. (41) now becomes

ðTiÞabðTiÞcd þ ðTiÞacðTiÞdb þ ðTiÞadðTiÞbc ¼ 0: ð44Þ

This is the “closure condition”we set out to look for. When
it is satisfied for a given representation of H, one can use
the general shift symmetry to derive the effective
Lagrangian, at least to the order of 1=f2.
An important point to stress is that the closure condition

comes about by requiring the Adler’s zero condition and
that effects of the shift symmetry can be compensated by a
π-dependent H-rotation. The unknown coefficients B1 and

ADLER’S ZERO AND EFFECTIVE LAGRANGIANS FOR … PHYSICAL REVIEW D 91, 105017 (2015)

105017-5



C1 are solved in terms of A1 without explicitly specifying
the unbroken group H, since the solvability only hinges on
the closure condition. As such, the solution in Eq. (43) is
universal and does not depend on the explicit choice of H
(other than the requirement that it is a simple group.) This is
an important observation, since it implies that, alternatively,
we can evaluate the coefficients numerically on an explicit
choice of H, such as Uð1Þ ≈ SOð2Þ. At higher orders in
1=f, this is our strategy to derive the effective Lagrangian.
It turns out the closure condition in Eq. (44) always holds

when the representation under consideration can be
embedded in a symmetric coset, and is equivalent to the
Jacobi identity for broken generators corresponding to πa in
the CCWZ approach. More explicitly, in a coset G=H,
define Xa to be the broken generators furnishing a given
representation R of the unbroken group H, whose gen-
erators are Ti. Both Xa and Ti belong to the adjoint
representation of G such that

½Ti; Xa� ¼ ifiabXb: ð45Þ
If R can be embedded in a symmetric coset, the
commutators of Xa and Xb can be written as

½Xa; Xb� ¼ ifabiTi: ð46Þ
Then the Jacobi identity, ½Xa; ½Xb; Xc�� þ ½Xb; ½Xc; Xa��þ
½Xc; ½Xa; Xb��, implies

fiabficd þ fibcfiad þ ficafibd ¼ 0: ð47Þ
On the other hand, recall that in the adjoint representation
there is a state corresponding to each generator jXai. The
action of Ti on the state jXai in the adjoint representation is
simply given by [8]

TijXai ¼ j½Ti; Xa�i ¼ −ifibajXbi; ð48Þ
which implies−ifiab is nothing but the matrix entry of Ti in
the R representation of H, and must coincide with the
particular form of Ti in the basis defined in Eq. (32),

ðTiÞab ¼ −ifiab: ð49Þ
In the end, we see the condition in Eq. (44) is identical to
the Jacobi identity in Eq. (47), when the representation R
can be embedded in a symmetric coset. Notice that this is a
weaker condition than requiring that R only resides in a
symmetric coset. There could be cosets containing R that
are nonsymmetric, and in these cases the “nonsymmetric-
ity” of the coset arises from other sectors not containing R.

B. Bootstrapping

Going beyond 1=f2, we need to consider corrections that
are more and more important as the fluctuations in the NGB
become comparable to the mass scale f. In other words,

starting from the neighborhood where δπa ≪ f, we would
like to reach the configuration where δπa ∼ f. Assuming
the nonlinearly realized symmetry is smooth and continu-
ous, there are an infinite number of ways to achieve this
goal. One possibility is to go in a fixed direction by
repeatedly making infinitesimal fluctuations. This boot-
strapping procedure is the idea behind the “exponential
parametrization” of Lie group that are commonly employed
in physics:

eiα
iTi ¼ lim

n→∞
ð1þ iαiTi=nÞn; ð50Þ

The continuity and smoothness of the group guarantees
that, by applying an infinite number of infinitesimal
fluctuations, we can reach the finite configuration
where δπa ∼ f.
In the particular context here, we are interested in

reaching the finite nonlinear transformations by succes-
sively applying the infinitesimal nonlinear transformation.
It helps to write the infinitesimal result in Eq. (35) as

jπi → jπ0i ¼ jπi þ
�
1þ A1

f2
jTiπihπTij

�
jϵi; ð51Þ

which makes it clear that 1þ jTiπihπTij=f2 characterize
the infinitesimal fluctuations in the direction of the non-
linear symmetry. By bootstrapping, the higher-order cor-
rections in 1=f are parametrized by, schematically,

lim
n→∞

�
1þ 1

f2
jTiπihπTij

�
n
jϵi ∼ jϵi þ 1

f2
jTiπihπTiϵi

þ 1

f4
jTiπihπTiTjπihπTjϵi þ � � � : ð52Þ

By comparing with Eq. (33), this parametrization also
makes it clear that all higher-order nonlinear transformation
amounts to compensating the shift in ϵ by a π-dependent H
rotation.
Given the above considerations, we parametrize the

higher-order 1=f corrections by

jπ0i ¼ jπi þ
X∞
n¼0

An

f2n
ðjTiπihπTijÞnjϵi; ð53Þ

jDπ0i ¼
X∞
n¼0

Bn

f2n
ðjTiπihπTijÞnj∂πi; ð54Þ

uiðπ; ϵÞ ¼ hπTij
X∞
n¼1

Cn

f2n−1
ðjTiπihπTijÞnjϵi: ð55Þ

We have shown that the closure condition allows one to
solve for B1 and C1 in terms of A1, without having to
specify an unbroken group H. Based on the continuity and
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smoothness assumptions of the nonlinear symmetry, we
expect that the closure condition is sufficient to ensure a
unique solution exists for all the numerical constants An, Bn
and Cn. Indeed, at order 1=f4, by multiplying the closure
condition in Eq. (44) by ðTjÞde and summing over the index
d, one arrives at

ðTiÞabðTiTjÞce þ ðTiÞbcðTiTjÞae þ ðTiÞcaðTiTjÞbe ¼ 0;

ð56Þ

which allows one to derive the following linear equations
for the coefficients A2, B2 and C2

5:

A2 þ B1A1 − 4B2 ¼ 0; ð57Þ

2A2 − B1A1 þ 2B2 þ iC1B1 ¼ 0; ð58Þ

A2 þ B1A1 þ B2 − iðC2 þ C1B1Þ ¼ 0: ð59Þ

Together with the solution at order 1=f2 from Eq. (43), we
can solve for all three coefficients in terms of A1,

A2 ¼ −
1

5
A2
1; B2 ¼

3

40
A2
1; C2 ¼

3i
8
A2
1; ð60Þ

again without specifying either the broken group G in the
UVor the unbroken group H in the IR. Therefore it is clear
now that these coefficients are only there to ensure the
closure of nonlinear symmetry with the unbroken H
symmetry. As such, they are universal and completely
independent of the details of the underlying symmetry
groups, both the broken and the unbroken ones!

C. Universal formulas for the CCWZ Lagrangian

As we go to higher and higher orders in 1=f, the above
procedure gets quite cumbersome. However, the univer-
sality of the NGB interactions allows us to evaluate the
higher-order terms explicitly using the simplest possible
unbroken group: the Uð1Þ ≈ SOð2Þ. Following the pro-
cedure in Sec. V B, we derive the following simple result
for the NGB covariant derivative:

jDπi ¼
�
sin

ffiffiffiffi
T

p
ffiffiffiffi
T

p
�
j∂πi; T ¼ −3

A1

f2
jTiπihπTij:

ð61Þ

Expanding in power series in T ,

jDπi ¼ j∂πi þ A1

2f2
jTiπihπTi∂πi

þ 3A2
1

40f4
jTiπihπTiTjπihπTj∂πi þ � � � ; ð62Þ

which agrees with the previous results we obtained. It
should be clear by now that the only unknown coefficient
A1 is reflecting the arbitrariness in the normalization of the
scale f, which is not determined from the IR. This is the
only information sensitive to the particular symmetry
breaking pattern G=H, as was seen from the examples
of Uð1Þ NGB in Sec. IV. So we may as well rescale by
f →

ffiffiffiffiffiffiffiffiffiffiffi
−3A1

p
f so that the NGB covariant derivative is

jDπi ¼
�
sin

ffiffiffiffi
T

p
ffiffiffiffi
T

p
�
j∂πi; T ¼ 1

f2
jTiπihπTij: ð63Þ

The associated gauge field Ei can be worked out similarly,

Ei ¼
~D
f2

h∂πjX∞
n¼0

Dn

f2n
ðjTiπihπTijÞnjTjπi; ð64Þ

where ~D andDn are numerical constants. Ei transforms like
a gauge field under the nonlinear transformation,

EiTi → UðEiTiÞU−1 − ð∂UÞU−1; U ¼ eiu
iðϵ;πÞTi=f:

ð65Þ

In the end, after a similar rescaling of f →
ffiffiffiffiffiffiffiffiffiffiffi
−3A1

p
f, we

obtain

Ei ¼ 2i
f2

h∂πj 1
T
sin2

ffiffiffiffi
T

p

2
jTiπi; T ¼ 1

f2
jTiπihπTij:

ð66Þ

In component form, the operator T has the matrix entries,

ðT Þab ¼
1

f2
ðTiÞarðTiÞsbπrπs; ð67Þ

where ðTiÞab is the matrix representation of the Lie algebra
ofH, written in the basis we have chosen, and is completely
determined in the IR once the choice of the representation
and H are made. Equations (63) and (66) allows one to
reconstruct the full CCWZ Lagrangian for a given linear
representation of H that satisfies the closure condition,
without recourse to the coset construction.
For H ¼ Uð1Þ, Eqs. (63) and (66) agree with our earlier

results in Eqs. (26) and (30), respectively, up to a rescaling
of the decay constant f. It is worth commenting that, as it
stands, Eqs. (63) and (66) are valid only in the particular
basis we choose for the generators Ti. However, the
effective Lagrangian constructed out of jDπi, such as
the leading two-derivative Lagrangian,

5The derivation is somewhat tedious but straightforward.
In particular, it is worth keeping in mind that hπTiTjπi ¼
hπTfiTjgπi.
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Lð2Þ ¼ 1

2
hDπjDπi; ð68Þ

is basis independent.
In some examples we considered, such as the funda-

mental representations of SOðNÞ, the general expressions
in Eqs. (63) and (66) can be further simplified. In these
cases, we find T n ∼ hπjπin−1T and, consequently,

jDπi ¼ j∂πi þ 2

hπjπi
�
1 −

fffiffiffiffiffiffiffiffiffiffiffiffiffi
2hπjπip sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hπjπip
f

�

× h∂πTiπijTiπi; ð69Þ

Ei ¼ 4i
hπjπi sin

2

� ffiffiffiffiffiffiffiffiffiffiffihπjπip
2

ffiffiffi
2

p
f

�
h∂πTiπi: ð70Þ

Notice that the SOð2Þ case is the same in the Uð1Þ, while
the SOð3Þ fundamental is the same as the adjoint repre-
sentation of SUð2Þ. The above simplifications, however, do
not occur for adjoint representations of either SOðNÞ
or SUðNÞ.

VI. CONCLUSION AND DISCUSSIONS

In this work we generalized the shift symmetry to the
case of multiple NGBs furnishing a linear representation of
a simple Lie group H. By requiring the Adler’s zero
condition and that the nonlinear shift symmetry not take
the NGBs outside of the representation of H, we derive at
the leading order in 1=f a closure condition which is
sufficient to allow us to reconstruct the full CCWZ
Lagrangian using only generators of H. The knowledge
of the broken group G is not necessary. The closure
condition turned out be equivalent to the requirement that
the linear representation under consideration can be
embedded in a symmetric coset.
CCWZ is a top-down approach, by dictating the broken

group G in the UV from the very beginning, while the
approach of nonlinear shift symmetry is entirely bottom-up,
working only with the unbroken group H in the IR. The
equivalence of the two perspectives indicates that inter-
actions of NGBs, for a given representation of a particular
H, are universal in the IR and not sensitive to details of
symmetry breaking in the UV. In fact, it seems that the
nonlinear NGB interactions only serve to enforce the
Adler’s zero condition under the constraint of linearly
realized symmetry governed by H, at least for those
representations that can be embedded in a symmetric coset.
The only free parameter in the NGB covariant derivatives
and the associated gauge field is the normalization of the
decay constant f.
While we stressed the universal features of the self-

interactions of NGBs from the IR perspective, it is worth
noting that one feature of the low-energy effective
Lagrangian does depend on the broken group G in the

UV, that is the number of NGBs. The universality of NGB
interactions applies to those furnishing a linear representa-
tion ofH. This is evident in the specific examples discussed
in Sec. II, where one sees self-interactions of a complex
NGB charged under an unbroken Uð1Þ in both
SUð2Þ=Uð1Þ and SUð5Þ=SOð5Þ differ only by a re-scaling
of the decay constant f. The number of NGBs in the two
cosets are obviously not the same, but the property of the
NGB self-interactions within a linear representation of the
unbroken group H does not depend on the number of
NGSs, which may be viewed as a consequence of the
universality.
When the decay constant f is a real number, our general

expressions give alternating signs for the higher-order
corrections in 1=f, which agree with the finding in
Ref. [9] using prime principles such as the unitarity of
scattering amplitudes. However, from the shift symmetry
viewpoint, nothing constrains the decay constant to be a
real number. When it is an imaginary number, the resulting
expressions correspond to a non-compact coset.
From the CCWZ perspective, our results are rather

surprising. But the equivalence of the UV and the IR
viewpoints implies there must be a way to see that the
NGB interactions are independent of G from the top down.
The resolution lies in Eq. (49), which identifies ðTiÞab,
the matrix entry of group generators of H, with −ifiab, the
structure constants of the broken group G. Indeed, it is not
difficult to see that, in CCWZ, the NGB covariant deriv-
atives and the associated gauge fields depend only on fjab,
when the representation can be embedded in a symmetric
coset such that ½Xa; Xb� ∼ Ti.
There are many representations that can be embedded in

a symmetric coset, including the fundamental representa-
tions of SOðNÞ as well as the adjoint representations of any
Lie group G. The former can be embedded in SOðN þ 1Þ=
SOðNÞ while the later in G ×G=G. For SUðNÞ group,
however, its fundamental representations cannot be
embedded in a symmetric coset. In other words,
SUðN þ 1Þ=SUðNÞ is not a symmetric coset. In these
cases, one can enlarge the unbroken group from SUðNÞ to
SUðNÞ × Uð1Þ, which is semisimple, and the resulting
coset SUðN þ 1Þ=SUðNÞ ×Uð1Þ is then symmetric.
From the perspective of the shift symmetry, it is simple to

check that generators in the fundamental representations of
SOðNÞ satisfy the closure condition in Eq. (44), as do
generators from any adjoint representation. On the other
hand, generators in the SUðNÞ fundamental do not satisfy
the closure condition, when written in the real basis chosen
in Eq. (32). However, if one allows for an extra Uð1Þ
generator, again written in the basis of Eq. (32), and let the
overall normalization of the Uð1Þ generator float, the
closure condition can be satisfied. The particular case of
the fundamental representation of SUð2Þ × Uð1Þ is of
phenomenological importance, because electroweak sym-
metry is based exactly on SUð2ÞL ×Uð1ÞY and the Higgs
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transforms as a fundamental representation under it. The
derivation of the effective Lagrangian using shift symmetry
in this case will be universal among all models where the
Higgs arises as a pseudo-NGB [5].
For future directions, we believe it will be interesting to

use the shift symmetry approach to derive the topological
interactions, terms in the Lagrangian that transform under
the shift by a total derivative, instead of being invariant. In
addition, it appears that the shift symmetry can accom-
modate a non-compact coset, if we allow the NGB decay
constant to be an imaginary number. From this perspective,
it will be interesting to generalize the shift symmetry to
include spontaneous breaking of spacetime symmetries,

where the counting of NGBs is different from the breaking
of internal symmetries [10].
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