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We prove the Adler-Bardeen theorem in a large class of general gauge theories, including non-
renormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry,
and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost
numbers satisfy a variant of the Kluberg-Stern—Zuber conjecture. We show that if the gauge anomalies are
trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly
vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be
enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a
recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization.
If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale A
associated with them is kept fixed, the theory is superrenormalizable and has the property that, once the gauge
anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power
counting. When the A divergences are subtracted away and A is sent to infinity, the anomaly cancellation
survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model
coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.
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I. INTRODUCTION

The Adler-Bardeen theorem [1,2] is crucial to prove the
consistency of a wide class of perturbative quantum field
theories. Its main consequence is that the cancellation of
gauge anomalies at one loop ensures the cancellation of
gauge anomalies to all orders. Thanks to this result, a finite
number of conditions is sufficient to determine when a
potentially anomalous theory is actually anomaly free.
The cancellation conditions can be worked out rather easily
because they just involve simplified divergences of one-loop
diagrams. If a similar theorem did not hold, a chiral gauge
theory, such as the standard model, would have
to satisfy infinitely many independent cancellation condi-
tions, to be consistent. The solutions would be very few or
contain infinitely many fields.

So far, the Adler-Bardeen theorem has been proved in
Abelian and non-Abelian power counting renormalizable
gauge theories, including the standard model, but not in
more general classes of theories. In this paper we overcome
this limitation by working out a more powerful proof that
applies to a large class of nonrenormalizable theories and
allows us to infer that the standard model coupled to
quantum gravity, which is known to be free of gauge
anomalies at one loop [3], is also free of gauge anomalies to
all orders, and so are most of its extensions.

In general, we must show that when the gauge anomalies
are trivial at one loop, there exists a subtraction scheme where
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they vanish to all orders. Once we know that the scheme
exists, we can build it order by order by fine-tuning finite
local counterterms. A more powerful result is to provide the
right scheme from the beginning, that is to say, define a
framework where all potentially anomalous contributions
cancel out at one loop and are automatically zero from two
loops onwards. We call a statement identifying such a scheme
manifest Adler-Bardeen theorem. In perturbatively unitary
renormalizable theories the manifest Adler-Bardeen theorem
has been proved recently [4]. For reasons that we explain in
the paper, in nonrenormalizable theories we are not able to
determine the subtraction scheme where anomaly cancella-
tion is manifest from two loops onwards. We have to content
ourselves with a weaker, yet powerful enough, result, which
we call almost manifest Adler-Bardeen theorem: given an
appropriate truncation 7" of the theory, we find a subtraction
scheme where the gauge anomalies manifestly vanish from
two loops onwards within the truncation.

The most common regularization techniques are not very
convenient to work out general proofs of the Adler-Bardeen
theorem, because they give us no clue about the right
subtraction scheme. In Ref. [4] a better regularization
technique was built by merging the dimensional regulariza-
tion with a suitable gauge invariant higher-derivative (HD)
regularization [5] and used to prove the manifest Adler-
Bardeen theorem in four-dimensional renormalizable per-
turbatively unitary gauge theories. Unfortunately, several
difficulties of the dimensional regularization make it hard to
generalize that proof to nonrenormalizable theories. To
overcome those problems, in Ref. [6] a chiral dimensional
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(CD) regularization technique was defined. Nevertheless,
the CD technique alone does not identify the subtraction
scheme where gauge anomalies manifestly cancel and must
still be merged with a suitable gauge invariant HD regulari-
zation. The resulting technique, called chiral-dimensional/
higher-derivative (CDHD) regularization, is the right one to
generalize the proof of the Adler-Bardeen theorem to non-
renormalizable theories. It has two regularizing parameters:
e =d— D, where d is the physical spacetime dimension
and D is the continued dimension, and the energy scale A
associated with the higher-derivative terms. The limit
& — 0 must be studied before the limit A — oo.

The CDHD technique is organized so that the higher-
derivative regularizing terms fall well beyond the truncation.
When A is kept fixed, a peculiar superrenormalizable higher-
derivative theory is obtained, which we call HD theory. The
HD theory satisfies the manifest Adler-Bardeen theorem by
simple power counting arguments. The limit A — oo on the
HD theory defines the final theory, which is the one we are
interested in. We show that we can renormalize the A
divergences so as to preserve the cancellation of gauge
anomalies to all orders within the truncation.

The proof we provide holds under certain assumptions.
First, we assume that the gauge symmetries are general
covariance, local Lorentz symmetry, and Abelian and non-
Abelian Yang-Mills symmetries. At this stage, we cannot
include local supersymmetry. Second, we assume that the
local functionals of vanishing ghost numbers satisfy a variant
of the Kluberg-Stern—Zuber conjecture [7]. The standard
model coupled to quantum gravity does not satisfy the
ordinary Kluberg-Stern—Zuber conjecture, but satisfies the
variant that we assume in this paper. The other key assumption
is of course that the one-loop gauge anomalies A" are trivial.
In our approach the functional A(!) is extremely simple, since
it can only depend on the gauge fields, their ghosts, and some
matter fields. We call A(") trivial if there exists a local
functional y of the fields such that A" = (S,,y), where
S, is the d-dimensional tree-level action and (X, Y) are the
Batalin-Vilkovisky (BV) antiparentheses [8], recalled in
formula (2.2). Other mild technical assumptions needed for
the proof (all of which are satisfied by most common theories
of fields of spins < 2) are described along the way.

Here are the main statements that we consider in this
paper. The most general Adler-Bardeen theorem for the
cancellation of gauge anomalies states that

Theorem 1: If the gauge anomalies are trivial at one
loop, the subtraction scheme can be fine-tuned so that they
vanish to all orders.

In renormalizable theories we actually have a stronger
result, the manifest Adler-Bardeen theorem [4], stating that

Theorem 2: If the gauge anomalies are trivial at one
loop, there exists a subtraction scheme where they cancel at
one loop and manifestly vanish from two loops onwards.

In nonrenormalizable theories, instead, we can prove a
result that is stronger than 1, but weaker than 2, the almost
manifest Adler-Bardeen theorem, which states that
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Theorem 3: If the gauge anomalies are trivial at one
loop, for every appropriate truncation of the theory there
exists a subtraction scheme where they cancel at one loop
and manifestly vanish from two loops onwards within the
truncation.

The proper way to truncate a nonrenormalizable theory is
specified in the next section. We stress again that in
nonrenormalizable theories we are not able to prove state-
ment 2, namely find the right subtraction scheme independ-
ently of the truncation. We can just find a good subtraction
scheme for every truncation. This result is still satisfactory,
because Theorem 3 implies Theorem 1. Indeed, let s denote
the subtraction scheme associated with the truncation 7' by
the proof of Theorem 3. There, the gauge anomalies A
vanish within the truncation. Let A. ; denote a finite class of
contributions to the gauge anomalies that lie outside the
truncation 7, in the scheme s7. Clearly, the contributions of
class A.; are fully contained in some truncation 7" > T.
There, however, they must vanish. Since two schemes differ
by finite local counterterms, there must exist finite local
counterterms that cancel the contributions of class A.; in
the scheme sp. In conclusion, the scheme s; satisfies
Theorem 3 within the truncation and Theorem 1 outside.

It is worthwhile to compare our approach with other
approaches to the Adler-Bardeen theorem that can be found
in the literature. The original proof given by Adler and
Bardeen [1] was designed to work in QED. Most gener-
alizations to renormalizable non-Abelian gauge theories
used arguments based on the renormalization group [9-12].
Those arguments work well unless the first coefficients of
the beta functions satisfy peculiar conditions [12] (for
example, they should not vanish). If the theory is non-
renormalizable, we can build infinitely many dimensionless
couplings and can hardly exclude that the first coefficients
of their beta functions satisfy peculiar conditions.
Algebraic/geometric derivations [13] based on the Wess-
Zumino consistency conditions [14] and the quantization of
the Wess-Zumino-Witten action also do not seem suitable
to be generalized to nonrenormalizable theories. Another
method to prove the Adler-Bardeen theorem in renorma-
lizable theories is obtained by extending the coupling
constants to spacetime-dependent fields [15]. A tentative
regularization-independent approach in nonrenormalizable
theories can be found in Ref. [16].

We stress that the proof provided in this paper is the first
proof that the standard model coupled to quantum gravity is
free of gauge anomalies to all orders. Our arguments and
results also apply to the study of higher-dimensional
composite fields in renormalizable and nonrenormalizable
theories.

In this paper, the powers of # are merely used as tools to
denote the appropriate orders of the loop expansion. They
are not written explicitly unless necessary. It is understood
that the functionals depend analytically on the parameters
that are treated perturbatively.
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The paper is organized as follows. In Sec. II we provide
the setting of the proof. We specify the truncation, recall
the properties of the CD regularization technique, and
explain how it can be combined with a suitable higher-
derivative regularization to build the CDHD regularized
theory. In Sec. III we study the properties of the HD
theory. In particular, we show that it is superrenormaliz-
able and study the structures of its counterterms and
potential anomalies. In Sec. IV we work out the renorm-
alization of the HD theory. In Sec. V we study its one-loop
anomalies. In Sec. VI we prove that the HD theory
satisfies the manifest Adler-Bardeen theorem. In
Sec. VII we subtract the A divergences and prove that
the final theory satisfies the almost manifest Adler-
Bardeen theorem, as well as Theorem 1. In Sec. VIII
we show that the standard model coupled to quantum
gravity, as well as most of its extensions, belongs to the
class of nonrenormalizable theories to which our results
apply. Section IX contains our conclusions.

II. GENERAL SETTING

In this section we give the general setup of the proof
and specify most of the assumptions we need. First we
recall the properties of the CD regularization and explain
how it is merged with the HD regularization to build the
CDHD regularization. Then we explain how to truncate
the theory. Instead of working directly with the standard
model coupled to quantum gravity, we formulate a
general approach and give specific examples along
the way.

Throughout the paper, d denotes the physical spacetime
dimension, and D =d —¢ is the continued complex
dimension introduced by the dimensional regularization
(see Sec. IT A for details). We work in d > 2. We use the
symbol ¢ to collect the “physical fields,” that is to say,
the Yang-Mills gauge fields Aj, the matter fields, and (if
gravity is dynamical) the metric tensor g;; or the vielbein
e,‘:j. The indices a,b, ..., refer to the Yang-Mills gauge

group, while @, b, ..., refer to the Lorentz group. The
indices i, 7, ..., refer to the physical d-dimensional space-
time RY, as opposed to the continued spacetime R”.

We denote the classical action by S.(¢). In the case of
the standard model coupled to quantum gravity, we take
S. = S.smg + AS,, where

1 1 -
ScSMG:/V|g| [—M(R+2Ac)—4F;DF“””+£m

(2.1)

and AS, collects the invariants generated as counterterms
by renormalization, multiplied by independent parameters.
Here, R is the Ricci curvature, F' 4 are the Yang-Mills field
strengths, £,, is the matter Lagrangian coupled to the
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metric tensor, g is the determinant of the metric tensor or
vielbein gz;, A, is the cosmological constant, and
x* = 872G, where G is Newton’s constant.

We use the Batalin-Vilkovisky formalism [8] because it
is very efficient to keep track of gauge invariance through-
out the renormalization algorithm. An enlarged set of fields
®* = {¢,C,C,B} is introduced to collect the physical
fields ¢, the Fadeev-Popov ghosts C, the antighosts C, and
the Lagrange multipliers B for the gauge fixing. Next,
external sources K, = {K,;,Kc, K¢, Kg} are coupled
to the ®* symmetry transformations R*(®) in a way
specified below.

If X and Y are functionals of ® and K, their antipar-
entheses are defined as

(X Y)= 5’_X(SI_Y &_Xﬁl_y
T 606K, 6K, 60%)°

where the integral is over spacetime points associated
with repeated indices and the subscripts / and r in §; and 9,
denote the left and right functional derivatives, respec-
tively. The master equation is the condition (S, S) = 0 and
must be solved in D dimensions with the “boundary
condition” S =S, at C = C = B = K = 0. At the prac-
tical level, we first solve the equation (S,S) =0 in d
dimensions, and then interpret its solution § as a
D-dimensional action, according to the rules of the
CD regularization (see Sec. II A). We denote the non-
gauge-fixed solution of the master equation by S,(®, K).
The subscript d reminds us that, although S, solves
(S4,S,) = 0 in D dimensions, it is just the d-dimensional
action interpreted from the D-dimensional point of
view. In particular, it may not be well regularized as a
D-dimensional action. Once we regularize it, we may not
be able to preserve the master equation exactly in D # d.
The violations of the master equation at D # d are the
origins of potential anomalies.

(I) We assume that the gauge symmetries are general
covariance, local Lorentz symmetry, and Abelian and non-
Abelian Yang-Mills symmetries. In particular, the gauge
algebra is irreducible and closes off shell. We use the
second order formalism for gravity and choose the fields ¢
and the sources K so that the non-gauge-fixed solution
S4(®, K) of the master equation reads

(2.2)

Sa(®. K) = Sc(¢) + Sk (®. K).

Si(®,K) = — / RY(®)K,,. (2.3)

where the functional S (with left-handed fermions y; and
scalars ¢, for definiteness) reads
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Sg = / (CP9,A8 + AL, C7 — 0;C — gfP°ALC)KTY" + / (cpa,,ca + g fabcc”cc> K¢

+ /(cﬁa,,eg +e29,C7 + CPe ) KA + / C7(0,CMKS + /(Cﬁfnaacfi"? +C79,C7)KE

b

5 _ i- ab — aa D i ab aa
+/ (C"a;ﬂl/L — 6% Cop + g TC >Kw+/Ky7 <C/a/';WL —4° PCapwr + gT*C l//L)

4

+ [©@@0) + g1k, - [Bre- [ BikE- [ Bk,

Here, 7% and 7T ¢ are the anti-Hermitian matrices associated
with the fermion and scalar representations, respectively.
The ghosts of Yang-Mills symmetry are C?, those of local
Lorentz symmetry are C*”, and those of diffeomorphisms
are C*. The pairs C*-B“, C;;-B", and C;-B; collect the
antighosts and the Lagrange multipliers of Yang-Mills
symmetry, local Lorentz symmetry, and diffeomorphisms,
respectively. The functional S satisfies (Sg,Sg) =0 in
arbitrary D dimensions.

We can gauge fix the theory with the help of a gauge
fermion W(®), which is a local functional of ghost number
—1 that depends only on the fields ® and contains the
gauge-fixing functions G(¢). For example, G(¢) = 0FA;
for the Lorenz gauge in Yang-Mills theories. The typical
form of W(®P) is

w@) = [Vige(6w.+ yrs08). (23)

where &, £ are gauge-fixing parameters and P is an operator
that may contain derivatives acting on B. Typically, if
the gauge fields ¢, have dominant kinetic terms (which are
the quadratic terms that have the largest numbers of
derivatives) of the form

1
"2 / ¢y, (2.6)
inside S., we choose G and P such that
G, &) ~ 6N¢g_l+“¢g + nonlinear terms,
P(p.&,0) ~ENt™T0 L O(¢), (2.7)

up to terms with fewer derivatives, where a = b = 0 for
diffeomorphisms and Yang-Mills symmetries, while a = 1,
b = 2 for local Lorentz symmetry. See formula (2.19) for
more details. In the case of three-dimensional Chern-
Simons theories (N, b, = 1) we take a = 1 and P = 0.

The gauge-fixed action S, is obtained by adding (Sg, ¥)
to SdZ

Sy(®.K) =8,4 (Sk. V) =S, + (Sk. V) + Sk. (2.8)

(2.4)

Alternatively, S, is obtained from S, by applying the
canonical transformation generated by

F(®,K') = / DK, + U(D). (2.9)

We still have (Sy, S;) = 0 in D dimensions, but we stress
again that in general the action S; may not be well
regularized.

Let {G;(¢)} denote a basis of local gauge invariant
functionals of the physical fields ¢, i.e. local functionals
such that (Sg,G;) = 0. Expand the classical action as

Se(e) =D _MiGi(#). (2.10)

where 4; are independent constants. We call such constants
“physical parameters,” since they include, or are related to,
the gauge coupling constants, the masses, etc. If the theory
is power counting renormalizable, S.(¢) is restricted
accordingly and contains just a finite number of indepen-
dent parameters A;. If the theory is nonrenormalizable,
(2.10) must include all the invariants §; required by
renormalization, which are typically infinitely many.

In several cases, the set {G;(¢)} is restricted to the
invariants that are inequivalent, where two functionals are
considered equivalent if they differ by terms proportional to
the S, field equations. The reason why such a restriction is
meaningful is that the counterterms proportional to the field
equations can be subtracted away by means of canonical
transformations of the BV type, instead of 4; redefinitions.
However, for some arguments of this paper it is convenient
to include the terms proportional to the S, field equations
inside the set {G;(¢)}, which we assume from now on. We
can remove them at the end, by means of a convergent
canonical transformation and the procedure of Ref. [17].
There, it is shown that, after the transformation, it is always
possible to re-renormalize the theory and re-fine-tune its
finite local counterterms so as to preserve the cancellation
of gauge anomalies. The renormalized I" functional of the
transformed theory is related to the renormalized I" func-
tional of the starting theory by a (convergent, nonlocal)
canonical transformation. See [17] for more details.
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We say that an action S satisfies the Kluberg-Stern—
Zuber assumption [7], if every local functional X of ghost
number zero that solves the equation (S,X) = 0 has the
form

X = Za,»gi +(S.Y), (2.11)

where a; are constants depending on the parameters of
the theory, and Y is a local functional of ghost number —1.
The Kluberg-Stern—Zuber assumption is very useful to
study the counterterms. It is satisfied, for example, when
the Yang-Mills gauge group is semisimple and the action S
meets other mild requirements [18]. Unfortunately, the
standard model coupled to quantum gravity does not satisfy
it, unless its accidental symmetries are completely broken.
This forces us to search for a more general version of the
assumption.

The accidental symmetries are the continuous global
symmetries unrelated to the gauge transformations. Some
of them are anomalous, others are nonanomalous. If the
gauge group has U(1) factors, let G,,, denote the group of
nonanomalous accidental symmetries. If the gauge group
has no U(1) factors, we take G,,, equal to the identity. We
denote the local gauge invariant functionals of ¢ that break

the group G, by Qi (¢). We exclude the invariants Gi from
the set {G;(¢)} and the actions S, S,, but include them in

more general actions S. and S, =S, + (Sg, ¥) + Sk,

multiplied by independent parameters 4;. The invariants
that explicitly break the anomalous accidental symmetries
are instead included in the set {G,;(¢)}.

It is consistent to switch the invariants G; off, since, when
they are absent, renormalization is unable to generate them
back as counterterms. However, for some arguments of the
proof it is necessary to temporarily switch them on. For this
reason, we need to work with both actions S, and S,.

The action S of (2.11) is assumed to be invariant under
the group G,,,. We say that an action S that breaks G,
satisfies the extended Kluberg-Stern—Zuber assumption if
every local functional X of ghost number zero that solves

the equation (S, X) = 0 has the form

X =Y aG+> bG+(S.Y), (2.12)

where b, are other constants and Y is local. We say that the
action S is cohomologically complete if its extension S,
satisfies the extended Kluberg-Stern—Zuber assumption. In
Sec. VIII we prove that the standard model coupled to
quantum gravity is cohomologically complete.

The variant of the Kluberg-Stern—Zuber assumption that
we need for the proof of the Adler-Bardeen theorem is
formulated in Sec. IIC. In Sec. VIII we show that it is
satisfied by the standard model coupled to quantum gravity,
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as well as most of its extensions. We also prove that the
standard model coupled to quantum gravity satisfies a
“physical” variant of the Kluberg-Stern—Zuber assumption.

It is straightforward to show that the results of this paper,
which we derive for theories with unbroken G, also hold
when G, is completely, or partially, broken. In the end, it is
our choice to decide which symmetries of G,,, should be
preserved and which ones should be broken. It should also
be noted that it may not be easy to establish which accidental
symmetries are anonalous and which ones are nonanoma-
lous a priori. We have arranged our statements to make them
work in any case, under this respect. In the safest case, we

can extend the action S, till G, = 1 and S; = S,.

A. Chiral dimensional regularization

If we want to identify the subtraction scheme where the
anomaly cancellation is (almost) manifest, we must provide
aregularization and a set of specific prescriptions to handle
the counterterms and the potentially anomalous contribu-
tions in convenient ways. The best regularization technique
is obtained by merging the chiral dimensional regulariza-
tion recently introduced in Ref. [6] with a suitable gauge
invariant higher-derivative regularization.

Going through the derivation of Ref. [4], where the
manifest Adler-Bardeen theorem was proved in perturba-
tively unitary, power counting renormalizable four-
dimensional gauge theories, it is easy to spot several crucial
arguments that do not generalize to wider classes of models
in a straightforward way. The main obstacles are due to the
dimensional regularization as it is normally understood
[19]. Besides the nuisances associated with the definition of
75, the dimensionally continued Dirac algebra is respon-
sible for other serious difficulties. For example, it allows us
to build infinitely many inequivalent evanescent terms of
the same dimensions, and the Fierz identities involve
infinite sums. Moreover, it generates ambiguities that
plague the classification of counterterms and make it
difficult to extract the divergent parts from the antiparen-
theses of functionals. The CD regularization overcomes
these problems. In this subsection we recall how it works.

As usual, we split the D-dimensional spacetime manifold
R” into the product RY x R~¢ of the physical d-dimensional
spacetime R? times a residual (—&)-dimensional evan-
escent space R, where ¢ is a complex number.
Spacetime indices u,v,..., of vectors and tensors are
split into bar indices #,7,..., which take the values
0,1,...,d—1, and formal hat indices f,7,..., which
denote the R™* components. For example, the momenta
p* are split into the pairs p#, p”, also denoted by p*, p+,
and the coordinates x* are split into x#, X*. The formal
flat-space metric 7, is split into the physical d x d flat-
space metric 7;; = diag(1,—1,...,—1) and the formal
evanescent metric 7;; = —0;; (the off-diagonal compo-
nents 7, being equal to zero). When we contract
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evanescent components we use the metric #;;, so for
example p? = p”n” pr.

The fields ®(x) have the same components they have in
d dimensions, and each of them is a function of X and X.
For example, spinors w® have 2/4/Zln components, where
[d/2];, is the integral part of d/2, vectors have d compo-
nents Az, symmetric tensors with two indices have
d(d+1)/2 components, and so on. In particular, the
metric tensor g,, is made of the diagonal blocks g;; and
Nup» While the off-diagonal components g;; vanish.

The y matrices are the usual, d-dimensional ones, and
satisfy the Dirac algebra {y%, y*} = 25%?. If d = 2k is even,
the d-dimensional generalization of ys is

7= —iktly0y1 2%
which satisfies 7" =7, 7> = 1. Left and right projectors
Py =(1-%)/2, Pg = (1 +7)/2 are defined as usual. The
tensor -9 and the charge-conjugation matrix C also
coincide with the usual ones. Full SO(1, D — 1) invariance
is lost in most expressions, replaced by SO(1,d —1) x
SO(—¢) invariance.

We endow the fields with well-behaved propagators by
adding suitable higher-derivative evanescent kinetic terms
to the action. We multiply them by inverse powers of
some mass M. For example, the regularized action of
(left-handed) chiral fermions in curved space reads

/elpLiegyaDﬁij + Sevy/’
where D; denotes the covariant derivative and
l. Y — 28 —_
Sew = 337 / (e wlCly, — b, COPWT),  (2.13)

while e is the determinant of the vielbein e- G, are

constants, and C coincides with the matrix C of charge
conjugation if d=4 mod 8; otherwise C = —iy%>
(in d > 2).

In the case of Yang-Mills gauge fields in curved space,
we choose the gauge fermion

/
= / Ve (waﬁAg +%B“>.
The regularized gauge-fixed action reads
1 - &
2V lg|Fa:F*2¢ 4 | \/|g|B*| 9" 0,A8 + = ) B¢
_/ \% |g|CagﬁEaﬁDDCa + SevA + Seva

where
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Seva = / V19l W[QA (HPA9) (HPA)

(2.14)

while ¢y, ¢¢. 114, and 5 are constants. Quantum gravity can
be dealt with in a similar fashion, both in the metric tensor
formalism and in the vielbein formalism [6].

Thanks to the higher-derivative evanescent kinetic terms
introduced by the CD regularization, the propagators of all
the fields have denominators that are equal to products of
polynomials

D—A :—2_ 2 (ﬁ ,
(p.p.m.c.n)=p 2 Ty

(2.15)

where ¢ is a nonvanishing constant of order one and 7 is
another constant. The propagators fall off in all directions
p, p for large momenta p. However, they decrease more
rapidly or more slowly depending on whether the evan-
escent or physical components, p or p, of the momenta
become large. The structure (2.15) suggests that p and p?
should be regarded as equally important in the ultraviolet
limit. The key point of the CD regularization is to define
“weights” so that p and p? are equally weighted, and use
the weights to replace the dimensions in units of mass that
are normally used for power counting. Doing so, we arrive
at a weighted power counting [20], which gives us an
efficient control over the locality of counterterms when the
denominators of propagators are products of polynomials
of the form (2.15).

Weights are defined in D = d, since the corrections of
order € are not important for the weighted power counting.
We conventionally take p to have weight 1, so the
evanescent components p of momenta have weight 1/2.
Call the kinetic terms with the largest number of derivatives
0 dominant kinetic terms. Once they are diagonalized, we
write the dominant kinetic terms of the fields ® as

1 - __
E/CI)GN‘PCI), or /<I>8N4’(I>,

depending on the case. Clearly, the weight of ® is equal to
(d = Ng)/2 and coincides with its dimension in units of
mass. Weights can be unambiguously assigned to the
parameters of the theory and the sources K, by demanding
that the action and the scale M be weightless.

The ® propagators are rational functions of the momenta,
of the form

(2.16)
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P/ZW—N‘I) ([_7, f?)

> 2.17
PZw(p’p) ( )

where P, and P,, are SO(—¢)-scalar polynomials of
weighted degrees 2w — Ng and 2w, respectively, such that
(@) P, is a scalar under SO(1,d — 1), (b) the parameters
contained in P,,, admit a nontrivial range of values where
P,,, is positive definite in the Euclidean framework, and
(c) the monomials (p?)¥ and (p*)** of P, (p,p) are
multiplied by nonvanishing coefficients. The ‘“weighted
degree” of a SO(—e¢)-scalar polynomial Q(p,p) is its
ordinary degree once (Q is rewritten as a polynomial
Q(p, p?) of p and p*.

The theories that contain only parameters of non-
negative weights (and are such that the propagators fall
off with the correct behaviors in the ultraviolet limit) are
renormalizable by weighted power counting. The theories
that contain some parameters of strictly negative weights
are nonrenormalizable. In all cases, the propagators (2.17)
must contain only parameters of non-negative weights.

Weighted power counting also ensures that the scale M
does not propagate into the physical sector of the theory.
Precisely, M is an arbitrary, renormalization-group invari-
ant parameter that belongs to the evanescent sector of the
theory from the beginning to the end, so there is no need to
take the limit M — oo at any stage.

In Ref. [6] we showed that it is possible to find
appropriate higher-derivative evanescent kinetic terms for
all most common fields, such as scalars, fermions, Yang-
Mills fields, gravity in the metric formalism, gravity in the
vielbein formalism, Chern-Simons fields, and so on, and
arrange the regularized action so that the requirements
listed above are fulfilled. The total action is the one that
contains all monomials compatible with weighted power
counting, as well as the nonanomalous symmetries of the
theory, multiplied by the maximum number of independent
coefficients.

Some aspects of the CD regularization are reminiscent of
Siegel’s dimensional reduction [21], which is a popular
modified dimensional regularization taylored for super-
symmetric theories. Among other things, both techniques
make use of the ordinary d-dimensional Dirac algebra.
However, in Siegel’s approach it is necessary to think that
D is “smaller” than d. Then, it is possible to define a
D-dimensional gauge covariant derivative and build gauge
invariant schemes for gauge theories. Using the CD
technique, on the other hand, only the d-dimensional gauge
covariant derivative is consistent. Moreover, in Siegel’s
framework ordinary vectors and tensors are decomposed
into multiplets made of vectors/tensors and extra compo-
nents that behave like scalars (called e-scalars). The latter
are absent in the CD regularization. Another aspect in
common is the important role played by the evanescent
couplings, although they have different features in the
two cases. The dimensional reduction, in its original
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formulation, has inconsistencies [22], and the evanescent
terms can be used to overcome some of those, in both
supersymmetric and nonsupersymmetric theories [23].
The CD technique has several advantages, which we
now recall. In the ordinary, as well as chiral dimensional
regularization we can distinguish divergent, nonevanescent,
and evanescent terms, depending on how they behave in the
limit D — d. The nonevanescent terms are those that have a
regular limit for D — d and coincide with the value of that
limit. The evanescent terms are those that vanish when
D — d. They can be of two types: formal or analytic. The
analytically evanescent terms are those that factorize at
least one ¢, such as eF; ; F*?, ey ielyDyy . The formally
evanescent terms are those that do not factorize powers of &,

such as w{ézy/L. The divergences are poles in ¢ and can
multiply either nonevanescent terms or formally evanescent
terms. The former are called nonevanescent divergences.
The latter are called evanescent divergences, or divergent

evanescences, an example being w{@zl/fL /€. The divergent
evanescences must be subtracted away like any other
divergences, because the locality of counterterms is much
clearer that way.

Using the ordinary dimensional regularization, the clas-
sification of divergent evanescences in the nonrenormaliz-
able sector presents several problems [4]. Consider the
fermionic bilinears yy”kyr,, where y”1-7c denotes the
completely antisymmetric product of y*1, ..., y”*. The inde-
pendent bilinears of this type are infinitely many, because
they do not vanish for k > d. Infinitely many Lagrangian
terms of the same dimensions can be built with them, such
as the four fermion vertices ("' "yr, ) (W37, ., Wa4)- The
Fierz identities contain infinite sums and can be used to
relate certain divergent evanescences to finite terms, which
makes the classification of both ambiguous. No such
problems are present using the CD regularization, because
the y matrices are just the ordinary d-dimensional ones.

Second, the CD technique simplifies the extraction of
divergent parts out of the antiparentheses of functionals,
which is a key step in all renormalization algorithms. We
have to take some precautions to ensure that this operation
can safely cross the antiparentheses, so that, for example,
(S, X)giv = (S, Xgiy). The first thing to do to achieve this
goal is define the tree-level action S so that it does not
contain analytically evanescent terms, but only nonevanes-
cent and formally evanescent terms, multiplied by
e-independent coefficients. In this way, S does not contain
dangerous factors of &, which could simplify the divergen-
ces of X inside (S,X). Moreover, the antiparentheses
cannot generate factors of e. Indeed, since the y matrices
are d dimensional, and the fields ® and the sources K only
have d-dimensional components, the formally evanescent
quantities that we have are just #*? and the evanescent
components p and ¥ of momenta and coordinates. These
objects can generate factors of ¢ only by means of the
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contractions 7%, = —e, Ot = —e, PR = =2¢, etc.
However, the functional derivatives §/6®* and 6/5K , due to
the antiparentheses cannot generate 1" ”nm because fields
and sources have no evanescent components. At the same
time, the antiparentheses just multiply correlation functions in
momentum space, which are SO(—e¢)-scalar, so they cannot
generate factors of &, poles in &, or expressions such as
Ot = —e, 9?32 = —2¢, and cannot convert formal evan-
escences into analytic ones. Ultimately, we can freely cross
the sign of antiparentheses, when we extract the divergent
parts of local functionals using the CD regularization.

Third, the CD regularization is compatible with invari-
ance under rigid diffeomorphisms, which are the GL(d, R)
coordinate transformations

X = MEXP, X = X, (2.18)

where M7, is an arbitrary invertible real constant matrix. We
can choose the tree-level action S to be completely invariant
under this symmetry, even in the gauge-fixing and regu-
larization sectors. To fulfill this requirement, we write the
fields ® and the derivatives 0 using lower spacetime indices
i, U, ..., and the sources K using upper spacetime indices.
Then, we contract those indices by means of the metric
tensor g, its inverse ¢”¥, or the Kronecker tensor &.

Finally, we multiply by an appropriate power of \/m to
obtain a scalar density of weight 1, and integrate over
spacetime. The derivatives d must be contracted by means
of 7%, to ensure SO(—e) invariance.

We formulate the theory without introducing “second
metrics” h,,, i.e. additional metrics besides the metric
tensor g;; and the background metric gg;; around which
we expand g ; perturbatively. Since field translations leave
the functional integral invariant, the correlation functions
are independent of gg;;, so we do not consider gg;; a
second metric. However, the correlation functions may
depend on true second metrics £, which may enter the
|

Hv
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classical action through the gauge fixing or the regulari-
zation. Several common gauge-fixing functions G(¢), such
as 71”9,9,,, do introduce a second metric, which is often
the flat-space metric 7, .

When two independent metrics g, and h,, are present,
the classifications of counterterms and contributions to
anomalies are plagued with unnecessary complications. For
example, the divergent parts can contain arbitrary dimen-
sionless functions of g, h*", g,,h"g,h°, and similar
contractions. If the theory contains a unique metric (and
a unique vielbein), these arbitrary functions do not appear.

In the approach of this paper, invariance under rigid
diffeomorphisms is not completely preserved. If the action
S is invariant, the I" functional is also invariant, as well as its
divergent parts. However, sometimes we need to express
certain divergent terms Al'y;, or potentially anomalous
terms A, in the form (S, y), where y(®,K) is a local
functional. Even when ATy, and A, are invariant under
rigid diffeomorphisms, y may be noninvariant. The diver-
gent terms Aly, = (S,y) are iteratively subtracted by
means of canonical transformations generated by

F(®,K') = / DK, — 4 (D, K').

Instead, the potentially anomalous terms Ay, = (S, y) are
subtracted by redefining the action S as S — y/2. In these
ways, the violation of invariance under rigid diffeomor-
phisms can propagate into the renormalized action Sp.
When no second metrics are present, such a violation is
parametrized by multiplicative functions of the determinant
g of the metric tensor, which are relatively easy to handle.

To simplify various arguments, we assume that the gauge
fermion W(®) is independent of the matter fields. For
example, a good gauge fermion for Yang-Mills symmetries,
local Lorentz symmetry, and diffeomorphisms in perturba-
tively unitary theories [where Ny = 2 in formulas (2.6)

and (2.7)] is [6]

/ -
/@ca( 79, Aa+53a> /eCa,,< PP, Dyeh + 5L3ub+‘5L 77,0, B" >

2

6/

/J@C( ygf‘“+§Ggﬂ 2550597 ——gﬂ”B) (2.19)

where the constants &, &, &, &g, and &, are gauge-
fixing parameters. We have arranged ¥(®) so that it is
invariant under rigid diffeomorphisms. The factors 1/x
are inserted to be consistent with the x structure (2.24),
explained in the next subsection, which becomes mani-
fest once we expand the vielbein around flat space and
make the other replacements of formula (2.28). The
gauge fixing of local Lorentz symmetry contained in
(2.19) takes inspiration from the less common gauge

l

condition aﬂa),’j” =0, rather than the more common
condition of symmetric vielbein, because the latter is
not compatible with the requirement of having a unique
metric. In higher-derivative theories we choose a gauge
fermion with a similar structure, the only difference
being that the gauge conditions G(¢, &) and the operators
P(¢, &, 0) of formula (2.5) also include higher-derivative
terms, to fulfill the conditions (2.7).
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Finally, the CD technique preserves the good properties
of the dimensional regularization. The most important ones
are that (a) the Batalin-Vilkovisky master equation is
simply (S,S8) =0 in D = d (a correction appears on the
right-hand side in most nondimensional regularizations),
and (b) the local perturbative changes of field variables
have Jacobian determinants identically equal to one.
Property (b) follows from the fact that the integrals of
polynomials P(p) of the momenta in d”p vanish.

Summarizing, when the gauge algebra closes off shell,
the CD regularized action has the form

S(@,K) = SC(¢) + (SK7\II) + Sk + Sev = Sq + Sev

=8,+ (S, ¥) + S.,, (2.20)

where S.(¢) is given by (2.10) and the evanescent part S,
collects the evanescent terms required by the CD regulari-
zation, such as S,,,, Scya, and S, ¢ of (2.13) and (2.14). For
the reasons explained above, we assume that S, is non-
evanescent and S, is formally evanescent, so S does not
contain any analytically evanescent terms. Moreover, the
action (2.20) does not contain second metrics and is
invariant under SO(—¢) and the other global nonanomalous
symmetries of the theory. We do not require that S, be
invariant under rigid diffeomorphisms, but just that it be
built with a unique metric tensor or vielbein. We denote the
parameters contained in S,, by ¢; and 7;, where ¢; multiply
the dominant evanescent kinetic terms, and #; multiply the
other terms, as shown by formulas (2.14) and (2.15). For
convenience, we assume that S., depends linearly on ¢ and
n, and vanishes for ¢ = n = 0. We extend S., till it includes
all the evanescent terms allowed by weighted power
counting, constructed with the fields @, the sources K
and K, and their derivatives, multiplied by the maximum
number of independent parameters ¢ and 7. This will allow
us to renormalize the divergent evanescences by means of ¢
and 7 redefinitions. It is consistent to choose S, indepen-
dent of the sources K¢ and Kp. Indeed, if we do so, the
action S does not contain K and depends on K¢ only
through the last three terms of (2.4). Then, K¢ and Ky
cannot contribute to nontrivial diagrams, so the counter-
terms are also independent of them.

In total, we have physical parameters A, contained in S,
gauge-fixing parameters &, contained in W, and regularizing
parameters ¢ and #, contained in S,,. The action (2.20) is
also written as S(®, K, 4,&,¢,7).

Clearly, the CD regularized action S = S, + S,, satisfies
the deformed master equation

(S.5) = O(e), (2.21)
where @(e) denotes formally evanescent local terms. The
right-hand side is the source of potential anomalies.

Given a regularized classical action S(®, K), the regu-
larized generating functionals Z and W are given by
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Z(J,K) = /[dq)] exp <iS(<I>,K) + i/q)"la>

=expiW(/,K). (2.22)
The Legendre transform I'(®,K) = W(J,K) — [ ®%J, of
W(J,K) with respect to J is the generating functional of
one-particle irreducible diagrams. The anomaly functional is

A= ([1) = ((S,5))s (2.23)
where (- - -)¢ denotes the average defined by the action S at
arbitrary sources J and K. A quick way to prove the last
equality of (2.23) is to make the change of field variables
P% — O + (S, %) inside Z(J, K), where 0 is a constant
anticommuting parameter. For details, see for example the
appendixes of [4,24].

B. Truncation

When we quantize a nonrenormalizable theory, or study
composite fields of high dimensions in any kind of theory,
it may be convenient to truncate the tree-level action S, in
some way. For the arguments of this paper, the truncation is
necessary to define a suitable higher-derivative regulariza-
tion. Indeed, to make the HD theory superrenormalizable at
fixed A, the higher-derivative regularizing terms must be
placed well beyond the truncation.

Denote the gauge coupling of minimum dimension with
k. If there are more than one gauge coupling of minimum
dimension, we call one of them x and write any other as rx,
where the dimensionless ratio r is treated as a parameter of
order one. The other gauge couplings g are written as
g = r,k, where the ratios r, have positive dimensions and
are also of order one. We parametrize the non-gauge-fixed
solution S,(®, K, «,{) of the master equation as

Si(P, K, k,{) =—8,(k®,kK, ),

1 -
2
where { are any other parameters besides «, including r and
r., and ', is analytic in {. We assume that each field ® has
a dominant kinetic term (2.16) normalized to one or
multiplied by a dimensionless parameter of order one.

The gauge fixing must be parametrized similarly. We
choose a gauge fermion ¥ of the form

1
U(P,k, &) = P\I//(K‘(I), &),

where £ are the gauge-fixing parameters and ¥’ depends
analytically on & We know that if the gauge algebra
closes off shell, we can choose an S‘d that is linear in K,
as in formula (2.3). Then, the gauge-fixed solution S; =
S+ (S4, ) of the master equation has the structure
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1
Sa(®.K.x.£.8) = S)(kP.kK.L.E). (2.24)

We parametrize the evanescent sector S, in the same way
and define the parameters ¢, # so that

1
Sev(q)7K7Kvg777) :FSICV<K<I)vKKa€a’7)' (225)

In the end, the total action S, and all the tree-level
functionals we work with, have the x structure

1
Xiree (P, K, k) = K—ZX{ree(KfI),KK). (2.26)

Then, it is easy to prove that every loop carries an
additional factor x2. Therefore, the renormalized action,
the I" functional, and the renormalized I" functional have the
K structure

X(®.K.x) =Y VX (k®.xK), (2.27)

L>0

where X; collects the L-loop contributions.

The « structures (2.26) and (2.27) are preserved by the
antiparentheses: if two functionals X(®,K,x) and
Y(®, K, k) satisfy (2.26), or (2.27), then the functional
(X, Y) satisfies (2.26), or (2.27), respectively.

In perturbatively unitary theories, the propagating fields
have standard dimensions in units of mass (because
Ny =2 and Ng =1 for bosons and fermions, respec-
tively). When the theory is not perturbatively unitary, such
as higher-derivative quantum gravity [25], fields of neg-
ative or vanishing dimensions may be present. This is not a
problem, as long as the tree-level action has the structure
(2.24) and the other assumptions we make are fulfilled.

In the presence of gravity, the square root k of Newton’s
constant is equal to x times a ratio of non-negative
dimension. The « structure of the action becomes explicit
when we expand around a background metric or vielbein.
We also need to rescale the ghosts and the sources
associated with diffeomorphisms and local Lorentz sym-
metry. For simplicity, we expand around flat space,
although flat space may not be a solution of the classical
field equations, because the renormalization of the theory
and its anomalies do not depend on the background we
choose. In that case, we can make the x structures (2.24),
(2.26), and (2.27) explicit by means of the canonical
transformation

ey — 85 + Ky, C? — kyCP, Cab - k\CaP,
1
i ] c c c c
K~ Kl Kf— KG KG =K
(2.28)
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Check this fact in formulas (2.4) and (2.19). Whenever we
speak of k structures we understand the replacements
(2.28), although we do not make them explicit all the time.

Now we define the truncation. We organize the set of
parameters ¢, &, ¢, n into two subsets 5 and s_. The subset 5
contains the parameters of positive dimensions, as well as
those of vanishing dimensions that are not treated perturba-
tively. Examples are the parameters that appear in the
propagators. The parameters r and r, (but not k) are also
included in the set 5 because they are considered of order
one. The set 5 also includes the parameters that cure infrared
problems when superrenormalizable interactions are
present. Examples are the masses, the cosmological constant
A, of formula (2.1), and the Chern-Simons coupling in three
dimensions. If k has a negative dimension (such as the square
root of Newton’s constant in Einstein gravity), the set 5 also
includes the parameters £, & that multiply the power counting
renormalizable vertices. An example is the constant A, =
A4/Kk* that appears when the four-scalar vertex A" is
written as A, (k@)*/x* in the four-dimensional ¢*-theory
coupled to Einstein gravity. If [x] = 0, the parameters such
as A, can be assumed to be of order one and also included in
5. We express each parameter contained in § as a dimension-
less constant of order one times m?, where A is a non-
negative number and m is a generic mass scale.

The subset s_ contains the parameters ¢,&,¢,n of
negative dimensions. We write them as dimensionless
constants of order one times AZ4-, where A_ is some
energy scale and A_ is a positive number. The subset s_
includes the coefficients of the quadratic terms ~®9Vod
with N > Ng, which have to be treated perturbatively,
since the dominant quadratic terms we perturb around are
(2.16). Observe that « is not included in the set s_, even if
it may have a negative dimension.

The Feynman diagrams are multiplied by various factors,
but their core integrals depend only on the parameters of the
subset 5 and the external momenta. Therefore, if we assume
that m and the overall energy E are of the same order, each
field ® of dimension dg contributes to the amplitudes as a
power ~E% ~ me,

We assume that there exists a range of energies E
such that

m~E <A, (2.29)
and that « is small enough; that is to say,
kAW <« 1, kE-M <« 1. (2.30)

If [x] <O, the first of these conditions, combined with
(2.29), implies the second one. If [k] > 0, the second
condition implies the first one. If [k] = 0, the two con-
ditions obviously coincide.

It is easy to show that the conditions (2.29) and (2.30) are
sufficient to have a well-defined perturbative expansion.
Consider the contributions to the action S and the
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logarithmic divergences. Factorizing the parameters in
front of a generic local Lagrangian term V (0, ®, K), we
find the structure

k“m°

k% m¢

where the first factor is the tree-level coefficient and the
ratio inside the parentheses is a generic contribution
coming from the divergent parts of Feynman diagrams.
Wehave a > —1,' b >0, ¢ >0, alk] + ¢ = b, a’ > 0, and
d'[k] + ¢’ = b'. The tree-level vertices have either b = 0 or
¢ =0.Then, b’ > 0or ¢ > 0, respectively, so we can write

b/
KA’Z; = (km~ K <Aﬂ> <1 or
"A’Z :<KA:M)a’<Aﬁ> <1, (2.31)

which shows that the expansion does work.
Next, consider the finite contributions to the I" functional.
They have the form

KaEb—a[K] E\?
~N—— = _[K] [
A - WET) <A ) ’

(2.32)

where a > —1 and b > 0. The power of E can be arbitrary
and comes from the fields ®, the sources K, the powers of
m~ E, and the evaluations of the core integrals of the
Feynman diagrams. Clearly, formula (2.32) shows that the
expansion works. It also ensures that a finite number of
diagrams can contribute for each a and b. Indeed, by formula
(2.27) a bounds the number of loops. Moreover, we can use
only a finite number of vertices, because the power of «
bounds the numbers of ® and K legs, while the power of
1/A_ bounds the number of derivatives.

It should be noticed that assumptions (2.29) and (2.30)
are merely tools to organize the perturbative expansion and
the proof of the Adler-Bardeen theorem. They ensure that
we can reach all types of contributions (vertices, diagrams,
counterterms, potential anomalies, etc.), working with
finitely many of them at a time. They are not crucial for
the validity of the proof itself. What we mean is that the
proof of the theorem also holds when assumptions (2.29)
and (2.30) are not valid, and the perturbative expansion is
organized in a different way.

1According to the x structure (2.26), the terms with @ = —1 are
linear in the fields ® or the sources K. Such terms may be present
when we expand around a configuration that is not a minimum of
the action (for example when we expand the metric tensor around
flat space in the presence of a cosmological term). All other terms
have a > 0.
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Now we define the truncation 7 of the theory. We divide
it into two prescriptions, (T1) and (T2), which play
different roles.

(T1) We switch off the o(1/AL) terms of the action
S=S8,+S.. All the terms of S, and S, that are not
0(1/AT) and satisfy the other assumptions of this paper are
kept and multiplied by the maximum number of indepen-
dent parameters.

In Sec. IID we explain that this prescription is also
sufficient to truncate the action Sy, = S + Syp of the HD
theory, because the higher-derivative terms Syp can be
chosen to be A_ independent. We can also take a
A_-independent gauge fermion W. The actions determined
by the truncation T1 are denoted by S.7, Syr, Surs Sts Sars
and so on.

Note that the prescription T1 just switches off portions of
S, but leaves arbitrary powers of 1/A_ in the radiative
corrections. This is sufficient to renormalize the HD theory,
at A fixed, and prove that it satisfies the manifest Adler-
Bardeen theorem.

(T2) For [x] < 0, define 6 = —[«] and

- T
2= |—| .
|:20-:| int

[- - J;. denoting the integral part. For [x| > 0, define ¢ = 0,
£ = co. We define the truncation T2 as the truncation that
keeps the Z-loop contributions up to o(1/AT=2?), for
0 < ¢ < ¢, and neglects the rest.

The truncation T2 is useful for the second part of the
proof, when we study the limit A — oo on the HD theory,
renormalize the A divergences, and prove that the final
theory satisfies the almost manifest Adler-Bardeen theo-
rem. Indeed, these results are all proved within the
truncation T2. This fact illustrates the meaning of the
almost manifest Adler-Bardeen theorem, i.e. statement 3 of
the Introduction.

Both prescriptions T1 and T2 are gauge invariant at
e = 0, since the gauge symmetries do not involve A_. In
power-counting renormalizable theories with [x] =0 we
have 7' = 0.

If [x] <0, the quantity o is strictly positive, so the
prescription T2 reduces the powers of 1/A_ when the
number of loops increases. The area that is covered by
the truncation forms a triangle in the plane with axes 7" and
L. In particular, the truncation only contains a finite number
of loops, up to and including 7.

Note that we do not truncate the powers of «. If we did,
we would explicitly break the gauge invariant terms into
gauge noninvariant pieces. For various arguments of the
proof, it is convenient to define a truncation that is gauge
invariant at ¢ = 0. Nevertheless, at the practical level, a sort
of truncation on the powers of k is implicitly contained in
the conditions (2.30), because they imply that the contri-
butions carrying sufficiently large powers of k are smaller

(2.33)
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than certain contributions neglected by the truncation.
We keep the higher powers of k anyway, because we want
to concentrate on the potential anomalies that may break
gauge invariance dynamically, so it is not wise to break
gauge invariance artificially at the same time.

The reason why we adopt the prescription T2, when we
renormalize the final theory, can be understood as follows.
Consider an invariant G(k¢), equal to the integral of a local
function of dimension dg. By power counting and formula
(2.27), at L loops G may appear as a counterterm with the
structure

(k*)EmP A
K.ZAéJrZL[K]

(In A)¥ G(k¢p) (2.34)

times a product of dimensionless constants, where A =
p+q+dg—d-2k| and g,q' > 0. If the counterterm
(2.34) is contained within the truncation, prescription T2
tells us that

A+2L[k] <T-2Le. (2.35)
Then we also have the inequality A < 7. This ensures that
the truncated classical action S.7, which obeys T1, also

contains the invariant G. There, it appears with one of the
structures

CmpPra—A

C K—2 g(K(ﬁ),

2 psrq I(KP). (2.36)

depending on whether A > p + g or A < p + g, where ( is
a dimensionless constant. In the end, a divergence of the
form (2.34) can be subtracted by redefining ¢. If we replaced
(2.35) by a different prescription, i.e. A+ 2L[k] < T, we
could be unable to subtract the counterterms (2.34) by
redefining the parameters of Sz, for [k] < 0.

The same argument applies to the counterterms that
depend on both ¥® and kK and fall within the truncation. In
particular, thanks to the prescriptions T1 and T2, the
counterterms that are formally evanescent can be subtracted
by redefining the parameters ¢ and 5 of S.,7. The counter-
terms that fall within the truncation but do not belong to
either this class or the class (2.34) will be subtracted by
means of canonical transformations.

For example, in pure quantum gravity ([x] = —1) we
have the counterterms

f e

(2.37)

/\/ ‘9|sz7Rwﬂ
at one loop, which are A_ independent and have A = 2.
The minimal truncation containing them is the one that

neglects o(1/A%) at one loop, which means T + 2[x] = 0,
i.e. T = 2. At the tree level, the same terms appear as
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Cl / 2 CZ 0o
AL 918", CAZ |V |g|Rz R, (2.38)

where (|, are dimensionless constants. Thus, if we
truncated the powers of A_ by neglecting o(1/A%) at
the tree level, the truncated classical action S,.; would not
contain the terms (2.38), and we would not be able to
subtract the divergences (2.37) by redefining appropriate
parameters.

Now we discuss the truncated actions. We have S, =
Ser + Sk, Sur =S+ (Sk, V), where, as anticipated
before, we assume that W is A_ independent. Since the
truncation does not conflict with the gauge symmetries,
Sur and Sy satisfy the master equations (Sy7, Syr) =
(Sur»Sar) = 0. Observe that, by prescription T1, S, does
not contain any invariants G; that fall beyond the truncation.
We stress that, at the tree level, it is not enough to neglect
those invariants: we must really switch them off. Indeed, if
they were present, we would be unable to properly HD
regularize the truncated theory. On the other hand, all the
invariants G; that are multiplied by powers 1 /AL witht < T
and satisfy the other assumptions of this paper [check, in
particular, (II-)—(II-iv) right below] must be contained in
Sqr,» multiplied by independent parameters, since we want
to renormalize the divergences proportional to G; that fall
within the truncation by redefining those parameters. The
evanescent part S,, of the action S is truncated according to
the same rules. In particular, the o(1/AL) monomials of
S.yr must also be switched off and all the monomials of S,
that are not o(1/A”) must be contained in S, 7, multiplied
by independent parameters.

In the end, the truncated version of the action S is

ST(@, K) = SCT(¢> + (SK, \Ij) + SK + SevT = SdT + SevT
(2.39)

and satisfies the master equation up to evanescent terms:
(ST’ ST) = 0(8)

In general, the number of terms contained in the
truncation may be infinite, because there can be fields ®
with [k®] = 0, or, as far as we know now, even fields with
[k®] < 0. Now we make some assumptions that give us
relative control on the power counting.

(IT) We assume that

(i) [x®] >0 for every P;

(i1) there exists at least one field with Ng > 1;

(iii) every field ® with [k®] = 0 has Ng > 2;
(iv) the fields with Ng = O are just the Lagrange multi-
pliers B for the gauge fixing.
The integers Ng are those defined by formula (2.16).

Clearly, the standard model coupled to quantum gravity,
as well as most of its extensions, satisfies these assumptions,
with the gauge fermion (2.19). Assumption (II-i) excludes,
for example, four-dimensional higher-derivative Yang-Mills
theory coupled to Einstein gravity, because in that case
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[A] <0 and [k] = —1. Assumption (II-ii) just excludes
nonpropagating theories.

Assumptions (II-ii) and (II-iii) allow us to prove that the
sources Kg satisfy [kKg] > Ng/2. Indeed, we know that

_d-N,
-,

d+Ng
2

(D] [Ko| = 1, (2.40)
because [R*] = [®*] + 1, while the form of Sg ensures
that [®%] + [K%] = d — 1. Now, if there exists a field ®
with [k®] = 0, we have d = 2[®] + Ng = —2[x] + N >
2 — 2[k|, which implies [x] > 1 — (d/2) and [kKg] > Ng/2
for every ®. If all fields satisfy [k®] >0, we have
d > Ng — 2[k], which implies k] > (Ng — d)/2 for every
®. Since there must be at least a & with Ng > 1, we
conclude that [«] > (1 —d)/2 and [xKg] > (Ng — 1)/2 for
every ®. If g denotes the gauge coupling associated with the
gauge field ¢, [which is the fluctuation qﬁg of formula
(2.28) in the case of gravity], and s, denotes the spin of ¢,
we have [g¢,] = 2 — 5, which is integer or semi-integer.
Since [®] and [K ¢ are also integer or semi-integer, so is [g],
as well as [], [x®], and [kK ). Then, the inequality [xKg] >
(Ng —1)/2 gives [kKg| > Ng/2.

We have already remarked that the sources Kz and K¢
do not contribute to nontrivial one-particle irreducible
diagrams. Thus, assumption (II-iv) ensures that all sources
that contribute to nontrivial diagrams satisfy the stronger
inequality [kKg] > 1/2.

It is easy to check that the relations [ky¢5] =0,
[9Az] = 1, [kg§] > 0, [kA;] > 0, and formula (2.40) imply
l9) > [ky] and Ny < N, < N, +2, where N, and N, are
the numbers of 0 derivatives of the dominant kinetic terms
(2.16) of the graviton field ¢% and the Yang-Mills gauge
fields Az, respectively. Thus, in the presence of gravity the
square root ky of Newton’s constant is always a gauge
coupling of minimum dimension, and we can take k = k.

Note that the remarks made after formula (2.40) ensure
that the powers of 1/A_ appearing in the action are also
integer or semi-integer.

C. Key assumptions

Now we formulate the key assumptions that allow us to
characterize the counterterms and ensure the triviality of the
one-loop gauge anomalies. The action obtained from S, by
switching off all parameters { that belong to the subset s_ is
called basic action and is denoted by S,. The basic action
can also be formally obtained from S, by taking the
limit A_ — oo.

For example, in the case of the standard model coupled
to quantum gravity, the basic action S, is equal to
Sesmc + (Sk, ¥) + Sk, where S.gvg is the low-energy
classical action of formula (2.1), if £, is extended
appropriately. Note that the matter Lagrangian L, of
Sesmg 18 at most linear in Dy, and at most quadratic in
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D;H, where y are the fermions and H is the Higgs field.
The scalar mass terms, the Yukawa couplings, and the
vertices (H'H)? and R(H'H) have the structures

m2
" [ Vo
mZ
" [ Vil

% [ Vislteo) ) )
& [ ViRt co).

(2.41)

where { is dimensionless. Therefore, they survive the limit
A_ — o and are contained in S, For the same reason,
arbitrary powers of k¢ are contained in £,,. The basic

action S, associated with the extended theory S, contains
the vertices (LH)? and the four fermion vertices that break
baryon number conservation. Indeed, although those ver-
tices are power counting nonrenormalizable, they also
survive the limit A_ — oo, because their structures are

%[ Vw5 [ Visltn
(2.42)

where A is dimensionless.

If the nonanomalous accidental symmetries are unbro-
ken, the standard model coupled to quantum gravity
does not satisfy the Kluberg-Stern—Zuber assumption
(2.11). Nevertheless, we can formulate a less restrictive
assumption that is sufficient to give us control over the
counterterms. Precisely, we assume that

(ITT) the basic action Sy, is cohomologically complete

[that is to say, S, satisfies the extended Kluberg-Stern—
Zuber assumption (2.12)] and the group G,,, is compact.
Moreover, we assume that
(IV) the basic action S, has trivial one-loop gauge

anomalies A{"; i.e. there exists a local functional X (®,K)

such that AE,I) = (Sap, X).

To subtract the potential anomalies of the higher-derivative
theory, which is defined at A fixed, in a way that preserves
its structure and nice properties, we actually need a
stronger assumption, that is to say,

(V) alocal functional F(®) of ghost number one that is
trivial in the S, cohomology is also trivial in the Sg
cohomologys; i.e. if there exists a local functional X'(®, K)
such that F = (S, X), then there also exists a local
functional y(®) such that F = (S, ).

In Sec. VIII we show that the standard model coupled to
quantum gravity satisfies all the assumptions of our proof,
so it is free of gauge anomalies to all orders.

When assumptions (IV) and (V) do not hold, or only one
of them holds, we may replace them with the assumption
that

(IV’) the one-loop anomalies of the higher-derivative
theory defined in Sec. II D are trivial in the Sx cohomology;
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i.e., there exists a local functional y(®) such that they can
be written as (S, x).

Indeed, assumptions (IV) and (V) are just needed to
prove (IV’) [see the arguments of Sec. V from formula (4.3)
to formula (5.14)]. In some practical situations it may be
easier to prove (IV’) rather than (ITT) and (IV).

D. CDHD regularization

To find the subtraction scheme where the Adler-Bardeen
theorem is almost manifest, we must merge the CD regu-
larization with a suitable gauge invariant higher-derivative
regularization. The resulting technique is called chiral-
dimensional/higher-derivative regularization. It resembles
the dimensional/higher-derivative (DHD) regularization of
Ref. [4] in various respects, but there are a few crucial
differences. First, the usual dimensional regularization is
replaced by the CD regularization to overcome the difficulties
mentioned in Sec. II A. Second, the DHD regularization is
good for renormalizable theories, while we also want to
apply the CDHD technique to nonrenormalizable theories.
To this purpose, the HD regularizing terms must be adapted
to the truncation. For several arguments of our derivations,
we actually need to place them well beyond the truncation,
and we must show that it is always possible to arrange
them to meet our needs. As in Ref. [4], the HD regulari-
zation must preserve gauge invariance in d dimensions, to
ensure that it is as transparent as possible to potential
anomalies.

In this section we build the HD and CDHD regulariza-
tions. In general terms, they can be defined independently
of the truncation, so we first work with the untruncated
theory. Nevertheless, we cannot satisfy all the requirements
we need in this paper, until we introduce the truncation. We
do that at a second stage and emphasize why the truncation
is so crucial for our purposes.

We introduce higher-derivative local functionals Sjyp,
where / is an index labeling them, a higher-derivative gauge
fermion Wyp, and higher-derivative formally evanescent
terms S.,,. We use them to define a regularized action S,
whose propagators fall off as rapidly as we want, when the
momenta p become large.

We take the functionals S, to be gauge invariant in d
dimensions, i.e. satisfy (Sg, Shp) = 0 and are of the form
Stp(k¢, r,ry). In particular, they just depend on the
physical fields ¢. We normalize each Sk, so that its
quadratic terms (if any) have the form ~k2pdVNeg,
where N, are non-negative integers and N o are the integers
of formula (2.16). The invariants Sl are extended from d
to D dimensions by preserving the identity (Sk, Sip) = 0,
according to the rules of the CD regularization [6].

Specifically, for the standard model coupled to quantum
gravity, examples of the functionals S, are the integrals of

\/H times
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97 (kD) (DN (Do), (k) (7" D)o ().
(kF, ) (D?)N 2 (kF™), R, (D?)No=2/2Ree,

R(D?)Ne=2/2R, (2.43)
where D;, denotes the covariant derivative, D> = ¢#*D;D;,
and the integers N, N,,, Ny, N are large enough (see
below). The same invariants work for any Einstein—Yang-
Mills theory, as well as any higher-derivative theories of
quantum gravity, Yang-Mills gauge fields, scalars, and
fermions.
The classical action S.(¢) is extended to

1 1
Sea(#) = S.(¢) + ;stﬁn(’@, rory),  (244)
1

where A is the energy scale associated with the HD
regularization. The new non-gauge-fixed action then reads

Sur(®.K) = Soa () + Sk = Sea () — / RH(®)K,

(2.45)

and solves (S;,S4x) = 0 in arbitrary D dimensions.

Divide the set ¢ of the physical fields into two subsets,
called ¢y and ¢,,. The set ¢,, contains the matter fields ¢
that have [k¢] > 0. The set ¢, contains the gauge fields ¢,
plus the matter fields ¢ that have [k¢] = 0. We decompose
® as { P}, ¢, }, where & contains the fields ¢/, the ghosts
C, the antighosts C and the Lagrange multipliers B.
Similarly, we decompose the sources K as {K|,K,}.
The transformations R, (®) of the fields @] are independent
of ¢,,, and the transformations R,,(®) of the fields ¢,, are
linear in the fields ¢,, themselves and vanish at ¢,, = 0.

In the case of the standard model coupled to quantum
gravity, the set ¢y, contains the bosons, while the set ¢,
contains the fermions.

If we organize the HD regularization properly, we can
show that the counterterms and the local contributions to
potential anomalies at finite A are independent of the matter
fields ¢,,. The transformations R*(®, g) do not depend on
other parameters besides the gauge couplings g, so, after the
replacements (2.28), we can write

Sk(®, K, k) = —/R”(@,Q)Ka
_ _K_12 / Re(c®, r, r, )(kK,).  (2.46)

We organize the invariants Sfy, into invariants Sy, that
are ¢,,-independent and invariants S’ ;. that are quadratic
in the fields ¢,,. We ignore any ¢,,-dependent invariants
SIp that are not quadratic in ¢,, because they are not
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necessary for our purposes. The examples (2.43) fulfill this
requirement.

We require that the modified gauge fermion Wyp be
invariant under rigid diffeomorphisms and independent of
the matter fields. Moreover, we organize it so that each term
contains an even power 2k of 1/A, and at least k derivatives
0 act on the antighosts C and k derivatives 0 act on the
Lagrange multipliers B, whenever C and/or B are present.
The prototype of this kind of gauge fermion is

[ ViEe©6@ = [ Vidly- k0,
k=0

N
[ Viscoi@s,= [ Vialy i
k=0

The functions G!(¢,&) and the operators P(¢, &, D)
can be read by comparing Wyp with the gauge fermion
U of §; in the limit A = o0, while N;, N are integer
numbers and cy, ¢ lk are constants. In the case of diffeo-
morphisms, C; = C;, G' = G*, B; = B;, and g" = ¢"".
In the case of Yang- M111s symmetries, C; = C¢, G = G,
B; = B?, and ¢/ =5%. In the case of local Lorentz

symmetry, C;=C,; G'=G% B,=B.;

- e (ac

and

Uyp (P FPOAL + - Q’

- [ Vidle; (;Qs(D)ayg’“+;Q4(D)9””9,may

The gauge-fixed action is then

SdA((I)’ K) = SdA + (SK’ \IIHD) (250)

and satisfies (S 5, Sgz) = 0 in arbitrary D. It is obvious that
the higher-derivative terms can make the propagators of all
fields fall off as rapidly as we want, when the physical
components p of the momenta p become large.

Finally, the HD regularized action

Sa = San + Seva
1 1
+=5 > 7 Shp(kp, r.ry)
K™ 45 AN
+ (Sk. Yyp) + Sk + Seva (2.51)

is obtained by adding suitable formally evanescent terms
Seya compatible with weighted power counting and the
nonanomalous global symmetries of the theory. We also

0, CP..

B;,...05,C1 g7 .
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Uyp(P) = Z/ \/HC
< (0605 +5008). @47

where 7 is a generic label to distinguish different types of
contributions, and Q; and Q) are operators acting as
follows:

‘g(_)Zk—l/_)ZkGI(¢7 5)’

.gbk&kgljp(¢’ gl’ a) (851 : "af_kaj)' (248)

|
g = (57¢sPd — 524PT) /2. Thanks to the structure (2.47),
we will be able to prove that the antighosts and the Lagrange
multipliers cannot contribute to the counterterms and the

potential anomalies at finite A.
Specifically, in the case of perturbatively unitary theo-

ries, such as the standard model coupled to quantum
gravity, we extend (2.19) to

> /\/Ecab(llcQz pagh 68De/)+ Qz( )B c‘zb)

—,,—,_Q’ 0)

g/”’By> (2.49)

require that S.,, be built with a unique metric tensor or
vielbein. The scale A has weight 1, equal to its dimension.
The important terms of S, — S., are the kinetic ones,
which must complete the regularized propagators, accord-
ing to weighted power counting (more details on this are
given in the next subsection). We can choose
the other contributions to S.,, — S, at our discretion or
suppress them. The kinetic terms of S, can be con-
structed, for example, by inserting higher derivatives 0/A

and &/(MA) into the evanescent terms of S,,, such as
(2.13) and (2.14). We assume that the difference S.,p — S,
is K independent, since K-dependent higher-derivative
terms are unnecessary for our purposes. We also assume
that Seyp — Sey 1 @ sum of terms that are either independent
of the fields ¢,, or quadratic in ¢,,, and that the ¢,,-
dependent terms are independent of C and B. Finally, we
assume that each term of S.,, — S., contains an even power

2k of 1/A, and at least k derivative operators & ~ 9*/M act
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on the antighosts C and k derivative operators 0 ~ > /M
act on the Lagrange multipliers B, whenever C and/or B are

present.
The action (2.51) clearly satisfies

A

(Sa.82) = Ole).

The HD sector Syp = S, — S is also K independent. It
must have the x structure (2.26) and be organized so that all
the propagators have the structure (2.17). The parameters
on which Syp depends, besides «, r, r,, and A, must have
non-negative dimensions. We include them in a set 4.,
together with r, r_, and write

(2.52)

1
SHD = SHD(q)’K? A, /1+) ES PS;_ID(K(D,A, ﬂ_;,_) (253)

Note that each contribution to Syp is either independent of
the fields ¢,, or quadratic in them. Formula (2.53) is also
implicitly assuming that Syp is A_ independent. Then, it
coincides with its own truncation. More conditions on the
higher-derivative sector Syp are given in the next section.
Now we come to the truncation. The prescription T1 of
Sec. II B tells us that the truncated action S 7 is obtained by
switching off the o(1/AL) terms of S,. Since Syp is A_
independent, we just get the sum of Sy and Syp:

Sar = St + Sup
1 1
= Ser(¢) + ?Z—AZM Stip(kp, 7, 7,)
7

+ (Sk. Vup) + Sk + Seyar- (2.54)

Again, the action S,r satisfies the master equation up to
formally evanescent terms, which means

(Saz. Sar) = O(e).

At finite A, the theory defined by the action S,r,
regularized and renormalized by means the CD technique,
is called (truncated) ‘“higher-derivative theory,” or HD
theory. The theory defined by the same action S,7, but
regularized and renormalized by means of the CDHD
technique, is called (truncated) final theory. The HD theory
is renormalized by studying the limit € — 0 and removing
the divergences and potential anomalies at A fixed. Once
that is done, the final theory is reached by studying the limit
A — oo on the HD theory, removing the A divergences and
proving that the cancellation of anomalies survives these
operations.

At this point, we have two regulators and two types of
divergences: the poles in € and the A divergences. The latter
are products AFIn* A, with k, k' >0, k+k > 0, times
local monomials of the fields, the sources, and their
derivatives. From the point of view of the CD regulariza-
tion, those monomials may be nonevanescent or formally

(2.55)
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evanescent, and their coefficients must be evaluated in the
analytic limit ¢ - 0. To complete the CDHD regulariza-
tion, we must specify how the regularization parameters &
and A are removed. If the HD sector of the regularization is
organized in a suitable way, which we specify in the next
section, the HD theory is superrenormalizable and only a
few one-loop diagrams diverge. After studying the poles in
¢ and the one-loop potential anomalies, at A fixed, we prove
that it is possible to remove both. We also show that these
operations are sufficient to remove both divergences and
anomalies to all orders, in the HD theory. Then we study the
limit A — oo and show that we can remove the divergences
and potential anomalies appearing in that limit, preserving
gauge invariance. We call the set of such operations the
CDHD limit.

For more clarity, we describe how the CDHD limit works
with the help of a set of symbolic expressions. When we
study the HD theory, we expand around ¢ = 0 at A fixed.
Then we find poles, finite terms, and evanescent terms of
the form

R &, 5e0, g, o€,

A

where 1/¢ denotes any divergent expression, 6 is any
formally evanescent expression, ” is any expression that is
convergent and nonevanescent in the analytic limit € — 0,
and e denotes any analytic evanescence. Next, we subtract
the divergent parts, that is to say, the first two terms of the
list. The coefficients of the surviving terms, which are

&, o€, €, O€,

(2.56)
are then expanded around A = oo, which gives the
structures

eOA, 5eOA, eOA0, 560, SX , —

. . 5
el, oel, e, oeN0, % , Xg ,

(2.57)

where A denotes any expression that diverges when
A — oo (i.e. it is multiplied by a coefficient that behaves
like A¥In¥ A, with k, k' >0, k+k >0), A° is any
expression that is convergent, but not evanescent, in the
same limit, while 1/A is any expression that vanishes in the
limit. The first two terms of the list (2.57) are the A
divergences of the CDHD limit and must be subtracted. For
convenience, we include the terms 6¢°A (which are local) in
this subtraction, although they are going to be dropped at a
later stage. We cannot include the terms €A, instead,
because they are not local. After these new subtractions,
we remain with
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0 S0
A0, S9N, % , 5% , e,
. . 5
Seh, €N, BeAC, % : Kg : (2.58)

Finally, the CDHD limit is taken by dropping all the
contributions of this list but the €”A° terms. Note that the
terms proportional to € vanish in the CDHD limit, even if
they are divergent in A, because the limit € — 0 is taken
before the limit A - oo.

III. PROPERTIES OF THE HD THEORY

In this section we organize the higher-derivative regu-
larization and study its properties. We want to show that for
every truncation T1 of Sec. I B we can arrange the higher-
derivative sector Syp = Spyr — Sy so that it satisfies a
number of conditions that will be useful to prove the
Adler-Bardeen theorem. So far, for example, we have not
specified the numbers of higher derivatives that we need.
We anticipate that, besides being sufficiently many, they
should not conflict with the truncated action Sy, that is to
say, they should all be placed well beyond the truncation.
The tree-level truncation T1 will be enough to give us
complete control on the radiative corrections of the HD
theory, to all orders in 7 and for arbitrarily large powers of
1/A_. We do not apply the truncation T2 till Sec. VII,
where we study the limit A — oo and the final theory.

The numbers of higher derivatives are governed by the A
exponents N, appearing in formula (2.44), analogous
exponents N, appearing inside S, and the exponents
N;, N} of Wyp, appearing in (2.48). The ® kinetic terms
of Syp that are dominant in the large momentum limits
p — o0 and p — oo have the form

) P\ Ve _ R & 2N 52\ Vo
CCD/@<P> 8N®®+Cq>/q)(m> (M) (I),
(3.1)

where Cq and &g are weightless constants, 2Ng is the
maximum number of higher derivatives 0 and 4N, the
maximum number of higher derivatives 0. Weighted power
counting requires Ng = Ng. For reasons that will be clear
below, we need to take the same N, ¥ = N ¢, =N forall

fields ¢, and the same N, by = N ¢, = N_ for all fields ¢,,.
Then we set N; = N, = N, in (2.48). We switch off all
terms of Syp that are multiplied by more than 2N, powers
of 1/A, and all ¢,,-dependent Sy, terms that are multiplied
by more than 2N _ powers of 1/A. We also need to take N,
N_, and N, — N_ > O sufficiently large. The first task of
this section is to determine the bounds on these numbers
and show that it is always possible to choose them so that
they satisfy the requirements we need.
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Define tilde fields and sources as

T P i ¢m
A vt
K,=AYK,,  K,=AVK,, (3.2)

and tilde parameters K =kAN+, F=r, and 7, =r,.
We have

~5 / ~xl _ A2N /
kP, = kP, KKy = A"V kKy,

Ry = kpyAN+~N- KK, = AN+tN-xK, ~ (3.3)
Observe that (3.2) is a canonical transformation. After the
redefinitions, the dominant kinetic terms (3.1) of Syp are A
independent. Those of the fields ¢} and ¢,, are

A2\ 2N.+N
~ . zonan, . (O = ~
/¢!] |:C.(/a ' 4)11 + C!} <M> :|¢/(/

y ) 22\ 2N-+Ny,, 7
+ / ¢m |:Em82N_+N¢m + é\‘m (M) :| ¢m'

Those of the ghosts C, the antighosts C, and the Lagrange
multipliers B follow from the choices of G(¢,&) and
P(p,&,0) in (2.5).

Recall that Syp has the structure (2.53), Uy is inde-
pendent of the matter fields, and each contribution to Syp is
either quadratic in the matter fields ¢,, or independent of
them. Then, we can write

SHD = E__lzsifID (’zq)/g’ ’2¢m’ ’1-&-)’ (34)
where S}, is A independent in the tilde parametrization and
Z+ are parameters of non-negative dimensions, equal to
products A, A¥, with k > 0. To simplify some arguments,
we switch off all the parameters A, such that ;1+ =1, A*
with k£ > 0, because they are not necessary to make the
higher-derivative regularization work. Thus, from now on
we assume that the parameters A, have non-negative
weights and satisfy A1, = ;1+. Examples are the ratios
r=r, r, =1, between the gauge couplings ¢ and .
As far as the truncated action S, is concerned, we have

Sar(®. K)
N,

= S (R}, AN-"N4Reh,,,, A2V-RK, AN+N-RK )

1 e e
+? ZID(K(I);’Kqﬁm?/LL)’ (35)

where §% = S/, + S.,; and S’ and S, are defined by
applying the truncation T1 to formulas (2.24) and (2.25).
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If N, is large enough, the dimension [K] of k is strictly
positive, which is a necessary condition to have super-
renormalizability. Actually, for later use we assume that [«]
is greater than some given ¢ > 0, that is to say,

N, >1t—[x]. (3.6)

The right-hand side of (3.4) contains only parameters of
non-negative dimensions in units of mass, apart from the
overall factor 1/x%. Instead, S, written in the tilde para-
metrization, contains parameters that can have positive,
vanishing, or negative dimensions, as well as factors
AN-=N+ and A=N--N*_ However, we can show that the
overall factor A?V+ that multiplies S%/&? in formula (3.5)
allows us to turn A*N+S’. into a functional that contains
only parameters of positive (and arbitrarily large) dimen-
sions, at least within the truncation T1.

We begin with the functional Sg. By formula (2.46) and
the properties recalled right below formula (2.45), we have,
in the tilde parametrization

1 - ~
Sg = —?Z/R’“(fcq), 7,7, ) (RK,),
9

which are of the form we want, that is to say, the tilde
version of (2.27).

Next, consider the K-independent contributions to
AN+ 8% /%? in formula (3.5). They have the form

e IR T 5

(3.7)

(3.8)

where u, p, q,, q, are non-negative integers and 4 is a
A-independent product of parameters of non-negative
dimensions. The truncated action S; = A*N+§%./k? con-
tains a finite number of matter fields ¢,,, because
[AN-"NeRep,, | = [kh,] > 0, [RP}] = [k®!] >0, by assumption
(II-i) of Sec. IIB, and u < T, by prescription T1. Thus,
there exists a g, such that >, g, < gmax- Then, if we
choose N, and N_ such that the condition

2N, > Guax(Ny = N_) + T + 2t + 2|[x]| (3.9)
holds, besides (3.6), the structure (3.8) becomes
1 . .
ﬁapn(@;)%ﬂ(m&m)qm, (3.10)
g m
where the constants A= AA%/A%, with d; = 2N, —

(Ny—=N_)>_,.qn have dimensions greater than 27+
21l

For future use, we observe that if @ denotes ¢, ¢, or 7,
all terms of S.(¢) and S, that just depend on ¢, have the x

structure
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@
:’?—ZFI(K¢;, r, r+),
(3.11)

oF (¢ x,r,r) == F (kg r.ry)

where @ = wA>N+.
Collecting (3.7) and (3.10), we can define a truncated
functional S, that depends analytically on 7, such that

Suar(®. K, k) = %SZAT(fdi);, Rpms KK} KK, 7). (3.12)

It remains to study the K-dependent contributions to the
first term on the right-hand side of (3.5). Actually, we have
already studied those contained in Sk, which are rearranged
in formula (3.7). The remaining ones are contained in S.,7.
Write

2N,

SevT((I)v K, K) = 7 evT(

o AN N+K¢m,KK’g,KKm).
(3.13)

Using [kKp] > 1/2, which was proved in Sec. IIB, a
condition like (3.9), with a possibly different g, is also
sufficient to rewrite each contribution to S.,7 in the form

LR8N (G0 ) (8 | (ST

(3.14)

where ¢ are new parameters of dimensions greater than
2t 4 2|[«]|, which include the tilde versions of both ¢ and 7.
Finally, we can write

D! kb, EKPKP, D),

Sevr(®, K ) = (3.15)

,'E_z gvT (’2
with S.,7 =0 at ¢ = 0. The argument ¢k”K? of S, is
there to remind us that all nontilde products of kK must be
multiplied by parameters ¢. From now on we assume that
the g,..x of condition (3.9) is raised to a value that is good
for both (3.10) and (3.14).

The T1 truncated HD theory has the basic features of a
superrenormalizable theory, since its parameters have non-
negative dimensions in units of mass, and x has a strictly
positive dimension. The proof of superrenormalizability is
completed in the next sections, where we show that the
divergences can be renormalized by redefining a few
parameters. In the tilde parametrization, the action S,r
becomes

~ o~ ~ 1 5
SATZ? "Ar(K P, kK /1)+~2 evT(K@ SkPKP,¢)

1 ~ ~
+725£1D(’~<(I)J-+), (316)
K

and &, 1 .. are the only tilde parameters that may have (non-
negative) dimensions smaller than or equal to 2¢ + 2|[«]|.
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Only the first and third functionals on the right-hand side of
(3.16) have the expected form, which is the tilde version of
(2.27). The second functional cannot be written like the
rest. This will force us to do some extra effort. However,
since the terms of S, are multiplied by parameters ¢,
which have sufficiently large dimensions, we will still be
able to prove the properties we need.

Finally, it is possible to choose N, and N_ so that the
HD theory satisfies other properties that will be important
for the arguments of the next subsections. For example, it is
sufficient to require

N, +N_>2t- mKin[KK],

N, -N_>2t- n}’%n[lcgbm] (3.17)
to make all products XK and X¢,, have dimensions (equal to
their weights) greater than 2¢.

Another condition allows us to have control on the
dependences on the antighosts C and the Lagrange multi-
pliers B. Checking the action (2.54), we see that C and
B appear inside the term —[ BK¢ of Sk (which cannot
contribute to nontrivial diagrams), as well as (Sg, Uy ) and
Sevar- The gauge fermion Wy, contains C and B according
to the structure (2.48), where now the integers N; and N/
are replaced by N_. Since we have suppressed the param-
eters A of Syp that have [4,] > [A.], the terms of Wy, with
0 < k < N areabsent. Working out (Sg, ¥yp — W) explic-
itly, itis easy to prove that atleast N, derivatives dacton the
antighosts C and N, derivatives 0 act on the Lagrange
multipliers B. By construction, the formally evanescent
higher-derivative terms Se,z7 — Seyz depend on C and B in

the same way, with derivatives 0 possibly replaced by o /M.
In the end, the dependence on C and B of the full higher-
derivative sector Syp of the action S,7 has this structure.
When we switch to the tilde parametrization, the powers
of A disappear from the denominators. With the sole

exception of —[ BK¢, every term of Syr that depends
on k C and/or & B is multiplied by a parameter A or &, or has

atleast N, derivatives o~ /M acting on each leg k Cand
kB. It is easy to check that (S‘AT,SAT) has the same
structure. These observations will be useful later on,
because the parameters 2 or ¢, as well as the derivatives

d~0* /M acting on the external legs & C and & B, lower the
degrees of divergence of the diagrams, and allow us to
prove that certain types of counterterms and local contri-
butions to anomalies are absent.

For our purposes, it is sufficient to require that the N

derivatives 8 ~ & /M that act on ¥ C and X B inside Spp
have weights greater than 2¢, which means

N, > 2t (3.18)
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There is no difficulty to choose N, and N_ such that
requirements (3.6), (3.9), (3.17), and (3.18) are fulfilled at
the same time, no matter how large we want 7 to be. In the
next subsections we show that, if we choose ¢ in a clever
way, we can ensure that the higher-derivative theory has no
divergences and no local contributions to anomalies beyond
one loop, and that the one-loop divergences, as well as
the one-loop potential anomalies, are independent of the
sources, the matter fields ¢,,, the antighosts, and the
Lagrange multipliers. We begin by studying the structure
of the counterterms.

A. HD theory: Structure of counterterms

Ignoring the factors k and « attached to the sources K and
K, which are external to the diagrams, each vertex of the
action (3.16) is multiplied by a power of « that is equal to
the number of its ® legs minus 2. Then each loop carries an
extra factor k2, and the counterterms have the form

()12t areor ] [keg)e] [ Repn)on
g

x [ [k K)o [ (xk)x,

where u,r,s,p.q, qu qk. and gy are non-negative
integers. Every factor has a non-negative dimension for
L>1, since K®]>[k®]>0 and [KK]> [kK]>1/2.
Recalling that [k?] > 27, we see that, if we choose
t > d/2, the expressions (3.19) have dimensions greater
than d for every L > 2. Thus, no divergences may be
present beyond one loop. Moreover, at L = 1 we must have

(3.19)

r=s5 =0, because the dimensions of 7 and ¢ are also
greater than d. Then, we also have g% = 0, because the last
product of (3.19) is always accompanied by some param-
eters &. Finally, since by (3.17) the dimensions of ¢,, and
KK are greater than d, the divergences of the higher-
derivative theory are just one loop and have the form

~(1 Lz 1
FE\T)"div(K(I);’ Ay) = st%div(’(q)lg’ Ay) (3.20)

To write the last equality we have used the fact that the

parameters A, with [1,] > [1,] have been switched off.
We can also show that f%;div cannot depend on the
antighosts and the Lagrange multipliers, since, by the

observations of the previous subsection and condition
(3.18), a nontrivial Feynman diagram that has % C and/or
& B among its external legs either is multiplied by param-
eters A and ¢ or has derivative operators of weights greater
than d acting on all external legs k Cand % B. Finally, since
fgxl;div has ghost number zero, it cannot even depend on the
ghosts, because we have already excluded all fields and

sources that have negative ghost numbers. In the end, we
have
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~(1 ~(1 T 1
Fs\%div = FE\])"div<K¢lg”1+) = ng%div (kpys A).- (3.21)

We stress that F(Al%div is independent of A. Moreover, it is
independent of A_, which implies that it is fully contained
in every truncation T2 such that 7 > 2¢. From now on we
assume that T is larger than 26.

B. HD theory: Structure of anomalies

We call “local contributions to (potential) anomalies” the
local terms originated by the simplification between overall
divergences and evanescences in Feynman diagrams (see
Sec. IV for details). The local contributions to anomalies
may still be divergent, or nonevanescent, or even evan-
escent. What is important for us is that they inherit the basic
properties of divergences. Besides being local, they are
polynomial in the parameters that have positive dimen-
sions. If the gauge anomalies do not vanish at one loop, the
anomaly functional 4 receives in general nonlocal con-
tributions at higher orders. If the gauge anomalies vanish up
to and including n loops, A receives only local contribu-
tions at n + 1 loops, up to evanescent corrections. In view
of the applications of the next sections, now we investigate
the structure of the local contributions to the gauge
anomalies of the HD theory.

We must concentrate on (Spz, Syy) and the average

((Sar-Sar))s,,- Using (3.16) we find

~ 5 1 e e e~
(SAT,SAT):?U(K‘I’,KKJLJQ

A_2N+
+ =2

(3.22)

where U and V are formally evanescent functionals, and
V =0 at ¢ = 0. We have added the argument A to V, to
emphasize that V can contain positive powers of A, which
are generated, together with the overall factor A=+, by the
presence of nontilde products kK inside SZ,,. The factor
A~2N+ in front of V deserves some attention, because it can
be a source of trouble, from the point of view of power
counting. We can bypass this difficulty as follows.
Denoting the I" functional associated with the action S AT

by fAT, the anomaly functional is

-’zlAT = (I:AT’I:‘AT) = <(S‘AT’S‘AT)>§AT

A—ZN+
——(V);,.. (3.23)

It is easy to see that the averages have the following
structures:
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(5]

1 NIy (2 E =T = R
;(—2<U>3AT = LZ;(K2)L U, (k D, kK, exPKP, A, A, E),
(3.24)
A—ZN_ c0 ~
E S
=0
XV, (k®,kK,ePKP, A2, EN),  (3.25)

where V; =0 at ¢=0. Recall that [x*]>2¢r and
[K*¢] > 2t. If we choose a ¢ such that 2¢ > d + 1 (instead
of 2t > d, which was the condition of the previous
subsection), then all local contributions to anomalies
(which must be integrals of local functions of weight
d + 1) vanish by weighted power counting for L > 2.
Indeed, the right-hand side of (3.24) contains at least
one factor K times objects of non-negative weights, while
the right-hand side of (3.25) contains one factor x> times
objects of non-negative weights.

Now we study the functionals U/, and V;. Since they
collect one-loop diagrams that contain insertions of for-
mally evanescent vertices, they are sums of local divergent
evanescences, plus local nonevanescent terms (which
arise from simplified divergences), plus possibly nonlocal
evanescent terms. We concentrate our attention on the
nonevanescent contributions Ujyoney aNd Viponey 10 U
and V.

The nonevanescent part U0y Of U 1s independent of
1, c, %K, and ﬁg)m, because such objects have weights
greater than d + 1. Moreover, U, 1s independent of the
antighosts and the Lagrange multipliers, because the choice
2t > d+ 1 and the condition (3.18) ensure that every

Feynman diagram that contributes to .;lAT and has external

legs & C and/or % B is either multiplied by parameters 2 and
¢ or has derivative operators of weights greater than d + 1

acting on each external leg & C and & B. In this respect, it is
important to recall that not only S 7 but also (S,7, S,7) has
the structure explained before formula (3.18). Since U onev
has ghost number one, and cannot contain any fields or
sources of negative ghost numbers, it must be proportional
to the ghosts. Precisely,

Unnoner = / & C) A FF). 1) = / (KC) A, (), 2.,
(3.26)

where A; are local functions of the fields ¢y,

The nonevanescent part Vy,oney 0f V| actually vanishes.
We know that it must be polynomial in ¢ and vanish for
¢ =0. If we differentiate the one-loop contributions to
(3.23) with respect to ¢, and take their nonevanescent parts,
we find
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AN+ aavlnonev _ <‘§AT 581:‘5&1])">
2 d¢ 9/ |nonev

-(1) ~OSAr
+ <FAT’g a& >
(1)

where I’ A7 1s the one-loop contribution to the I" functional

. (327

nonev

r A7~ We have used the fact that U,y 18 independent of ¢.

Now, 208,/ 0z is formally evanescent, so the last term of
(3.27) vanishes. On the other hand, we have

one-loop 8§AT one-loop
B <g 0% > |

Oz
F

(3.28)

nonev nonev

The average appearing on the right-hand side of this
formula collects the diagrams that contain one insertion
of 2087/ 0%. At one loop, the formally evanescent vertices
provided by this functional can give a nonevanescent result
only by simplifying some divergences. Therefore, expres-
sion (3.28) is a local functional. It is equal to the integral of
a local function of dimension d that has the structure (3.19),
with L = 1 and s > 0. This means that it vanishes, since
[¢] > d. Consequently, (3.27) also vanishes, and so does

V Inonev*

In the end, we take

d+1
r>—-,

5 (3.29)

because with this choice (a) the truncated HD theory is
superrenormalizable, (b) there are no divergences and no
local contributions to anomalies beyond one loop, (c) the
one-loop divergences have the form (3.21), and (d) the one-
loop nonevanescent contributions to anomalies have the
form (3.26).

We have not discussed the divergent evanescences
contained in U; and V. The reason is that we do not
need to, because as soon as we renormalize the one-loop

divergences of the I" functional r AT»> the anomaly functional
Apr = (T, Ty7) is automatically one-loop convergent.

C. The CDHD limit

In the CDHD limit, it is important to avoid conflicts
between the higher-derivative terms contained in the action
Sar and the powerlike divergences. In particular, if [,z
denotes the I" functional CDHD renormalized up to and
including n loops, when we take the (n + 1)-loop A-
divergent part of expressions such as (I',zr, [rr), We

have to be sure that (SHD,F,(I'I’;;QV) vanishes for A — oo,

where FS?TL)W denotes the (n + 1)-loop divergent part of

I",rr- It is impossible to satisfy this requirement without a
truncation, because the powerlike divergences ~AK of

foﬁlv) can have k arbitrarily large and beat the powers
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A~2N* and A=2V~ that appear in S,. This is the main reason
why we cannot provide a subtraction scheme where the
Adler-Bardeen theorem is manifest to all orders.

Given a truncation, on the other hand, it is possible to
fulfill a satisfactory requirement by choosing higher-
derivative regularizing terms Syp that lie well beyond
the truncation and subtracting just the contributions to

Fi’;;ii)iv that lie within the truncation. We recall that the

truncation T2 of Sec. II B prescribes that we ignore the
L-loop contributions that are o(1/AT=2£9). We anticipate
that, to provide a scheme where the Adler-Bardeen theorem
is almost manifest within the truncation, we need to satisfy

lim (Syp, FSFTL)M = o(1/AI720 1),

3.30
A—co ( )
By this formula we mean that the limit exists and vanishes
up to corrections o(1/AT~2"+1) (but such corrections
may not have a regular limit for A - o).

To find a condition that ensures (3.30), we first observe

that the powerlike divergences of Ffzrll;;:i)iv have the form

, N
In4 AE5+(K2)’10P (k®)"e (kK )",

(3.31)
where ¢ > 0, ¢’,q_> 0, and &, is a product of parameters
of non-negative dimensions. We can concentrate on the
contributions  (3.31) that have ¢_<T-2(n+ 1)o,
because the ones with g_ > T —2(n + 1)o satisfy (3.30)
in an obvious way. We know that [x®] > 0 and [xK] > 1/2.

Then, distinguishing the cases [k] > 0 and [x] < 0, we can
easily check that

q<T+d-2c. (3.32)
In perturbatively unitary, power-counting renormalizable
theories with 7 = 0 we obviously have g < d.

To ensure that (Syp, Fi’}%iv) vanishes for A — oo
within the truncation, it is sufficient to require Syp =
O(1/AT+d=20+1) Tn particular, we must have

2N, >2N_>T+d-2o. (3.33)

Moreover, the HD regularized theory cannot contain
higher-derivative terms of orders O(1/AX) with k < T+
d — 20. However, this is an automatic consequence of
another choice we have already made, when we switched

off the parameters A, of Syp such that [4,] > [4,]. Thus,
in our framework condition (3.33) is sufficient to
ensure (3.30).

Given any truncation 7', it is always possible to satisfy all
the conditions on NV, and N_ mentioned so far, at the same
time. They are (3.6), (3.9), (3.17), (3.18), (3.29), and (3.33).
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IV. RENORMALIZATION OF THE HD THEORY

In this section and the next two, we study the truncated
higher-derivative theory with action S,7, which is defined
by keeping A fixed and regularized by means of the CD
technique. We mostly use the tilde parametrization, but
sometimes need to switch to the nontilde one. The first
task is to work out the renormalization of this theory. Then
we must study its one-loop anomalies, and finally prove
that it satisfies the manifest Adler-Bardeen theorem.

The anomaly functional (2.23) of the higher-derivative
theory is (3.23), in the tilde parametrization. Its one-loop

contribution AEXIT) is

A = 23,7, T = ((Sars Sar) (4.1)

Sar one-loop

We know that (Syz, Sy7) = O(e). The right-hand side of
(4.1) collects one-loop Feynman diagrams that contain
insertions of formally evanescent vertices. The formal
evanescences can either remain as such or generate factors
of e. In the former case, they give local divergent evan-
escences, plus evanescences. In the latter case, a factor ¢
can simplify a local divergent part and give local non-
evanescent contributions, in addition to evanescences.
Therefore, we can write

(1 ~ (1 = (1 ~ (1
AEXY)‘ = Ag\%nev + ‘AE\’I)'divev + Ag\%ev’ (42)

~ 1 )
where AE\}HCV is local, convergent, and nonevanescent,

;lfxl}divev is local and divergent evanescent, and AE\IT)SV
is evanescent and possibly nonlocal. The analysis of
Sec. III B and formula (3.26) tell us that

';lg\l;"nev = /(1?6)1,41(12'$;7;1+) = /(KC>1.A]<K¢;,1+).
(4.3)

Clearly, .Zli\]}nev is independent of A_ and A. In particular, it
is fully contained in any truncation that has 7 > 2¢.
Taking the divergent part of Eq. (4.1), we find

o A 1 ~a
(SAT’ Fﬁ\Z)"div) = EAE\Y)"divev' (4'4)

Formula (3.21) tells us that fg}div is just a functional of
1~<¢/g, fully contained within any truncation T2 with T > 2¢.
In particular, its antiparentheses with S, are only sensitive

toS x and the K-dependent contributions to S’evT. Moreover,

= (1
we can further decompose F&;div as the sum of a non-

evanescent divergent part l:fxl%nev giv and a divergent evan-

escence I:XT)divev. Taking the nonevanescent divergent part

of (4.4), we obtain
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P (1
(SK’ FEU)"nev div) =0, (45)

which just states that f%%nev giv 1 gauge invariant.
Since Fs\l}div is A_ independent, the arguments that lead

to formula (2.36) ensure that Iifxl%nev giv 18 a linear combi-
nation of the invariants G; contained in the T1 truncated
classical action S.7(¢) with T =26 [check formula

(2.10)]. Since we are assuming T > 20, we can remove
Fg\l])"nev div
which is fE\l}divev’ can be subtracted by redefining the
parameters ¢ and 5 of Se,7.

In the case of the standard model coupled to quantum
gravity, fol%nev giv 18 a linear combination of terms of
dimensions smaller than or equal to four, such as

by redefining a few parameters 4; of S 7. The rest,

(1)
1—‘ATnev div

= / V |9|(01 + R + c3R* + c4R; R
+ csk?F8 FY 4 cok® F4  D? FR7

+ 7P RFS FR 4 gk Fa FRVFY FOP0 . >

where the coefficients ¢; are products of parameters of
non-negative dimensions. This list also contains invariants
that in principle can be subtracted by means of field
redefinitions, rather than redefinitions of parameters.

V/|gIR?> and

JV/|9|R;;R*?. However, if we use the Einstein equations,
which read

Among those invariants, we mention

Rgzy — Acgﬁf/ = KZT;“;,
where the energy-momentum tensor 7 ; can contain purely
gravitational contributions due to the higher-derivative
corrections, we do not really remove the invariants in
question, but rather convert them into other invariants, such
as [/|g|x*T;,T#7, which may depend on the matter fields
¢,, and spoil the nice structure of the HD theory. For this

reason, it is not convenient to use canonical transformations

to remove fol%nev give OF parts of it. As anticipated in Sec. II,

(1)
ATnev div

{Gi(¢)}, so we can completely remove FE\IT)HEV giv bY
redefining the parameters 4;. We recall that it is possible
to get rid of the redundant invariants at the very end (after
subtracting the A divergences and proving the almost
manifest Adler-bardeen theorem), by means of a procedure
like the one described in Ref. [17], which consists of
making a canonical transformation, re-renormalize the
theory, and re-fine-tune the finite local counterterms to
recover the cancellation of gauge anomalies.

all the invariants of T" are included in the basis
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In the end, to renormalize the HD theory we just need to
redefine some parameters 4;, ¢, and 5 of S.; and S,7,
which multiply terms of the form (3.11). The renormalized
action, which we denote by S A7» 18 obtained by making the
replacements

i
&€

X = 2 i+ loe i+ D
& £

N
=t

(4.6)

inside Sy7, where f;, f., and f, are calculable factors that
may depend on the parameters 2 . appearing in (3.21).

Switching to the nontilde parametrization, the redefinitions
(4.6) are equivalent to
n—=n+ L K2
€
(4.7)

/1i—>/1i+]i’<2 €—>€+&K2,
€ €

Since S, is linear in 4;, ¢, and 5, we have

SAT = SAT Fs\%dlv (48)

Using (4.4) and ( Alev’ f%%dw) = 0 (which holds because

Fs\l;dw is K independent), we find

(SAT7 SAT) = (SAT’ S‘AT) - AE\I])"divev' (4'9)

The generating functional [y defined by Sar is con-
vergent to all orders within the truncation, because it is
convergent at one loop and the tilde structure of ffxl%div has
the expected form, that is to say, the tilde version of (2.27).
Then, the counterterms keep the form (3.19), which forbids
divergences beyond one loop. Finally, fAT and the anomaly
functional Ay, = (Tar FAT) are obtained by making the
replacements (4.6) inside I'y; and Ayp = (FAT, Car),

respectively. Clearly, AAT is convergent, because [y is
convergent.

V. ONE-LOOP ANOMALIES

In this section we study the one-loop anomalies and
relate those of the basic theory, which are trivial by
assumption (IV) of Sec. IIC, to those of the HD theory,
which turn out to also be trivial.

We begin with the relation between the one-loop con-
tributions A A} and A AT> to A,y and AAT Observe that

leAT = (fAvaAT) = <(‘§ATv SAT)>§AT
= <(SAT,SAT)>§AT_f<\';dW = <(SAT’ SAT»S\T +0(n?).

The last equality is proved as follows. The functional AAT
collects the one-particle irreducible diagrams that contain

one insertion of a vertex coming from (S 7, Sy7). If we also

use O(h) vertices provided by I:Exl%div, we must close at least
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one loop, to connect them with the vertex of (Sy7,8,7).
This can only give O(h?) corrections.
Using (4.9), we have

Anr = (SarSur))s,, = Aaer + O(2)
= ’;lAT - “’ZlSXI}divev + O(hz)’
and thus (4.2) gives

() () e
‘AE\T = AATnev + AA;ev' (51)

The divergent evanescences A Alelvev had to disappear from

A(A} because AAT is convergent

Since the structure of F(A;d is the one of formula (3.21),
we can straightforwardly extend the analysis of Sec. III B to
the renormalized action 8 ar- The anomaly functional is still
the sum of contributions of the forms (3.24) and (3.25).
Therefore, all local contributions to anomalies vanish from
two loops onwards.

Anomalies satisfy the Wess-Zumino consistency con-
ditions [14], which, in the Batalin-Vilkovisky formalism,
are consequences of a well-known property of the anti-
parentheses, stating that every functional X satisfies the
identity (X, (X, X)) = 0. Taking X = I"y7, we obtain

(Far. Apr) = 0. (5:2)
At one loop we have
Sar- Alp) = =47 BarSar)). - (53)

Since the antiparentheses of an evanescent functional, such

as (S‘ As S A), with a convergent functional, such as ff\l;, are

evanescent, we have

Sar Al = O(e).
Using (5.1) we also find

Sar Alfey) = O(e). (5.4)

By formula (4.3), ;lx;nev is independent of the sources K.
Then, only the K-dependent terms of S Ar»> Which are

contained in S x and SevTa can contribute to the left-hand
side of (5.4). Taking the nonevanescent part of both sides,
we find

(SK’ ';li\l}nev) = O (55)

A. Relation between the anomalies of the HD theory
and those of the basic theory

Now we relate the potential one-loop anomalies ,zlg\l%nev

of the HD theory to the potential one-loop anomalies A}gl)
of the basic theory, which are trivial by assumption (IV) of
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Sec. II C. We recall that the action S, of the basic theory
can be retrieved by taking the formal limit A_ — oo of S,7.
In the same limit, the CD regularized action Sy is equal to
the basic action S; plus the evanescent terms Se,r
(calculated at A_ = oo0). The CDHD regularized action is
still obtained by adding Syp (which is A_ independent), or
by taking the formal limit A_ — oo of Sy7.

Once the formal limit A_ — oo is taken, the one-loop
CDHD divergences must be subtracted just as they come,
rather than by redefining parameters (since the basic action
misses the parameters of the subset s_). For example, the

one-loop divergences fx%div of the HD theory can still be
subtracted by formula (4.8), which, however, cannot be
seen as implied by the redefinitions (4.6) or (4.7). In this
section we understand that A_ = oo everywhere, so the
final theory is the one associated with the basic action.

Since lzg\l%div and .Ax%nev do not depend on A_, we do not
lose any relevant information. _

The last expression of formula (4.3) tells us that AS\IZ)"neV
is A independent in the nontilde parametrization, where we

denote it by AE\I;nev' Now we show that actually AE\I}HEV is

equivalent to the one-loop anomaly .Af)]) of the basic theory.

To prove this fact, we need to study the A-divergent parts
and take the CDHD limit at one loop. In this subsection we
denote the terms that are A divergent in the CDHD limit as
“Ddiv,” to distinguish them from the poles in €. Recall that
the A divergences can be nonevanescent or formally
evanescent, from the point of view of the dimensional
regularization, but not analytically evanescent. They are the
terms e"A and 5e°A of the list (2.57).

Consider A,y = ([y7.Ty7) and take the one-loop
CDHD-divergent part of this equation. Using (5.1) and

recalling that Ax;nev is A independent, we get

L0 ~(1) ~(1)
5“4 Tev|Ddiv = <SAT’FAT)|Ddiv = (SAT’FATDdiv>|Ddiv

(1 A (1
= <ST’F5\%Ddiv) + (SHD’FE\%DdivNDdiv’ (5.6)

where lA“E\lT)D Jiv 18 the one-loop CDHD-divergent part of a7

Note that although A5\17>"ev |paiv 1S €vanescent from the point
of view of the CD regularization, it can be nontrivial,
because it can contain the terms e°A of the list (2.57).

The one-loop powerlike divergences at A_ = oo have
the form

A5, 0P (kD)™ (kK )",

where g > 0, and 6, is a product of parameters of non-
negative dimensions. Recalling that [x®] >0 and
[kK] > 1/2, the exponent ¢ is smaller than or equal to
d. Since T > 20 and Syp = O(1/AT+4=20+1) by inequal-

ity (3.33), the antiparentheses (Syp, fEJT)DdiV), specialized to
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the basic theory, tend to zero in the CDHD limit. Thus, (5.6)
gives

(0! ~(1)
5"4( Tev|Ddiv = (ST’FATDdiv>'

(5.7)
The one-loop CDHD-renormalized action § 7 of the
final theory associated with the basic action reads

P p)

Arpaiv — Lazen + O(77), (5.8)

§ T= Sar
where lA“S\lT)ﬁn denote arbitrary local counterterms that are
finite and nonevanescent in the CDHD limit [i.e. terms of
the type €°A° of the list (2.58)]. For the purposes of this
section, the generic subtraction (5.8) is enough. In Sec. VII
we will be more precise about the removal of divergences
(at A_ < o0), as well as the finite local counterterms 1:5\%“

and the higher-order corrections O(#2). The anomaly is
then

Apr = <<SfT’ S‘fT)>§fTv

and its one-loop nonevanescent part A,(Jl) is the quantity we
want. Denoting the sum IA“EXI}DdiV +1A“5\1}ﬁn by AIA“E\I} and
using (5.1), we find

Agr = ((Sar = AFY. 8 = ATED); o +O(R)
— Ayr = 2(Sar, AT + O(12)
= (SATv SAT) + Ag\l}nev + AXY)‘eV - 2(ST’ Afx;")

—2(Syp. ATV)) + O(R2). (5.9)

In these manipulations we have used the formula
Axr = (Bar-8ar))s,, = (Bar. SAT)>3AT_Af<\1T> +O(n),

which holds because at one loop the vertices of Afx%,

which are already O(#), cannot contribute to one-particle
irreducible diagrams that contain one insertion of

(SAT’ SAT)‘
At one loop, using (5.7), we obtain

1 1 1 1 ~(1
A}T) = Ag\}nev + 'AEXT)‘CV - AE\])"eV|Ddiv - 2(ST’ FEU)"ﬁn)

—2(Spp, AT, (5.10)

Now we take the CDHD limit. Since AI\) is A
independent, the antiparentheses (Syp, Afx%) vanish when
A — co0. Moreover, As\l%nev is independent of A. On the

other hand, AX}eV —Ag\l}evbdiv vanishes in the CDHD
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limit, because the terms 5e°A are subtracted away in the
difference. Since Sy — Sz = O(e) at A_ = o0, we can
replace (S7, f%%ﬁn) by (Saps fg}fm). Finally, using formula
(4.3) we get

1 1 (1
AI(J : = Af&%nev - 2(Sdb’ FEU)"ﬁn)

_ / (KO A (. 1) = 2(Sap F0 ). (.11

In particular, by formula (5.5) and (S, S4,) = 0, the one-
loop anomaly functional A](jl) of the basic theory solves the

condition

(Sa. A) = 0. (5.12)

At this point, we are ready to use assumption (IV) of
Sec. II C, which tells us that there exists a local functional
X(®,K) such that .Al()l) = (S, X). Using this piece of
information and (5.11), we obtain

AD = / (CY A (k) 1) = (S &) (5.13)

for X' = X + 2fECT>ﬁn'

We know that the functional Afxl}nev satisfies both (5.5)
and (5.13). To subtract it in a way that preserves the
structure of the HD theory, we need to know that, in
addition, we can find a K-independent X”. This is ensured
by assumption (V) of Sec. II C, which tells us that there
exists a local functional of vanishing ghost number
x(k®,1,), equal to the integral of a local function of
dimension d, such that

AL = (Sk.x). (5.14)
Since Afxl;nev is ¢,, independent, we can assume that y is
also ¢,, independent. Indeed, recall that the transformations
R,(®) of the fields @) are independent of ¢,, and the
transformations R,,(®) of the fields ¢,, are proportional to
G- Write y(k®) = yo(kPy) + x,n, where y, =0 at
¢, =0. Then, (Sk,x) = (Sk,x0), as we can see by
calculating these expressions at ¢,, = 0. From now on
we drop y,, and just write y = y(x®}, 1 ).

Clearly, assumption (IV’) of Sec. IIC is sufficient to
justify (5.14), with y = y(k®},1.), in alternative to
assumptions (IV) and (V).

Since y is one loop, its k structure agrees with the L = 1
sector of formula (2.27).

B. Cancellation of anomalies in the HD theory

Now we go back to the HD theory. We can cancel
its potential anomalies by redefining the action. Indeed, if
we take
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M " 1 1
Sar = Sar — E)( =Sar — Fg\l;div - 5){ (5-15)

as the new action, we find

Axr = ((Sar-Sar))s,, = Anr — (Sar.x) + O(R2).
(5.16)

Since y is K independent, only the K-dependent sector of
Sar, which is made of Sg and S.,7, can contribute to
(Sar,x)- Taking the one-loop nonevanescent part of (5.16),
and using (5.1) and (5.14), we get
"ZlEXl])"nev = AE\];"nev - (SK’)(> =0. (517)
The new I' functional I'y; defined by the action S ar Of
formula (5.15) is still convergent to all orders. Indeed, it is
convergent at one loop and, once we switch to the tilde
parametrization, the functional y is written as a functional
;}(fc(f;,;u). This fact, together with formulas (3.16) and
(3.21), ensures that the counterterms keep the form (3.19),
which forbids divergences beyond one loop. The anomaly
functional A,; = (Taz.T'az) is also convergent to all

orders. Since its one-loop contribution flﬁxl% has no diver-
gent part and, by formula (5.17), no nonevanescent part, it

is just evanescent: AE\IT) = O(e). Including the tree-level
contribution (Sy7, Sxz), which is also O(e), we can write
Apr = O(e) + O(12). (5.18)

The next step is to prove the anomaly cancellation to all
orders in the higher-derivative theory, which we do in the

next section. After that, we complete the CDHD limit by
renormalizing the A divergences.

VI. MANIFEST ADLER-BARDEEN THEOREM
IN THE HD THEORY

In this section we prove that, from two loops onwards,
the gauge anomalies manifestly vanish in the HD theory.
We have to study the diagrams with two or more loops,
with one insertion of

Er = (Sar Sar) = (Sar Sar) = Aj\l;“ev

1
- AE\T)'divev - (SEVT7)()’ (61)

calculated with the action (5.15). To derive the right-hand
side of (6.1), we have used the fact that FE\l}diV and y are K
independent, then applied formula (4.4), and replaced
(Sk,x) with AXT)W. The action S, has the structure
(3.16) plus one-loop corrections of the form F (f<<i>’g,/~1+).

Therefore, its counterterms have the structure (3.19).
On the other hand, £ has the structure (3.22) plus (possibly
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nonevanescent and divergent-evanescent) one-loop correc-
tions that have the same form times k2, such that V still
vanishes at Z = 0. This fact implies that Ay, = (&) is still
the sum of contributions that have the structures (3.24)
and (3.25), with V; =0 at ¢ =0.

The functional £; is made of the tree-level local
evanescent functional (Sy7,Sx7), plus one-loop local
corrections. Formula (5.18) tells us that such corrections
make the average (£7) evanescent at one loop. Then, the
theory of evanescent operators [4,10] tells us that the two-
loop nonevanescent part of (£7) is local. Briefly, the reason
is as follows. Writing = 0, and pt = ¥ p, every-
where inside (Sj7,Sar), we can express each vertex of
(Sp7.Sa7) in a factorized form 7 ;5,, where 8, denotes a
formally evanescent part, made of tensors #"? and other
structures that stay outside of the diagrams, while 7 is a
nonevanescent local functional and collects the momenta.
The average (7.5;) is the sum of the one-particle irre-
ducible diagrams G that contain one insertion of 7° kSk.
Leaving Sk outside the diagrams, consider the average

(Ty), and let T,(il)iv denote its one-loop divergent part.
Using (4.1) and (4.2), we find

M5 _ 40 (1) (1)
Z,‘deivék - AATnev + ‘AATdivev + Lev',
k

where Lw are unspecified local evanescences. The theo-

rem on the locality of counterterms ensures that the
divergent part of (7, -7 ,((}13‘,) is local at two loops.
Accordingly, the nonevanescent and divergent parts of

(&) = <Z<Tk C TN L) -
k

(Soro2))

are also local at two loops. In Sec. III B we proved that the
local functionals that have the structures (3.24) and (3.25)
vanish from two loops onwards, by simple power counting.
Therefore, (£7) is evanescent at two loops, which means
that formula (5.18) can be improved by one order and
turned into

Ay = O(e) + O(13).

The argument can be iterated to all orders, because if
an evanescent operator E is renormalized, and equipped
with finite local subtractions such that its average (E) is
evanescent up to and including # loops, then the O(A’*!)

nonevanescent and divergent parts <E)§£§JJ and (E)((f:v+ D of

(E) must be local. In the case we are considering here,
whichis E = &7, <E>r(1i:e]v> and (E>((i'f;r D must also have the
structures (3.24) and (3.25), but then they vanish.

We infer that the anomaly functional flAT is evanescent
to all orders, that is to say,
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AAT = (ﬁAT’ﬁAT) = O(e), (6.2)

which proves the manifest Adler-Bardeen theorem for the
HD theory S,7. Therefore, the HD theory is free of gauge
anomalies to all orders in the limit D — d.

This concludes the proof that the HD theory is super-
renormalizable and anomaly free to all orders. We stress
again that only the truncation T1 of the action S, is
necessary, and the result (6.2) holds to all orders in # and
for arbitrarily large powers of 1/A_. The truncation T2 of
Sec. II B is important for the second part of the proof,
which is worked out in the next section.

VII. ALMOST MANIFEST ADLER-BARDEEN
THEOREM IN THE FINAL THEORY

We are finally ready to prove the cancellation of gauge
anomalies to all orders in the final theory. The task consists
of studying the A dependence of the HD theory, for A large,
subtract the A divergences, and complete the CDHD limit,
according to the rules explained in Sec. IID. The sub-
traction of the A divergences is done inductively and
preserves the master equation up to O(¢) terms that vanish
in the CDHD limit.

Before beginning the proof, let us recall that our
approach uses two regularizations, the chiral dimensional
one, with regularizing parameter &, and the higher-deriva-
tive one, with energy scale A. So far, we have taken care of
the renormalization and the cancellation of anomalies to all
orders at the CD level. Now we consider the A divergences.
As far as those are concerned, once we have adjusted the
orders A", k < n, we can concentrate on the order 2"*! and
neglect higher-order corrections, as is done in most
common renormalization procedures. However, at each
step of the subtraction of the A divergences, we must
preserve the properties gained so far with respect to the CD
renormalization, and those must hold to all orders in 7,
like Eq. (6.2).

Because of the truncation T2, we say that an action S is
CDHD renormalized up to and including & loops, when the
Z-loop contributions to its I functional I'; are CDHD
convergent up to o(1/AT=27%) for 0 < ¢ < k.

We work inductively in the number n of loops. We
assume that for every k <n < £, where £ is given by
(2.33), there exists an action Sy = Sy + O(#), obtained
from S, by means of e-convergent, possibly A-divergent
canonical transformations and redefinitions of parameters,
with the following properties: we can e-renormalize S;r at
A fixed, to all orders in %, and fine-tune its finite local
counterterms, so that the so-renormalized action Sipy is
also CDHD renormalized up to and including k loops, and
the renormalized I" functional I'jz; associated with Sy is

free of gauge anomalies to all orders in 7 at A fixed, i.e.
(Txrrs Tkrr) = ((Skrrs SkRT))SkRT = O(e). k<n.

(7.1)
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Atn = 0 we take Sor = Sy7, 50 Sorr = Sa7. Clearly, Tory
coincides with I'y7 and satisfies (6.2).

Note that, by assumption, 'z has a regular limit for
e — 0 at A fixed, and not just within the truncation T2, but
also beyond. More precisely, ['ygzr is a sum of Z-loop
contributions of the form (2.58) up to o(1/AT=%/?) for 0 <
¢ < k (because it is CDHD convergent in that sector), and a
sum of terms (2.56) everywhere else. Instead, (U'yzr, Tirr)
is a sum of #-loop contributions (2.58) except €’A° and
e%/A up to o(1/AT=27?) for 0 < ¢ < k, plus terms (2.56)
except £° everywhere else. Note that assumption (7.1) also
holds beyond the truncation T2 [where the “O(e)” may
contain terms Se°A].

The theorem on the locality of counterterms ensures that
the (n + 1)-loop CDHD divergent part FEZ RTd)w of I'rrisa

local functional, up to o(1/AZ=2"%). Since ',z has a

regular limit for ¢ — 0 at A fixed, FE:;;QV contains only

divergences in A, but not in &. Precisely, we can write

F("‘H) _ F(’H'l) + r(’1+1) 0(1/AZ—2(11+1)5)’

nRTdiv — * nRTdiv nev nRTdiv fev
(7.2)
where 11 and TN collect the terms e?A and
nRTdiv nev nRTdiv fev

59 of the list (2.57), respectively.

Now, we take the (n + 1)-loop CDHD-divergent non-
e-evanescent part of Eq. (7.1) for k= n, within the
truncation, which means the terms of types €’A of the list
(2.57), up to o(1/AT=2("+1)o) Expand I,z in powers of 7,
by writing it as > hkr,‘,’ng. Observe that the contribu-
tions (F%T» Fi',’;}l_k)) with 0 < k < n+ 1 can be dropped,
because they are convergent in the CDHD limit, up to

o(1/AT20+D7)  We remain  with 2(T'9),. T D) =

2(Spr, T i’,’;}l ). Taking the A divergent part of this expres-
sion, and recalling that, by formula (3.30), (Syp, T’ EL?TL)IV)
tends to zero for A — oo within the truncation, we get
2(Sy, T ) 4 0(1/AT=21+1D) Taking the non-g-evan-
escent part and recalling that Sy is equal to Sz + Sevrs
where S ;7 is non-e-evanescent, the left-hand side of (7.1) at

k= n gives 2(S;7. T ) 4 0(1/AT-201+1D9) Noting

that the CDHD-divergent part of the right-hand side is just
made of terms 3801\, within the truncation, we obtain

(Saps T o) = o(1/AT=20e) (7.3

A. Solution of the cohomological problem

We work out the solution of the cohomological problem
(7.3) by applying the assumption (III) of Sec. I C. Let us
imagine that, instead of working with the classical action

S., we work with its extension SC, which includes the

invariants Qi that break the nonanomalous accidental
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symmetries belonging to the group G,,. Similarly, we
extend S; to S;, Sey to Se, and S=S,+S., to
S =S8, + Se,. Every extended functional reduces to the
nonextended one when we set 4 = n = 0, where J and 7 are

the extra parameters contained in S. and S,,, respectively.
There is no need to extend the higher-derivative sector Syp.

If we repeat the operations that lead to (7.3), we obtain an

. “(n+1)
extended, nonevanescent local functional I', g7, ey that

satisfies (Sy7,T f;‘;}h)lv nev) = 0(1/AT=20141)0) - Taking the
limit A_ — oo of this equation and recalling that 7 >

2(n + 1)o (because n < £), we get

(Savs Vo) =0,

“(n+1)

where V, denotes the A_ — co limit of T, xrdy nev-

Assumption (III) tells us that the action Sdb satisfies the
extended Kluberg-Stern—Zuber assumption, and the group
G, 1s compact. Thus, there exist constants a;, and by,

which depend on the parameters of V,, and a local
functional ¥ such that

Vo= Zaiogi + ZbioGi + (Sav. Yo).

Recall that in Sec. II B we showed that only integer and
semi-integer powers of 1/A_ can appear. Define

Zazog szog SdT’ va0):| .

nRlev nev

X A1/2|: (n+1)

The local functional X, is analytic in 1/AY2, because
Fkraivaey = Vo+ O(1/AY2) and 7 = S, + O(1/A12).

(SarGi) = (Sar+ Sar) =0,
1) = o(1/AT=2(+1)e=1/2) " Then we

“(n+1)
nRTdiv nev

Moreover, since (Sy7.G;) =
X, satisfies (Syr, X
repeat the argument just given with T’ replaced

by X 1, and continue like this till we can. For
0<m<2T—-4(n+1)o+1, we find constants a;,_,
and b,;,_;, depending on the parameters, and local func-

tionals Y,,_; such that the combinations
Xm =Al2 |:Xm—1 - Zaim—lgi
i
_szm lg SdT7 - ):|

are analytic in 1/AY? and satisfy (S, X,,) =
o(1/AT=20000=m/2) " yith Xy =TV In the end,

- Al,; depending on the param-
eters, and local functionals y,r,

there exist constants A/
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2T—4(n+1)o 2T-4(n+1)o

Aim U bim
ALy, = Z;) A A= Z;) AT
2T—4(n+1)o Y
XVHT = Z AT";Z ’ (7.4)
m=0 -
such that
nrlg;ldlv nev ZA/I gi + ZAirlngt + (SdTv)ZnT)
o(1/AT-2n+1)e)y, (7.5)

Clearly, A/

ni’

l= 7 =0 in Eq. (7.5), we obtain
Z A)*nlg + ZA)*mg + (SdT )(nT)

+o(1/AT2

A/i,;i, and y,r are of order A"*!. If we set

(n+1)
1—‘nRlev nev

(n+1)o ) (76)

where Al,;, Al,;, and 7,7 are equal to AZ/ A/i,i,», and y,r

at A =i = 0. However, FglRTd)iv ney 18 invariant under the

nonanomalous accidental symmetries that belong to the

ni’

group G,,s, While the functionals Gi are not. Since G, is
assumed to be compact, we can average on it. When we do

that, the invariants Gi disappear (or turn into linear
combinations of G;) and j,r turns into some y,r. We
finally obtain

(n+1)
l—‘nRlev nev

ZAimg + (SdTv)(nT) + O(I/AT 2An+lo )

(7.7)

for possibly new constants AJ,; of order A"*! that depend
on the parameters.

The arguments of this subsection, which lead from
formula (7.3) to formula (7.7), are purely algebraic and
can be applied in more general contexts. For example,
taking 7' — oo, formula (7.5) proves that the action S, is
also cohomologically complete. Instead, formula (7.7) at
T = oo proves that S, satisfies what we can call the
physical Kluberg-Stern—Zuber assumption, which states
that if a nonevanescent local functional I'y, solves
(S4,Tqy) =0 and is generated by renormalization as a
local divergent part of the I" functional, then there exists
constants a; and a local functional Y of ghost number —1
such that

Ly = Zaigi + (Sa.Y (7.8)

Indeed, we can always lift the discussion to the extended
theory S, which gives an extended functional Iy, that
solves (S;,Igy) = 0. Then I'y;, can be expanded like the
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right-hand side of (7.5) at T = c0. When we go back down
to S;, we find (7.8).

B. Subtraction of divergences

Now we work out the operations that subtract the
divergences Fi R%)W within the truncation. We recall from
Sec. II B that the truncated classical action S.; contains
enough independent parameters A; to subtract the diver-
gences proportional to G; of (7.7) by means of A; redefi-
nitions, within the truncation T2. If we make the canonical
transformation generated by

FA@.K) = [ 0K, = ga@.K) (19)
and the redefinitions
ﬂ‘i g /1,' - A/’{ni (710)
on S,r, we get
Sar = Sar — ZAﬂm‘gi = (Sar-zar) +O(R"2). (7.11)

Observe that the operations (7.9) and (7.10) are indepen-

F(11+1)

dent of e and divergent in A, because so is I', g7y nev-

Formula (7.11) is equivalent to

SdT - SdT - Fi(zr;;;"ldlv nev + O(hn+2)
+ O(fln+1)0(1/AZ—2 (n+1) a),

which shows that we can fully subtract the e-nonevanescent

A divergences Ffl RJ;dW nev» Dy making the operations (7.9)
and (7.10) on S,z, up to O(A"*+1)o(1/ ATy,
However, the truncated classical action we have been
using is not Syr, nor Sy = Syr + Seyr, but S,7, whose
classical limit is Sz, so we must inquire what happens
when we make the operations (7.9) and (7.10) on S,7.
Let us begin from S7 = S, 7 + S.,7. Since the operations
(7.9) and (7.10) are independent of & and divergent in A,
when we apply them to S.,r we generate new formally

e-evanescent, A-divergent terms of order A"*!, which

change F%?L)iv ey lcheck formula (7.2)] into some new

F:f,’;;;i)v tevs Plus O(A"2). The divergences F;,';;;l)v fey I

not constrained by gauge invariance, but just locality,
weighted power counting, and the nonanomalous global
symmetries of the theory. In Sec. II B we remarked that,
within the truncation T2, that is to say, up to
o(1/AL=2("+1)o) " they can be subtracted by redefining
the parameters ¢ and n of Se,7.

Let R, denote the set of operations made by the

canonical transformation (7.9), the A redefinitions (7.10),

and the ¢ and # redefinitions that subtract Fn(z;(il)v fey WE

have
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RSy = Sp — Ty, + O(7"+2)

+ O(R o (1/AT=2000y - (7.12)
It remains to check what happens when the operations R,
act on Syp = Sar —S7. Note that R, are equal to the
identity plus O(#"*!), and they are independent of & and
divergent in A. Moreover, by formula (7.4) and the argu-
ments of Sec. III C, they do not involve powers of A greater
than T + d — 20, at the order O(A"*!). Recalling that the
difference Syp is O(1/AT+42e+1) we have that (R, —
1)Sup vanishes in the CDHD limit to the order O(A" ).
Define

Sn+1T = 7?’nSnT = Rno T
Using (7.12), we find

ORQSAT EunSAT. (713)

Spiir = Sur + (R, = 1)Spr + O(A"2)
=S,r+ (R, —1)Sy + (R, — 1)Syp + O(h"*?)
=Sur— Fizrll;gv + (R, = 1)Sup + O(r"*2)

+ O ) o(1 /A2t 1)e), (7.14)

Thus, the operations R,, do renormalize the A divergences
to the order n + 1, as we want.

The operations U,, = R,0 --- oR are combinations of
local canonical transformations and redefinitions of param-
eters. They act on the action S,7, and, from the point of
view of the HD theory, where A is fixed, they are
convergent. In general, a canonical transformation may
destroy the nice properties of the HD theory, such as its
manifest superrenormalizability, its structure in the tilde
parametrization, and the manifest cancellation of its gauge
anomalies. To overcome these problems, we must re-
renormalize the e divergences and recancel the gauge
anomalies after making the operations {/,,. We can achieve
these goals with the help of the theorem proved in Ref. [17].

C. Renormalization and almost manifest
Adler-Bardeen theorem

Now we must renormalize S, 7 at A fixed. We use the
theorem proved in Ref. [17], which ensures that if we make
a convergent local canonical transformation [equal to the
identity transformation plus O(8), where € is some expan-
sion parameter] on the action S of a theory that is free of
gauge anomalies, it is possible to re-renormalize the
divergences of the transformed theory and re-fine-tune
its finite local counterterms, continuously in 6, so as to
preserve the cancellation of gauge anomalies to all orders.
Clearly, we can achieve the same goal if we combine
canonical transformations and redefinitions of parameters,
as long as they are both convergent.

Before proceeding, let us recapitulate the situation. The
HD theory has the action S,7, which is superrenormaliz-
able and has a particularly nice structure, once we use the
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tilde parametrization. Its renormalized action is the action
Sy of formula (5.15), which contains both the counter-
terms Fg\l;div that subtract the e-divergences at A fixed, and
the finite local counterterms —y /2 that subtract the trivial
anomalous terms. Formula (6.2) ensures that I is free of
gauge anomalies to all orders.

Now we need to make the operations I/, on the action
Sar. From the point of view of the HD theory, where A is
fixed, those operations are completely convergent, because
they are convergent in ¢ (although possibly divergent in A).
However, the canonical transformations can ruin the
manifest superrenormalizability of S,7, as well as the nice
structure exhibited by S,7 in the tilde parametrization.
Because of this, the arguments that allowed us to prove the
cancellation of gauge anomalies in the HD theory cannot be
used after the transformations. Nevertheless, we expect that
the superrenormalizability of S and the cancellation of its
gauge anomalies survive in some nonmanifest form.

What happens is that, after the operations U/, the
(nonlinear part of the) canonical transformation generates
new poles in g, and not just at one loop, but at each order of
the perturbative expansion. Then, the first thing to do is re-
renormalize the transformed HD theory at A fixed, to
remove the new divergences. Moreover, the cancellation of
gauge anomalies, which is in general ruined by the
operations U4, can be enforced again by re-fine-tuning
all sorts of finite local counterterms. The theorem proved in
Ref. [17] ensures that this goal can indeed be achieved, to
all orders in 72 and 1/A_. In these arguments, the truncation
T2 plays no role.

We know that each R, is equal to the identity plus
O(n"*1), and so is the canonical transformation (7.9). If we
replace the factor #"*! by a parameter 6,, we can define
operations R,,(6,,) that are equal to the identity plus O(6,,).
Then we also have operations U,(0,...,0,), which we
sometimes denote for brevity by U,(6). Clearly,
Up1(01,....0,1) =U,(04,...,0,_,,0). For a while, we
work on the actions Sy, 7 =U(0)Sy; at A fixed, for
0 <k <n. Applying the results of Ref. [17] to the
operations U, (0), we know that we can e-renormalize
the actions S, 7 at A fixed and fine-tune the finite local
counterterms, continuously in €, so as to preserve the
cancellation of gauge anomalies for arbitrary values of each
6. Call the so-renormalized actions S, g7 and their T’
functionals 'y, zr. We have

(TrcirrTicirr) = Oe), k < n. (7.15)
Observe that
Serirr = Seair + Sar — Sar + O(R)O(0), k <n.

Indeed, S, — Sy are the counterterms that e-renormalize
the theory and cancel the gauge anomalies at 6 = 0. Every
other counterterm must be both O(%) and O(6). Thus,
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Serirr = Skrr = Seir — Sir + O(R)O(6y). k <n.

(7.16)

We have replaced O(h)O(0) with O(h)O(6;) in this
formula, because at 6, =0 we have S, zr = Siar
and Sy = Sir- )

By formula (7.13), when we replace 0, with A*!,
i=1,....k, inside S;, 7, we obtain the actions Sj.r,
k < n. When we replace 6; with A" inside Sy g7, we
obtain the renormalized actions Sy z7. The actions S, 7
and S, 1zr With k < n are those that are assumed to satisfy
the inductive hypotheses mentioned at the beginning of this
section. We must show that the actions

SnJr]T = Sn+l7‘|0i=hi+" SnJrlRT = Sn+lRT|0i:hi+l’
(7.17)

satisfy analogous properties, that is to say, (a) S, g7 1S
e-renormalized to all orders in 7 at A fixed; (b) it is CDHD
renormalized up to and including n + 1 loops; and (c) the I'
functional I',, g7 associated with S, pr is free of gauge
anomalies to all orders in 7 at A fixed.

The action S, gy defined by formula (7.17) is
e-renormalized to all orders at A fixed, because so is the
action S, g7, by construction. To show that S, g7 is
properly CDHD renormalized, we use, in the order, (7.17),
(7.16), and (7.14). We obtain

Snt1RT — SnrT = §n+1RT|9,.=h“+‘ - SnRT|9,-:h"+'
= S,i17lg,—prt = Surlg—p + O(R"2)
= Spp1r = Sur + O(A"F2)
= _r;(ﬁrld)iv + (R = 1)Sup
+ O(R"2) 4+ O(A" o (1) AT-2(141)e),
(7.18)

By the inductive assumption, the action S, zr is CDHD
renormalized up to and including n loops, which means that
the Z-loop contributions to I',,z7 are CDHD convergent up
to o(1/AT=%7?), for 0 < # < n. Moreover, I',., ;g and [, z7
coincide up to O(A"!), as well as S, g7 and S, z7. Now,
Uyiirr =Unrr +Sus1rr = Sprr+O("*?), and (R, ~1)Spp
vanishes in the CDHD limit, up to O(#"*2). Thus, formula
(7.18) proves that the Z-loop contributions to I',, 1z are
CDHD convergent up to 0(1 / AZ_M"), for0<?Z<n+1,
which means that I',,, ;g7 is CDHD renormalized up to and
including n + 1 loops.

The last thing to do is show that I, |7 is free of gauge
anomalies. This result follows from formula (7.15) for
k = n. Indeed, by (7.17), when we replace 0; with A/*!,
i=1,...,n, the functional ', gy turns into [, g7
We finally obtain
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(Fiz+1RT7Fn+1RT) = O(e), (7-19)

which means that we have successfully promoted the
inductive hypotheses to n + 1 loops.

Iterating the argument, we can make it work till it makes
sense, which means for n = 0, ...,Z — 1, where 7 is given
by formula (2.33) for [x] < 0 and oo for [«] > 0. Finally, we
obtain

Agr = (Tpr. Trr) = Ole), (7.20)

where I'gr = I'zpp. Observe that the right-hand side of
(7.20) tends to zero everywhere at A fixed. However, only
within the truncation T2 is I';; convergent in the CDHD
limit. Thus, the Z-loop contributions to the right-hand
side vanish in the CDHD limit up to o(1/AT=%%?), for
0 < # < 7. In other words, Iy is free of gauge anomalies
within the truncation T2. This proves the almost manifest
Adler-Bardeen theorem.

D. Adler-Bardeen theorem

The result just achieved is also sufficient to prove the
Adler-Bardeen theorem, i.e. statement 1 of the
Introduction. So far, we have suppressed the o(1/AT)
terms of the action S and its HD regularized extension S,
according to the prescription T1 of Sec. II B. Now we
restore those terms, all of which fall outside the truncation
T2. Clearly, the results we have obtained still hold within
the truncation T2. The CD, HD, and CDHD regularizations
are still well defined, because the divergences not cured by
the HD technique are cured by the dimensional one. Note
that, however, the HD theory S, is not superrenormaliz-
able, but nonrenormalizable.

Consider the contributions to the gauge anomalies that
lie outside the truncation 7', and classify them according to
the number of loops and the power of 1/A_. Let A.p
denote any finite class of them. Clearly, the terms of A.
lie inside some other truncation 77 > T, as long as T’ is
sufficiently large. Now, different truncations just define
different subtraction schemes (by means of different
higher-derivative theories and different CDHD regulariza-
tions), and different subtraction schemes differ by finite
local counterterms. Let sy and s denote the schemes
defined by the truncations T and 7, respectively. We can
assume that they give exactly the same results (which
means that I'z; and I'py coincide) within the truncation 7',
up to corrections Ecpyp that vanish in the CDHD limit. We
prove this fact by proceeding inductively. Assume that

Urpr = Trp + O(R") + Z O(1*)o(1/AL724) + Ecppp
=0
(7.21)

till some order n < #. The assumption is certainly true for
n=0. Then, the CDHD nonevanescent (n+ 1)-loop
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contributions to 'z and 'k differ by finite local terms
AS,.1, up to o(1/AT2("+1)7) " \which means

Crpr = Dpr + AS,py + O(R"F2)

n+1

+ Z O(1*)o(1/AT-2) 4 Ecpup.
k=0

(7.22)

Both T'py and 'z satisfy the almost manifest Adler-
Bardeen theorem, that is to say, formula (7.20) and its 7’
version. The right-hand sides of (7.20) and its T” version
vanish in the CDHD limit, within the respective trunca-
tions, because I'pr and 'y are convergent there. Thus,

Agr = (FRT’ Trr) = Ecomp + O(hhl)

+Z(’)h"

ART’ = (FRT”FRT’)
+ Z O(rk)o

Using (7.22) inside these equations, and taking the CDHD
convergent (n + 1)-loop contributions to the difference, we
obtain

1/AT Zk(;)
= Ecpup + O(hZNH)

(1/AT =2k, (7.23)

(Sar- AS,11) = o(1/AL2 (Do),

which is a cohomological problem analogous to (7.3).
It can be solved in the same way, and the solution is the
analogue of (7.7), i.e.

ASn+1 = ZAinigi + (SdT’ A)?HT) + O(I/Az_z(’1+l)g)7

where A;lm- are convergent constants and Ay, is a
convergent local functional. At this point, we can attach
AZ,; and AJ,r to the constants A4,; and the functional
X7 that subtract the (n + 1)-loop divergences belonging to
the truncation 7", given by the T” version of formula (7.7).
After that, we can go through the 7’ versions of the
arguments that lead from formula (7.7) to formula (7.19)
with no difficulty. So doing, we promote assumption (7.21)
to the order n + 1 and iterate the procedure till we get

z
Trp = Drr + O( hﬂrl Z l/AT 2k(r)
k=0

+ Ecpup-

Once this is done, the subtraction schemes s; and s/ give

the same results within the truncation 7', up to Ecpyp-
Now we compare s and s’ in between the truncations 7

and T’. First, we extend the subtraction scheme s; in a
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generic way beyond the truncation 7 and within the
truncation 7", and renormalize the action S,; accordingly.
Then, we adapt the extended scheme order by order to
make it give the same results as the scheme s+ within the
truncation 7", up to Ecppp. Let s, 77 denote the extended
scheme adapted up to and including n < #' loops.
Precisely, we assume that s, 7 gives

Urr =Trr + Oy + Z O(7*)o(1/AL=24) + Ecpup.
k=0

(7.24)
where
Opir = O(R™Y) forn> ¢,
_ ¢ .
O,i1 = O(RTH) + Z O(RF)o(1/AT=2k)  for n < £.
k=n+1

Again, this assumption is satisfied at n = 0. Then, within
the truncation 7" the (n + 1)-loop contributions to 'z and
I'gy differ by finite local terms, which we call AS, . 7, up

to gCDHD:
n+1
Trp =Trr + ASy10 4+ Opin + Z O(n*)o(1/AL2)
k=0
+ Ecpup-

Note that for n < Z, AS,, | 7 = O(R")o(1/AL-2n+ 1),
Now, replacing the renormalized action Sgy that defines
gy with Spr — AS, 7, we cancel out AS, ., and
promote the inductive assumption (7.24) from order n to
order n + 1. Iterating the procedure, we arrive at formula
(7.24) with n = #'. In the end, Ty coincides with Ty
within the truncation 7”, up to Ecpyp. Finally, formula
(7.23) ensures that ['p is free of gauge anomalies within
the truncation 7",

In other words, it is possible to modify the scheme s by
fine-tuning the finite local counterterms so as to cancel the
potentially anomalous contributions that belong to the class
A. 7. Since this conclusion applies to every class A.,
Theorem 1 follows.

VIII. STANDARD MODEL COUPLED TO
QUANTUM GRAVITY

In this section we prove that the standard model coupled
to quantum gravity satisfies the assumptions of the proof. In
particular, although it does not satisfy the Kluberg-Stern—
Zuber assumption (2.11), it satisfies assumption (III) of
Sec. IIC, since its basic action S is cohomologically
complete, and the group G, is compact. We also comment
on the physical meaning of that assumption. We also show
that the standard model coupled to quantum gravity
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satisfies assumptions (IV) and (V) of Sec. IIC, which
concern the one-loop gauge anomalies.

We start by considering the class of four-dimensional
Einstein—Yang-Mills theories that have classical actions of
the form

1 1
ScEym = / vari |:_W(R+2AC) _ZF,ZDF‘I”D

+ L,(¢. Do) + L, (v, Dy) + L, (0. w)|.
(8.1)

where Fy, are the field strengths of the Abelian and non-
Abelian Yang-Mills gauge fields, while £, £,,, and L,
are the matter Lagrangians, which depend on the scalar
fields ¢, the fermions y, and their covariant derivatives D,
Dy, as specified by their arguments. Moreover, £, is at
most quadratic in Dg, and £, is at most linear in Dy. The
actions S pyy and S gyy of formulas (2.3) and (2.8), built
by taking S.gym as the classical action S, are known to
satisfy the Kluberg-Stern—Zuber assumption (2.11) in two
cases: when the Yang-Mills gauge group is semisimple and
when there are no accidental symmetries [18]. When the
Yang-Mills gauge group contains U(1) factors and S gy is
invariant under accidental symmetries, there exist extra
local solutions X of (Szeym, X) = 0 that cannot be written
in the form (Sygywm, ¥Y) with Y a local functional [18]. We
denote them by Gj*". They depend on the sources K, the
U(1) gauge fields, and the Noether currents associated with
the accidental symmetries.

Consider first the standard model in flat space. We
denote its basic action Sy, by Sysm. Clearly, S g\ has the
form (8.1) (with gravity switched off), but does not satisfy
the Kluberg-Stern—Zuber assumption (2.11), because the
Yang-Mills gauge group SU(3) x SU(2) x U(1), is not
semisimple and S,g has accidental symmetries. One
accidental symmetry is the conservation of the baryon
number B. If the right-handed neutrinos are present and
have Majorana masses, there are no other accidental
symmetries. If the right-handed neutrinos are present,
but do not have Majorana masses, there is an additional
accidental symmetry, which is the conservation of the
lepton number L. If the right-handed neutrinos are absent,
the lepton numbers L,, L,, and L, of each family are also
conserved. The group of accidental symmetries is U/(1)%mx,
where /.., = 1, 2, or 4, depending on the case.

The extra solutions X to the condition (S;gy, X) = 0 can
be built as follows. It is well-known that the hypercharges
of the matter fields are not uniquely fixed by the sym-
metries of the standard model Lagrangian. If we deform the
standard model action S,g,; by giving arbitrary hyper-
charges to the matter fields, and later impose U(1),
invariance, then one, two, or four arbitrary charges g;
(I =1,...,1,,y) survive (depending on the group of
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accidental symmetries), besides the overall U(1), charge.
Call the deformed action Sysp, (P, K, q;). Clearly, S sm,
satisfies the master equation

(Sasmg» Sasmg) =0 (8.2)

in arbitrary D dimensions and for arbitrary values of the
charges ¢;. If we differentiate (8.2) with respect to each ¢,
and then set the g; to zero, we get

os dSMq
9q; q=0

(Sasm- Grsm) = 0, v =

The local functionals Gj$y; (P, K) depend explicitly on the
sources K, because the charges ¢; appear in the functional
Sk of formula (2.4). It can be shown [18] that G}y, cannot
be written in the form (S gy, ¥) for a local Y. This is why
the Kluberg-Stern—Zuber requirement is not satisfied by the
standard model.

The argument just given in flat space can be repeated for
the standard model coupled to quantum gravity, with
obvious modifications. Let us denote its basic action S,
by Susma- It is built on the classical action S.gvg of formula
(2.1), which has the form (8.1). If we deform it into
Sasmcq(®. K, q;) and differentiate with respect to g;, we
find extra solutions X of (Sysmg,X) = 0 that cannot be
written in the form (S gvg,Y) for a local Y. We denote
them by Gjsy (P, K).

In principle, the invariants Gygy, or Gjgys, could be
generated as counterterms by renormalization, because they
satisfy (Sasm. Grsm) = 0 or (Sasmc. Gismg) = 0. 1f this
happened, however, we would have a big problem: some
hypercharges would be allowed to run independently from
one another and violate the conditions for the cancellation
of gauge anomalies at one loop, required by assumption
(IV). Indeed, it is easy to check that, in general, the
deformation Sygv, (and therefore also Sysmg,) 1s not
compatible with the one-loop cancellation of the gauge
anomalies [26].

In fact, in Sec. VII A it was shown that, if assumption
(II) of Sec. II C holds, the extra invariants Gj°¥, such as
Gism or Gilgs are not generated by renormalization.
Indeed, they do not appear on the right-hand side of
formula (7.7), which just contains the invariants G;(¢).
Thus, the meaning of cohomological completeness is to
ensure that renormalization has this key property.

To show that the standard model coupled to quantum
gravity satisfies assumption (III), we lift the discussion to
the extended theory S, of Sec. I and denote its basic action

by Ssmc- It is easy to show that S smc has no accidental
symmetries, because it contains both the four fermion
vertices and the vertex (LH)? that break B, L,, L, and L,.
Indeed, in the parametrization (2.24) such vertices are not
multiplied by parameters { belonging to the subsets s_: the
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coefficients { of the four fermion vertices are dimension-
less, while the coefficient ¢ of (LH)? has dimension one,
as shown by formula (2.42). The functionals G}** do not

satisfy (S smg. G°%) = 0, and the theory with action S sy
cannot generate them as counterterms. By the results of

Ref. [18], the action S,sug, which has the form (8.1),
satisfies the extended Kluberg-Stern—Zuber assumption
(2.12); i.e. Sygmc 18 cohomologically complete. The group
G, of nonanomalous accidental symmetries of the action
Sismc 18 certainly compact, so assumption (III) holds.
Let us now move to assumption (IV). Formula (5.12)
tells us that the one-loop anomaly functional .Abl asso-
ciated with the basic action Sygyg of the standard model
coupled to quantum gravity solves the equation

(SasmaG» AE)U) =0. The most general solution to this
condition reads
i
AE)) = Ay + (Sasma- X) (8.3)
and is the sum of nontrivial terms .4, plus trivial terms
(Susma» X), where X is a local functional of ghost number

zero. The nontrivial terms have been classified in Ref. [18].
They are (i) Bardeen terms [27]

/ dP xet o Ty {aﬂc (AyapA(, + gA,,ApAG)]

for non-Abelian Yang-Mills symmetries, where C = C*T?,
A, = Az T4, while C, Az are the non-Abelian Yang-Mills
ghosts and gauge fields, respectively, and the index @ runs
on each simple subalgebra of the Yang-Mills Lie algebra;
(i1) terms of the Bardeen type

[ @xenrnc, 0,000,
/ dPxemroC4(9,V,)(0,A),

D vpo a ra
/d xeP?Cy Fy, Fp,,

/ AP xe 0o Cy REPRAD,
D vpo abpcd, _ _
/d xe!r CVRﬂuR/)o‘gahZ'm

involving U(1) gauge fields V, and/or U(1) ghosts Cy;
(iii) terms of the form [ CyL, where £ is a Lagrangian
density that depends only on the fields, is not a total
derivative, and satisfies (S, f L) =0; (iv) K-dependent
extra terms AJSY; of ghost number one, analogous to the
extra terms G\ of ghost number zero discussed above.
The terms of class (iv) are absent unless the gauge group
contains U(1) factors and the theory has accidental
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symmetries. We recall that there are no Lorentz anomalies
in four dimensions.

To study the anomalies A, of Eq. (8.3) we can switch to
the framework we prefer. A change of framework affects
the finite local counterterms contained in the functional

f%}ﬁn of formula (5.8). As far as At()l) is concerned, formula
(5.11) ensures that it only affects the functional X of (8.3).

Consider first the terms A, that belong to the classes (i)
and (ii). The most economic framework to study them is the
standard dimensional regularization. For definiteness, we
use a basis where all the fermionic fields are left handed,
and we denote them by ;. Associate a right-handed
partner yy with each yw; and extend the action S;gvg
by adding the correction

SLr(®) = /l/_/Ri?”aﬂl//L +/l/7Li77”ayl//R
+/‘/7Ri77”3ﬂll/R

to it, where the flat-space vielbein is used and 7 denote the
standard y matrices in D dimensions, which satisfy
{77”’}7} =2". Let Sext(®, K) = Sasmc(P. K) + Spz(P)
denote the extended action. Expanding around flat space as
usual, the total kinetic terms of y; and y are [ Wyt oy,
where v =y, + wg. Since wy appears just in Sy, no
nontrivial one-particle irreducible diagrams with y, exter-
nal legs can be built, so the partners y decouple at e = 0.
Moreover, S;svg 18 gauge invariant, while S;r is not,
which means that (S.y, Sey) is cubic in the fields ®. More
precisely, (Sex, Sex¢) is bilinear in the fermions and linear in
the ghosts. The anomaly functional is A = ((Sexi Sext))-
The nontrivial terms A, of classes (i) and (ii) do not
contain fermions, so they can only arise from the one-loop
polygon diagrams that have (S.y, Sey;) and gauge currents
(including the energy-momentum tensor) at their vertices,
and fermions circulating inside. It is well known [3] that
the contributions of such diagrams vanish at ¢ = 0 in the
standard model coupled to quantum gravity.

Next, consider the terms A, of class (iii). They are
anomalies of the global U(1), symmetry. To prove that
they are absent, it is sufficient to choose a regularization
technique that is globally U(1), invariant. Again, the
standard dimensional regularization has this property, while
the CD technique does not [because of the terms (2.13),
which are of the Majorana type]. Finally, formula (5.11)
ensures that the terms of class (iv) are not generated,
because they depend on the sources K.

This proves that A4, = 0; i.e. the basic action S gy of
the standard model coupled to quantum gravity satisfies
assumption (IV). We also note that the arguments of
Sec. VII A imply that the action S, of the standard model
coupled to quantum gravity, which is equal to Sygvg
plus corrections multiplied by powers of 1/A_, is also
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cohomologically complete and satisfies the physical
Kluberg-Stern—Zuber conjecture (7.8).

The absence of the terms of class (iv) is a general fact,
not tied to the particular model we are considering. It can
also be proved by lifting the discussion to S sy, Where all
accidental symmetries are broken. The one-loop anomaly

functional .,th,l) of the theory with action Sygyg satisfies
(S’dSMg,A,(J])) =0 and can be decomposed as .,211(31) =
Ay + (Susm. X), where the nontrivial anomalous terms
/lm can only belong to the classes (i)—(iii), and X is a local
functional of ® and K. The functional Al()l) can be retrieved

from /lé,l) by switching off the coefficients 4 and n of the
terms that break the nonanomalous accidental symmetries.
This operation gives a result of the form (8.3), where A,

and X are equal to /lm and X at ] = n = 0, respectively. If,
in addition, we average on the group G,,,, we can assume
that X is invariant under G,,. It follows that A, is a linear
combination of terms belonging to the classes (i)—(iii).

It remains to study assumption (V) of Sec. IIC. If a
functional F (k@) of ghost number one can be written in the
form (S, X), it clearly satisfies (Sz, F) = 0. Then it also
satisfies (Sx, F) = 0, since F is K independent. We want
to show that F can be written as (Sg, y), where y(k®) is a
local functional of the fields ®.

The most general solution of the problem (Sg, F) = 0,
when the gauge symmetries are diffeomorphisms, local
Lorentz symmetry, and Abelian and non-Abelian Yang-
Mills symmetries, is worked out in Ref. [28]. The func-
tional F is the sum of nontrivial terms 2[,; belonging to the
classes (i)—(iii) listed above, plus trivial terms of the correct
form (S, y(k®)). Combining this fact with F = (S, X),
we obtain

F = (Sav X) = Ane + (Sx.)-

Turning this equation around, we also get 2, = (Sz,, X”),
with X" = X — y. In other words, the functional 2, is
trivial in the S, cohomology and nontrivial in the Sg
cohomology. The results of Ref. [18] ensure that in four-
dimensional FEinstein—Yang-Mills theories that have an
action of the form (8.1), this is impossible, unless 2,
vanishes. Thus, the standard model coupled to quantum
gravity satisfies assumption (IV).

We stress again that assumptions (IV) and (V) are just
needed to prove that the one-loop anomalies (4.3) of the
HD theory are trivial in the S cohomology, which means
that they have the form (5.14). The same result is more
quickly implied by assumption (IV’) of Sec. IT C. In several
practical cases, it may be simpler to prove assumption (IV”),
rather than assumptions (IV) and (V).

We conclude that the standard model coupled to quan-
tum gravity satisfies all the assumptions made in this paper.
Therefore, it is free of gauge anomalies to all orders in
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perturbation theory. In a generic framework, the Adler-
Bardeen Theorem 1 of the Introduction tells us that the
cancellation of gauge anomalies is nonmanifest, and can be
enforced by fine-tuning finite local counterterms order by
order. If we use the framework elaborated in this paper,
Theorem 3 tells us that the cancellation is manifest within
any given truncation and nonmanifest outside.

The arguments of this section apply with simple
modifications to most standard model extensions, irre-
spectively of their gauge groups and accidental sym-
metries. When the other assumptions are met, it is
sufficient to check that the gauge anomalies are trivial
at one loop to infer that they can be canceled to all orders.
It is also clear how to generalize the analysis of this
section to theories living in spacetime dimensions differ-
ent than four.

IX. CONCLUSIONS

In this paper we proved the Adler-Bardeen theorem for
the cancellation of gauge anomalies in nonrenormalizable
theories, which is the statement that there exists a sub-
traction scheme where the gauge anomalies cancel to all
orders, when they are trivial at one loop. We assumed that
the gauge symmetries are diffeomorphisms, local Lorentz
symmetry, and Yang-Mills symmetries, and that the local
functionals of vanishing ghost number satisfy a variant of
the Kluberg-Stern—Zuber conjecture. In our approach, the
cancellation is “almost manifest,” which means that, given
a truncation of the theory, once the gauge anomalies are
canceled at one loop, they manifestly vanish from two
loops onwards within the truncation, while outside the
truncation their cancellation can be achieved by fine-tuning
finite local counterterms. The truncation can contain
arbitrarily many terms.

Although some arguments of the proof are technically
involved, the key ideas are actually intuitive. The hardest
part of the job is building the right framework. We used a
regularization technique that combines a modified
version of the dimensional regularization with a suitable
higher-derivative gauge invariant regularization. This
trick allows us to isolate the sources of potential anoma-
lies, which are just one loop, from the nonanomalous
sector of the theory. When the HD energy scale A is kept
fixed, we have a superrenormalizable theory that satisfies
the manifest Adler-Bardeen theorem to all orders in 7 by
simple power counting arguments. When A is taken to
infinity, the A divergences are subtracted by means of
canonical transformations and redefinitions of parame-
ters. At each step, the HD theory must be re-renormalized
at A fixed, to subtract the newly generated divergences in
e. While doing so, it is possible to enforce the cancella-
tion of gauge anomalies again by fine-tuning finite local
counterterms.

The standard model coupled to quantum gravity satisfies
the assumptions we have made, so it is free of gauge
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anomalies to all orders. The theorem we have proved also
applies to most extensions of the standard model, coupled
to quantum gravity or not, and to a variety of other theories,
including higher-derivative and Lorentz violating theories,
in arbitrary dimensions.

PHYSICAL REVIEW D 91, 105016 (2015)

Among the prospects for the future, we mention the
generalization of the proof to supergravity. The complexity
of local supersymmetry makes this task quite challenging,
especially in the presence of scalar multiplets and when it is
not known how to achieve closure off shell.
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