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We prove the Adler-Bardeen theorem in a large class of general gauge theories, including non-
renormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry,
and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost
numbers satisfy a variant of the Kluberg-Stern–Zuber conjecture. We show that if the gauge anomalies are
trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly
vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be
enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a
recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization.
If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale Λ
associated with them is kept fixed, the theory is superrenormalizable and has the property that, once the gauge
anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power
counting. When the Λ divergences are subtracted away and Λ is sent to infinity, the anomaly cancellation
survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model
coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.
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I. INTRODUCTION

The Adler-Bardeen theorem [1,2] is crucial to prove the
consistency of a wide class of perturbative quantum field
theories. Its main consequence is that the cancellation of
gauge anomalies at one loop ensures the cancellation of
gauge anomalies to all orders. Thanks to this result, a finite
number of conditions is sufficient to determine when a
potentially anomalous theory is actually anomaly free.
The cancellation conditions can be worked out rather easily
because they just involve simplified divergences of one-loop
diagrams. If a similar theorem did not hold, a chiral gauge
theory, such as the standard model, would have
to satisfy infinitely many independent cancellation condi-
tions, to be consistent. The solutions would be very few or
contain infinitely many fields.
So far, the Adler-Bardeen theorem has been proved in

Abelian and non-Abelian power counting renormalizable
gauge theories, including the standard model, but not in
more general classes of theories. In this paper we overcome
this limitation by working out a more powerful proof that
applies to a large class of nonrenormalizable theories and
allows us to infer that the standard model coupled to
quantum gravity, which is known to be free of gauge
anomalies at one loop [3], is also free of gauge anomalies to
all orders, and so are most of its extensions.
In general, we must show that when the gauge anomalies

are trivial at one loop, there exists a subtraction schemewhere

they vanish to all orders. Once we know that the scheme
exists, we can build it order by order by fine-tuning finite
local counterterms. A more powerful result is to provide the
right scheme from the beginning, that is to say, define a
framework where all potentially anomalous contributions
cancel out at one loop and are automatically zero from two
loops onwards.Wecall a statement identifying such a scheme
manifest Adler-Bardeen theorem. In perturbatively unitary
renormalizable theories themanifest Adler-Bardeen theorem
has been proved recently [4]. For reasons that we explain in
the paper, in nonrenormalizable theories we are not able to
determine the subtraction scheme where anomaly cancella-
tion is manifest from two loops onwards. We have to content
ourselves with a weaker, yet powerful enough, result, which
we call almost manifest Adler-Bardeen theorem: given an
appropriate truncation T of the theory, we find a subtraction
scheme where the gauge anomalies manifestly vanish from
two loops onwards within the truncation.
The most common regularization techniques are not very

convenient to work out general proofs of the Adler-Bardeen
theorem, because they give us no clue about the right
subtraction scheme. In Ref. [4] a better regularization
technique was built by merging the dimensional regulariza-
tion with a suitable gauge invariant higher-derivative (HD)
regularization [5] and used to prove the manifest Adler-
Bardeen theorem in four-dimensional renormalizable per-
turbatively unitary gauge theories. Unfortunately, several
difficulties of the dimensional regularization make it hard to
generalize that proof to nonrenormalizable theories. To
overcome those problems, in Ref. [6] a chiral dimensional*damiano.anselmi@df.unipi.it
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(CD) regularization technique was defined. Nevertheless,
the CD technique alone does not identify the subtraction
scheme where gauge anomalies manifestly cancel and must
still be merged with a suitable gauge invariant HD regulari-
zation. The resulting technique, called chiral-dimensional/
higher-derivative (CDHD) regularization, is the right one to
generalize the proof of the Adler-Bardeen theorem to non-
renormalizable theories. It has two regularizing parameters:
ε ¼ d −D, where d is the physical spacetime dimension
and D is the continued dimension, and the energy scale Λ
associated with the higher-derivative terms. The limit
ε → 0 must be studied before the limit Λ → ∞.
The CDHD technique is organized so that the higher-

derivative regularizing terms fall well beyond the truncation.
WhenΛ is kept fixed, a peculiar superrenormalizable higher-
derivative theory is obtained, which we call HD theory. The
HD theory satisfies the manifest Adler-Bardeen theorem by
simple power counting arguments. The limit Λ → ∞ on the
HD theory defines the final theory, which is the one we are
interested in. We show that we can renormalize the Λ
divergences so as to preserve the cancellation of gauge
anomalies to all orders within the truncation.
The proof we provide holds under certain assumptions.

First, we assume that the gauge symmetries are general
covariance, local Lorentz symmetry, and Abelian and non-
Abelian Yang-Mills symmetries. At this stage, we cannot
include local supersymmetry. Second, we assume that the
local functionals of vanishing ghost numbers satisfy a variant
of the Kluberg-Stern–Zuber conjecture [7]. The standard
model coupled to quantum gravity does not satisfy the
ordinary Kluberg-Stern–Zuber conjecture, but satisfies the
variant thatwe assume in this paper. Theother key assumption
is of course that the one-loop gauge anomaliesAð1Þ are trivial.
In our approach the functionalAð1Þ is extremely simple, since
it can only depend on the gauge fields, their ghosts, and some
matter fields. We call Að1Þ trivial if there exists a local
functional χ of the fields such that Að1Þ ¼ ðSd; χÞ, where
Sd is the d-dimensional tree-level action and (X, Y) are the
Batalin-Vilkovisky (BV) antiparentheses [8], recalled in
formula (2.2). Other mild technical assumptions needed for
the proof (all of which are satisfied bymost common theories
of fields of spins ≤ 2) are described along the way.
Here are the main statements that we consider in this

paper. The most general Adler-Bardeen theorem for the
cancellation of gauge anomalies states that
Theorem 1: If the gauge anomalies are trivial at one

loop, the subtraction scheme can be fine-tuned so that they
vanish to all orders.
In renormalizable theories we actually have a stronger

result, the manifest Adler-Bardeen theorem [4], stating that
Theorem 2: If the gauge anomalies are trivial at one

loop, there exists a subtraction scheme where they cancel at
one loop and manifestly vanish from two loops onwards.
In nonrenormalizable theories, instead, we can prove a

result that is stronger than 1, but weaker than 2, the almost
manifest Adler-Bardeen theorem, which states that

Theorem 3: If the gauge anomalies are trivial at one
loop, for every appropriate truncation of the theory there
exists a subtraction scheme where they cancel at one loop
and manifestly vanish from two loops onwards within the
truncation.
The proper way to truncate a nonrenormalizable theory is

specified in the next section. We stress again that in
nonrenormalizable theories we are not able to prove state-
ment 2, namely find the right subtraction scheme independ-
ently of the truncation. We can just find a good subtraction
scheme for every truncation. This result is still satisfactory,
because Theorem 3 implies Theorem 1. Indeed, let sT denote
the subtraction scheme associated with the truncation T by
the proof of Theorem 3. There, the gauge anomalies A
vanish within the truncation. LetA>T denote a finite class of
contributions to the gauge anomalies that lie outside the
truncation T, in the scheme sT . Clearly, the contributions of
class A>T are fully contained in some truncation T 0 > T.
There, however, they must vanish. Since two schemes differ
by finite local counterterms, there must exist finite local
counterterms that cancel the contributions of class A>T in
the scheme sT . In conclusion, the scheme sT satisfies
Theorem 3 within the truncation and Theorem 1 outside.
It is worthwhile to compare our approach with other

approaches to the Adler-Bardeen theorem that can be found
in the literature. The original proof given by Adler and
Bardeen [1] was designed to work in QED. Most gener-
alizations to renormalizable non-Abelian gauge theories
used arguments based on the renormalization group [9–12].
Those arguments work well unless the first coefficients of
the beta functions satisfy peculiar conditions [12] (for
example, they should not vanish). If the theory is non-
renormalizable, we can build infinitely many dimensionless
couplings and can hardly exclude that the first coefficients
of their beta functions satisfy peculiar conditions.
Algebraic/geometric derivations [13] based on the Wess-
Zumino consistency conditions [14] and the quantization of
the Wess-Zumino-Witten action also do not seem suitable
to be generalized to nonrenormalizable theories. Another
method to prove the Adler-Bardeen theorem in renorma-
lizable theories is obtained by extending the coupling
constants to spacetime-dependent fields [15]. A tentative
regularization-independent approach in nonrenormalizable
theories can be found in Ref. [16].
We stress that the proof provided in this paper is the first

proof that the standard model coupled to quantum gravity is
free of gauge anomalies to all orders. Our arguments and
results also apply to the study of higher-dimensional
composite fields in renormalizable and nonrenormalizable
theories.
In this paper, the powers of ℏ are merely used as tools to

denote the appropriate orders of the loop expansion. They
are not written explicitly unless necessary. It is understood
that the functionals depend analytically on the parameters
that are treated perturbatively.

DAMIANO ANSELMI PHYSICAL REVIEW D 91, 105016 (2015)

105016-2



The paper is organized as follows. In Sec. II we provide
the setting of the proof. We specify the truncation, recall
the properties of the CD regularization technique, and
explain how it can be combined with a suitable higher-
derivative regularization to build the CDHD regularized
theory. In Sec. III we study the properties of the HD
theory. In particular, we show that it is superrenormaliz-
able and study the structures of its counterterms and
potential anomalies. In Sec. IV we work out the renorm-
alization of the HD theory. In Sec. V we study its one-loop
anomalies. In Sec. VI we prove that the HD theory
satisfies the manifest Adler-Bardeen theorem. In
Sec. VII we subtract the Λ divergences and prove that
the final theory satisfies the almost manifest Adler-
Bardeen theorem, as well as Theorem 1. In Sec. VIII
we show that the standard model coupled to quantum
gravity, as well as most of its extensions, belongs to the
class of nonrenormalizable theories to which our results
apply. Section IX contains our conclusions.

II. GENERAL SETTING

In this section we give the general setup of the proof
and specify most of the assumptions we need. First we
recall the properties of the CD regularization and explain
how it is merged with the HD regularization to build the
CDHD regularization. Then we explain how to truncate
the theory. Instead of working directly with the standard
model coupled to quantum gravity, we formulate a
general approach and give specific examples along
the way.
Throughout the paper, d denotes the physical spacetime

dimension, and D ¼ d − ε is the continued complex
dimension introduced by the dimensional regularization
(see Sec. II A for details). We work in d > 2. We use the
symbol ϕ to collect the “physical fields,” that is to say,
the Yang-Mills gauge fields Aa

μ̄, the matter fields, and (if
gravity is dynamical) the metric tensor gμ̄ ν̄ or the vielbein
eāμ̄. The indices a; b;…, refer to the Yang-Mills gauge
group, while ā; b̄;…, refer to the Lorentz group. The
indices μ̄; ν̄;…, refer to the physical d-dimensional space-
time Rd, as opposed to the continued spacetime RD.
We denote the classical action by ScðϕÞ. In the case of

the standard model coupled to quantum gravity, we take
Sc ¼ ScSMG þ ΔSc, where

ScSMG ¼
Z ffiffiffiffiffi

jgj
p �

−
1

2κ2
ðRþ 2ΛcÞ −

1

4
Fa
μ̄ ν̄F

aμ̄ ν̄ þ Lm

�

ð2:1Þ

and ΔSc collects the invariants generated as counterterms
by renormalization, multiplied by independent parameters.
Here, R is the Ricci curvature, Fa

μ̄ ν̄ are the Yang-Mills field
strengths, Lm is the matter Lagrangian coupled to the

metric tensor, g is the determinant of the metric tensor or
vielbein gμ̄ ν̄, Λc is the cosmological constant, and
κ2 ¼ 8πG, where G is Newton’s constant.
We use the Batalin-Vilkovisky formalism [8] because it

is very efficient to keep track of gauge invariance through-
out the renormalization algorithm. An enlarged set of fields
Φα ¼ fϕ; C; C̄; Bg is introduced to collect the physical
fields ϕ, the Fadeev-Popov ghosts C, the antighosts C̄, and
the Lagrange multipliers B for the gauge fixing. Next,
external sources Kα ¼ fKϕ; KC; KC̄; KBg are coupled
to the Φα symmetry transformations RαðΦÞ in a way
specified below.
If X and Y are functionals of Φ and K, their antipar-

entheses are defined as

ðX; YÞ≡
Z �

δrX
δΦα

δlY
δKα

−
δrX
δKα

δlY
δΦα

�
; ð2:2Þ

where the integral is over spacetime points associated
with repeated indices and the subscripts l and r in δl and δr
denote the left and right functional derivatives, respec-
tively. The master equation is the condition ðS; SÞ ¼ 0 and
must be solved in D dimensions with the “boundary
condition” S ¼ Sc at C ¼ C̄ ¼ B ¼ K ¼ 0. At the prac-
tical level, we first solve the equation ðS; SÞ ¼ 0 in d
dimensions, and then interpret its solution S as a
D-dimensional action, according to the rules of the
CD regularization (see Sec. II A). We denote the non-
gauge-fixed solution of the master equation by S̄dðΦ; KÞ.
The subscript d reminds us that, although S̄d solves
ðS̄d; S̄dÞ ¼ 0 in D dimensions, it is just the d-dimensional
action interpreted from the D-dimensional point of
view. In particular, it may not be well regularized as a
D-dimensional action. Once we regularize it, we may not
be able to preserve the master equation exactly in D ≠ d.
The violations of the master equation at D ≠ d are the
origins of potential anomalies.
(I) We assume that the gauge symmetries are general

covariance, local Lorentz symmetry, and Abelian and non-
Abelian Yang-Mills symmetries. In particular, the gauge
algebra is irreducible and closes off shell. We use the
second order formalism for gravity and choose the fields Φ
and the sources K so that the non-gauge-fixed solution
S̄dðΦ; KÞ of the master equation reads

S̄dðΦ; KÞ ¼ ScðϕÞ þ SKðΦ; KÞ;

SKðΦ; KÞ ¼ −
Z

RαðΦÞKα; ð2:3Þ

where the functional SK (with left-handed fermions ψL and
scalars φ, for definiteness) reads
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SK ¼
Z

ðCρ̄∂ ρ̄Aa
μ̄ þ Aa

ρ̄∂ μ̄Cρ̄ − ∂ μ̄Ca − gfabcAb
μ̄C

cÞKμ̄a
A þ

Z �
Cρ̄∂ ρ̄Ca þ g

2
fabcCbCc

�
Ka

C

þ
Z

ðCρ̄∂ ρ̄eāμ̄ þ eāρ̄∂ μ̄Cρ̄ þ Cā b̄eμ̄ b̄ÞKμ̄
ā þ

Z
Cρ̄ð∂ ρ̄Cμ̄ÞKC

μ̄ þ
Z

ðCā c̄ηc̄ d̄C
d̄ b̄ þ Cρ̄∂ ρ̄Cā b̄ÞKC

ā b̄

þ
Z �

Cρ̄∂ ρ̄ψ̄L −
i
4
ψ̄Lσ

ā b̄Cā b̄ þ gψ̄LTaCa

�
Kψ þ

Z
Kψ̄

�
Cρ̄∂ ρ̄ψL −

i
4
σā b̄Cā b̄ψL þ gTaCaψL

�

þ
Z

ðCρ̄ð∂ ρ̄φÞ þ gT aCaφÞKφ −
Z

BaKa
C̄ −

Z
Bμ̄K

μ̄
C̄ −

Z
Bā b̄K

ā b̄
C̄ : ð2:4Þ

Here, Ta and T a are the anti-Hermitian matrices associated
with the fermion and scalar representations, respectively.
The ghosts of Yang-Mills symmetry are Ca, those of local
Lorentz symmetry are Cā b̄, and those of diffeomorphisms
are Cμ̄. The pairs C̄a-Ba, C̄ā b̄-B

ā b̄, and C̄μ̄-Bμ̄ collect the
antighosts and the Lagrange multipliers of Yang-Mills
symmetry, local Lorentz symmetry, and diffeomorphisms,
respectively. The functional SK satisfies ðSK; SKÞ ¼ 0 in
arbitrary D dimensions.
We can gauge fix the theory with the help of a gauge

fermion ΨðΦÞ, which is a local functional of ghost number
−1 that depends only on the fields Φ and contains the
gauge-fixing functions GðϕÞ. For example, GðϕÞ ¼ ∂ μ̄Aμ̄

for the Lorenz gauge in Yang-Mills theories. The typical
form of ΨðΦÞ is

ΨðΦÞ ¼
Z ffiffiffiffiffi

jgj
p

C̄
�
Gðϕ; ξÞ þ 1

2
Pðϕ; ξ0; ∂ÞB

�
; ð2:5Þ

where ξ, ξ0 are gauge-fixing parameters and P is an operator
that may contain derivatives acting on B. Typically, if
the gauge fields ϕg have dominant kinetic terms (which are
the quadratic terms that have the largest numbers of
derivatives) of the form

∼
1

2

Z
ϕg∂Nϕgϕg ð2:6Þ

inside Sc, we choose G and P such that

Gðϕ; ξÞ ∼ ∂Nϕg−1þaϕg þ nonlinear terms;

Pðϕ; ξ0; ∂Þ ∼ ξ0∂Nϕg−2þb þOðϕÞ; ð2:7Þ

up to terms with fewer derivatives, where a ¼ b ¼ 0 for
diffeomorphisms and Yang-Mills symmetries, while a ¼ 1,
b ¼ 2 for local Lorentz symmetry. See formula (2.19) for
more details. In the case of three-dimensional Chern-
Simons theories (Nϕg

¼ 1) we take a ¼ 1 and P ¼ 0.
The gauge-fixed action Sd is obtained by adding ðSK;ΨÞ

to S̄d:

SdðΦ; KÞ ¼ S̄d þ ðSK;ΨÞ ¼ Sc þ ðSK;ΨÞ þ SK: ð2:8Þ

Alternatively, Sd is obtained from S̄d by applying the
canonical transformation generated by

FðΦ; K0Þ ¼
Z

ΦαK0
α þΨðΦÞ: ð2:9Þ

We still have ðSd; SdÞ ¼ 0 in D dimensions, but we stress
again that in general the action Sd may not be well
regularized.
Let fGiðϕÞg denote a basis of local gauge invariant

functionals of the physical fields ϕ, i.e. local functionals
such that ðSK;GiÞ ¼ 0. Expand the classical action as

ScðϕÞ ¼
X
i

λiGiðϕÞ; ð2:10Þ

where λi are independent constants. We call such constants
“physical parameters,” since they include, or are related to,
the gauge coupling constants, the masses, etc. If the theory
is power counting renormalizable, ScðϕÞ is restricted
accordingly and contains just a finite number of indepen-
dent parameters λi. If the theory is nonrenormalizable,
(2.10) must include all the invariants Gi required by
renormalization, which are typically infinitely many.
In several cases, the set fGiðϕÞg is restricted to the

invariants that are inequivalent, where two functionals are
considered equivalent if they differ by terms proportional to
the Sc field equations. The reason why such a restriction is
meaningful is that the counterterms proportional to the field
equations can be subtracted away by means of canonical
transformations of the BV type, instead of λi redefinitions.
However, for some arguments of this paper it is convenient
to include the terms proportional to the Sc field equations
inside the set fGiðϕÞg, which we assume from now on. We
can remove them at the end, by means of a convergent
canonical transformation and the procedure of Ref. [17].
There, it is shown that, after the transformation, it is always
possible to re-renormalize the theory and re-fine-tune its
finite local counterterms so as to preserve the cancellation
of gauge anomalies. The renormalized Γ functional of the
transformed theory is related to the renormalized Γ func-
tional of the starting theory by a (convergent, nonlocal)
canonical transformation. See [17] for more details.
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We say that an action S satisfies the Kluberg-Stern–
Zuber assumption [7], if every local functional X of ghost
number zero that solves the equation ðS; XÞ ¼ 0 has the
form

X ¼
X
i

aiGi þ ðS; YÞ; ð2:11Þ

where ai are constants depending on the parameters of
the theory, and Y is a local functional of ghost number −1.
The Kluberg-Stern–Zuber assumption is very useful to
study the counterterms. It is satisfied, for example, when
the Yang-Mills gauge group is semisimple and the action S
meets other mild requirements [18]. Unfortunately, the
standard model coupled to quantum gravity does not satisfy
it, unless its accidental symmetries are completely broken.
This forces us to search for a more general version of the
assumption.
The accidental symmetries are the continuous global

symmetries unrelated to the gauge transformations. Some
of them are anomalous, others are nonanomalous. If the
gauge group has Uð1Þ factors, let Gnas denote the group of
nonanomalous accidental symmetries. If the gauge group
has no Uð1Þ factors, we take Gnas equal to the identity. We
denote the local gauge invariant functionals of ϕ that break

the group Gnas by G
̬

iðϕÞ. We exclude the invariants G
̬

i from
the set fGiðϕÞg and the actions Sc, Sd, but include them in

more general actions S
̬

c and S
̬

d ¼ S
̬

c þ ðSK;ΨÞ þ SK ,

multiplied by independent parameters λ
̬

i. The invariants
that explicitly break the anomalous accidental symmetries
are instead included in the set fGiðϕÞg.
It is consistent to switch the invariants G

̬

i off, since, when
they are absent, renormalization is unable to generate them
back as counterterms. However, for some arguments of the
proof it is necessary to temporarily switch them on. For this
reason, we need to work with both actions Sd and S

̬

d.
The action S of (2.11) is assumed to be invariant under

the group Gnas. We say that an action S
̬
that breaks Gnas

satisfies the extended Kluberg-Stern–Zuber assumption if
every local functional X of ghost number zero that solves

the equation ðS
̬
; XÞ ¼ 0 has the form

X ¼
X
i

aiGi þ
X
i

biG
̬

i þ ðS
̬
; YÞ; ð2:12Þ

where bi are other constants and Y is local. We say that the
action Sd is cohomologically complete if its extension S

̬

d
satisfies the extended Kluberg-Stern–Zuber assumption. In
Sec. VIII we prove that the standard model coupled to
quantum gravity is cohomologically complete.
The variant of the Kluberg-Stern–Zuber assumption that

we need for the proof of the Adler-Bardeen theorem is
formulated in Sec. II C. In Sec. VIII we show that it is
satisfied by the standard model coupled to quantum gravity,

as well as most of its extensions. We also prove that the
standard model coupled to quantum gravity satisfies a
“physical” variant of the Kluberg-Stern–Zuber assumption.
It is straightforward to show that the results of this paper,

which we derive for theories with unbroken Gnas, also hold
whenGnas is completely, or partially, broken. In the end, it is
our choice to decide which symmetries of Gnas should be
preserved and which ones should be broken. It should also
be noted that it may not be easy to establishwhich accidental
symmetries are anonalous and which ones are nonanoma-
lous a priori.We have arranged our statements tomake them
work in any case, under this respect. In the safest case, we

can extend the action Sd till Gnas ¼ 1 and Sd ¼ S
̬

d.

A. Chiral dimensional regularization

If we want to identify the subtraction scheme where the
anomaly cancellation is (almost) manifest, we must provide
a regularization and a set of specific prescriptions to handle
the counterterms and the potentially anomalous contribu-
tions in convenient ways. The best regularization technique
is obtained by merging the chiral dimensional regulariza-
tion recently introduced in Ref. [6] with a suitable gauge
invariant higher-derivative regularization.
Going through the derivation of Ref. [4], where the

manifest Adler-Bardeen theorem was proved in perturba-
tively unitary, power counting renormalizable four-
dimensional gauge theories, it is easy to spot several crucial
arguments that do not generalize to wider classes of models
in a straightforward way. The main obstacles are due to the
dimensional regularization as it is normally understood
[19]. Besides the nuisances associated with the definition of
γ5, the dimensionally continued Dirac algebra is respon-
sible for other serious difficulties. For example, it allows us
to build infinitely many inequivalent evanescent terms of
the same dimensions, and the Fierz identities involve
infinite sums. Moreover, it generates ambiguities that
plague the classification of counterterms and make it
difficult to extract the divergent parts from the antiparen-
theses of functionals. The CD regularization overcomes
these problems. In this subsection we recall how it works.
As usual, we split theD-dimensional spacetime manifold

RD into the productRd × R−ε of the physical d-dimensional
spacetime Rd times a residual ð−εÞ-dimensional evan-
escent space R−ε, where ε is a complex number.
Spacetime indices μ; ν;…, of vectors and tensors are
split into bar indices μ̄; ν̄;…, which take the values
0; 1;…; d − 1, and formal hat indices μ̂; ν̂;…, which
denote the R−ε components. For example, the momenta
pμ are split into the pairs pμ̄; pμ̂, also denoted by p̄μ, p̂μ,
and the coordinates xμ are split into x̄μ, x̂μ. The formal
flat-space metric ημν is split into the physical d × d flat-
space metric ημ̄ ν̄ ¼ diagð1;−1;…;−1Þ and the formal
evanescent metric ημ̂ ν̂ ¼ −δμ̂ ν̂ (the off-diagonal compo-
nents ημ̄ ν̂ being equal to zero). When we contract
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evanescent components, we use the metric ημ̂ ν̂, so for
example p̂2 ¼ pμ̂ημ̂ ν̂pν̂.
The fields ΦðxÞ have the same components they have in

d dimensions, and each of them is a function of x̄ and x̂.
For example, spinors ψα have 2½d=2�int components, where
½d=2�int is the integral part of d=2, vectors have d compo-
nents Aμ̄, symmetric tensors with two indices have
dðdþ 1Þ=2 components, and so on. In particular, the
metric tensor gμν is made of the diagonal blocks gμ̄ ν̄ and
ημ̂ ν̂, while the off-diagonal components gμ̄ ν̂ vanish.
The γ matrices are the usual, d-dimensional ones, and

satisfy the Dirac algebra fγā; γb̄g ¼ 2ηā b̄. If d ¼ 2k is even,
the d-dimensional generalization of γ5 is

~γ ¼ −ikþ1γ0γ1…γ2k−1;

which satisfies ~γ† ¼ ~γ, ~γ2 ¼ 1. Left and right projectors
PL ¼ ð1 − ~γÞ=2, PR ¼ ð1þ ~γÞ=2 are defined as usual. The
tensor εā1…ād and the charge-conjugation matrix C also
coincide with the usual ones. Full SOð1; D − 1Þ invariance
is lost in most expressions, replaced by SOð1; d − 1Þ ×
SOð−εÞ invariance.
We endow the fields with well-behaved propagators by

adding suitable higher-derivative evanescent kinetic terms
to the action. We multiply them by inverse powers of
some mass M. For example, the regularized action of
(left-handed) chiral fermions in curved space reads

Z
eψ̄Lie

μ̄
āγ

āDμ̄ψL þ Sevψ ;

where Dμ̄ denotes the covariant derivative and

Sevψ ¼ i
2M

Z
eðςψψT

L
~C∂̂2ψL − ς�ψ ψ̄L

~C∂̂2ψ̄T
LÞ; ð2:13Þ

while e is the determinant of the vielbein eāμ̄, ςψ are

constants, and ~C coincides with the matrix C of charge
conjugation if d ¼ 4 mod 8; otherwise ~C ¼ −iγ0γ2
(in d > 2).
In the case of Yang-Mills gauge fields in curved space,

we choose the gauge fermion

Ψ ¼
Z ffiffiffiffiffi

jgj
p

C̄a

�
gμ̄ ν̄∂ μ̄Aa

ν̄ þ
ξ0

2
Ba

�
:

The regularized gauge-fixed action reads

−
1

4

Z ffiffiffiffiffi
jgj

p
Fa
μ̄ ν̄F

μ̄ ν̄ a þ
Z ffiffiffiffiffi

jgj
p

Ba

�
gμ̄ ν̄∂ μ̄Aa

ν̄ þ
ξ0

2
Ba

�

−
Z ffiffiffiffiffi

jgj
p

C̄agμ̄ ν̄∂ μ̄Dν̄Ca þ SevA þ SevC;

where

SevA ¼ 1

2

Z ffiffiffiffiffi
jgj

p
gμ̄ ν̄

�
ςA
M2

ð∂̂2Aa
μ̄Þð∂̂2Aa

ν̄Þ

−
ηA
M

gμ̄ ν̄ð∂̂ ρ̂Aa
μ̄Þð∂̂ ρ̂Aa

ν̄Þ
�
;

SevC ¼ −
Z ffiffiffiffiffi

jgj
p �

ςC
M2

ð∂̂2C̄aÞ2ð∂̂2CaÞ

−
ηC
M

Z ffiffiffiffiffi
jgj

p
ð∂̂ ρ̂C̄aÞð∂̂ ρ̂CaÞ

�
; ð2:14Þ

while ςA, ςC, ηA, and ηC are constants. Quantum gravity can
be dealt with in a similar fashion, both in the metric tensor
formalism and in the vielbein formalism [6].
Thanks to the higher-derivative evanescent kinetic terms

introduced by the CD regularization, the propagators of all
the fields have denominators that are equal to products of
polynomials

Dðp̄; p̂;m;ς;ηÞ¼ p̄2−m2−ς
ðp̂2Þ2
M2

þη
p̂2

M
þ i0; ð2:15Þ

where ς is a nonvanishing constant of order one and η is
another constant. The propagators fall off in all directions
p̄, p̂ for large momenta p. However, they decrease more
rapidly or more slowly depending on whether the evan-
escent or physical components, p̂ or p̄, of the momenta
become large. The structure (2.15) suggests that p̄ and p̂2

should be regarded as equally important in the ultraviolet
limit. The key point of the CD regularization is to define
“weights” so that p̄ and p̂2 are equally weighted, and use
the weights to replace the dimensions in units of mass that
are normally used for power counting. Doing so, we arrive
at a weighted power counting [20], which gives us an
efficient control over the locality of counterterms when the
denominators of propagators are products of polynomials
of the form (2.15).
Weights are defined in D ¼ d, since the corrections of

order ε are not important for the weighted power counting.
We conventionally take p̄ to have weight 1, so the
evanescent components p̂ of momenta have weight 1=2.
Call the kinetic terms with the largest number of derivatives
∂̄ dominant kinetic terms. Once they are diagonalized, we
write the dominant kinetic terms of the fields Φ as

1

2

Z
Φ∂̄NΦΦ; or

Z
Φ̄∂̄NΦΦ; ð2:16Þ

depending on the case. Clearly, the weight of Φ is equal to
ðd − NΦÞ=2 and coincides with its dimension in units of
mass. Weights can be unambiguously assigned to the
parameters of the theory and the sources K, by demanding
that the action and the scale M be weightless.
The Φ propagators are rational functions of the momenta,

of the form
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P0
2w−NΦ

ðp̄; p̂Þ
P2wðp̄; p̂Þ

; ð2:17Þ

where P0
2w−NΦ

and P2w are SOð−εÞ-scalar polynomials of
weighted degrees 2w − NΦ and 2w, respectively, such that
(a) P2w is a scalar under SOð1; d − 1Þ, (b) the parameters
contained in P2w admit a nontrivial range of values where
P2w is positive definite in the Euclidean framework, and
(c) the monomials ðp̄2Þw and ðp̂2Þ2w of P2wðp̄; p̂Þ are
multiplied by nonvanishing coefficients. The “weighted
degree” of a SOð−εÞ-scalar polynomial Qðp̄; p̂Þ is its
ordinary degree once Q is rewritten as a polynomial
~Qðp̄; p̂2Þ of p̄ and p̂2.
The theories that contain only parameters of non-

negative weights (and are such that the propagators fall
off with the correct behaviors in the ultraviolet limit) are
renormalizable by weighted power counting. The theories
that contain some parameters of strictly negative weights
are nonrenormalizable. In all cases, the propagators (2.17)
must contain only parameters of non-negative weights.
Weighted power counting also ensures that the scale M

does not propagate into the physical sector of the theory.
Precisely, M is an arbitrary, renormalization-group invari-
ant parameter that belongs to the evanescent sector of the
theory from the beginning to the end, so there is no need to
take the limit M → ∞ at any stage.
In Ref. [6] we showed that it is possible to find

appropriate higher-derivative evanescent kinetic terms for
all most common fields, such as scalars, fermions, Yang-
Mills fields, gravity in the metric formalism, gravity in the
vielbein formalism, Chern-Simons fields, and so on, and
arrange the regularized action so that the requirements
listed above are fulfilled. The total action is the one that
contains all monomials compatible with weighted power
counting, as well as the nonanomalous symmetries of the
theory, multiplied by the maximum number of independent
coefficients.
Some aspects of the CD regularization are reminiscent of

Siegel’s dimensional reduction [21], which is a popular
modified dimensional regularization taylored for super-
symmetric theories. Among other things, both techniques
make use of the ordinary d-dimensional Dirac algebra.
However, in Siegel’s approach it is necessary to think that
D is “smaller” than d. Then, it is possible to define a
D-dimensional gauge covariant derivative and build gauge
invariant schemes for gauge theories. Using the CD
technique, on the other hand, only the d-dimensional gauge
covariant derivative is consistent. Moreover, in Siegel’s
framework ordinary vectors and tensors are decomposed
into multiplets made of vectors/tensors and extra compo-
nents that behave like scalars (called ε-scalars). The latter
are absent in the CD regularization. Another aspect in
common is the important role played by the evanescent
couplings, although they have different features in the
two cases. The dimensional reduction, in its original

formulation, has inconsistencies [22], and the evanescent
terms can be used to overcome some of those, in both
supersymmetric and nonsupersymmetric theories [23].
The CD technique has several advantages, which we

now recall. In the ordinary, as well as chiral dimensional
regularization we can distinguish divergent, nonevanescent,
and evanescent terms, depending on how they behave in the
limitD → d. The nonevanescent terms are those that have a
regular limit for D → d and coincide with the value of that
limit. The evanescent terms are those that vanish when
D → d. They can be of two types: formal or analytic. The
analytically evanescent terms are those that factorize at
least one ε, such as εFμ̄ ν̄Fμ̄ ν̄, εψ̄Lie

μ̄
āγ

āDμ̄ψL. The formally
evanescent terms are those that do not factorize powers of ε,
such as ψT

L∂̂2ψL. The divergences are poles in ε and can
multiply either nonevanescent terms or formally evanescent
terms. The former are called nonevanescent divergences.
The latter are called evanescent divergences, or divergent
evanescences, an example being ψT

L∂̂2ψL=ε. The divergent
evanescences must be subtracted away like any other
divergences, because the locality of counterterms is much
clearer that way.
Using the ordinary dimensional regularization, the clas-

sification of divergent evanescences in the nonrenormaliz-
able sector presents several problems [4]. Consider the
fermionic bilinears ψ̄1γ

ρ1…ρkψ2, where γρ1…ρk denotes the
completely antisymmetric product of γρ1 ;…; γρk . The inde-
pendent bilinears of this type are infinitely many, because
they do not vanish for k > d. Infinitely many Lagrangian
terms of the same dimensions can be built with them, such
as the four fermion vertices ðψ̄1γ

ρ1…ρkψ2Þðψ̄3γρ1…ρkψ4Þ. The
Fierz identities contain infinite sums and can be used to
relate certain divergent evanescences to finite terms, which
makes the classification of both ambiguous. No such
problems are present using the CD regularization, because
the γ matrices are just the ordinary d-dimensional ones.
Second, the CD technique simplifies the extraction of

divergent parts out of the antiparentheses of functionals,
which is a key step in all renormalization algorithms. We
have to take some precautions to ensure that this operation
can safely cross the antiparentheses, so that, for example,
ðS; XÞdiv ¼ ðS; XdivÞ. The first thing to do to achieve this
goal is define the tree-level action S so that it does not
contain analytically evanescent terms, but only nonevanes-
cent and formally evanescent terms, multiplied by
ε-independent coefficients. In this way, S does not contain
dangerous factors of ε, which could simplify the divergen-
ces of X inside ðS; XÞ. Moreover, the antiparentheses
cannot generate factors of ε. Indeed, since the γ matrices
are d dimensional, and the fields Φ and the sources K only
have d-dimensional components, the formally evanescent
quantities that we have are just ημ̂ ν̂ and the evanescent
components p̂ and x̂ of momenta and coordinates. These
objects can generate factors of ε only by means of the
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contractions ημ̂ ν̂ημ̂ ν̂ ¼ −ε, ∂ μ̂xμ̂ ¼ −ε, ∂̂2x̂2 ¼ −2ε, etc.
However, the functional derivatives δ=δΦα and δ=δKα due to
the antiparentheses cannot generate ημ̂ ν̂ημ̂ ν̂ because fields
and sources have no evanescent components. At the same
time, the antiparentheses just multiply correlation functions in
momentum space, which are SOð−εÞ-scalar, so they cannot
generate factors of ε, poles in ε, or expressions such as
∂ μ̂xμ̂ ¼ −ε, ∂̂2x̂2 ¼ −2ε, and cannot convert formal evan-
escences into analytic ones. Ultimately, we can freely cross
the sign of antiparentheses, when we extract the divergent
parts of local functionals using the CD regularization.
Third, the CD regularization is compatible with invari-

ance under rigid diffeomorphisms, which are the GLðd;RÞ
coordinate transformations

xμ̄0 ¼ Mμ̄
ν̄x

ν̄; xμ̂0 ¼ xμ̂; ð2:18Þ
whereMμ̄

ν̄ is an arbitrary invertible real constant matrix. We
can choose the tree-level action S to be completely invariant
under this symmetry, even in the gauge-fixing and regu-
larization sectors. To fulfill this requirement, we write the
fieldsΦ and the derivatives ∂̄ using lower spacetime indices
μ̄; ν̄;…, and the sources K using upper spacetime indices.
Then, we contract those indices by means of the metric
tensor gμ̄ ν̄, its inverse gμ̄ ν̄, or the Kronecker tensor δμ̄ν̄.

Finally, we multiply by an appropriate power of
ffiffiffiffiffijgjp

, to
obtain a scalar density of weight 1, and integrate over
spacetime. The derivatives ∂̂ must be contracted by means
of ημ̂ ν̂, to ensure SOð−εÞ invariance.
We formulate the theory without introducing “second

metrics” hμν, i.e. additional metrics besides the metric
tensor gμ̄ ν̄ and the background metric gBμ̄ ν̄ around which
we expand gμ̄ ν̄ perturbatively. Since field translations leave
the functional integral invariant, the correlation functions
are independent of gBμ̄ ν̄, so we do not consider gBμ̄ ν̄ a
second metric. However, the correlation functions may
depend on true second metrics hμν, which may enter the

classical action through the gauge fixing or the regulari-
zation. Several common gauge-fixing functions GðϕÞ, such
as ηρν∂ρgμν, do introduce a second metric, which is often
the flat-space metric ημν.
When two independent metrics gμν and hμν are present,

the classifications of counterterms and contributions to
anomalies are plagued with unnecessary complications. For
example, the divergent parts can contain arbitrary dimen-
sionless functions of gμνhμν, gμνhνρgρσhσμ, and similar
contractions. If the theory contains a unique metric (and
a unique vielbein), these arbitrary functions do not appear.
In the approach of this paper, invariance under rigid

diffeomorphisms is not completely preserved. If the action
S is invariant, the Γ functional is also invariant, as well as its
divergent parts. However, sometimes we need to express
certain divergent terms ΔΓdiv or potentially anomalous
terms Apot in the form ðS; χÞ, where χðΦ; KÞ is a local
functional. Even when ΔΓdiv and Apot are invariant under
rigid diffeomorphisms, χ may be noninvariant. The diver-
gent terms ΔΓdiv ¼ ðS; χÞ are iteratively subtracted by
means of canonical transformations generated by

FðΦ; K0Þ ¼
Z

ΦαK0
α − χðΦ; K0Þ:

Instead, the potentially anomalous terms Apot ¼ ðS; χÞ are
subtracted by redefining the action S as S − χ=2. In these
ways, the violation of invariance under rigid diffeomor-
phisms can propagate into the renormalized action SR.
When no second metrics are present, such a violation is
parametrized by multiplicative functions of the determinant
g of the metric tensor, which are relatively easy to handle.
To simplify various arguments, we assume that the gauge

fermion ΨðΦÞ is independent of the matter fields. For
example, a good gauge fermion for Yang-Mills symmetries,
local Lorentz symmetry, and diffeomorphisms in perturba-
tively unitary theories [where Nϕg

¼ 2 in formulas (2.6)
and (2.7)] is [6]

ΨðΦÞ ¼
Z ffiffiffiffiffi

jgj
p

C̄a

�
gμ̄ ν̄∂ μ̄Aa

ν̄ þ
ξ0

2
Ba

�
þ
Z

eC̄ā b̄

�
1

κ
eρ̄ āgμ̄ ν̄∂ μ̄∂ ν̄eb̄ρ̄ þ

ξL
2
Bā b̄ þ ξ0L

2
gμ̄ ν̄∂ μ̄∂ ν̄Bā b̄

�

−
Z ffiffiffiffiffi

jgj
p

C̄μ̄

�
1

κ
∂ ν̄gμ̄ ν̄ þ

ξG
κ
gμ̄ ν̄gρ̄ σ̄∂ ν̄gρ̄ σ̄ −

ξ0G
2
gμ̄ ν̄Bν̄

�
; ð2:19Þ

where the constants ξ0, ξL, ξ0L, ξG, and ξ0G are gauge-
fixing parameters. We have arranged ΨðΦÞ so that it is
invariant under rigid diffeomorphisms. The factors 1=κ
are inserted to be consistent with the κ structure (2.24),
explained in the next subsection, which becomes mani-
fest once we expand the vielbein around flat space and
make the other replacements of formula (2.28). The
gauge fixing of local Lorentz symmetry contained in
(2.19) takes inspiration from the less common gauge

condition ∂μωab
μ ¼ 0, rather than the more common

condition of symmetric vielbein, because the latter is
not compatible with the requirement of having a unique
metric. In higher-derivative theories we choose a gauge
fermion with a similar structure, the only difference
being that the gauge conditions Gðϕ; ξÞ and the operators
Pðϕ; ξ0; ∂Þ of formula (2.5) also include higher-derivative
terms, to fulfill the conditions (2.7).
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Finally, the CD technique preserves the good properties
of the dimensional regularization. The most important ones
are that (a) the Batalin-Vilkovisky master equation is
simply ðS; SÞ ¼ 0 in D ¼ d (a correction appears on the
right-hand side in most nondimensional regularizations),
and (b) the local perturbative changes of field variables
have Jacobian determinants identically equal to one.
Property (b) follows from the fact that the integrals of
polynomials PðpÞ of the momenta in dDp vanish.
Summarizing, when the gauge algebra closes off shell,

the CD regularized action has the form

SðΦ; KÞ ¼ ScðϕÞ þ ðSK;ΨÞ þ SK þ Sev ¼ Sd þ Sev

¼ S̄d þ ðSK;ΨÞ þ Sev; ð2:20Þ
where ScðϕÞ is given by (2.10) and the evanescent part Sev
collects the evanescent terms required by the CD regulari-
zation, such as Sevψ , SevA, and SevC of (2.13) and (2.14). For
the reasons explained above, we assume that Sd is non-
evanescent and Sev is formally evanescent, so S does not
contain any analytically evanescent terms. Moreover, the
action (2.20) does not contain second metrics and is
invariant under SOð−εÞ and the other global nonanomalous
symmetries of the theory. We do not require that Sev be
invariant under rigid diffeomorphisms, but just that it be
built with a unique metric tensor or vielbein. We denote the
parameters contained in Sev by ςI and ηI , where ςI multiply
the dominant evanescent kinetic terms, and ηI multiply the
other terms, as shown by formulas (2.14) and (2.15). For
convenience, we assume that Sev depends linearly on ς and
η, and vanishes for ς ¼ η ¼ 0. We extend Sev till it includes
all the evanescent terms allowed by weighted power
counting, constructed with the fields Φ, the sources Kϕ

and KC, and their derivatives, multiplied by the maximum
number of independent parameters ς and η. This will allow
us to renormalize the divergent evanescences by means of ς
and η redefinitions. It is consistent to choose Sev indepen-
dent of the sources KC̄ and KB. Indeed, if we do so, the
action S does not contain KB and depends on KC̄ only
through the last three terms of (2.4). Then, KC̄ and KB
cannot contribute to nontrivial diagrams, so the counter-
terms are also independent of them.
In total, we have physical parameters λ, contained in Sc,

gauge-fixing parameters ξ, contained inΨ, and regularizing
parameters ς and η, contained in Sev. The action (2.20) is
also written as SðΦ; K; λ; ξ; ς; ηÞ.
Clearly, the CD regularized action S ¼ Sd þ Sev satisfies

the deformed master equation

ðS; SÞ ¼ ÔðεÞ; ð2:21Þ

where “ÔðεÞ” denotes formally evanescent local terms. The
right-hand side is the source of potential anomalies.
Given a regularized classical action SðΦ; KÞ, the regu-

larized generating functionals Z and W are given by

ZðJ; KÞ ¼
Z

½dΦ� exp
�
iSðΦ; KÞ þ i

Z
ΦαJα

�

¼ exp iWðJ; KÞ: ð2:22Þ

The Legendre transform ΓðΦ; KÞ ¼ WðJ; KÞ − R
ΦαJα of

WðJ; KÞ with respect to J is the generating functional of
one-particle irreducible diagrams. The anomaly functional is

A ¼ ðΓ;ΓÞ ¼ hðS; SÞiS; ð2:23Þ

where h� � �iS denotes the average defined by the action S at
arbitrary sources J and K. A quick way to prove the last
equality of (2.23) is to make the change of field variables
Φα → Φα þ θ̄ðS;ΦαÞ inside ZðJ; KÞ, where θ̄ is a constant
anticommuting parameter. For details, see for example the
appendixes of [4,24].

B. Truncation

When we quantize a nonrenormalizable theory, or study
composite fields of high dimensions in any kind of theory,
it may be convenient to truncate the tree-level action Sd in
some way. For the arguments of this paper, the truncation is
necessary to define a suitable higher-derivative regulariza-
tion. Indeed, to make the HD theory superrenormalizable at
fixed Λ, the higher-derivative regularizing terms must be
placed well beyond the truncation.
Denote the gauge coupling of minimum dimension with

κ. If there are more than one gauge coupling of minimum
dimension, we call one of them κ and write any other as rκ,
where the dimensionless ratio r is treated as a parameter of
order one. The other gauge couplings g are written as
g ¼ rþκ, where the ratios rþ have positive dimensions and
are also of order one. We parametrize the non-gauge-fixed
solution S̄dðΦ; K; κ; ζÞ of the master equation as

S̄dðΦ; K; κ; ζÞ ¼
1

κ2
S̄0dðκΦ; κK; ζÞ;

where ζ are any other parameters besides κ, including r and
rþ, and S̄0d is analytic in ζ. We assume that each field Φ has
a dominant kinetic term (2.16) normalized to one or
multiplied by a dimensionless parameter of order one.
The gauge fixing must be parametrized similarly. We

choose a gauge fermion Ψ of the form

ΨðΦ; κ; ξÞ ¼ 1

κ2
Ψ0ðκΦ; ξÞ;

where ξ are the gauge-fixing parameters and Ψ0 depends
analytically on ξ. We know that if the gauge algebra
closes off shell, we can choose an S̄d that is linear in K,
as in formula (2.3). Then, the gauge-fixed solution Sd ¼
S̄d þ ðS̄d;ΨÞ of the master equation has the structure
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SdðΦ; K; κ; ζ; ξÞ ¼ 1

κ2
S0dðκΦ; κK; ζ; ξÞ: ð2:24Þ

We parametrize the evanescent sector Sev in the same way
and define the parameters ς; η so that

SevðΦ; K; κ; ς; ηÞ ¼ 1

κ2
S0evðκΦ; κK; ς; ηÞ: ð2:25Þ

In the end, the total action S, and all the tree-level
functionals we work with, have the κ structure

XtreeðΦ; K; κÞ ¼ 1

κ2
X0
treeðκΦ; κKÞ: ð2:26Þ

Then, it is easy to prove that every loop carries an
additional factor κ2. Therefore, the renormalized action,
the Γ functional, and the renormalized Γ functional have the
κ structure

XðΦ; K; κÞ ¼
X
L≥0

κ2ðL−1ÞX0
LðκΦ; κKÞ; ð2:27Þ

where XL collects the L-loop contributions.
The κ structures (2.26) and (2.27) are preserved by the

antiparentheses: if two functionals XðΦ; K; κÞ and
YðΦ; K; κÞ satisfy (2.26), or (2.27), then the functional
ðX; YÞ satisfies (2.26), or (2.27), respectively.
In perturbatively unitary theories, the propagating fields

have standard dimensions in units of mass (because
NΦ ¼ 2 and NΦ ¼ 1 for bosons and fermions, respec-
tively). When the theory is not perturbatively unitary, such
as higher-derivative quantum gravity [25], fields of neg-
ative or vanishing dimensions may be present. This is not a
problem, as long as the tree-level action has the structure
(2.24) and the other assumptions we make are fulfilled.
In the presence of gravity, the square root κN of Newton’s

constant is equal to κ times a ratio of non-negative
dimension. The κ structure of the action becomes explicit
when we expand around a background metric or vielbein.
We also need to rescale the ghosts and the sources
associated with diffeomorphisms and local Lorentz sym-
metry. For simplicity, we expand around flat space,
although flat space may not be a solution of the classical
field equations, because the renormalization of the theory
and its anomalies do not depend on the background we
choose. In that case, we can make the κ structures (2.24),
(2.26), and (2.27) explicit by means of the canonical
transformation

eāμ̄ → δāμ̄ þ κNϕ
ā
μ̄; Cρ̄ → κNCρ̄; Cā b̄ → κNCā b̄;

Kμ̄
ā →

1

κN
Kμ̄

ā; KC
μ̄ →

1

κN
KC

μ̄ ; KC
ā b̄

→
1

κN
KC

ā b̄
:

ð2:28Þ

Check this fact in formulas (2.4) and (2.19). Whenever we
speak of κ structures we understand the replacements
(2.28), although we do not make them explicit all the time.
Now we define the truncation. We organize the set of

parameters ζ; ξ; ς; η into two subsets s̄ and s−. The subset s̄
contains the parameters of positive dimensions, as well as
those of vanishing dimensions that are not treated perturba-
tively. Examples are the parameters that appear in the
propagators. The parameters r and rþ (but not κ) are also
included in the set s̄ because they are considered of order
one. The set s̄ also includes the parameters that cure infrared
problems when superrenormalizable interactions are
present. Examples are themasses, the cosmological constant
Λc of formula (2.1), and the Chern-Simons coupling in three
dimensions. If κ has a negative dimension (such as the square
root of Newton’s constant in Einstein gravity), the set s̄ also
includes the parameters ζ; ξ thatmultiply the power counting
renormalizable vertices. An example is the constant λ04 ¼
λ4=κ2 that appears when the four-scalar vertex λ4φ

4 is
written as λ04ðκφÞ4=κ2 in the four-dimensional φ4-theory
coupled to Einstein gravity. If ½κ� ¼ 0, the parameters such
as λ04 can be assumed to be of order one and also included in
s̄. We express each parameter contained in s̄ as a dimension-
less constant of order one times mΔ, where Δ is a non-
negative number and m is a generic mass scale.
The subset s− contains the parameters ζ; ξ; ς; η of

negative dimensions. We write them as dimensionless
constants of order one times Λ−Δ−− , where Λ− is some
energy scale and Δ− is a positive number. The subset s−
includes the coefficients of the quadratic terms ∼Φ∂N0

ΦΦ
with N0

Φ > NΦ, which have to be treated perturbatively,
since the dominant quadratic terms we perturb around are
(2.16). Observe that κ is not included in the set s−, even if
it may have a negative dimension.
The Feynman diagrams are multiplied by various factors,

but their core integrals depend only on the parameters of the
subset s̄ and the external momenta. Therefore, if we assume
that m and the overall energy E are of the same order, each
field Φ of dimension dΦ contributes to the amplitudes as a
power ∼EdΦ ∼mdΦ.
We assume that there exists a range of energies E

such that

m ∼ E ≪ Λ−; ð2:29Þ
and that κ is small enough; that is to say,

κΛ−½κ�
− ≪ 1; κE−½κ� ≪ 1: ð2:30Þ

If ½κ� < 0, the first of these conditions, combined with
(2.29), implies the second one. If ½κ� > 0, the second
condition implies the first one. If ½κ� ¼ 0, the two con-
ditions obviously coincide.
It is easy to show that the conditions (2.29) and (2.30) are

sufficient to have a well-defined perturbative expansion.
Consider the contributions to the action S and the
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logarithmic divergences. Factorizing the parameters in
front of a generic local Lagrangian term Vð∂;Φ; KÞ, we
find the structure

κamc

Λb
−

�
1þ � � � þ κa

0
mc0

Λb0
−

þ � � �
�Z

Vð∂;Φ; KÞ;

where the first factor is the tree-level coefficient and the
ratio inside the parentheses is a generic contribution
coming from the divergent parts of Feynman diagrams.
We have a ≥ −1,1 b ≥ 0, c ≥ 0, a½κ� þ c ¼ b, a0 > 0, and
a0½κ� þ c0 ¼ b0. The tree-level vertices have either b ¼ 0 or
c ¼ 0. Then, b0 ≥ 0 or c0 ≥ 0, respectively, so we can write

κa
0
mc0

Λb0
−

¼ ðκm−½κ�Þa0
�
m
Λ−

�
b0

≪ 1 or

κa
0
mc0

Λb0
−

¼ ðκΛ−½κ�
− Þa0

�
m
Λ−

�
c0

≪ 1; ð2:31Þ

which shows that the expansion does work.
Next, consider the finite contributions to the Γ functional.

They have the form

∼
κaEb−a½κ�

Λb
−

¼ ðκE−½κ�Þa
�
E
Λ−

�
b
; ð2:32Þ

where a ≥ −1 and b ≥ 0. The power of E can be arbitrary
and comes from the fields Φ, the sources K, the powers of
m ∼ E, and the evaluations of the core integrals of the
Feynman diagrams. Clearly, formula (2.32) shows that the
expansion works. It also ensures that a finite number of
diagrams can contribute for each a and b. Indeed, by formula
(2.27) a bounds the number of loops. Moreover, we can use
only a finite number of vertices, because the power of κ
bounds the numbers of Φ and K legs, while the power of
1=Λ− bounds the number of derivatives.
It should be noticed that assumptions (2.29) and (2.30)

are merely tools to organize the perturbative expansion and
the proof of the Adler-Bardeen theorem. They ensure that
we can reach all types of contributions (vertices, diagrams,
counterterms, potential anomalies, etc.), working with
finitely many of them at a time. They are not crucial for
the validity of the proof itself. What we mean is that the
proof of the theorem also holds when assumptions (2.29)
and (2.30) are not valid, and the perturbative expansion is
organized in a different way.

Now we define the truncation T of the theory. We divide
it into two prescriptions, (T1) and (T2), which play
different roles.
(T1) We switch off the oð1=ΛT

−Þ terms of the action
S ¼ Sd þ Sev. All the terms of Sc and Sev that are not
oð1=ΛT

−Þ and satisfy the other assumptions of this paper are
kept and multiplied by the maximum number of indepen-
dent parameters.
In Sec. II D we explain that this prescription is also

sufficient to truncate the action SΛ ¼ Sþ SHD of the HD
theory, because the higher-derivative terms SHD can be
chosen to be Λ− independent. We can also take a
Λ−-independent gauge fermion Ψ. The actions determined
by the truncation T1 are denoted by ScT, S̄dT , SdT , ST , SΛT ,
and so on.
Note that the prescription T1 just switches off portions of

S, but leaves arbitrary powers of 1=Λ− in the radiative
corrections. This is sufficient to renormalize the HD theory,
at Λ fixed, and prove that it satisfies the manifest Adler-
Bardeen theorem.
(T2) For ½κ� < 0, define σ ¼ −½κ� and

l̄ ¼
�
T
2σ

�
int
; ð2:33Þ

½� � ��int denoting the integral part. For ½κ� ≥ 0, define σ ¼ 0,
l̄ ¼ ∞. We define the truncation T2 as the truncation that
keeps the l-loop contributions up to oð1=ΛT−2lσ

− Þ, for
0 ≤ l ≤ l̄, and neglects the rest.
The truncation T2 is useful for the second part of the

proof, when we study the limit Λ → ∞ on the HD theory,
renormalize the Λ divergences, and prove that the final
theory satisfies the almost manifest Adler-Bardeen theo-
rem. Indeed, these results are all proved within the
truncation T2. This fact illustrates the meaning of the
almost manifest Adler-Bardeen theorem, i.e. statement 3 of
the Introduction.
Both prescriptions T1 and T2 are gauge invariant at

ε ¼ 0, since the gauge symmetries do not involve Λ−. In
power-counting renormalizable theories with ½κ� ¼ 0 we
have T ¼ 0.
If ½κ� < 0, the quantity σ is strictly positive, so the

prescription T2 reduces the powers of 1=Λ− when the
number of loops increases. The area that is covered by
the truncation forms a triangle in the plane with axes T and
L. In particular, the truncation only contains a finite number
of loops, up to and including l̄.
Note that we do not truncate the powers of κ. If we did,

we would explicitly break the gauge invariant terms into
gauge noninvariant pieces. For various arguments of the
proof, it is convenient to define a truncation that is gauge
invariant at ε ¼ 0. Nevertheless, at the practical level, a sort
of truncation on the powers of κ is implicitly contained in
the conditions (2.30), because they imply that the contri-
butions carrying sufficiently large powers of κ are smaller

1According to the κ structure (2.26), the terms with a ¼ −1 are
linear in the fields Φ or the sources K. Such terms may be present
when we expand around a configuration that is not a minimum of
the action (for example when we expand the metric tensor around
flat space in the presence of a cosmological term). All other terms
have a ≥ 0.
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than certain contributions neglected by the truncation.
We keep the higher powers of κ anyway, because we want
to concentrate on the potential anomalies that may break
gauge invariance dynamically, so it is not wise to break
gauge invariance artificially at the same time.
The reason why we adopt the prescription T2, when we

renormalize the final theory, can be understood as follows.
Consider an invariant GðκϕÞ, equal to the integral of a local
function of dimension dG. By power counting and formula
(2.27), at L loops G may appear as a counterterm with the
structure

ðκ2ÞLmpΛq

κ2ΛΔþ2L½κ�
−

ðlnΛÞq0GðκϕÞ ð2:34Þ

times a product of dimensionless constants, where Δ ¼
pþ qþ dG − d − 2½κ� and q; q0 ≥ 0. If the counterterm
(2.34) is contained within the truncation, prescription T2
tells us that

Δþ 2L½κ� ≤ T − 2Lσ: ð2:35Þ

Then we also have the inequality Δ ≤ T. This ensures that
the truncated classical action ScT , which obeys T1, also
contains the invariant G. There, it appears with one of the
structures

ζ

κ2ΛΔ−p−q
−

GðκϕÞ; ζmpþq−Δ

κ2
GðκϕÞ; ð2:36Þ

depending on whether Δ > pþ q or Δ ≤ pþ q, where ζ is
a dimensionless constant. In the end, a divergence of the
form (2.34) can be subtracted by redefining ζ. If we replaced
(2.35) by a different prescription, i.e. Δþ 2L½κ� ≤ T, we
could be unable to subtract the counterterms (2.34) by
redefining the parameters of ScT , for ½κ� < 0.
The same argument applies to the counterterms that

depend on both κΦ and κK and fall within the truncation. In
particular, thanks to the prescriptions T1 and T2, the
counterterms that are formally evanescent can be subtracted
by redefining the parameters ς and η of SevT . The counter-
terms that fall within the truncation but do not belong to
either this class or the class (2.34) will be subtracted by
means of canonical transformations.
For example, in pure quantum gravity (½κ� ¼ −1) we

have the counterterms

Z ffiffiffiffiffi
jgj

p
R2;

Z ffiffiffiffiffi
jgj

p
Rμ̄ ν̄Rμ̄ ν̄; ð2:37Þ

at one loop, which are Λ− independent and have Δ ¼ 2.
The minimal truncation containing them is the one that
neglects oð1=Λ0

−Þ at one loop, which means T þ 2½κ� ¼ 0,
i.e. T ¼ 2. At the tree level, the same terms appear as

ζ1
κ2Λ2

−

Z ffiffiffiffiffi
jgj

p
R2;

ζ2
κ2Λ2

−

Z ffiffiffiffiffi
jgj

p
Rμ̄ ν̄Rμ̄ ν̄; ð2:38Þ

where ζ1;2 are dimensionless constants. Thus, if we
truncated the powers of Λ− by neglecting oð1=Λ0

−Þ at
the tree level, the truncated classical action ScT would not
contain the terms (2.38), and we would not be able to
subtract the divergences (2.37) by redefining appropriate
parameters.
Now we discuss the truncated actions. We have S̄dT ¼

ScT þ SK , SdT ¼ S̄dT þ ðSK;ΨÞ, where, as anticipated
before, we assume that Ψ is Λ− independent. Since the
truncation does not conflict with the gauge symmetries,
SdT and S̄dT satisfy the master equations ðSdT; SdTÞ ¼
ðS̄dT; S̄dTÞ ¼ 0. Observe that, by prescription T1, SdT does
not contain any invariants Gi that fall beyond the truncation.
We stress that, at the tree level, it is not enough to neglect
those invariants: we must really switch them off. Indeed, if
they were present, we would be unable to properly HD
regularize the truncated theory. On the other hand, all the
invariants Gi that are multiplied by powers 1=Λt

− with t ≤ T
and satisfy the other assumptions of this paper [check, in
particular, (II-i)–(II-iv) right below] must be contained in
SdT , multiplied by independent parameters, since we want
to renormalize the divergences proportional to Gi that fall
within the truncation by redefining those parameters. The
evanescent part Sev of the action S is truncated according to
the same rules. In particular, the oð1=ΛT

−Þ monomials of
SevT must also be switched off and all the monomials of Sev
that are not oð1=ΛT

−Þ must be contained in SevT , multiplied
by independent parameters.
In the end, the truncated version of the action S is

STðΦ; KÞ ¼ ScTðϕÞ þ ðSK;ΨÞ þ SK þ SevT ¼ SdT þ SevT
ð2:39Þ

and satisfies the master equation up to evanescent terms:
ðST; STÞ ¼ ÔðεÞ.
In general, the number of terms contained in the

truncation may be infinite, because there can be fields Φ
with ½κΦ� ¼ 0, or, as far as we know now, even fields with
½κΦ� < 0. Now we make some assumptions that give us
relative control on the power counting.
(II) We assume that
(i) ½κΦ� ≥ 0 for every Φ;
(ii) there exists at least one field with NΦ ≥ 1;
(iii) every field Φ with ½κΦ� ¼ 0 has NΦ ≥ 2;
(iv) the fields with NΦ ¼ 0 are just the Lagrange multi-

pliers B for the gauge fixing.
The integers NΦ are those defined by formula (2.16).
Clearly, the standard model coupled to quantum gravity,

as well as most of its extensions, satisfies these assumptions,
with the gauge fermion (2.19). Assumption (II-i) excludes,
for example, four-dimensional higher-derivative Yang-Mills
theory coupled to Einstein gravity, because in that case
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½A� ≤ 0 and ½κ� ¼ −1. Assumption (II-ii) just excludes
nonpropagating theories.
Assumptions (II-ii) and (II-iii) allow us to prove that the

sources KΦ satisfy ½κKΦ� ≥ NΦ=2. Indeed, we know that

½Φ� ¼ d − NΦ

2
; ½KΦ� ¼

dþ NΦ

2
− 1; ð2:40Þ

because ½Rα� ¼ ½Φα� þ 1, while the form of SK ensures
that ½Φα� þ ½Kα� ¼ d − 1. Now, if there exists a field Φ̄
with ½κΦ̄� ¼ 0, we have d ¼ 2½Φ̄� þ NΦ̄ ¼ −2½κ� þ NΦ̄ ≥
2 − 2½κ�, which implies ½κ� ≥ 1 − ðd=2Þ and ½κKΦ� ≥ NΦ=2
for every Φ. If all fields satisfy ½κΦ� > 0, we have
d > NΦ − 2½κ�, which implies ½κ� > ðNΦ − dÞ=2 for every
Φ. Since there must be at least a Φ with NΦ ≥ 1, we
conclude that ½κ� > ð1 − dÞ=2 and ½κKΦ� > ðNΦ − 1Þ=2 for
everyΦ. If g denotes the gauge coupling associated with the
gauge field ϕg [which is the fluctuation ϕā

μ̄ of formula
(2.28) in the case of gravity], and sg denotes the spin of ϕg,
we have ½gϕg� ¼ 2 − sg, which is integer or semi-integer.
Since ½Φ� and ½KΦ� are also integer or semi-integer, so is ½g�,
as well as ½κ�, ½κΦ�, and ½κKΦ�. Then, the inequality ½κKΦ� >
ðNΦ − 1Þ=2 gives ½κKΦ� ≥ NΦ=2.
We have already remarked that the sources KB and KC̄

do not contribute to nontrivial one-particle irreducible
diagrams. Thus, assumption (II-iv) ensures that all sources
that contribute to nontrivial diagrams satisfy the stronger
inequality ½κKΦ� ≥ 1=2.
It is easy to check that the relations ½κNϕā

μ̄� ¼ 0,
½gAμ̄� ¼ 1, ½κϕā

μ̄� ≥ 0, ½κAμ̄� ≥ 0, and formula (2.40) imply
½g� ≥ ½κN � and NA ≤ Nϕ ≤ NA þ 2, where Nϕ and NA are
the numbers of ∂̄ derivatives of the dominant kinetic terms
(2.16) of the graviton field ϕā

μ̄ and the Yang-Mills gauge
fields Aμ̄, respectively. Thus, in the presence of gravity the
square root κN of Newton’s constant is always a gauge
coupling of minimum dimension, and we can take κ ¼ κN .
Note that the remarks made after formula (2.40) ensure

that the powers of 1=Λ− appearing in the action are also
integer or semi-integer.

C. Key assumptions

Now we formulate the key assumptions that allow us to
characterize the counterterms and ensure the triviality of the
one-loop gauge anomalies. The action obtained from Sd by
switching off all parameters ζ that belong to the subset s− is
called basic action and is denoted by Sdb. The basic action
can also be formally obtained from SdT by taking the
limit Λ− → ∞.
For example, in the case of the standard model coupled

to quantum gravity, the basic action Sdb is equal to
ScSMG þ ðSK;ΨÞ þ SK , where ScSMG is the low-energy
classical action of formula (2.1), if Lm is extended
appropriately. Note that the matter Lagrangian Lm of
ScSMG is at most linear in Dμ̄ψ , and at most quadratic in

Dμ̄H, where ψ are the fermions and H is the Higgs field.
The scalar mass terms, the Yukawa couplings, and the
vertices ðH†HÞ2 and RðH†HÞ have the structures

m2

κ2

Z ffiffiffiffiffi
jgj

p
ðκφÞ2; m

κ2

Z ffiffiffiffiffi
jgj

p
ðκφÞðκψ̄ÞðκψÞ;

m2

κ2

Z ffiffiffiffiffi
jgj

p
ðκφÞ4; ζ

κ2

Z ffiffiffiffiffi
jgj

p
Rðκφ†ÞðκφÞ; ð2:41Þ

where ζ is dimensionless. Therefore, they survive the limit
Λ− → ∞ and are contained in Sdb. For the same reason,
arbitrary powers of κφ are contained in Lm. The basic

action S
̬

db associated with the extended theory S
̬

dT contains
the vertices ðLHÞ2 and the four fermion vertices that break
baryon number conservation. Indeed, although those ver-
tices are power counting nonrenormalizable, they also
survive the limit Λ− → ∞, because their structures are

m
κ2

Z ffiffiffiffiffi
jgj

p
ðκφÞ2ðκψ̄ÞðκψÞ; λ

κ2

Z ffiffiffiffiffi
jgj

p
ðκψ̄Þ2ðκψÞ2;

ð2:42Þ

where λ is dimensionless.
If the nonanomalous accidental symmetries are unbro-

ken, the standard model coupled to quantum gravity
does not satisfy the Kluberg-Stern–Zuber assumption
(2.11). Nevertheless, we can formulate a less restrictive
assumption that is sufficient to give us control over the
counterterms. Precisely, we assume that
(III) the basic action Sdb is cohomologically complete

[that is to say, S
̬

db satisfies the extended Kluberg-Stern–
Zuber assumption (2.12)] and the group Gnas is compact.
Moreover, we assume that
(IV) the basic action Sdb has trivial one-loop gauge

anomalies Að1Þ
b ; i.e. there exists a local functional XðΦ; KÞ

such that Að1Þ
b ¼ ðSdb;XÞ.

To subtract the potential anomalies of the higher-derivative
theory, which is defined at Λ fixed, in a way that preserves
its structure and nice properties, we actually need a
stronger assumption, that is to say,
(V) a local functional F ðΦÞ of ghost number one that is

trivial in the Sdb cohomology is also trivial in the SK
cohomology; i.e. if there exists a local functional XðΦ; KÞ
such that F ¼ ðSdb;XÞ, then there also exists a local
functional χðΦÞ such that F ¼ ðSK; χÞ.
In Sec. VIII we show that the standard model coupled to

quantum gravity satisfies all the assumptions of our proof,
so it is free of gauge anomalies to all orders.
When assumptions (IV) and (V) do not hold, or only one

of them holds, we may replace them with the assumption
that
(IV0) the one-loop anomalies of the higher-derivative

theory defined in Sec. II D are trivial in the SK cohomology;
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i.e., there exists a local functional χðΦÞ such that they can
be written as ðSK; χÞ.
Indeed, assumptions (IV) and (V) are just needed to

prove (IV0) [see the arguments of Sec. V from formula (4.3)
to formula (5.14)]. In some practical situations it may be
easier to prove (IV0) rather than (III) and (IV).

D. CDHD regularization

To find the subtraction scheme where the Adler-Bardeen
theorem is almost manifest, we must merge the CD regu-
larization with a suitable gauge invariant higher-derivative
regularization. The resulting technique is called chiral-
dimensional/higher-derivative regularization. It resembles
the dimensional/higher-derivative (DHD) regularization of
Ref. [4] in various respects, but there are a few crucial
differences. First, the usual dimensional regularization is
replaced by the CD regularization to overcome the difficulties
mentioned in Sec. II A. Second, the DHD regularization is
good for renormalizable theories, while we also want to
apply the CDHD technique to nonrenormalizable theories.
To this purpose, the HD regularizing terms must be adapted
to the truncation. For several arguments of our derivations,
we actually need to place them well beyond the truncation,
and we must show that it is always possible to arrange
them to meet our needs. As in Ref. [4], the HD regulari-
zation must preserve gauge invariance in d dimensions, to
ensure that it is as transparent as possible to potential
anomalies.
In this section we build the HD and CDHD regulariza-

tions. In general terms, they can be defined independently
of the truncation, so we first work with the untruncated
theory. Nevertheless, we cannot satisfy all the requirements
we need in this paper, until we introduce the truncation. We
do that at a second stage and emphasize why the truncation
is so crucial for our purposes.
We introduce higher-derivative local functionals SIHD,

where I is an index labeling them, a higher-derivative gauge
fermion ΨHD, and higher-derivative formally evanescent
terms SevΛ. We use them to define a regularized action SΛ
whose propagators fall off as rapidly as we want, when the
momenta p become large.
We take the functionals SIHD to be gauge invariant in d

dimensions, i.e. satisfy ðSK; SIHDÞ ¼ 0 and are of the form
SIHDðκϕ; r; rþÞ. In particular, they just depend on the
physical fields ϕ. We normalize each SIHD so that its
quadratic terms (if any) have the form ∼κ2ϕ∂N̄IþNϕϕ,
where N̄I are non-negative integers and Nϕ are the integers
of formula (2.16). The invariants SIHD are extended from d
to D dimensions by preserving the identity ðSK; SIHDÞ ¼ 0,
according to the rules of the CD regularization [6].
Specifically, for the standard model coupled to quantum

gravity, examples of the functionals SIHD are the integrals offfiffiffiffiffijgjp
times

gμ̄ ν̄ðκDμ̄φ̄ÞðD2ÞN̄φ=2ðκDν̄φÞ; ðκψ̄Þðγμ̄Dμ̄ÞN̄ψþ1ðκψÞ;
ðκFμνÞðD2ÞN̄A=2ðκFμνÞ; RμνðD2ÞðN̄G−2Þ=2Rμν;

RðD2ÞðN̄G−2Þ=2R; ð2:43Þ

whereDμ̄ denotes the covariant derivative,D2 ¼ gμ̄ ν̄Dμ̄Dν̄,
and the integers N̄φ, N̄ψ , N̄A, N̄G are large enough (see
below). The same invariants work for any Einstein–Yang-
Mills theory, as well as any higher-derivative theories of
quantum gravity, Yang-Mills gauge fields, scalars, and
fermions.
The classical action ScðϕÞ is extended to

ScΛðϕÞ ¼ ScðϕÞ þ
1

κ2
X
I

1

Λ2N̄I
SIHDðκϕ; r; rþÞ; ð2:44Þ

where Λ is the energy scale associated with the HD
regularization. The new non-gauge-fixed action then reads

S̄dΛðΦ; KÞ ¼ ScΛðϕÞ þ SK ¼ ScΛðϕÞ −
Z

RαðΦÞKα

ð2:45Þ

and solves ðS̄dΛ; S̄dΛÞ ¼ 0 in arbitrary D dimensions.
Divide the set ϕ of the physical fields into two subsets,

called ϕ0
g and ϕm. The set ϕm contains the matter fields ϕ

that have ½κϕ� > 0. The set ϕ0
g contains the gauge fields ϕg

plus the matter fields ϕ that have ½κϕ� ¼ 0. We decompose
Φ as fΦ0

g;ϕmg, where Φ0
g contains the fields ϕ0

g, the ghosts
C, the antighosts C̄ and the Lagrange multipliers B.
Similarly, we decompose the sources K as fK0

g; Kmg.
The transformations RgðΦÞ of the fields Φ0

g are independent
of ϕm, and the transformations RmðΦÞ of the fields ϕm are
linear in the fields ϕm themselves and vanish at ϕm ¼ 0.
In the case of the standard model coupled to quantum

gravity, the set ϕ0
g contains the bosons, while the set ϕm

contains the fermions.
If we organize the HD regularization properly, we can

show that the counterterms and the local contributions to
potential anomalies at finiteΛ are independent of the matter
fields ϕm. The transformations RαðΦ; gÞ do not depend on
other parameters besides the gauge couplings g, so, after the
replacements (2.28), we can write

SKðΦ; K; κÞ ¼ −
Z

RαðΦ; gÞKα

¼ −
1

κ2

Z
R0αðκΦ; r; rþÞðκKαÞ: ð2:46Þ

We organize the invariants SIHD into invariants SIgHD that
are ϕm-independent and invariants SImHD that are quadratic
in the fields ϕm. We ignore any ϕm-dependent invariants
SIHD that are not quadratic in ϕm because they are not
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necessary for our purposes. The examples (2.43) fulfill this
requirement.
We require that the modified gauge fermion ΨHD be

invariant under rigid diffeomorphisms and independent of
the matter fields. Moreover, we organize it so that each term
contains an even power 2k of 1=Λ, and at least k derivatives
∂̄ act on the antighosts C̄ and k derivatives ∂̄ act on the
Lagrange multipliers B, whenever C̄ and/or B are present.
The prototype of this kind of gauge fermion is

ΨHDðΦÞ ¼
X
i

Z ffiffiffiffiffi
jgj

p
C̄i

×

�
Qið□ÞGiðϕ; ξÞ þ

1

2
Q0

ið□ÞBi

�
; ð2:47Þ

where i is a generic label to distinguish different types of
contributions, and Qi and Q0

i are operators acting as
follows:

Z ffiffiffiffiffi
jgj

p
C̄iQið□ÞGiðϕÞ≡

Z ffiffiffiffiffi
jgj

p XNi

k¼0

cik
Λ2k ð∂ ρ̄1…∂ ρ̄2k C̄IÞgρ̄1ρ̄2…gρ̄2k−1ρ̄2kGIðϕ; ξÞ;

Z ffiffiffiffiffi
jgj

p
C̄iQ0

ið□ÞBi ≡
Z ffiffiffiffiffi

jgj
p XN0

i

k¼0

c0ik
Λ2k ð∂ ρ̄1…∂ ρ̄k C̄IÞgρ̄1σ̄1…gρ̄kσ̄kgIJPðϕ; ξ0; ∂Þð∂ σ̄1…∂ σ̄kBJÞ: ð2:48Þ

The functions GIðϕ; ξÞ and the operators Pðϕ; ξ0; ∂Þ
can be read by comparing ΨHD with the gauge fermion
Ψ of Sd in the limit Λ ¼ ∞, while Ni, N0

i are integer
numbers and cik, c0ik are constants. In the case of diffeo-
morphisms, C̄I ¼ C̄μ̄, GI ¼ Gμ̄, BJ ¼ Bν̄, and gIJ ¼ gμ̄ ν̄.
In the case of Yang-Mills symmetries, C̄I ¼ C̄a, GI ¼ Ga,
BJ ¼ Bb, and gIJ ¼ δab. In the case of local Lorentz
symmetry, C̄I ¼ C̄ā b̄, GI ¼ Gā b̄, BJ ¼ Bc̄ d̄, and

gIJ ¼ ðδā c̄δb̄ d̄ − δā d̄δb̄ c̄Þ=2. Thanks to the structure (2.47),

we will be able to prove that the antighosts and the Lagrange

multipliers cannot contribute to the counterterms and the

potential anomalies at finite Λ.
Specifically, in the case of perturbatively unitary theo-

ries, such as the standard model coupled to quantum

gravity, we extend (2.19) to

ΨHDðΦÞ ¼
Z ffiffiffiffiffi

jgj
p

C̄a

�
Q1ð□Þgμ̄ ν̄∂ μ̄Aa

ν̄ þ
1

2
Q0

1ð□ÞBa

�
þ
Z ffiffiffiffiffi

jgj
p

C̄ā b̄

�
1

κ
Q2ð□Þeρ̄ āgμ̄ ν̄∂ μ̄∂ ν̄eb̄ρ̄ þ

1

2
Q0

2ð□ÞBā b̄

�

−
Z ffiffiffiffiffi

jgj
p

C̄μ̄

�
1

κ
Q3ð□Þ∂ ν̄gμ̄ ν̄ þ

1

κ
Q4ð□Þgμ̄ ν̄gρ̄ σ̄∂ ν̄gρ̄ σ̄ −

Q0
3ð□Þ
2

gμ̄ ν̄Bν̄

�
: ð2:49Þ

The gauge-fixed action is then

SdΛðΦ; KÞ ¼ S̄dΛ þ ðSK;ΨHDÞ ð2:50Þ
and satisfies ðSdΛ; SdΛÞ ¼ 0 in arbitraryD. It is obvious that
the higher-derivative terms can make the propagators of all
fields fall off as rapidly as we want, when the physical
components p̄ of the momenta p become large.
Finally, the HD regularized action

SΛ ¼ SdΛ þ SevΛ

¼ ScðϕÞ þ
1

κ2
X
I

1

Λ2N̄I
SIHDðκϕ; r; rþÞ

þ ðSK;ΨHDÞ þ SK þ SevΛ ð2:51Þ

is obtained by adding suitable formally evanescent terms
SevΛ compatible with weighted power counting and the
nonanomalous global symmetries of the theory. We also

require that SevΛ be built with a unique metric tensor or
vielbein. The scale Λ has weight 1, equal to its dimension.
The important terms of SevΛ − Sev are the kinetic ones,
which must complete the regularized propagators, accord-
ing to weighted power counting (more details on this are
given in the next subsection). We can choose
the other contributions to SevΛ − Sev at our discretion or
suppress them. The kinetic terms of SevΛ can be con-
structed, for example, by inserting higher derivatives ∂̄=Λ
and ∂̂2=ðMΛÞ into the evanescent terms of Sev, such as
(2.13) and (2.14). We assume that the difference SevΛ − Sev
is K independent, since K-dependent higher-derivative
terms are unnecessary for our purposes. We also assume
that SevΛ − Sev is a sum of terms that are either independent
of the fields ϕm or quadratic in ϕm, and that the ϕm-
dependent terms are independent of C̄ and B. Finally, we
assume that each term of SevΛ − Sev contains an even power
2k of 1=Λ, and at least k derivative operators ∂̄ ∼ ∂̂2=M act
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on the antighosts C̄ and k derivative operators ∂̄ ∼ ∂̂2=M
act on the Lagrange multipliers B, whenever C̄ and/or B are
present.
The action (2.51) clearly satisfies

ðSΛ; SΛÞ ¼ ÔðεÞ: ð2:52Þ
The HD sector SHD ≡ SΛ − S is also K independent. It

must have the κ structure (2.26) and be organized so that all
the propagators have the structure (2.17). The parameters
on which SHD depends, besides κ; r; rþ, and Λ, must have
non-negative dimensions. We include them in a set λþ,
together with r; rþ, and write

SHD ¼ SHDðΦ; κ;Λ; λþÞ ¼
1

κ2
S0HDðκΦ;Λ; λþÞ: ð2:53Þ

Note that each contribution to SHD is either independent of
the fields ϕm or quadratic in them. Formula (2.53) is also
implicitly assuming that SHD is Λ− independent. Then, it
coincides with its own truncation. More conditions on the
higher-derivative sector SHD are given in the next section.
Now we come to the truncation. The prescription T1 of

Sec. II B tells us that the truncated action SΛT is obtained by
switching off the oð1=ΛT

−Þ terms of SΛ. Since SHD is Λ−
independent, we just get the sum of ST and SHD:

SΛT ¼ ST þ SHD

¼ ScTðϕÞ þ
1

κ2
X
I

1

Λ2N̄I
SIHDðκϕ; r; rþÞ

þ ðSK;ΨHDÞ þ SK þ SevΛT: ð2:54Þ

Again, the action SΛT satisfies the master equation up to
formally evanescent terms, which means

ðSΛT; SΛTÞ ¼ ÔðεÞ: ð2:55Þ

At finite Λ, the theory defined by the action SΛT ,
regularized and renormalized by means the CD technique,
is called (truncated) “higher-derivative theory,” or HD
theory. The theory defined by the same action SΛT , but
regularized and renormalized by means of the CDHD
technique, is called (truncated) final theory. The HD theory
is renormalized by studying the limit ε → 0 and removing
the divergences and potential anomalies at Λ fixed. Once
that is done, the final theory is reached by studying the limit
Λ → ∞ on the HD theory, removing the Λ divergences and
proving that the cancellation of anomalies survives these
operations.
At this point, we have two regulators and two types of

divergences: the poles in ε and the Λ divergences. The latter
are products Λk lnk

0
Λ, with k; k0 ≥ 0, kþ k0 > 0, times

local monomials of the fields, the sources, and their
derivatives. From the point of view of the CD regulariza-
tion, those monomials may be nonevanescent or formally

evanescent, and their coefficients must be evaluated in the
analytic limit ε → 0. To complete the CDHD regulariza-
tion, we must specify how the regularization parameters ε
and Λ are removed. If the HD sector of the regularization is
organized in a suitable way, which we specify in the next
section, the HD theory is superrenormalizable and only a
few one-loop diagrams diverge. After studying the poles in
ε and the one-loop potential anomalies, atΛ fixed, we prove
that it is possible to remove both. We also show that these
operations are sufficient to remove both divergences and
anomalies to all orders, in the HD theory. Then we study the
limit Λ → ∞ and show that we can remove the divergences
and potential anomalies appearing in that limit, preserving
gauge invariance. We call the set of such operations the
CDHD limit.
For more clarity, we describe how the CDHD limit works

with the help of a set of symbolic expressions. When we
study the HD theory, we expand around ε ¼ 0 at Λ fixed.
Then we find poles, finite terms, and evanescent terms of
the form

1

ε
;

δ̂

ε
; ε0; δ̂ε0; ε; δ̂ε;

where 1=ε denotes any divergent expression, δ̂ is any
formally evanescent expression, ε0 is any expression that is
convergent and nonevanescent in the analytic limit ε → 0,
and ε denotes any analytic evanescence. Next, we subtract
the divergent parts, that is to say, the first two terms of the
list. The coefficients of the surviving terms, which are

ε0; δ̂ε0; ε; δ̂ε; ð2:56Þ

are then expanded around Λ ¼ ∞, which gives the
structures

ε0Λ; δ̂ε0Λ; ε0Λ0; δ̂ε0Λ0;
ε0

Λ
;

δ̂ε0

Λ
;

εΛ; δ̂εΛ; εΛ0; δ̂εΛ0;
ε

Λ
;

δ̂ε

Λ
;

ð2:57Þ

where Λ denotes any expression that diverges when
Λ → ∞ (i.e. it is multiplied by a coefficient that behaves
like Λk lnk

0
Λ, with k; k0 ≥ 0, kþ k0 > 0), Λ0 is any

expression that is convergent, but not evanescent, in the
same limit, while 1=Λ is any expression that vanishes in the
limit. The first two terms of the list (2.57) are the Λ
divergences of the CDHD limit and must be subtracted. For
convenience, we include the terms δ̂ε0Λ (which are local) in
this subtraction, although they are going to be dropped at a
later stage. We cannot include the terms εΛ, instead,
because they are not local. After these new subtractions,
we remain with
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ε0Λ0; δ̂ε0Λ0;
ε0

Λ
;

δ̂ε0

Λ
; εΛ;

δ̂εΛ; εΛ0; δ̂εΛ0;
ε

Λ
;

δ̂ε

Λ
: ð2:58Þ

Finally, the CDHD limit is taken by dropping all the
contributions of this list but the ε0Λ0 terms. Note that the
terms proportional to ε vanish in the CDHD limit, even if
they are divergent in Λ, because the limit ε → 0 is taken
before the limit Λ → ∞.

III. PROPERTIES OF THE HD THEORY

In this section we organize the higher-derivative regu-
larization and study its properties. We want to show that for
every truncation T1 of Sec. II B we can arrange the higher-
derivative sector SHD ¼ SΛT − ST so that it satisfies a
number of conditions that will be useful to prove the
Adler-Bardeen theorem. So far, for example, we have not
specified the numbers of higher derivatives that we need.
We anticipate that, besides being sufficiently many, they
should not conflict with the truncated action ST , that is to
say, they should all be placed well beyond the truncation.
The tree-level truncation T1 will be enough to give us
complete control on the radiative corrections of the HD
theory, to all orders in ℏ and for arbitrarily large powers of
1=Λ−. We do not apply the truncation T2 till Sec. VII,
where we study the limit Λ → ∞ and the final theory.
The numbers of higher derivatives are governed by the Λ

exponents N̄I appearing in formula (2.44), analogous
exponents N̂I appearing inside SevΛ, and the exponents
Ni, N0

i of ΨHD, appearing in (2.48). The Φ kinetic terms
of SHD that are dominant in the large momentum limits
p̄ → ∞ and p̂ → ∞ have the form

c̄Φ

Z
Φ

�∂̄2

Λ2

�N̄Φ ∂̄NΦΦþ ĉΦ

Z
Φ

� ∂̂2

MΛ

�2N̂Φ
�∂̂2

M

�NΦ

Φ;

ð3:1Þ

where c̄Φ and ĉΦ are weightless constants, 2N̄Φ is the
maximum number of higher derivatives ∂̄ and 4N̂Φ the
maximum number of higher derivatives ∂̂. Weighted power
counting requires N̄Φ ¼ N̂Φ. For reasons that will be clear
below, we need to take the same N̄ϕ0

g
¼ N̂ϕ0

g
≡ Nþ for all

fields ϕ0
g, and the same N̄ϕm

¼ N̂ϕm
≡ N− for all fields ϕm.

Then we set Ni ¼ N0
i ¼ Nþ in (2.48). We switch off all

terms of SHD that are multiplied by more than 2Nþ powers
of 1=Λ, and all ϕm-dependent SHD terms that are multiplied
by more than 2N− powers of 1=Λ. We also need to takeNþ,
N−, and Nþ − N− > 0 sufficiently large. The first task of
this section is to determine the bounds on these numbers
and show that it is always possible to choose them so that
they satisfy the requirements we need.

Define tilde fields and sources as

~Φ0
g ¼

Φ0
g

ΛNþ
; ~ϕm ¼ ϕm

ΛN−
;

~K0
g ¼ ΛNþK0

g; ~Km ¼ ΛN−Km; ð3:2Þ

and tilde parameters ~κ ¼ κΛNþ , ~r ¼ r, and ~rþ ¼ rþ.
We have

~κ ~Φ0
g ¼ κΦ0

g; ~κ ~K0
g ¼ Λ2NþκK0

g;

~κ ~ϕm ¼ κϕmΛNþ−N− ; ~κ ~Km ¼ ΛNþþN−κKm: ð3:3Þ

Observe that (3.2) is a canonical transformation. After the
redefinitions, the dominant kinetic terms (3.1) of SHD are Λ
independent. Those of the fields ϕ0

g and ϕm are

Z
~ϕ0
g

�
c̄g∂̄2NþþNϕ0g þ ĉg

�∂̂2

M

�2NþþNϕ0g
�
~ϕ0
g

þ
Z

~ϕm

�
c̄m∂̄2N−þNϕm þ ĉm

�∂̂2

M

�2N−þNϕm
�
~ϕm:

Those of the ghosts C, the antighosts C̄, and the Lagrange
multipliers B follow from the choices of Gðϕ; ξÞ and
Pðϕ; ξ0; ∂Þ in (2.5).
Recall that SHD has the structure (2.53), ΨHD is inde-

pendent of the matter fields, and each contribution to SHD is
either quadratic in the matter fields ϕm or independent of
them. Then, we can write

SHD ¼ 1

~κ2
S00HDð~κ ~Φ0

g; ~κ ~ϕm; ~λþÞ; ð3:4Þ

where S00HD is Λ independent in the tilde parametrization and
~λþ are parameters of non-negative dimensions, equal to
products λþΛk, with k ≥ 0. To simplify some arguments,
we switch off all the parameters λþ such that ~λþ ¼ λþΛk

with k > 0, because they are not necessary to make the
higher-derivative regularization work. Thus, from now on
we assume that the parameters λþ have non-negative
weights and satisfy λþ ¼ ~λþ. Examples are the ratios
r ¼ ~r, rþ ¼ ~rþ between the gauge couplings g and κ.
As far as the truncated action SΛT is concerned, we have

SΛTðΦ; KÞ

¼ Λ2Nþ

~κ2
S0Tð~κ ~Φ0

g;ΛN−−Nþ ~κ ~ϕm;Λ−2Nþ ~κ ~K0
g;Λ−Nþ−N− ~κ ~KmÞ

þ 1

~κ2
S00HDð~κ ~Φ0

g; ~κ ~ϕm; ~λþÞ; ð3:5Þ

where S0T ¼ S0dT þ S0evT and S0dT and S0evT are defined by
applying the truncation T1 to formulas (2.24) and (2.25).

ADLER-BARDEEN THEOREM AND CANCELLATION OF … PHYSICAL REVIEW D 91, 105016 (2015)

105016-17



If Nþ is large enough, the dimension ½~κ� of ~κ is strictly
positive, which is a necessary condition to have super-
renormalizability. Actually, for later use we assume that ½~κ�
is greater than some given t > 0, that is to say,

Nþ > t − ½κ�: ð3:6Þ

The right-hand side of (3.4) contains only parameters of
non-negative dimensions in units of mass, apart from the
overall factor 1=~κ2. Instead, S0T , written in the tilde para-
metrization, contains parameters that can have positive,
vanishing, or negative dimensions, as well as factors
ΛN−−Nþ and Λ−N−−Nþ. However, we can show that the
overall factor Λ2Nþ that multiplies S0T=~κ

2 in formula (3.5)
allows us to turn Λ2NþS0T into a functional that contains
only parameters of positive (and arbitrarily large) dimen-
sions, at least within the truncation T1.
We begin with the functional SK. By formula (2.46) and

the properties recalled right below formula (2.45), we have,
in the tilde parametrization

SK ¼ −
1

~κ2
X
g

Z
R0αð~κ ~Φ; ~r; ~rþÞð~κ ~KαÞ; ð3:7Þ

which are of the form we want, that is to say, the tilde
version of (2.27).
Next, consider the K-independent contributions to

Λ2NþS0T=~κ
2 in formula (3.5). They have the form

λ
Λ2Nþ

Λu
− ~κ

2
∂p

Y
g

ð~κ ~Φ0
gÞqg

Y
m

ðΛN−−Nþ ~κ ~ϕmÞqm; ð3:8Þ

where u, p, qg, qm are non-negative integers and λ is a
Λ-independent product of parameters of non-negative
dimensions. The truncated action ST ¼ Λ2NþS0T=~κ

2 con-
tains a finite number of matter fields ϕm, because
½ΛN−−Nþ ~κ ~ϕm�¼½κϕm�>0, ½~κ ~Φ0

g�¼½κΦ0
g�≥0, by assumption

(II-i) of Sec. II B, and u ≤ T, by prescription T1. Thus,
there exists a qmax such that

P
mqm ≤ qmax. Then, if we

choose Nþ and N− such that the condition

2Nþ > qmaxðNþ − N−Þ þ T þ 2tþ 2j½κ�j ð3:9Þ

holds, besides (3.6), the structure (3.8) becomes

~λ

~κ2
∂p

Y
g

ð~κ ~Φ0
gÞqg

Y
m

ð~κ ~ϕmÞqm; ð3:10Þ

where the constants ~λ ¼ λΛdλ=Λu
−, with dλ ¼ 2Nþ−

ðNþ − N−Þ
P

mqm, have dimensions greater than 2tþ
2j½κ�j.
For future use, we observe that if ω denotes ζ, ς, or η,

all terms of ScðϕÞ and Sev that just depend on ϕ0
g have the κ

structure

ωFðϕ0
g; κ; r; rþÞ ¼

ω

κ2
F0ðκϕ0

g; r; rþÞ ¼
~ω

~κ2
F0ð~κ ~ϕ0

g; ~r; ~rþÞ;
ð3:11Þ

where ~ω ¼ ωΛ2Nþ .
Collecting (3.7) and (3.10), we can define a truncated

functional S00dΛT that depends analytically on ~λ, such that

SdΛTðΦ; K; κÞ ¼
1

~κ2
S00dΛTð~κ ~Φ0

g; ~κ ~ϕm; ~κ ~K
0
g; ~κ ~Km; ~λÞ: ð3:12Þ

It remains to study the K-dependent contributions to the
first term on the right-hand side of (3.5). Actually, we have
already studied those contained in SK , which are rearranged
in formula (3.7). The remaining ones are contained in SevT .
Write

SevTðΦ; K; κÞ ¼ Λ2Nþ

~κ2
S0evTð~κ ~Φ0

g;ΛN−−Nþ ~κ ~ϕm; κK0
g; κKmÞ:

ð3:13Þ

Using ½κKΦ� ≥ 1=2, which was proved in Sec. II B, a
condition like (3.9), with a possibly different qmax, is also
sufficient to rewrite each contribution to SevT in the form

~ς

~κ2
∂p

Y
g

ð~κ ~Φ0
gÞqg

Y
m

ð~κ ~ϕmÞqm
Y
K

ðκKÞqK ; ð3:14Þ

where ~ς are new parameters of dimensions greater than
2tþ 2j½κ�j, which include the tilde versions of both ς and η.
Finally, we can write

SevTðΦ; K; κÞ ¼
1

~κ2
S00evTð~κ ~Φ0

g; ~κ ~ϕm; ~ςκpKp; ~ςÞ; ð3:15Þ

with SevT ¼ 0 at ~ς ¼ 0. The argument ~ςκpKp of S00evT is
there to remind us that all nontilde products of κK must be
multiplied by parameters ~ς. From now on we assume that
the qmax of condition (3.9) is raised to a value that is good
for both (3.10) and (3.14).
The T1 truncated HD theory has the basic features of a

superrenormalizable theory, since its parameters have non-
negative dimensions in units of mass, and ~κ has a strictly
positive dimension. The proof of superrenormalizability is
completed in the next sections, where we show that the
divergences can be renormalized by redefining a few
parameters. In the tilde parametrization, the action SΛT
becomes

~SΛT ¼ 1

~κ2
S00dΛTð~κ ~Φ; ~κ ~K; ~λÞ þ 1

~κ2
S00evTð~κ ~Φ; ~ςκpKp; ~ςÞ

þ 1

~κ2
S00HDð~κ ~Φ; ~λþÞ; ð3:16Þ

and ~κ; ~λþ are the only tilde parameters that may have (non-
negative) dimensions smaller than or equal to 2tþ 2j½κ�j.
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Only the first and third functionals on the right-hand side of
(3.16) have the expected form, which is the tilde version of
(2.27). The second functional cannot be written like the
rest. This will force us to do some extra effort. However,
since the terms of S00evT are multiplied by parameters ~ς,
which have sufficiently large dimensions, we will still be
able to prove the properties we need.
Finally, it is possible to choose Nþ and N− so that the

HD theory satisfies other properties that will be important
for the arguments of the next subsections. For example, it is
sufficient to require

Nþ þ N− > 2t −min
K

½κK�;
Nþ − N− > 2t −min

m
½κϕm� ð3:17Þ

to make all products ~κ ~K and ~κ ~ϕm have dimensions (equal to
their weights) greater than 2t.
Another condition allows us to have control on the

dependences on the antighosts C̄ and the Lagrange multi-
pliers B. Checking the action (2.54), we see that C̄ and
B appear inside the term −

R
BKC̄ of SK (which cannot

contribute to nontrivial diagrams), as well as ðSK;ΨHDÞ and
SevΛT . The gauge fermion ΨHD contains C̄ and B according
to the structure (2.48), where now the integers Ni and N0

i
are replaced by Nþ. Since we have suppressed the param-
eters λþ of SHD that have ½~λþ� > ½λþ�, the terms ofΨHD with
0 < k < Nþ are absent.Working out ðSK;ΨHD −ΨÞ explic-
itly, it is easy to prove that at leastNþ derivatives ∂̄ act on the
antighosts C̄ and Nþ derivatives ∂̄ act on the Lagrange
multipliers B. By construction, the formally evanescent
higher-derivative terms SevΛT − SevT depend on C̄ and B in
the sameway, with derivatives ∂̄ possibly replaced by ∂̂2=M.
In the end, the dependence on C̄ and B of the full higher-
derivative sector SHD of the action SΛT has this structure.
When we switch to the tilde parametrization, the powers

of Λ disappear from the denominators. With the sole
exception of −

R
BKC̄, every term of ~SΛT that depends

on ~κ ~̄C and/or ~κ ~B is multiplied by a parameter ~λ or ~ς, or has

at leastNþ derivatives ∂̄ ∼ ∂̂2=M acting on each leg ~κ ~̄C and
~κ ~B. It is easy to check that ð ~SΛT; ~SΛTÞ has the same
structure. These observations will be useful later on,
because the parameters ~λ or ~ς, as well as the derivatives

∂̄ ∼ ∂̂2=M acting on the external legs ~κ ~̄C and ~κ ~B, lower the
degrees of divergence of the diagrams, and allow us to
prove that certain types of counterterms and local contri-
butions to anomalies are absent.
For our purposes, it is sufficient to require that the Nþ

derivatives ∂̄ ∼ ∂̂2=M that act on ~κ ~̄C and ~κ ~B inside SHD
have weights greater than 2t, which means

Nþ > 2t: ð3:18Þ

There is no difficulty to choose Nþ and N− such that
requirements (3.6), (3.9), (3.17), and (3.18) are fulfilled at
the same time, no matter how large we want t to be. In the
next subsections we show that, if we choose t in a clever
way, we can ensure that the higher-derivative theory has no
divergences and no local contributions to anomalies beyond
one loop, and that the one-loop divergences, as well as
the one-loop potential anomalies, are independent of the
sources, the matter fields ϕm, the antighosts, and the
Lagrange multipliers. We begin by studying the structure
of the counterterms.

A. HD theory: Structure of counterterms

Ignoring the factors ~κ and κ attached to the sources ~K and
K, which are external to the diagrams, each vertex of the
action (3.16) is multiplied by a power of ~κ that is equal to
the number of its Φ legs minus 2. Then each loop carries an
extra factor ~κ2, and the counterterms have the form

ð~κ2ÞL−1 ~λuþ ~λr ~ςs∂p
Y
g

ð~κ ~Φ0
gÞqg

Y
m

ð~κ ~ϕmÞqm

×
Y
K

ð~κ ~KÞqK
Y
K

ðκKÞq0K ; ð3:19Þ

where u; r; s; p; qg, qm, qK , and q0K are non-negative
integers. Every factor has a non-negative dimension for
L ≥ 1, since ½~κ ~Φ� ≥ ½κΦ� ≥ 0 and ½~κ ~K� > ½κK� ≥ 1=2.
Recalling that ½~κ2� > 2t, we see that, if we choose
t > d=2, the expressions (3.19) have dimensions greater
than d for every L ≥ 2. Thus, no divergences may be
present beyond one loop. Moreover, at L ¼ 1we must have
r ¼ s ¼ 0, because the dimensions of ~λ and ~ς are also
greater than d. Then, we also have q0K ¼ 0, because the last
product of (3.19) is always accompanied by some param-
eters ~ς. Finally, since by (3.17) the dimensions of ~κ ~ϕm and
~κ ~K are greater than d, the divergences of the higher-
derivative theory are just one loop and have the form

~Γð1Þ
ΛTdivð~κ ~Φ0

g; ~λþÞ ¼ Γð1Þ
ΛTdivðκΦ0

g; λþÞ: ð3:20Þ
To write the last equality we have used the fact that the
parameters λþ with ½~λþ� > ½λþ� have been switched off.

We can also show that ~Γð1Þ
ΛTdiv cannot depend on the

antighosts and the Lagrange multipliers, since, by the
observations of the previous subsection and condition

(3.18), a nontrivial Feynman diagram that has ~κ ~̄C and/or
~κ ~B among its external legs either is multiplied by param-
eters ~λ and ~ς or has derivative operators of weights greater

than d acting on all external legs ~κ ~̄C and ~κ ~B. Finally, since
~Γð1Þ
ΛTdiv has ghost number zero, it cannot even depend on the

ghosts, because we have already excluded all fields and
sources that have negative ghost numbers. In the end, we
have
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~Γð1Þ
ΛTdiv ¼ ~Γð1Þ

ΛTdivð~κ ~ϕ0
g; ~λþÞ ¼ Γð1Þ

ΛTdivðκϕ0
g; λþÞ: ð3:21Þ

We stress that Γð1Þ
ΛTdiv is independent of Λ. Moreover, it is

independent of Λ−, which implies that it is fully contained
in every truncation T2 such that T ≥ 2σ. From now on we
assume that T is larger than 2σ.

B. HD theory: Structure of anomalies

We call “local contributions to (potential) anomalies” the
local terms originated by the simplification between overall
divergences and evanescences in Feynman diagrams (see
Sec. IV for details). The local contributions to anomalies
may still be divergent, or nonevanescent, or even evan-
escent. What is important for us is that they inherit the basic
properties of divergences. Besides being local, they are
polynomial in the parameters that have positive dimen-
sions. If the gauge anomalies do not vanish at one loop, the
anomaly functional A receives in general nonlocal con-
tributions at higher orders. If the gauge anomalies vanish up
to and including n loops, A receives only local contribu-
tions at nþ 1 loops, up to evanescent corrections. In view
of the applications of the next sections, now we investigate
the structure of the local contributions to the gauge
anomalies of the HD theory.
We must concentrate on ð ~SΛT; ~SΛTÞ and the average

hð ~SΛT; ~SΛTÞi ~SΛT . Using (3.16) we find

ð ~SΛT; ~SΛTÞ ¼
1

~κ2
Uð~κ ~Φ; ~κ ~K; ~λ; ~λþÞ

þ Λ−2Nþ

~κ2
Vð~κ ~Φ; ~κ ~K; ~ςκpKp; ~λ; ~λþ; ~ς;ΛÞ;

ð3:22Þ

where U and V are formally evanescent functionals, and
V ¼ 0 at ~ς ¼ 0. We have added the argument Λ to V, to
emphasize that V can contain positive powers of Λ, which
are generated, together with the overall factor Λ−2Nþ, by the
presence of nontilde products κK inside S00evT . The factor
Λ−2Nþ in front of V deserves some attention, because it can
be a source of trouble, from the point of view of power
counting. We can bypass this difficulty as follows.
Denoting the Γ functional associated with the action ~SΛT
by ~ΓΛT, the anomaly functional is

~AΛT ¼ ð ~ΓΛT; ~ΓΛTÞ ¼ hð ~SΛT; ~SΛTÞi ~SΛT
¼ 1

~κ2
hUi ~SΛT þ

Λ−2Nþ

~κ2
hVi ~SΛT : ð3:23Þ

It is easy to see that the averages have the following
structures:

1

~κ2
hUi ~SΛT ¼

X∞
L¼0

ð~κ2ÞL−1ULð~κ ~Φ; ~κ ~K; ~ςκpKp; ~λ; ~λþ; ~ςÞ;

ð3:24Þ

Λ−2Nþ

~κ2
hVi ~SΛT ¼

X∞
L¼0

κ2ð~κ2ÞL−2

×VLð~κ ~Φ; ~κ ~K; ~ςκpKp; ~λ; ~λþ; ~ς;ΛÞ; ð3:25Þ
where VL ¼ 0 at ~ς ¼ 0. Recall that ½~κ2� > 2t and
½κ2 ~ς� > 2t. If we choose a t such that 2t > dþ 1 (instead
of 2t > d, which was the condition of the previous
subsection), then all local contributions to anomalies
(which must be integrals of local functions of weight
dþ 1) vanish by weighted power counting for L ≥ 2.
Indeed, the right-hand side of (3.24) contains at least
one factor ~κ2 times objects of non-negative weights, while
the right-hand side of (3.25) contains one factor κ2 ~ς times
objects of non-negative weights.
Now we study the functionals U1 and V1. Since they

collect one-loop diagrams that contain insertions of for-
mally evanescent vertices, they are sums of local divergent
evanescences, plus local nonevanescent terms (which
arise from simplified divergences), plus possibly nonlocal
evanescent terms. We concentrate our attention on the
nonevanescent contributions U1nonev and V1nonev to U1

and V1.
The nonevanescent part U1nonev of U1 is independent of

~λ, ~ς, ~κ ~K, and ~κ ~ϕm, because such objects have weights
greater than dþ 1. Moreover, U1nonev is independent of the
antighosts and the Lagrange multipliers, because the choice
2t > dþ 1 and the condition (3.18) ensure that every
Feynman diagram that contributes to ~AΛT and has external

legs ~κ ~̄C and/or ~κ ~B is either multiplied by parameters ~λ and
~ς or has derivative operators of weights greater than dþ 1

acting on each external leg ~κ ~̄C and ~κ ~B. In this respect, it is
important to recall that not only ~SΛT but also ð ~SΛT; ~SΛTÞ has
the structure explained before formula (3.18). Since U1nonev
has ghost number one, and cannot contain any fields or
sources of negative ghost numbers, it must be proportional
to the ghosts. Precisely,

U1nonev ¼
Z

ð~κ ~CÞIAIð~κ ~ϕ0
g; ~λþÞ ¼

Z
ðκCÞIAIðκϕ0

g; λþÞ;
ð3:26Þ

where AI are local functions of the fields ϕ0
g.

The nonevanescent part V1nonev of V1 actually vanishes.
We know that it must be polynomial in ~ς and vanish for
~ς ¼ 0. If we differentiate the one-loop contributions to
(3.23) with respect to ~ς, and take their nonevanescent parts,
we find
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Λ−2Nþ

2
~ς
∂V1nonev

∂ ~ς ¼
�
~SΛT; ~ς

∂ ~Γð1Þ
ΛT

∂ ~ς
�����

nonev

þ
�
~Γð1Þ
ΛT; ~ς

∂ ~SΛT
∂ ~ς

�����
nonev

; ð3:27Þ

where ~Γð1Þ
ΛT is the one-loop contribution to the Γ functional

~ΓΛT . We have used the fact that U1nonev is independent of ~ς.
Now, ~ς∂ ~SΛT=∂ ~ς is formally evanescent, so the last term of
(3.27) vanishes. On the other hand, we have

~ς
∂ ~ΓΛT

∂ ~ς
����
one-loop

nonev
¼

�
~ς
∂ ~SΛT
∂ ~ς

	one-loop

nonev
: ð3:28Þ

The average appearing on the right-hand side of this
formula collects the diagrams that contain one insertion
of ~ς∂ ~SΛT=∂ ~ς. At one loop, the formally evanescent vertices
provided by this functional can give a nonevanescent result
only by simplifying some divergences. Therefore, expres-
sion (3.28) is a local functional. It is equal to the integral of
a local function of dimension d that has the structure (3.19),
with L ¼ 1 and s > 0. This means that it vanishes, since
½~ς� > d. Consequently, (3.27) also vanishes, and so does
V1nonev.
In the end, we take

t >
dþ 1

2
; ð3:29Þ

because with this choice (a) the truncated HD theory is
superrenormalizable, (b) there are no divergences and no
local contributions to anomalies beyond one loop, (c) the
one-loop divergences have the form (3.21), and (d) the one-
loop nonevanescent contributions to anomalies have the
form (3.26).
We have not discussed the divergent evanescences

contained in U1 and V1. The reason is that we do not
need to, because as soon as we renormalize the one-loop
divergences of the Γ functional ~ΓΛT , the anomaly functional
~AΛT ¼ ð ~ΓΛT; ~ΓΛTÞ is automatically one-loop convergent.

C. The CDHD limit

In the CDHD limit, it is important to avoid conflicts
between the higher-derivative terms contained in the action
SΛT and the powerlike divergences. In particular, if ΓnRT
denotes the Γ functional CDHD renormalized up to and
including n loops, when we take the (nþ 1)-loop Λ-
divergent part of expressions such as ðΓnRT;ΓnRTÞ, we

have to be sure that ðSHD;Γðnþ1Þ
nRTdivÞ vanishes for Λ → ∞,

where Γðnþ1Þ
nRTdiv denotes the ðnþ 1Þ-loop divergent part of

ΓnRT . It is impossible to satisfy this requirement without a
truncation, because the powerlike divergences ∼Λk of

Γðnþ1Þ
nRdiv can have k arbitrarily large and beat the powers

Λ−2Nþ and Λ−2N− that appear in SΛ. This is the main reason
why we cannot provide a subtraction scheme where the
Adler-Bardeen theorem is manifest to all orders.
Given a truncation, on the other hand, it is possible to

fulfill a satisfactory requirement by choosing higher-
derivative regularizing terms SHD that lie well beyond
the truncation and subtracting just the contributions to

Γðnþ1Þ
nRTdiv that lie within the truncation. We recall that the

truncation T2 of Sec. II B prescribes that we ignore the
L-loop contributions that are oð1=ΛT−2Lσ

− Þ. We anticipate
that, to provide a scheme where the Adler-Bardeen theorem
is almost manifest within the truncation, we need to satisfy

lim
Λ→∞

ðSHD;Γðnþ1Þ
nRTdivÞ ¼ oð1=ΛT−2ðnþ1Þσ

− Þ: ð3:30Þ

By this formula we mean that the limit exists and vanishes
up to corrections oð1=ΛT−2ðnþ1Þσ

− Þ (but such corrections
may not have a regular limit for Λ → ∞).
To find a condition that ensures (3.30), we first observe

that the powerlike divergences of Γðnþ1Þ
nRTdiv have the form

lnq
0
Λ

Λq

Λq−−
δþðκ2Þn∂pðκΦÞnΦðκKÞnK ; ð3:31Þ

where q > 0, q0; q ≥ 0, and δþ is a product of parameters
of non-negative dimensions. We can concentrate on the
contributions (3.31) that have q− ≤ T − 2ðnþ 1Þσ,
because the ones with q− > T − 2ðnþ 1Þσ satisfy (3.30)
in an obvious way. We know that ½κΦ� ≥ 0 and ½κK� ≥ 1=2.
Then, distinguishing the cases ½κ� ≥ 0 and ½κ� < 0, we can
easily check that

q ≤ T þ d − 2σ: ð3:32Þ

In perturbatively unitary, power-counting renormalizable
theories with T ¼ 0 we obviously have q ≤ d.
To ensure that ðSHD;Γðnþ1

nRTdivÞ vanishes for Λ → ∞
within the truncation, it is sufficient to require SHD ¼
Oð1=ΛTþd−2σþ1Þ. In particular, we must have

2Nþ > 2N− > T þ d − 2σ: ð3:33Þ

Moreover, the HD regularized theory cannot contain
higher-derivative terms of orders Oð1=ΛkÞ with k ≤ Tþ
d − 2σ. However, this is an automatic consequence of
another choice we have already made, when we switched
off the parameters λþ of SHD such that ½~λþ� > ½λþ�. Thus,
in our framework condition (3.33) is sufficient to
ensure (3.30).
Given any truncation T, it is always possible to satisfy all

the conditions on Nþ and N− mentioned so far, at the same
time. They are (3.6), (3.9), (3.17), (3.18), (3.29), and (3.33).
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IV. RENORMALIZATION OF THE HD THEORY

In this section and the next two, we study the truncated
higher-derivative theory with action ~SΛT , which is defined
by keeping Λ fixed and regularized by means of the CD
technique. We mostly use the tilde parametrization, but
sometimes need to switch to the nontilde one. The first
task is to work out the renormalization of this theory. Then
we must study its one-loop anomalies, and finally prove
that it satisfies the manifest Adler-Bardeen theorem.
The anomaly functional (2.23) of the higher-derivative

theory is (3.23), in the tilde parametrization. Its one-loop

contribution ~Að1Þ
ΛT is

~Að1Þ
ΛT ¼ 2ð ~SΛT; ~Γð1Þ

ΛTÞ ¼ hð ~SΛT; ~SΛTÞi ~SΛT
���
one-loop

: ð4:1Þ

We know that ð ~SΛT; ~SΛTÞ ¼ ÔðεÞ. The right-hand side of
(4.1) collects one-loop Feynman diagrams that contain
insertions of formally evanescent vertices. The formal
evanescences can either remain as such or generate factors
of ε. In the former case, they give local divergent evan-
escences, plus evanescences. In the latter case, a factor ε
can simplify a local divergent part and give local non-
evanescent contributions, in addition to evanescences.
Therefore, we can write

~Að1Þ
ΛT ¼ ~Að1Þ

ΛTnev þ ~Að1Þ
ΛTdivev þ ~Að1Þ

ΛTev; ð4:2Þ

where ~Að1Þ
ΛTnev is local, convergent, and nonevanescent,

~Að1Þ
ΛTdivev is local and divergent evanescent, and ~Að1Þ

ΛTev
is evanescent and possibly nonlocal. The analysis of
Sec. III B and formula (3.26) tell us that

~Að1Þ
ΛTnev ¼

Z
ð~κ ~CÞIAIð~κ ~ϕ0

g; ~λþÞ ¼
Z

ðκCÞIAIðκϕ0
g; λþÞ:

ð4:3Þ

Clearly, ~Að1Þ
ΛTnev is independent of Λ− and Λ. In particular, it

is fully contained in any truncation that has T ≥ 2σ.
Taking the divergent part of Eq. (4.1), we find

ð ~SΛT; ~Γð1Þ
ΛTdivÞ ¼

1

2
~Að1Þ
ΛTdivev: ð4:4Þ

Formula (3.21) tells us that ~Γð1Þ
ΛTdiv is just a functional of

~κ ~ϕ0
g, fully contained within any truncation T2 with T ≥ 2σ.

In particular, its antiparentheses with ~SΛT are only sensitive
to ~SK and theK-dependent contributions to ~SevT . Moreover,

we can further decompose ~Γð1Þ
ΛTdiv as the sum of a non-

evanescent divergent part ~Γð1Þ
ΛTnev div and a divergent evan-

escence ~Γð1Þ
ΛTdivev. Taking the nonevanescent divergent part

of (4.4), we obtain

ð ~SK; ~Γð1Þ
ΛTnev divÞ ¼ 0; ð4:5Þ

which just states that ~Γð1Þ
ΛTnev div is gauge invariant.

Since ~Γð1Þ
ΛTdiv is Λ− independent, the arguments that lead

to formula (2.36) ensure that ~Γð1Þ
ΛTnev div is a linear combi-

nation of the invariants Gi contained in the T1 truncated
classical action ScTðϕÞ with T ¼ 2σ [check formula
(2.10)]. Since we are assuming T ≥ 2σ, we can remove
~Γð1Þ
ΛTnev div by redefining a few parameters λi of ScT . The rest,

which is ~Γð1Þ
ΛTdivev, can be subtracted by redefining the

parameters ς and η of SevT .
In the case of the standard model coupled to quantum

gravity, Γð1Þ
ΛTnev div is a linear combination of terms of

dimensions smaller than or equal to four, such as

Γð1Þ
ΛTnev div

¼
Z ffiffiffiffiffi

jgj
p 


c1 þ c2Rþ c3R2 þ c4Rμ̄ ν̄Rμ̄ ν̄

þ c5κ2Fa
μ̄ ν̄F

aμ̄ ν̄ þ c6κ2Fa
μ̄ ν̄D

2Faμ̄ ν̄

þ c7κ2RFa
μ̄ ν̄F

aμ̄ ν̄ þ c8κ4Fa
μ̄ ν̄F

aμ̄ ν̄Fb
ρ̄ σ̄F

bρ̄ σ̄ þ � � �
�
;

where the coefficients ci are products of parameters of
non-negative dimensions. This list also contains invariants
that in principle can be subtracted by means of field
redefinitions, rather than redefinitions of parameters.
Among those invariants, we mention

R ffiffiffiffiffijgjp
R2 andR ffiffiffiffiffijgjp

Rμ̄ ν̄Rμ̄ ν̄. However, if we use the Einstein equations,
which read

Rμ̄ ν̄ −
1

2
Rgμ̄ ν̄ − Λcgμ̄ ν̄ ¼ κ2T μ̄ ν̄;

where the energy-momentum tensor T μ̄ ν̄ can contain purely
gravitational contributions due to the higher-derivative
corrections, we do not really remove the invariants in
question, but rather convert them into other invariants, such
as

R ffiffiffiffiffijgjp
κ4T μ̄ ν̄T μ̄ ν̄, which may depend on the matter fields

ϕm and spoil the nice structure of the HD theory. For this
reason, it is not convenient to use canonical transformations

to remove Γð1Þ
ΛTnev div, or parts of it. As anticipated in Sec. II,

all the invariants of Γð1Þ
ΛTnev div are included in the basis

fGiðϕÞg, so we can completely remove Γð1Þ
ΛTnev div by

redefining the parameters λi. We recall that it is possible
to get rid of the redundant invariants at the very end (after
subtracting the Λ divergences and proving the almost
manifest Adler-bardeen theorem), by means of a procedure
like the one described in Ref. [17], which consists of
making a canonical transformation, re-renormalize the
theory, and re-fine-tune the finite local counterterms to
recover the cancellation of gauge anomalies.
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In the end, to renormalize the HD theory we just need to
redefine some parameters λi, ς, and η of ScT and SevT ,
which multiply terms of the form (3.11). The renormalized
action, which we denote by ŜΛT, is obtained by making the
replacements

~λi → ~λi þ
fi
ε
~κ2; ~ς → ~ςþ fς

ε
~κ2; ~η → ~ηþ fη

ε
~κ2;

ð4:6Þ
inside SΛT , where fi, fς, and fη are calculable factors that

may depend on the parameters ~λþ appearing in (3.21).
Switching to the nontilde parametrization, the redefinitions
(4.6) are equivalent to

λi → λi þ
fi
ε
κ2; ς → ςþ fς

ε
κ2; η → ηþ fη

ε
κ2:

ð4:7Þ
Since SΛT is linear in λi, ς, and η, we have

ŜΛT ¼ ~SΛT − ~Γð1Þ
ΛTdiv: ð4:8Þ

Using (4.4) and ð ~Γð1Þ
ΛTdiv; ~Γ

ð1Þ
ΛTdivÞ ¼ 0 (which holds because

~Γð1Þ
ΛTdiv is K independent), we find

ðŜΛT; ŜΛTÞ ¼ ð ~SΛT; ~SΛTÞ − ~Að1Þ
ΛTdivev: ð4:9Þ

The generating functional Γ̂ΛT defined by ŜΛT is con-
vergent to all orders within the truncation, because it is

convergent at one loop and the tilde structure of ~Γð1Þ
ΛTdiv has

the expected form, that is to say, the tilde version of (2.27).
Then, the counterterms keep the form (3.19), which forbids
divergences beyond one loop. Finally, Γ̂ΛT and the anomaly
functional ÂΛT ¼ ðΓ̂ΛT; Γ̂ΛTÞ are obtained by making the
replacements (4.6) inside ~ΓΛT and ~AΛT ¼ ð ~ΓΛT; ~ΓΛTÞ,
respectively. Clearly, ÂΛT is convergent, because Γ̂ΛT is
convergent.

V. ONE-LOOP ANOMALIES

In this section we study the one-loop anomalies and
relate those of the basic theory, which are trivial by
assumption (IV) of Sec. II C, to those of the HD theory,
which turn out to also be trivial.
We begin with the relation between the one-loop con-

tributions Âð1Þ
ΛT and ~Að1Þ

ΛT to ÂΛT and ~AΛT . Observe that

ÂΛT ¼ ðΓ̂ΛT; Γ̂ΛTÞ ¼ hðŜΛT; ŜΛTÞiŜΛT
¼ hðŜΛT; ŜΛTÞi ~SΛT− ~Γð1Þ

ΛTdiv
¼ hðŜΛT; ŜΛTÞi ~SΛT þOðℏ2Þ:

The last equality is proved as follows. The functional ÂΛT
collects the one-particle irreducible diagrams that contain
one insertion of a vertex coming from ðŜΛT; ŜΛTÞ. If we also
useOðℏÞ vertices provided by ~Γð1Þ

ΛTdiv, we must close at least

one loop, to connect them with the vertex of ðŜΛT; ŜΛTÞ.
This can only give Oðℏ2Þ corrections.
Using (4.9), we have

ÂΛT ¼ hð ~SΛT; ~SΛTÞi ~SΛT − ~Að1Þ
ΛTdivev þOðℏ2Þ

¼ ~AΛT − ~Að1Þ
ΛTdivev þOðℏ2Þ;

and thus (4.2) gives

Âð1Þ
ΛT ¼ ~Að1Þ

ΛTnev þ ~Að1Þ
ΛTev: ð5:1Þ

The divergent evanescences ~Að1Þ
ΛTdivev had to disappear from

Âð1Þ
ΛT , because ÂΛT is convergent.
Since the structure of ~Γð1Þ

ΛTdiv is the one of formula (3.21),
we can straightforwardly extend the analysis of Sec. III B to
the renormalized action ŜΛT . The anomaly functional is still
the sum of contributions of the forms (3.24) and (3.25).
Therefore, all local contributions to anomalies vanish from
two loops onwards.
Anomalies satisfy the Wess-Zumino consistency con-

ditions [14], which, in the Batalin-Vilkovisky formalism,
are consequences of a well-known property of the anti-
parentheses, stating that every functional X satisfies the
identity ðX; ðX;XÞÞ ¼ 0. Taking X ¼ Γ̂ΛT , we obtain

ðΓ̂ΛT; ÂΛTÞ ¼ 0: ð5:2Þ
At one loop we have

ð ~SΛT; Âð1Þ
ΛTÞ ¼ −ðΓ̂ð1Þ

ΛT; ð ~SΛT; ~SΛTÞÞ: ð5:3Þ
Since the antiparentheses of an evanescent functional, such

as ð ~SΛ; ~SΛÞ, with a convergent functional, such as Γ̂ð1Þ
ΛT , are

evanescent, we have

ð ~SΛT; Âð1Þ
ΛTÞ ¼ OðεÞ:

Using (5.1) we also find

ð ~SΛT; ~Að1Þ
ΛTnevÞ ¼ OðεÞ: ð5:4Þ

By formula (4.3), ~Að1Þ
ΛTnev is independent of the sources K.

Then, only the K-dependent terms of ~SΛT , which are
contained in ~SK and ~SevT , can contribute to the left-hand
side of (5.4). Taking the nonevanescent part of both sides,
we find

ð ~SK; ~Að1Þ
ΛTnevÞ ¼ 0: ð5:5Þ

A. Relation between the anomalies of the HD theory
and those of the basic theory

Now we relate the potential one-loop anomalies ~Að1Þ
ΛTnev

of the HD theory to the potential one-loop anomalies Að1Þ
b

of the basic theory, which are trivial by assumption (IV) of
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Sec. II C. We recall that the action Sdb of the basic theory
can be retrieved by taking the formal limit Λ− → ∞ of SdT .
In the same limit, the CD regularized action ST is equal to
the basic action Sdb plus the evanescent terms SevT
(calculated at Λ− ¼ ∞). The CDHD regularized action is
still obtained by adding SHD (which is Λ− independent), or
by taking the formal limit Λ− → ∞ of SΛT .
Once the formal limit Λ− → ∞ is taken, the one-loop

CDHD divergences must be subtracted just as they come,
rather than by redefining parameters (since the basic action
misses the parameters of the subset s−). For example, the

one-loop divergences ~Γð1Þ
ΛTdiv of the HD theory can still be

subtracted by formula (4.8), which, however, cannot be
seen as implied by the redefinitions (4.6) or (4.7). In this
section we understand that Λ− ¼ ∞ everywhere, so the
final theory is the one associated with the basic action.

Since ~Γð1Þ
ΛTdiv and ~Að1Þ

ΛTnev do not depend on Λ−, we do not
lose any relevant information.
The last expression of formula (4.3) tells us that ~Að1Þ

ΛTnev
is Λ independent in the nontilde parametrization, where we

denote it by Að1Þ
ΛTnev. Now we show that actually Að1Þ

ΛTnev is

equivalent to the one-loop anomalyAð1Þ
b of the basic theory.

To prove this fact, we need to study the Λ-divergent parts
and take the CDHD limit at one loop. In this subsection we
denote the terms that are Λ divergent in the CDHD limit as
“Ddiv,” to distinguish them from the poles in ε. Recall that
the Λ divergences can be nonevanescent or formally
evanescent, from the point of view of the dimensional
regularization, but not analytically evanescent. They are the
terms ε0Λ and δ̂ε0Λ of the list (2.57).
Consider ÂΛT ¼ ðΓ̂ΛT; Γ̂ΛTÞ and take the one-loop

CDHD-divergent part of this equation. Using (5.1) and

recalling that Að1Þ
ΛTnev is Λ independent, we get

1

2
Að1Þ

ΛTevjDdiv ¼ ðSΛT; Γ̂ð1Þ
ΛTÞjDdiv ¼ ðSΛT; Γ̂ð1Þ

ΛTDdivÞjDdiv
¼ ðST; Γ̂ð1Þ

ΛTDdivÞ þ ðSHD; Γ̂ð1Þ
ΛTDdivÞjDdiv; ð5:6Þ

where Γ̂ð1Þ
ΛTDdiv is the one-loop CDHD-divergent part of Γ̂ΛT .

Note that although Að1Þ
ΛTevjDdiv is evanescent from the point

of view of the CD regularization, it can be nontrivial,
because it can contain the terms δ̂ε0Λ of the list (2.57).
The one-loop powerlike divergences at Λ− ¼ ∞ have

the form

Λqδþ∂pðκΦÞnΦðκKÞnK ;

where q > 0, and δþ is a product of parameters of non-
negative dimensions. Recalling that ½κΦ� ≥ 0 and
½κK� ≥ 1=2, the exponent q is smaller than or equal to
d. Since T ≥ 2σ and SHD ¼ Oð1=ΛTþd−2σþ1Þ, by inequal-

ity (3.33), the antiparentheses ðSHD; Γ̂ð1Þ
ΛTDdivÞ, specialized to

the basic theory, tend to zero in the CDHD limit. Thus, (5.6)
gives

1

2
Að1Þ

ΛTevjDdiv ¼ ðST; Γ̂ð1Þ
ΛTDdivÞ: ð5:7Þ

The one-loop CDHD-renormalized action ŜfT of the
final theory associated with the basic action reads

ŜfT ¼ ŜΛT − Γ̂ð1Þ
ΛTDdiv − Γ̂ð1Þ

ΛTfin þOðℏ2Þ; ð5:8Þ

where Γ̂ð1Þ
ΛTfin denote arbitrary local counterterms that are

finite and nonevanescent in the CDHD limit [i.e. terms of
the type ε0Λ0 of the list (2.58)]. For the purposes of this
section, the generic subtraction (5.8) is enough. In Sec. VII
we will be more precise about the removal of divergences

(at Λ− < ∞), as well as the finite local counterterms Γ̂ð1Þ
ΛTfin

and the higher-order corrections Oðℏ2Þ. The anomaly is
then

AfT ¼ hðŜfT; ŜfTÞiŜfT ;

and its one-loop nonevanescent partAð1Þ
b is the quantity we

want. Denoting the sum Γ̂ð1Þ
ΛTDdiv þ Γ̂ð1Þ

ΛTfin by ΔΓ̂ð1Þ
ΛT and

using (5.1), we find

AfT ¼ hðŜΛT − ΔΓ̂ð1Þ
ΛT; ŜΛT − ΔΓ̂ð1Þ

ΛTÞiŜΛT−ΔΓ̂ð1Þ
ΛT
þOðℏ2Þ

¼ ÂΛT − 2ðSΛT;ΔΓ̂ð1Þ
ΛTÞ þOðℏ2Þ

¼ ðSΛT; SΛTÞ þAð1Þ
ΛTnev þAð1Þ

ΛTev − 2ðST;ΔΓ̂ð1Þ
ΛTÞ

− 2ðSHD;ΔΓ̂ð1Þ
ΛTÞ þOðℏ2Þ: ð5:9Þ

In these manipulations we have used the formula

ÂΛT ¼ hðŜΛT; ŜΛTÞiŜΛT ¼ hðŜΛT; ŜΛTÞiŜΛT−ΔΓ̂ð1Þ
ΛT
þOðℏ2Þ;

which holds because at one loop the vertices of ΔΓ̂ð1Þ
ΛT ,

which are already OðℏÞ, cannot contribute to one-particle
irreducible diagrams that contain one insertion of
ðŜΛT; ŜΛTÞ.
At one loop, using (5.7), we obtain

Að1Þ
fT ¼ Að1Þ

ΛTnev þAð1Þ
ΛTev −Að1Þ

ΛTevjDdiv − 2ðST; Γ̂ð1Þ
ΛTfinÞ

− 2ðSHD;ΔΓ̂ð1Þ
ΛTÞ: ð5:10Þ

Now we take the CDHD limit. Since ΔΓ̂ð1Þ
ΛT is Λ

independent, the antiparentheses ðSHD;ΔΓ̂ð1Þ
ΛTÞ vanish when

Λ → ∞. Moreover, Að1Þ
ΛTnev is independent of Λ. On the

other hand, Að1Þ
ΛTev −Að1Þ

ΛTevjDdiv vanishes in the CDHD
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limit, because the terms δ̂ε0Λ are subtracted away in the
difference. Since ST − Sdb ¼ OðεÞ at Λ− ¼ ∞, we can

replace ðST; Γ̂ð1Þ
ΛTfinÞ by ðSdb; Γ̂ð1Þ

ΛTfinÞ. Finally, using formula
(4.3) we get

Að1Þ
b ¼ Að1Þ

ΛTnev − 2ðSdb; Γ̂ð1Þ
ΛTfinÞ

¼
Z

ðκCÞIAIðκϕ0
g; λþÞ − 2ðSdb; Γ̂ð1Þ

ΛTfinÞ: ð5:11Þ

In particular, by formula (5.5) and ðSdb; SdbÞ ¼ 0, the one-

loop anomaly functional Að1Þ
b of the basic theory solves the

condition

ðSdb;Að1Þ
b Þ ¼ 0: ð5:12Þ

At this point, we are ready to use assumption (IV) of
Sec. II C, which tells us that there exists a local functional

XðΦ; KÞ such that Að1Þ
b ¼ ðSdb;XÞ. Using this piece of

information and (5.11), we obtain

Að1Þ
ΛTnev ¼

Z
ðκCÞIAIðκϕ0

g; λþÞ ¼ ðSdb;X 0Þ ð5:13Þ

for X 0 ¼ X þ 2Γ̂ð1Þ
ΛTfin.

We know that the functional Að1Þ
ΛTnev satisfies both (5.5)

and (5.13). To subtract it in a way that preserves the
structure of the HD theory, we need to know that, in
addition, we can find a K-independent X 0. This is ensured
by assumption (V) of Sec. II C, which tells us that there
exists a local functional of vanishing ghost number
χðκΦ; λþÞ, equal to the integral of a local function of
dimension d, such that

Að1Þ
ΛTnev ¼ ðSK; χÞ: ð5:14Þ

Since Að1Þ
ΛTnev is ϕm independent, we can assume that χ is

also ϕm independent. Indeed, recall that the transformations
RgðΦÞ of the fields Φ0

g are independent of ϕm and the
transformations RmðΦÞ of the fields ϕm are proportional to
ϕm. Write χðκΦÞ ¼ χ0ðκΦ0

gÞ þ χm, where χm ¼ 0 at
ϕm ¼ 0. Then, ðSK; χÞ ¼ ðSK; χ0Þ, as we can see by
calculating these expressions at ϕm ¼ 0. From now on
we drop χm and just write χ ¼ χðκΦ0

g; λþÞ.
Clearly, assumption (IV0) of Sec. II C is sufficient to

justify (5.14), with χ ¼ χðκΦ0
g; λþÞ, in alternative to

assumptions (IV) and (V).
Since χ is one loop, its κ structure agrees with the L ¼ 1

sector of formula (2.27).

B. Cancellation of anomalies in the HD theory

Now we go back to the HD theory. We can cancel
its potential anomalies by redefining the action. Indeed, if
we take

S̆ΛT ¼ ŜΛT −
1

2
χ ¼ SΛT − Γð1Þ

ΛTdiv −
1

2
χ ð5:15Þ

as the new action, we find

ĂΛT ¼ hðS̆ΛT; S̆ΛTÞiS̆ΛT ¼ ÂΛT − ðSΛT; χÞ þOðℏ2Þ:
ð5:16Þ

Since χ is K independent, only the K-dependent sector of
SΛT , which is made of SK and SevT , can contribute to
ðSΛT; χÞ. Taking the one-loop nonevanescent part of (5.16),
and using (5.1) and (5.14), we get

Ăð1Þ
ΛTnev ¼ Að1Þ

ΛTnev − ðSK; χÞ ¼ 0: ð5:17Þ

The new Γ functional Γ̆ΛT defined by the action S̆ΛT of
formula (5.15) is still convergent to all orders. Indeed, it is
convergent at one loop and, once we switch to the tilde
parametrization, the functional χ is written as a functional
~χð~κ ~Φ0

g; ~λþÞ. This fact, together with formulas (3.16) and
(3.21), ensures that the counterterms keep the form (3.19),
which forbids divergences beyond one loop. The anomaly
functional ĂΛT ¼ ðΓ̆ΛT; Γ̆ΛTÞ is also convergent to all

orders. Since its one-loop contribution Ăð1Þ
ΛT has no diver-

gent part and, by formula (5.17), no nonevanescent part, it

is just evanescent: Ăð1Þ
ΛT ¼ OðεÞ. Including the tree-level

contribution ðSΛT; SΛTÞ, which is also OðεÞ, we can write

ĂΛT ¼ OðεÞ þOðℏ2Þ: ð5:18Þ

The next step is to prove the anomaly cancellation to all
orders in the higher-derivative theory, which we do in the
next section. After that, we complete the CDHD limit by
renormalizing the Λ divergences.

VI. MANIFEST ADLER-BARDEEN THEOREM
IN THE HD THEORY

In this section we prove that, from two loops onwards,
the gauge anomalies manifestly vanish in the HD theory.
We have to study the diagrams with two or more loops,
with one insertion of

ET ≡ ðS̆ΛT; S̆ΛTÞ ¼ ðSΛT; SΛTÞ −Að1Þ
ΛTnev

−Að1Þ
ΛTdivev − ðSevT; χÞ; ð6:1Þ

calculated with the action (5.15). To derive the right-hand
side of (6.1), we have used the fact that Γð1Þ

ΛTdiv and χ are K
independent, then applied formula (4.4), and replaced

ðSK; χÞ with Að1Þ
ΛTnev. The action S̆ΛT has the structure

(3.16) plus one-loop corrections of the form Fð~κ ~Φ0
g; ~λþÞ.

Therefore, its counterterms have the structure (3.19).
On the other hand, ET has the structure (3.22) plus (possibly
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nonevanescent and divergent-evanescent) one-loop correc-
tions that have the same form times ~κ2, such that V still
vanishes at ~ς ¼ 0. This fact implies that ĂΛT ¼ hETi is still
the sum of contributions that have the structures (3.24)
and (3.25), with VL ¼ 0 at ~ς ¼ 0.
The functional ET is made of the tree-level local

evanescent functional ðSΛT; SΛTÞ, plus one-loop local
corrections. Formula (5.18) tells us that such corrections
make the average hETi evanescent at one loop. Then, the
theory of evanescent operators [4,10] tells us that the two-
loop nonevanescent part of hETi is local. Briefly, the reason
is as follows. Writing ∂̂μ ¼ η̂μν∂ν and p̂μ ¼ η̂μνpν every-
where inside ðSΛT; SΛTÞ, we can express each vertex of
ðSΛT; SΛTÞ in a factorized form T kδ̂k, where δ̂k denotes a
formally evanescent part, made of tensors ημ̂ ν̂ and other
structures that stay outside of the diagrams, while T k is a
nonevanescent local functional and collects the momenta.
The average hT kδ̂ki is the sum of the one-particle irre-
ducible diagrams G that contain one insertion of T kδ̂k.
Leaving δ̂k outside the diagrams, consider the average

hT ki, and let T ð1Þ
kdiv denote its one-loop divergent part.

Using (4.1) and (4.2), we find

X
k

T ð1Þ
kdivδ̂k ¼ Að1Þ

ΛTnev þAð1Þ
ΛTdivev þ Lð1Þ

ev ;

where Lð1Þ
ev are unspecified local evanescences. The theo-

rem on the locality of counterterms ensures that the

divergent part of hT k − T ð1Þ
kdivi is local at two loops.

Accordingly, the nonevanescent and divergent parts of

hETi ¼
�X

k

ðT k − T ð1Þ
kdivÞδ̂k þ Lð1Þ

ev − ðSevT; χÞ
	

are also local at two loops. In Sec. III B we proved that the
local functionals that have the structures (3.24) and (3.25)
vanish from two loops onwards, by simple power counting.
Therefore, hETi is evanescent at two loops, which means
that formula (5.18) can be improved by one order and
turned into

ĂΛT ¼ OðεÞ þOðℏ3Þ:
The argument can be iterated to all orders, because if

an evanescent operator E is renormalized, and equipped
with finite local subtractions such that its average hEi is
evanescent up to and including l loops, then the Oðℏlþ1Þ
nonevanescent and divergent parts hEiðlþ1Þ

nonev and hEiðlþ1Þ
div of

hEi must be local. In the case we are considering here,

which is E ¼ ET , hEiðlþ1Þ
nonev and hEiðlþ1Þ

div must also have the
structures (3.24) and (3.25), but then they vanish.
We infer that the anomaly functional ĂΛT is evanescent

to all orders, that is to say,

ĂΛT ¼ ðΓ̆ΛT; Γ̆ΛTÞ ¼ OðεÞ; ð6:2Þ
which proves the manifest Adler-Bardeen theorem for the
HD theory SΛT. Therefore, the HD theory is free of gauge
anomalies to all orders in the limit D → d.
This concludes the proof that the HD theory is super-

renormalizable and anomaly free to all orders. We stress
again that only the truncation T1 of the action SΛ is
necessary, and the result (6.2) holds to all orders in ℏ and
for arbitrarily large powers of 1=Λ−. The truncation T2 of
Sec. II B is important for the second part of the proof,
which is worked out in the next section.

VII. ALMOST MANIFEST ADLER-BARDEEN
THEOREM IN THE FINAL THEORY

We are finally ready to prove the cancellation of gauge
anomalies to all orders in the final theory. The task consists
of studying the Λ dependence of the HD theory, for Λ large,
subtract the Λ divergences, and complete the CDHD limit,
according to the rules explained in Sec. II D. The sub-
traction of the Λ divergences is done inductively and
preserves the master equation up to OðεÞ terms that vanish
in the CDHD limit.
Before beginning the proof, let us recall that our

approach uses two regularizations, the chiral dimensional
one, with regularizing parameter ε, and the higher-deriva-
tive one, with energy scale Λ. So far, we have taken care of
the renormalization and the cancellation of anomalies to all
orders at the CD level. Now we consider the Λ divergences.
As far as those are concerned, once we have adjusted the
orders ℏn, k ≤ n, we can concentrate on the order ℏnþ1 and
neglect higher-order corrections, as is done in most
common renormalization procedures. However, at each
step of the subtraction of the Λ divergences, we must
preserve the properties gained so far with respect to the CD
renormalization, and those must hold to all orders in ℏ,
like Eq. (6.2).
Because of the truncation T2, we say that an action Sk is

CDHD renormalized up to and including k loops, when the
l-loop contributions to its Γ functional Γk are CDHD
convergent up to oð1=ΛT−2lσ

− Þ, for 0 ≤ l ≤ k.
We work inductively in the number n of loops. We

assume that for every k ≤ n < l̄, where l̄ is given by
(2.33), there exists an action SkT ¼ SΛT þOðℏÞ, obtained
from SΛT by means of ε-convergent, possibly Λ-divergent
canonical transformations and redefinitions of parameters,
with the following properties: we can ε-renormalize SkT at
Λ fixed, to all orders in ℏ, and fine-tune its finite local
counterterms, so that the so-renormalized action SkRT is
also CDHD renormalized up to and including k loops, and
the renormalized Γ functional ΓkRT associated with SkRT is
free of gauge anomalies to all orders in ℏ at Λ fixed, i.e.

ðΓkRT;ΓkRTÞ ¼ hðSkRT; SkRTÞiSkRT ¼ OðεÞ; k ≤ n:

ð7:1Þ
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At n ¼ 0 we take S0T ¼ SΛT , so S0RT ¼ S̆ΛT . Clearly, Γ0RT

coincides with Γ̆ΛT and satisfies (6.2).
Note that, by assumption, ΓkRT has a regular limit for

ε → 0 at Λ fixed, and not just within the truncation T2, but
also beyond. More precisely, ΓkRT is a sum of l-loop
contributions of the form (2.58) up to oð1=ΛT−2lσ

− Þ for 0 ≤
l ≤ k (because it is CDHD convergent in that sector), and a
sum of terms (2.56) everywhere else. Instead, ðΓkRT;ΓkRTÞ
is a sum of l-loop contributions (2.58) except ε0Λ0 and
ε0=Λ up to oð1=ΛT−2lσ

− Þ for 0 ≤ l ≤ k, plus terms (2.56)
except ε0 everywhere else. Note that assumption (7.1) also
holds beyond the truncation T2 [where the “OðεÞ” may
contain terms δ̂ε0Λ].
The theorem on the locality of counterterms ensures that

the ðnþ 1Þ-loop CDHD divergent part Γðnþ1Þ
nRTdiv of ΓnRT is a

local functional, up to oð1=ΛT−2nσ
− Þ. Since ΓnRT has a

regular limit for ε → 0 at Λ fixed, Γðnþ1Þ
nRTdiv contains only

divergences in Λ, but not in ε. Precisely, we can write

Γðnþ1Þ
nRTdiv ¼ Γðnþ1Þ

nRTdiv nev þ Γðnþ1Þ
nRTdiv fev þ oð1=ΛT−2ðnþ1Þσ

− Þ;
ð7:2Þ

where Γðnþ1Þ
nRTdiv nev and Γðnþ1Þ

nRTdiv fev collect the terms ε0Λ and
δ̂ε0Λ of the list (2.57), respectively.
Now, we take the ðnþ 1Þ-loop CDHD-divergent non-

ε-evanescent part of Eq. (7.1) for k ¼ n, within the
truncation, which means the terms of types ε0Λ of the list
(2.57), up to oð1=ΛT−2ðnþ1Þσ

− Þ. Expand ΓnRT in powers of ℏ,

by writing it as
P∞

k¼0 ℏ
kΓðkÞ

nRT . Observe that the contribu-

tions ðΓðkÞ
nRT;Γ

ðnþ1−kÞ
nRT Þ with 0 < k < nþ 1 can be dropped,

because they are convergent in the CDHD limit, up to

oð1=ΛT−2ðnþ1Þσ
− Þ. We remain with 2ðΓð0Þ

nRT;Γ
ðnþ1Þ
nRT Þ ¼

2ðSΛT;Γðnþ1Þ
nRT Þ. Taking the Λ divergent part of this expres-

sion, and recalling that, by formula (3.30), ðSHD;Γðnþ1Þ
nRTdivÞ

tends to zero for Λ → ∞ within the truncation, we get

2ðST;Γðnþ1Þ
nRTdivÞ þ oð1=ΛT−2ðnþ1Þσ

− Þ. Taking the non-ε-evan-
escent part and recalling that ST is equal to SdT þ SevT ,
where SdT is non-ε-evanescent, the left-hand side of (7.1) at

k ¼ n gives 2ðSdT;Γðnþ1Þ
nRTdiv nevÞ þ oð1=ΛT−2ðnþ1Þσ

− Þ. Noting
that the CDHD-divergent part of the right-hand side is just
made of terms δ̂ε0Λ, within the truncation, we obtain

ðSdT;Γðnþ1Þ
nRTdiv nevÞ ¼ oð1=ΛT−2ðnþ1Þσ

− Þ: ð7:3Þ

A. Solution of the cohomological problem

We work out the solution of the cohomological problem
(7.3) by applying the assumption (III) of Sec. II C. Let us
imagine that, instead of working with the classical action

Sc, we work with its extension S
̬

c, which includes the

invariants G
̬

i that break the nonanomalous accidental

symmetries belonging to the group Gnas. Similarly, we

extend Sd to S
̬

d, Sev to S
̬

ev, and S ¼ Sd þ Sev to

S
̬
¼ S

̬

d þ S
̬

ev. Every extended functional reduces to the

nonextended one when we set λ
̬
¼ η

̬ ¼ 0, where λ
̬
and η

̬
are

the extra parameters contained in S
̬

c and S
̬

ev, respectively.
There is no need to extend the higher-derivative sector SHD.
If we repeat the operations that lead to (7.3), we obtain an

extended, nonevanescent local functional Γ
̬ ðnþ1Þ
nRTdiv nev that

satisfies ðS
̬

dT;Γ
̬ ðnþ1Þ
nRTdiv nevÞ ¼ oð1=ΛT−2ðnþ1Þσ

− Þ. Taking the
limit Λ− → ∞ of this equation and recalling that T ≥
2ðnþ 1Þσ (because n < l̄), we get

ðS
̬

db; V
̬
0Þ ¼ 0;

where V
̬
0 denotes the Λ− → ∞ limit of Γ

̬ ðnþ1Þ
nRTdiv nev.

Assumption (III) tells us that the action S
̬

db satisfies the
extended Kluberg-Stern–Zuber assumption, and the group
Gnas is compact. Thus, there exist constants ai0 and bi0,

which depend on the parameters of V
̬
0, and a local

functional Y
̬
0 such that

V
̬
0 ¼

X
i

ai0Gi þ
X
i

bi0G
̬

i þ ðS
̬

db; Y
̬
0Þ:

Recall that in Sec. II B we showed that only integer and
semi-integer powers of 1=Λ− can appear. Define

X
̬
1 ¼ Λ1=2

−

�
Γ
̬ ðnþ1Þ
nRTdiv nev −

X
i

ai0Gi −
X
i

bi0G
̬

i − ðS
̬

dT; Y
̬
0Þ
�
:

The local functional X
̬
1 is analytic in 1=Λ1=2

− , because

Γ
̬ ðnþ1Þ
nRTdiv nev ¼V

̬
0þOð1=Λ1=2

− Þ and S
̬

dT ¼ S
̬

db þOð1=Λ1=2
− Þ.

Moreover, since ðS
̬

dT;GiÞ ¼ ðS
̬

dT;G
̬

iÞ ¼ ðS
̬

dT; S
̬

dTÞ ¼ 0,

X
̬
1 satisfies ðS

̬

dT; X
̬
1Þ ¼ oð1=ΛT−2ðnþ1Þσ−1=2

− Þ. Then we

repeat the argument just given with Γ
̬ ðnþ1Þ
nRTdiv nev replaced

by X
̬
1, and continue like this till we can. For

0 ≤ m ≤ 2T − 4ðnþ 1Þσ þ 1, we find constants aim−1
and bim−1, depending on the parameters, and local func-

tionals Y
̬
m−1 such that the combinations

X
̬
m ¼ Λ1=2

−

�
X
̬
m−1 −

X
i

aim−1Gi

−
X
i

bim−1G
̬

i − ðS
̬

dT; Y
̬
m−1Þ

�

are analytic in 1=Λ1=2
− and satisfy ðS

̬

dT; X
̬
mÞ ¼

oð1=ΛT−2ðnþ1Þσ−m=2
− Þ, with X

̬
0 ¼ Γ

̬ ðnþ1Þ
nRTdiv nev. In the end,

there exist constants Δλ0ni, Δλ
̬ 0
ni depending on the param-

eters, and local functionals χ
̬
nT ,
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Δλ0ni ¼
X2T−4ðnþ1Þσ

m¼0

aim
Λm=2
−

; Δλ
̬ 0
ni ¼

X2T−4ðnþ1Þσ

m¼0

bim
Λm=2
−

;

χ
̬
nT ¼

X2T−4ðnþ1Þσ

m¼0

Y
̬
m

Λm=2
−

; ð7:4Þ

such that

Γ
̬ ðnþ1Þ
nRTdiv nev ¼

X
i

Δλ0niGi þ
X
i

Δλ
̬ 0
niG

̬

i þ ðS
̬

dT; χ
̬
nTÞ

þ oð1=ΛT−2ðnþ1Þσ
− Þ: ð7:5Þ

Clearly, Δλ0ni, Δλ
̬ 0
ni, and χ

̬
nT are of order ℏnþ1. If we set

λ
̬
¼ η

̬ ¼ 0 in Eq. (7.5), we obtain

Γðnþ1Þ
nRTdiv nev ¼

X
i

Δ̄ λniGi þ
X
i

Δλ
̬

niG
̬

i þ ðSdT; χ̄nTÞ

þ oð1=ΛT−2ðnþ1Þσ
− Þ; ð7:6Þ

where Δ̄λni, Δλ
̬

ni, and χ̄nT are equal to Δλ0ni, Δλ
̬ 0
ni, and χ

̬
nT

at λ
̬
¼ η

̬ ¼ 0. However, Γðnþ1Þ
nRTdiv nev is invariant under the

nonanomalous accidental symmetries that belong to the

group Gnas, while the functionals G
̬

i are not. Since Gnas is
assumed to be compact, we can average on it. When we do

that, the invariants G
̬

i disappear (or turn into linear
combinations of Gi) and χ̄nT turns into some χnT . We
finally obtain

Γðnþ1Þ
nRTdiv nev ¼

X
i

ΔλniGi þ ðSdT; χnTÞ þ oð1=ΛT−2ðnþ1Þσ
− Þ;

ð7:7Þ
for possibly new constants Δλni of order ℏnþ1 that depend
on the parameters.
The arguments of this subsection, which lead from

formula (7.3) to formula (7.7), are purely algebraic and
can be applied in more general contexts. For example,
taking T → ∞, formula (7.5) proves that the action Sd is
also cohomologically complete. Instead, formula (7.7) at
T ¼ ∞ proves that Sd satisfies what we can call the
physical Kluberg-Stern–Zuber assumption, which states
that if a nonevanescent local functional Γdiv solves
ðSd;ΓdivÞ ¼ 0 and is generated by renormalization as a
local divergent part of the Γ functional, then there exists
constants ai and a local functional Y of ghost number −1
such that

Γdiv ¼
X
i

aiGi þ ðSd; YÞ: ð7:8Þ

Indeed, we can always lift the discussion to the extended

theory S
̬

d, which gives an extended functional Γ
̬
div that

solves ðS
̬

d;Γ
̬

divÞ ¼ 0. Then Γ
̬

div can be expanded like the

right-hand side of (7.5) at T ¼ ∞. When we go back down
to Sd, we find (7.8).

B. Subtraction of divergences

Now we work out the operations that subtract the
divergences Γðnþ1Þ

nRTdiv within the truncation. We recall from
Sec. II B that the truncated classical action ScT contains
enough independent parameters λi to subtract the diver-
gences proportional to Gi of (7.7) by means of λi redefi-
nitions, within the truncation T2. If we make the canonical
transformation generated by

FnðΦ; K0Þ ¼
Z

ΦαK0
α − χnTðΦ; K0Þ ð7:9Þ

and the redefinitions

λi → λi − Δλni ð7:10Þ
on SdT , we get

SdT → SdT −
X
i

ΔλniGi − ðSdT; χnTÞ þOðℏnþ2Þ: ð7:11Þ

Observe that the operations (7.9) and (7.10) are indepen-

dent of ε and divergent in Λ, because so is Γðnþ1Þ
nRTdiv nev.

Formula (7.11) is equivalent to

SdT → SdT − Γðnþ1Þ
nRTdiv nev þOðℏnþ2Þ

þOðℏnþ1Þoð1=ΛT−2ðnþ1Þσ
− Þ;

which shows that we can fully subtract the ε-nonevanescent

Λ divergences Γðnþ1Þ
nRTdiv nev, by making the operations (7.9)

and (7.10) on SdT , up to Oðℏnþ1Þoð1=ΛT−2ðnþ1Þσ
− Þ.

However, the truncated classical action we have been
using is not SdT , nor ST ¼ SdT þ SevT, but SnT , whose
classical limit is SΛT , so we must inquire what happens
when we make the operations (7.9) and (7.10) on SΛT .
Let us begin from ST ¼ SdT þ SevT . Since the operations

(7.9) and (7.10) are independent of ε and divergent in Λ,
when we apply them to SevT we generate new formally
ε-evanescent, Λ-divergent terms of order ℏnþ1, which

change Γðnþ1Þ
nRTdiv fev [check formula (7.2)] into some new

Γ0ðnþ1Þ
nRTdiv fev, plus Oðℏnþ2Þ. The divergences Γ0ðnþ1Þ

nRTdiv fev are
not constrained by gauge invariance, but just locality,
weighted power counting, and the nonanomalous global
symmetries of the theory. In Sec. II B we remarked that,
within the truncation T2, that is to say, up to
oð1=ΛT−2ðnþ1Þσ

− Þ, they can be subtracted by redefining
the parameters ς and η of SevT .
Let Rn denote the set of operations made by the

canonical transformation (7.9), the λ redefinitions (7.10),

and the ς and η redefinitions that subtract Γ0ðnþ1Þ
nRTdiv fev. We

have

DAMIANO ANSELMI PHYSICAL REVIEW D 91, 105016 (2015)

105016-28



RnST ¼ ST − Γðnþ1Þ
nRTdiv þOðℏnþ2Þ

þOðℏnþ1Þoð1=ΛT−2ðnþ1Þσ
− Þ: ð7:12Þ

It remains to checkwhat happens when the operationsRn
act on SHD ¼ SΛT − ST . Note that Rn are equal to the
identity plus Oðℏnþ1Þ, and they are independent of ε and
divergent in Λ. Moreover, by formula (7.4) and the argu-
ments of Sec. III C, they do not involve powers of Λ greater
than T þ d − 2σ, at the order Oðℏnþ1Þ. Recalling that the
difference SHD is Oð1=ΛTþd−2σþ1Þ, we have that ðRn −
1ÞSHD vanishes in the CDHD limit to the order Oðℏnþ1Þ.
Define

Snþ1T ¼ RnSnT ¼ Rn∘ � � � ∘R0SΛT ≡ UnSΛT: ð7:13Þ
Using (7.12), we find

Snþ1T ¼ SnT þ ðRn − 1ÞSΛT þOðℏnþ2Þ
¼ SnT þ ðRn − 1ÞST þ ðRn − 1ÞSHD þOðℏnþ2Þ
¼ SnT − Γðnþ1Þ

nRTdiv þ ðRn − 1ÞSHD þOðℏnþ2Þ
þOðℏnþ1Þoð1=ΛT−2ðnþ1Þσ

− Þ: ð7:14Þ
Thus, the operations Rn do renormalize the Λ divergences
to the order nþ 1, as we want.
The operations Un ¼ Rn∘ � � � ∘R0 are combinations of

local canonical transformations and redefinitions of param-
eters. They act on the action SΛT , and, from the point of
view of the HD theory, where Λ is fixed, they are
convergent. In general, a canonical transformation may
destroy the nice properties of the HD theory, such as its
manifest superrenormalizability, its structure in the tilde
parametrization, and the manifest cancellation of its gauge
anomalies. To overcome these problems, we must re-
renormalize the ε divergences and recancel the gauge
anomalies after making the operations Un. We can achieve
these goals with the help of the theorem proved in Ref. [17].

C. Renormalization and almost manifest
Adler-Bardeen theorem

Now we must renormalize Snþ1T at Λ fixed. We use the
theorem proved in Ref. [17], which ensures that if we make
a convergent local canonical transformation [equal to the
identity transformation plus OðθÞ, where θ is some expan-
sion parameter] on the action S of a theory that is free of
gauge anomalies, it is possible to re-renormalize the
divergences of the transformed theory and re-fine-tune
its finite local counterterms, continuously in θ, so as to
preserve the cancellation of gauge anomalies to all orders.
Clearly, we can achieve the same goal if we combine
canonical transformations and redefinitions of parameters,
as long as they are both convergent.
Before proceeding, let us recapitulate the situation. The

HD theory has the action SΛT , which is superrenormaliz-
able and has a particularly nice structure, once we use the

tilde parametrization. Its renormalized action is the action
S̆ΛT of formula (5.15), which contains both the counter-

terms Γð1Þ
ΛTdiv that subtract the ε-divergences at Λ fixed, and

the finite local counterterms −χ=2 that subtract the trivial
anomalous terms. Formula (6.2) ensures that Γ̆ΛT is free of
gauge anomalies to all orders.
Now we need to make the operations Un on the action

SΛT . From the point of view of the HD theory, where Λ is
fixed, those operations are completely convergent, because
they are convergent in ε (although possibly divergent in Λ).
However, the canonical transformations can ruin the
manifest superrenormalizability of SΛT , as well as the nice
structure exhibited by SΛT in the tilde parametrization.
Because of this, the arguments that allowed us to prove the
cancellation of gauge anomalies in the HD theory cannot be
used after the transformations. Nevertheless, we expect that
the superrenormalizability of SΛT and the cancellation of its
gauge anomalies survive in some nonmanifest form.
What happens is that, after the operations Un, the

(nonlinear part of the) canonical transformation generates
new poles in ε, and not just at one loop, but at each order of
the perturbative expansion. Then, the first thing to do is re-
renormalize the transformed HD theory at Λ fixed, to
remove the new divergences. Moreover, the cancellation of
gauge anomalies, which is in general ruined by the
operations Un, can be enforced again by re-fine-tuning
all sorts of finite local counterterms. The theorem proved in
Ref. [17] ensures that this goal can indeed be achieved, to
all orders in ℏ and 1=Λ−. In these arguments, the truncation
T2 plays no role.
We know that each Rn is equal to the identity plus

Oðℏnþ1Þ, and so is the canonical transformation (7.9). If we
replace the factor ℏnþ1 by a parameter θn, we can define
operationsRnðθnÞ that are equal to the identity plusOðθnÞ.
Then we also have operations Unðθ1;…; θnÞ, which we
sometimes denote for brevity by UnðθÞ. Clearly,
Un−1ðθ1;…; θn−1Þ ¼ Unðθ1;…; θn−1; 0Þ. For a while, we
work on the actions S̄kþ1T ≡ UkðθÞSΛT at Λ fixed, for
0 ≤ k ≤ n. Applying the results of Ref. [17] to the
operations UkðθÞ, we know that we can ε-renormalize
the actions S̄kþ1T at Λ fixed and fine-tune the finite local
counterterms, continuously in θ, so as to preserve the
cancellation of gauge anomalies for arbitrary values of each
θ. Call the so-renormalized actions S̄kþ1RT and their Γ
functionals Γ̄kþ1RT . We have

ðΓ̄kþ1RT; Γ̄kþ1RTÞ ¼ OðεÞ; k ≤ n: ð7:15Þ
Observe that

S̄kþ1RT ¼ S̄kþ1T þ S̆ΛT − SΛT þOðℏÞOðθÞ; k ≤ n:

Indeed, S̆ΛT − SΛT are the counterterms that ε-renormalize
the theory and cancel the gauge anomalies at θ ¼ 0. Every
other counterterm must be both OðℏÞ and OðθÞ. Thus,
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S̄kþ1RT − S̄kRT ¼ S̄kþ1T − S̄kT þOðℏÞOðθkÞ; k ≤ n:

ð7:16Þ

We have replaced OðℏÞOðθÞ with OðℏÞOðθkÞ in this
formula, because at θk ¼ 0 we have S̄kþ1RT ¼ S̄kRT
and S̄kþ1T ¼ S̄kT .
By formula (7.13), when we replace θi with ℏiþ1,

i ¼ 1;…; k, inside S̄kþ1T , we obtain the actions Skþ1T ,
k ≤ n. When we replace θi with ℏiþ1 inside S̄kþ1RT , we
obtain the renormalized actions Skþ1RT . The actions Skþ1T
and Skþ1RT with k < n are those that are assumed to satisfy
the inductive hypotheses mentioned at the beginning of this
section. We must show that the actions

Snþ1T ¼ S̄nþ1T jθi¼ℏiþ1 ; Snþ1RT ¼ S̄nþ1RT jθi¼ℏiþ1 ;

ð7:17Þ

satisfy analogous properties, that is to say, (a) Snþ1RT is
ε-renormalized to all orders in ℏ at Λ fixed; (b) it is CDHD
renormalized up to and including nþ 1 loops; and (c) the Γ
functional Γnþ1RT associated with Snþ1RT is free of gauge
anomalies to all orders in ℏ at Λ fixed.
The action Snþ1RT defined by formula (7.17) is

ε-renormalized to all orders at Λ fixed, because so is the
action S̄nþ1RT , by construction. To show that Snþ1RT is
properly CDHD renormalized, we use, in the order, (7.17),
(7.16), and (7.14). We obtain

Snþ1RT − SnRT ¼ S̄nþ1RT jθi¼ℏiþ1 − S̄nRT jθi¼ℏiþ1

¼ S̄nþ1T jθi¼ℏiþ1 − S̄nT jθi¼ℏiþ1 þOðℏnþ2Þ
¼ Snþ1T − SnT þOðℏnþ2Þ
¼ −Γðnþ1Þ

nRTdiv þ ðRn − 1ÞSHD
þOðℏnþ2Þ þOðℏnþ1Þoð1=ΛT−2ðnþ1Þσ

− Þ:
ð7:18Þ

By the inductive assumption, the action SnRT is CDHD
renormalized up to and including n loops, which means that
the l-loop contributions to ΓnRT are CDHD convergent up
to oð1=ΛT−2lσ

− Þ, for 0 ≤ l ≤ n. Moreover, Γnþ1RT and ΓnRT

coincide up to Oðℏnþ1Þ, as well as Snþ1RT and SnRT . Now,
Γnþ1RT¼ΓnRTþSnþ1RT−SnRTþOðℏnþ2Þ, and ðRn−1ÞSHD
vanishes in the CDHD limit, up to Oðℏnþ2Þ. Thus, formula
(7.18) proves that the l-loop contributions to Γnþ1RT are
CDHD convergent up to oð1=ΛT−2lσ

− Þ, for 0 ≤ l ≤ nþ 1,
which means that Γnþ1RT is CDHD renormalized up to and
including nþ 1 loops.
The last thing to do is show that Γnþ1RT is free of gauge

anomalies. This result follows from formula (7.15) for
k ¼ n. Indeed, by (7.17), when we replace θi with ℏiþ1,
i ¼ 1;…; n, the functional Γ̄nþ1RT turns into Γnþ1RT .
We finally obtain

ðΓnþ1RT;Γnþ1RTÞ ¼ OðεÞ; ð7:19Þ
which means that we have successfully promoted the
inductive hypotheses to nþ 1 loops.
Iterating the argument, we can make it work till it makes

sense, which means for n ¼ 0;…; l̄ − 1, where l̄ is given
by formula (2.33) for ½κ� < 0 and∞ for ½κ� ≥ 0. Finally, we
obtain

ART ≡ ðΓRT;ΓRTÞ ¼ OðεÞ; ð7:20Þ
where ΓRT ¼ Γl̄RT . Observe that the right-hand side of
(7.20) tends to zero everywhere at Λ fixed. However, only
within the truncation T2 is Γl̄RT convergent in the CDHD
limit. Thus, the l-loop contributions to the right-hand
side vanish in the CDHD limit up to oð1=ΛT−2lσ

− Þ, for
0 ≤ l ≤ l̄. In other words, ΓRT is free of gauge anomalies
within the truncation T2. This proves the almost manifest
Adler-Bardeen theorem.

D. Adler-Bardeen theorem

The result just achieved is also sufficient to prove the
Adler-Bardeen theorem, i.e. statement 1 of the
Introduction. So far, we have suppressed the oð1=ΛT

−Þ
terms of the action S and its HD regularized extension SΛ,
according to the prescription T1 of Sec. II B. Now we
restore those terms, all of which fall outside the truncation
T2. Clearly, the results we have obtained still hold within
the truncation T2. The CD, HD, and CDHD regularizations
are still well defined, because the divergences not cured by
the HD technique are cured by the dimensional one. Note
that, however, the HD theory SΛ is not superrenormaliz-
able, but nonrenormalizable.
Consider the contributions to the gauge anomalies that

lie outside the truncation T, and classify them according to
the number of loops and the power of 1=Λ−. Let A>T
denote any finite class of them. Clearly, the terms of A>T
lie inside some other truncation T 0 > T, as long as T 0 is
sufficiently large. Now, different truncations just define
different subtraction schemes (by means of different
higher-derivative theories and different CDHD regulariza-
tions), and different subtraction schemes differ by finite
local counterterms. Let sT and s0T denote the schemes
defined by the truncations T and T 0, respectively. We can
assume that they give exactly the same results (which
means that ΓRT and ΓRT 0 coincide) within the truncation T,
up to corrections ECDHD that vanish in the CDHD limit. We
prove this fact by proceeding inductively. Assume that

ΓRT 0 ¼ ΓRT þOðℏnþ1Þ þ
Xn
k¼0

OðℏkÞoð1=ΛT−2kσ
− Þ þ ECDHD

ð7:21Þ

till some order n < l̄. The assumption is certainly true for
n ¼ 0. Then, the CDHD nonevanescent ðnþ 1Þ-loop
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contributions to ΓRT and ΓRT 0 differ by finite local terms
ΔSnþ1, up to oð1=ΛT−2ðnþ1Þσ

− Þ, which means

ΓRT 0 ¼ ΓRT þ ΔSnþ1 þOðℏnþ2Þ

þ
Xnþ1

k¼0

OðℏkÞoð1=ΛT−2kσ
− Þ þ ECDHD: ð7:22Þ

Both ΓRT and ΓRT 0 satisfy the almost manifest Adler-
Bardeen theorem, that is to say, formula (7.20) and its T 0
version. The right-hand sides of (7.20) and its T 0 version
vanish in the CDHD limit, within the respective trunca-
tions, because ΓRT and ΓRT 0 are convergent there. Thus,

ART ¼ ðΓRT;ΓRTÞ ¼ ECDHD þOðℏl̄þ1Þ

þ
Xl̄
k¼0

OðℏkÞoð1=ΛT−2kσ
− Þ;

ART 0 ¼ ðΓRT 0 ;ΓRT 0 Þ ¼ ECDHD þOðℏl̄0þ1Þ

þ
Xl̄0
k¼0

OðℏkÞoð1=ΛT 0−2kσ
− Þ: ð7:23Þ

Using (7.22) inside these equations, and taking the CDHD
convergent ðnþ 1Þ-loop contributions to the difference, we
obtain

ðSdT;ΔSnþ1Þ ¼ oð1=ΛT−2ðnþ1Þσ
− Þ;

which is a cohomological problem analogous to (7.3).
It can be solved in the same way, and the solution is the
analogue of (7.7), i.e.

ΔSnþ1 ¼
X
i

Δ~λniGi þ ðSdT;Δ~χnTÞ þ oð1=ΛT−2ðnþ1Þσ
− Þ;

where Δ~λni are convergent constants and Δ~χnT is a
convergent local functional. At this point, we can attach
Δ~λni and Δ~χnT to the constants ΔλniT 0 and the functional
χnT 0 that subtract the ðnþ 1Þ-loop divergences belonging to
the truncation T 0, given by the T 0 version of formula (7.7).
After that, we can go through the T 0 versions of the
arguments that lead from formula (7.7) to formula (7.19)
with no difficulty. So doing, we promote assumption (7.21)
to the order nþ 1 and iterate the procedure till we get

ΓRT 0 ¼ ΓRT þOðℏl̄þ1Þ þ
Xl̄
k¼0

OðℏkÞoð1=ΛT−2kσ
− Þ

þ ECDHD:

Once this is done, the subtraction schemes sT and s0T give
the same results within the truncation T, up to ECDHD.
Now we compare sT and s0T in between the truncations T

and T 0. First, we extend the subtraction scheme sT in a

generic way beyond the truncation T and within the
truncation T 0, and renormalize the action SΛT accordingly.
Then, we adapt the extended scheme order by order to
make it give the same results as the scheme sT 0 within the
truncation T 0, up to ECDHD. Let sn;TT 0 denote the extended
scheme adapted up to and including n < l̄0 loops.
Precisely, we assume that sn;TT 0 gives

ΓRT 0 ¼ ΓRT þOnþ1 þ
Xn
k¼0

OðℏkÞoð1=ΛT 0−2kσ
− Þ þ ECDHD;

ð7:24Þ
where

Onþ1 ¼ Oðℏnþ1Þ for n ≥ l̄;

Onþ1 ¼ Oðℏl̄þ1Þ þ
Xl̄

k¼nþ1

OðℏkÞoð1=ΛT−2kσ
− Þ for n < l̄:

Again, this assumption is satisfied at n ¼ 0. Then, within
the truncation T 0 the ðnþ 1Þ-loop contributions to ΓRT 0 and
ΓRT differ by finite local terms, which we call ΔSnþ1;T 0 , up
to ECDHD:

ΓRT 0 ¼ ΓRT þ ΔSnþ1;T 0 þOnþ2 þ
Xnþ1

k¼0

OðℏkÞoð1=ΛT 0−2kσ
− Þ

þ ECDHD:

Note that for n < l̄, ΔSnþ1;T 0 ¼ Oðℏnþ1Þoð1=ΛT−2ðnþ1Þσ
− Þ.

Now, replacing the renormalized action SRT that defines
ΓRT with SRT − ΔSnþ1;T 0 , we cancel out ΔSnþ1;T 0 and
promote the inductive assumption (7.24) from order n to
order nþ 1. Iterating the procedure, we arrive at formula
(7.24) with n ¼ l̄0. In the end, ΓRT 0 coincides with ΓRT
within the truncation T 0, up to ECDHD. Finally, formula
(7.23) ensures that ΓRT is free of gauge anomalies within
the truncation T 0.
In other words, it is possible to modify the scheme sT by

fine-tuning the finite local counterterms so as to cancel the
potentially anomalous contributions that belong to the class
A>T . Since this conclusion applies to every class A>T ,
Theorem 1 follows.

VIII. STANDARD MODEL COUPLED TO
QUANTUM GRAVITY

In this section we prove that the standard model coupled
to quantum gravity satisfies the assumptions of the proof. In
particular, although it does not satisfy the Kluberg-Stern–
Zuber assumption (2.11), it satisfies assumption (III) of
Sec. II C, since its basic action Sdb is cohomologically
complete, and the groupGnas is compact. We also comment
on the physical meaning of that assumption. We also show
that the standard model coupled to quantum gravity
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satisfies assumptions (IV) and (V) of Sec. II C, which
concern the one-loop gauge anomalies.
We start by considering the class of four-dimensional

Einstein–Yang-Mills theories that have classical actions of
the form

ScEYM ¼
Z ffiffiffiffiffi

jgj
p �

−
1

2κ2
ðRþ 2ΛcÞ −

1

4
Fa
μνFaμν

þ Lφðφ; DφÞ þ Lψðψ ; DψÞ þ Lφψðφ;ψÞ
�
;

ð8:1Þ

where Fa
μν are the field strengths of the Abelian and non-

Abelian Yang-Mills gauge fields, while Lφ, Lψ , and Lφψ

are the matter Lagrangians, which depend on the scalar
fields φ, the fermions ψ , and their covariant derivativesDφ,
Dψ , as specified by their arguments. Moreover, Lφ is at
most quadratic in Dφ, and Lψ is at most linear in Dψ . The
actions S̄dEYM and SdEYM of formulas (2.3) and (2.8), built
by taking ScEYM as the classical action Sc, are known to
satisfy the Kluberg-Stern–Zuber assumption (2.11) in two
cases: when the Yang-Mills gauge group is semisimple and
when there are no accidental symmetries [18]. When the
Yang-Mills gauge group containsUð1Þ factors and ScEYM is
invariant under accidental symmetries, there exist extra
local solutions X of ðSdEYM; XÞ ¼ 0 that cannot be written
in the form ðSdEYM; YÞ with Y a local functional [18]. We
denote them by Gnew

I . They depend on the sources K, the
Uð1Þ gauge fields, and the Noether currents associated with
the accidental symmetries.
Consider first the standard model in flat space. We

denote its basic action Sdb by SdSM. Clearly, SdSM has the
form (8.1) (with gravity switched off), but does not satisfy
the Kluberg-Stern–Zuber assumption (2.11), because the
Yang-Mills gauge group SUð3Þ × SUð2Þ ×Uð1ÞY is not
semisimple and SdSM has accidental symmetries. One
accidental symmetry is the conservation of the baryon
number B. If the right-handed neutrinos are present and
have Majorana masses, there are no other accidental
symmetries. If the right-handed neutrinos are present,
but do not have Majorana masses, there is an additional
accidental symmetry, which is the conservation of the
lepton number L. If the right-handed neutrinos are absent,
the lepton numbers Le, Lμ, and Lτ of each family are also
conserved. The group of accidental symmetries is Uð1ÞImax ,
where Imax ¼ 1, 2, or 4, depending on the case.
The extra solutions X to the condition ðSdSM; XÞ ¼ 0 can

be built as follows. It is well-known that the hypercharges
of the matter fields are not uniquely fixed by the sym-
metries of the standard model Lagrangian. If we deform the
standard model action SdSM by giving arbitrary hyper-
charges to the matter fields, and later impose Uð1ÞY
invariance, then one, two, or four arbitrary charges qI
(I ¼ 1;…; Imax) survive (depending on the group of

accidental symmetries), besides the overall Uð1ÞY charge.
Call the deformed action SdSMqðΦ; K; qIÞ. Clearly, SdSMq

satisfies the master equation

ðSdSMq; SdSMqÞ ¼ 0 ð8:2Þ

in arbitrary D dimensions and for arbitrary values of the
charges qI . If we differentiate (8.2) with respect to each qI ,
and then set the qJ to zero, we get

ðSdSM;Gnew
ISMÞ ¼ 0; Gnew

ISM ≡ ∂SdSMq

∂qI
����
q¼0

:

The local functionals Gnew
ISMðΦ; KÞ depend explicitly on the

sources K, because the charges qI appear in the functional
SK of formula (2.4). It can be shown [18] that Gnew

ISM cannot
be written in the form ðSdSM; YÞ for a local Y. This is why
the Kluberg-Stern–Zuber requirement is not satisfied by the
standard model.
The argument just given in flat space can be repeated for

the standard model coupled to quantum gravity, with
obvious modifications. Let us denote its basic action Sdb
by SdSMG. It is built on the classical action ScSMG of formula
(2.1), which has the form (8.1). If we deform it into
SdSMGqðΦ; K; qIÞ and differentiate with respect to qI , we
find extra solutions X of ðSdSMG; XÞ ¼ 0 that cannot be
written in the form ðSdSMG; YÞ for a local Y. We denote
them by Gnew

ISMGðΦ; KÞ.
In principle, the invariants Gnew

ISM, or Gnew
ISMG, could be

generated as counterterms by renormalization, because they
satisfy ðSdSM;Gnew

ISMÞ ¼ 0, or ðSdSMG;Gnew
ISMGÞ ¼ 0. If this

happened, however, we would have a big problem: some
hypercharges would be allowed to run independently from
one another and violate the conditions for the cancellation
of gauge anomalies at one loop, required by assumption
(IV). Indeed, it is easy to check that, in general, the
deformation SdSMq (and therefore also SdSMGq) is not
compatible with the one-loop cancellation of the gauge
anomalies [26].
In fact, in Sec. VII A it was shown that, if assumption

(III) of Sec. II C holds, the extra invariants Gnew
I , such as

Gnew
ISM or Gnew

ISMG, are not generated by renormalization.
Indeed, they do not appear on the right-hand side of
formula (7.7), which just contains the invariants GiðϕÞ.
Thus, the meaning of cohomological completeness is to
ensure that renormalization has this key property.
To show that the standard model coupled to quantum

gravity satisfies assumption (III), we lift the discussion to
the extended theory S

̬

d of Sec. II and denote its basic action

by S
̬

dSMG. It is easy to show that S
̬

dSMG has no accidental
symmetries, because it contains both the four fermion
vertices and the vertex ðLHÞ2 that break B, Le, Lμ, and Lτ.
Indeed, in the parametrization (2.24) such vertices are not
multiplied by parameters ζ belonging to the subsets s−: the
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coefficients ζ of the four fermion vertices are dimension-
less, while the coefficient ζ of ðLHÞ2 has dimension one,
as shown by formula (2.42). The functionals Gnew

I do not

satisfy ðS
̬

dSMG;Gnew
I Þ ¼ 0, and the theory with action S

̬

dSMG
cannot generate them as counterterms. By the results of

Ref. [18], the action S
̬

dSMG, which has the form (8.1),
satisfies the extended Kluberg-Stern–Zuber assumption
(2.12); i.e. SdSMG is cohomologically complete. The group
Gnas of nonanomalous accidental symmetries of the action
SdSMG is certainly compact, so assumption (III) holds.
Let us now move to assumption (IV). Formula (5.12)

tells us that the one-loop anomaly functional Að1Þ
b asso-

ciated with the basic action SdSMG of the standard model
coupled to quantum gravity solves the equation

ðSdSMG;A
ð1Þ
b Þ ¼ 0. The most general solution to this

condition reads

Að1Þ
b ¼ Ant þ ðSdSMG;XÞ ð8:3Þ

and is the sum of nontrivial terms Ant plus trivial terms
ðSdSMG;XÞ, where X is a local functional of ghost number
zero. The nontrivial terms have been classified in Ref. [18].
They are (i) Bardeen terms [27]

Z
dDxεμνρσTr

�
∂μC

�
Aν∂ρAσ þ

g
2
AνAρAσ

��

for non-Abelian Yang-Mills symmetries, where C ¼ C _aT _a,
Aμ ¼ A _a

μT _a, while C _a, A _a
μ are the non-Abelian Yang-Mills

ghosts and gauge fields, respectively, and the index _a runs
on each simple subalgebra of the Yang-Mills Lie algebra;
(ii) terms of the Bardeen type

Z
dDxεμνρσCVð∂μVνÞð∂ρVσÞ;Z
dDxεμνρσC _að∂μVνÞð∂ρA _a

σÞ;Z
dDxεμνρσCVF _a

μνF _a
ρσ;Z

dDxεμνρσCVRā b̄
μν Rā b̄

ρσ ;Z
dDxεμνρσCVRā b̄

μν Rc̄ d̄
ρσ εā b̄ c̄ d̄;

involving Uð1Þ gauge fields Vμ and/or Uð1Þ ghosts CV ;
(iii) terms of the form

R
CVL, where L is a Lagrangian

density that depends only on the fields, is not a total
derivative, and satisfies ðSK;

R
LÞ ¼ 0; (iv) K-dependent

extra terms Anew
ISMG of ghost number one, analogous to the

extra terms Gnew
ISMG of ghost number zero discussed above.

The terms of class (iv) are absent unless the gauge group
contains Uð1Þ factors and the theory has accidental

symmetries. We recall that there are no Lorentz anomalies
in four dimensions.
To study the anomalies Ant of Eq. (8.3) we can switch to

the framework we prefer. A change of framework affects
the finite local counterterms contained in the functional

Γ̂ð1Þ
ΛTfin of formula (5.8). As far asAð1Þ

b is concerned, formula
(5.11) ensures that it only affects the functional X of (8.3).
Consider first the terms Ant that belong to the classes (i)

and (ii). The most economic framework to study them is the
standard dimensional regularization. For definiteness, we
use a basis where all the fermionic fields are left handed,
and we denote them by ψL. Associate a right-handed
partner ψR with each ψL and extend the action SdSMG
by adding the correction

SLRðΦÞ ¼
Z

ψ̄Ri~γμ∂μψL þ
Z

ψ̄Li~γμ∂μψR

þ
Z

ψ̄Ri~γμ∂μψR

to it, where the flat-space vielbein is used and ~γμ denote the
standard γ matrices in D dimensions, which satisfy
f~γμ; ~γνg ¼ 2ημν. Let SextðΦ; KÞ ¼ SdSMGðΦ; KÞ þ SLRðΦÞ
denote the extended action. Expanding around flat space as
usual, the total kinetic terms of ψL and ψR are

R
iψ̄ ~γμ∂μψ ,

where ψ ¼ ψL þ ψR. Since ψR appears just in SLR, no
nontrivial one-particle irreducible diagrams with ψR exter-
nal legs can be built, so the partners ψR decouple at ε ¼ 0.
Moreover, SdSMG is gauge invariant, while SLR is not,
which means that ðSext; SextÞ is cubic in the fields Φ. More
precisely, ðSext; SextÞ is bilinear in the fermions and linear in
the ghosts. The anomaly functional is A ¼ hðSext; SextÞi.
The nontrivial terms Ant of classes (i) and (ii) do not
contain fermions, so they can only arise from the one-loop
polygon diagrams that have ðSext; SextÞ and gauge currents
(including the energy-momentum tensor) at their vertices,
and fermions circulating inside. It is well known [3] that
the contributions of such diagrams vanish at ε ¼ 0 in the
standard model coupled to quantum gravity.
Next, consider the terms Ant of class (iii). They are

anomalies of the global Uð1ÞY symmetry. To prove that
they are absent, it is sufficient to choose a regularization
technique that is globally Uð1ÞY invariant. Again, the
standard dimensional regularization has this property, while
the CD technique does not [because of the terms (2.13),
which are of the Majorana type]. Finally, formula (5.11)
ensures that the terms of class (iv) are not generated,
because they depend on the sources K.
This proves that Ant ¼ 0; i.e. the basic action SdSMG of

the standard model coupled to quantum gravity satisfies
assumption (IV). We also note that the arguments of
Sec. VII A imply that the action Sd of the standard model
coupled to quantum gravity, which is equal to SdSMG
plus corrections multiplied by powers of 1=Λ−, is also
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cohomologically complete and satisfies the physical
Kluberg-Stern–Zuber conjecture (7.8).
The absence of the terms of class (iv) is a general fact,

not tied to the particular model we are considering. It can
also be proved by lifting the discussion to S

̬

dSMG, where all
accidental symmetries are broken. The one-loop anomaly

functional A
̬ ð1Þ
b of the theory with action S

̬

dSMG satisfies

ðS
̬

dSMG;A
̬ ð1Þ
b Þ ¼ 0 and can be decomposed as A

̬ ð1Þ
b ¼

A
̬

nt þ ðS
̬

dSMG;X
̬
Þ, where the nontrivial anomalous terms

A
̬

nt can only belong to the classes (i)–(iii), and X
̬
is a local

functional of Φ and K. The functionalAð1Þ
b can be retrieved

from A
̬ ð1Þ
b by switching off the coefficients λ

̬
and η

̬
of the

terms that break the nonanomalous accidental symmetries.
This operation gives a result of the form (8.3), where Ant

and X are equal toA
̬

nt and X
̬
at λ

̬
¼ η

̬ ¼ 0, respectively. If,
in addition, we average on the group Gnas, we can assume
that X is invariant under Gnas. It follows that Ant is a linear
combination of terms belonging to the classes (i)–(iii).
It remains to study assumption (V) of Sec. II C. If a

functionalF ðκΦÞ of ghost number one can be written in the
form ðSdb;XÞ, it clearly satisfies ðSdb;F Þ ¼ 0. Then it also
satisfies ðSK;F Þ ¼ 0, since F is K independent. We want
to show that F can be written as ðSK; χÞ, where χðκΦÞ is a
local functional of the fields Φ.
The most general solution of the problem ðSK;F Þ ¼ 0,

when the gauge symmetries are diffeomorphisms, local
Lorentz symmetry, and Abelian and non-Abelian Yang-
Mills symmetries, is worked out in Ref. [28]. The func-
tional F is the sum of nontrivial terms Ant belonging to the
classes (i)–(iii) listed above, plus trivial terms of the correct
form ðSK; χðκΦÞÞ. Combining this fact with F ¼ ðSdb;XÞ,
we obtain

F ¼ ðSdb;XÞ ¼ Ant þ ðSK; χÞ:

Turning this equation around, we also get Ant ¼ ðSdb;X 00Þ,
with X 00 ¼ X − χ. In other words, the functional Ant is
trivial in the Sdb cohomology and nontrivial in the SK
cohomology. The results of Ref. [18] ensure that in four-
dimensional Einstein–Yang-Mills theories that have an
action of the form (8.1), this is impossible, unless Ant
vanishes. Thus, the standard model coupled to quantum
gravity satisfies assumption (IV).
We stress again that assumptions (IV) and (V) are just

needed to prove that the one-loop anomalies (4.3) of the
HD theory are trivial in the SK cohomology, which means
that they have the form (5.14). The same result is more
quickly implied by assumption (IV0) of Sec. II C. In several
practical cases, it may be simpler to prove assumption (IV0),
rather than assumptions (IV) and (V).
We conclude that the standard model coupled to quan-

tum gravity satisfies all the assumptions made in this paper.
Therefore, it is free of gauge anomalies to all orders in

perturbation theory. In a generic framework, the Adler-
Bardeen Theorem 1 of the Introduction tells us that the
cancellation of gauge anomalies is nonmanifest, and can be
enforced by fine-tuning finite local counterterms order by
order. If we use the framework elaborated in this paper,
Theorem 3 tells us that the cancellation is manifest within
any given truncation and nonmanifest outside.
The arguments of this section apply with simple

modifications to most standard model extensions, irre-
spectively of their gauge groups and accidental sym-
metries. When the other assumptions are met, it is
sufficient to check that the gauge anomalies are trivial
at one loop to infer that they can be canceled to all orders.
It is also clear how to generalize the analysis of this
section to theories living in spacetime dimensions differ-
ent than four.

IX. CONCLUSIONS

In this paper we proved the Adler-Bardeen theorem for
the cancellation of gauge anomalies in nonrenormalizable
theories, which is the statement that there exists a sub-
traction scheme where the gauge anomalies cancel to all
orders, when they are trivial at one loop. We assumed that
the gauge symmetries are diffeomorphisms, local Lorentz
symmetry, and Yang-Mills symmetries, and that the local
functionals of vanishing ghost number satisfy a variant of
the Kluberg-Stern–Zuber conjecture. In our approach, the
cancellation is “almost manifest,” which means that, given
a truncation of the theory, once the gauge anomalies are
canceled at one loop, they manifestly vanish from two
loops onwards within the truncation, while outside the
truncation their cancellation can be achieved by fine-tuning
finite local counterterms. The truncation can contain
arbitrarily many terms.
Although some arguments of the proof are technically

involved, the key ideas are actually intuitive. The hardest
part of the job is building the right framework. We used a
regularization technique that combines a modified
version of the dimensional regularization with a suitable
higher-derivative gauge invariant regularization. This
trick allows us to isolate the sources of potential anoma-
lies, which are just one loop, from the nonanomalous
sector of the theory. When the HD energy scale Λ is kept
fixed, we have a superrenormalizable theory that satisfies
the manifest Adler-Bardeen theorem to all orders in ℏ by
simple power counting arguments. When Λ is taken to
infinity, the Λ divergences are subtracted by means of
canonical transformations and redefinitions of parame-
ters. At each step, the HD theory must be re-renormalized
at Λ fixed, to subtract the newly generated divergences in
ε. While doing so, it is possible to enforce the cancella-
tion of gauge anomalies again by fine-tuning finite local
counterterms.
The standard model coupled to quantum gravity satisfies

the assumptions we have made, so it is free of gauge
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anomalies to all orders. The theorem we have proved also
applies to most extensions of the standard model, coupled
to quantum gravity or not, and to a variety of other theories,
including higher-derivative and Lorentz violating theories,
in arbitrary dimensions.

Among the prospects for the future, we mention the
generalization of the proof to supergravity. The complexity
of local supersymmetry makes this task quite challenging,
especially in the presence of scalar multiplets and when it is
not known how to achieve closure off shell.
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