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This paper presents the Hilbert series technique to a wider audience in the context of constructing
group-invariant Lagrangians. This technique provides a fast way to calculate the number of operators of a
specified mass dimension for a given field content and is a useful cross-check on more well-known group
theoretical methods. In addition, at least when restricted to invariants without derivatives, the Hilbert series
technique supplies a robust way of counting invariants in scenarios which, due to the large number of fields
involved or to high-dimensional group representations, are intractable by traditional methods. We work out
several practical examples.
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I. INTRODUCTION

In this post-Higgs-discovery era of fundamental physics,
phenomenological models of physics beyond the Standard
Model (BSM) are becoming increasingly baroque. The
simplest models have been well studied, and more complex
models offer numerous adjustable parameters that can be
tuned to avoid ever more stringent experimental limits on
new physics. One common way to augment the complexity
of a model is to simply add particles transforming under
higher-dimensional group representations. For some rep-
resentative examples using sizable group representations in
phenomenological settings, see Refs. [1–5] and references
therein. In addition to complex model building, another line
of attack in the search for new physics takes a general
bottom-up approach—parametrizing BSM effects through
higher-dimensional operators formed from SM fields.
These operators are suppressed by powers of some high
energy scale, but they become important for detecting new
physics in high precision measurements.
Given a BSMmodel containing new particle multiplets in

different group representations, one often wants the most
general gauge-invariant Lagrangian containing all of the
operators allowed by the postulated symmetries. The for-
mation of this Lagrangian allows a full exploration of the
model’s experimental signatures. In the simplest cases, with
small and familiar group representations such as SUð2Þ
doublets, it is straight forward to assemble the Lagrangian
almost automatically. With larger group representations, the
calculation becomes harder, and one often needs to take into
account relations between group invariants (mathematicians
refer to these relations as syzygies) to obtain the correct
number of independent terms in the Lagrangian. A similar
level of calculational difficulty occurs in the task of forming
higher-dimensional operators from the Standard Model

degrees of freedom. Even though the SM group repre-
sentations are familiar, the high multiplicity of these repre-
sentations contained in the operators quickly becomes
challenging to deal with as the operator dimension increases.
A fundamental reason for the prevalence of such group-

theoretical calculations in phenomenological studies is the
modern Wilsonian perspective of effective field theory.
From this perspective, the gauge and global symmetries of
the proposed field content completely determine the
Lagrangian, and in principle one must include all possible
invariant terms in every operator dimension as part of the
resulting QFT.
The mathematical tool known as the Hilbert series is

perfectly suited for such computations. The Hilbert series
(or Molien or Poincaré function) is a generating function
encoding information about the number of independent
group invariants that can be formed from some set of
multiplets in different representations. As we explain in this
paper, the Hilbert series provides an easy cross-check on
calculations performed using more familiar group theoreti-
cal techniques, allowing one to ensure the correct number
of independent terms in the Lagrangian. This technique is
especially convenient when dealing with large representa-
tions or higher-dimensional operators, since the Hilbert
series calculation is easily automated using computer
algebra programs such as MATHEMATICA.
The Hilbert series approach has been developed and used

extensively in more formal theoretical settings. For exam-
ple, it is often used in calculations involving the operator
spectra of supersymmetric gauge theories [6–11], super-
symmetry theories on D-branes [12–14], and moduli spaces
of instantons or vortices [15–19]. Other references from a
more mathematical point of view include Refs. [20,21].
On the more phenomenological side, Hilbert series meth-
ods have been used to calculate the number of independent
flavor invariants in the Standard Model and various
extensions. The Hilbert series for leptonic flavor invariants
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in the Standard Model extended by the dimension-5
Weinberg operator was determined for two and three
generations in Refs. [22]. This paper also obtained the
Hilbert series of flavor invariants for the full type-I seesaw
model in the case of two generations and the series for
quark sector flavor invariants for both two and three
generations. This paper was followed by Ref. [23], which
completed the calculation of the Hilbert series for the
seesaw model with three generations and also computed the
series for quark flavor invariants with four quark gener-
ations. The Hilbert series approach has also been used for
studying SUð3Þ subgroups in the context of flavor sym-
metry model building [24].
While the Hilbert series technique has been used in

formal studies and in the more phenomenological setting
of calculating flavor invariants, it is not yet well known
and appreciated as a tool that can aid in the construction
of general gauge-invariant Lagrangians. In this paper, we
aim to rectify this and to add the Hilbert series to the
toolbox of a wider audience. Specifically, in Sec. II we
introduce the basic Hilbert series concepts through a
simple example, then present the general framework.
Then, in Sec. III, we work through a complete example
to solidify the concepts. Sections IV and V show some
more complicated examples, and we discuss incorporat-
ing derivatives and equations of motion in Sec. VI. In
Sec. VII, we conclude. Some mathematical background
material is included in the Appendix.

II. HILBERT SERIES BASICS: Uð1Þ SYMMETRY

In this section we introduce the key mathematical
ingredients of Hilbert series using a simple example.
More formal introductory material to the Hilbert series
can be found in the literature [7,9,10,13,21,22].
For our example, consider a single complex scalar field

charged under a Uð1Þ symmetry: ϕ → eiθ;ϕ� → e−iθ.
The gauge invariant combinations are ðϕϕ�Þn, and there
is exactly one possibility for each n. Writing the set of
invariants as a series

H ¼
X∞
n¼1

cnðϕϕ�Þn; ð2:1Þ

where cn is the number of different invariant possibilities
for a given dimension, we have

H ¼ 1þ ðϕϕ�Þ þ ðϕϕ�Þ2 þ ðϕϕ�Þ3 þ � � � ð2:2Þ

Formally treating ðϕϕ�Þ as numbers less than 1,1 this
geometric series can be summed,

H ¼ 1

1 − ϕϕ� : ð2:3Þ

Let us massage this further; the sum above can be replaced
by an integral over θ, the variable that parameterizes the
Uð1Þ transformation:

H ¼ 1

2π

Z
2π

0

dθ
ð1 − ϕeiθÞð1 − ϕ�e−iθÞ : ð2:4Þ

Substituting z ¼ eiθ, the dθ integral becomes a contour
integral around jzj ¼ 1,

H ¼ 1

2πi

I
jzj¼1

dz
z

1

ð1 − ϕzÞð1 − ϕ�
z Þ

: ð2:5Þ

The second piece of the denominator in Eq. (2.5) can be
replaced by

1

ð1 − ϕzÞð1 − ϕ�
z Þ

¼ exp

�
− log ð1 − ϕzÞ − log

�
1 −

ϕ�

z

��

¼ exp

�X∞
r¼1

ðϕzÞr
r

þ
X∞
r¼1

�
ϕ�

z

�
r 1

r

�
:

ð2:6Þ
To get a better idea of what is going on, let us expand the
lhs of Eq. (2.6), again treating ϕ and ϕ� as small, complex
numbers rather than quantum fields. To cubic order in both
ϕ and ϕ�,

1

ð1 − ϕzÞð1 − ϕ�
z Þ

¼ ð1þ ϕϕ� þ ðϕϕ�Þ2 þ ðϕϕ�Þ3 þ � � �Þ

þ zðϕþ ϕðϕϕ�Þ þ ϕðϕϕ�Þ2 þ � � �Þ
þ z2ðϕ2 þ ϕ2ðϕϕ�Þ þ � � �Þ þ z3ϕ3

þ ϕ�3

z3
þ 1

z2
ðϕ�2 þ ϕ�2ðϕϕ�Þ þ � � �Þ

þ 1

z
ðϕ� þ ϕ�ðϕϕ�Þþ ϕ�ðϕϕ�Þ2þ � � �Þ:

ð2:7Þ

The series of Uð1Þ invariants sits in the term with no z
factors, and hence it is picked out when we multiply by 1=z
and perform the contour integral in dz [Eq. (2.5)]. However,
inspection of the expansion of Eq. (2.6) shows it contains
all possible arrangements of ϕ and ϕ�; had we wanted to
pick out the series of charge þ1 combinations instead of
charge 0, we would simply have to multiply by 1

z2 before
taking the contour integral. Similarly, the charge −2
combinations could be accessed by multiplying by z.
In picking out a particular charge from Eq. (2.6), we are

using two different mathematical facts. The first, already
mentioned, is that Eq. (2.6) generates all possible

1To clarify that the objects we are manipulating, e.g. ϕ, are
complex numbers rather than quantum fields, we will refer to ϕ
and similar objects as spurions.
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combinations of ϕ and ϕ�, organized by charge. This
exponential form of Eq. (2.6) is an example of a plethystic
exponential [7,9,10,13,21], a generating function of all
symmetric combinations of its argument [see Eq. (A2)].
The second mathematical construction we employ is
integration over the group volume, dθ≡ dz

iz for Uð1Þ.
Integrated over dθ, terms containing any non-trivial power
of z → eiθ become integrals dθeinθ for some integer n and
are therefore zero. Terms with no powers of z—Uð1Þ
invariants—remain and are the Hilbert series H.
While the series of invariants in the Uð1Þ example above

could be found without the aid of Eqs. (2.5) and (2.6), the
power of this approach lies in its generality. Both the
plethystic exponential and the integral over the group
parameter θ can be extended to sets of spurions transforming
under arbitrary representations of arbitrary compact Lie
groups. In addition to generating all possible combinations
of spurions such as ϕ and ϕ�, the plethystic exponential
keeps track of relations among invariants, or syzygies (see
Ref. [22] for some simple examples of relations among
invariants). Our Uð1Þ example is too simplistic to see these
syzygies; however, we will run into relations among invar-
iants when we consider more complicated setups as in
Secs. IV and V.
To create the plethystic exponential (PE) for a spurion A

transforming with representation R of a connected Lie
group, we take

PE½A; R� ¼ exp

�X∞
r¼1

ArχRðzrjÞ
r

�
: ð2:8Þ

Here χRðzjÞ is the character of the representation R
expanded as a monomial function of the j complex
variables on the Cartan subalgebra (equivalent to the group
rank). For example, consider A to be in the fundamental
representation of SUð2Þ, a rank-1 group. The character for
the fundamental representation is

�
zþ 1

z

�
; ð2:9Þ

where z is a complex number with modulus 1 (often called
a fugacity). The argument of the plethystic exponential is
then

X∞
r¼1

Ar

r

�
zr þ 1

zr

�
¼

X∞
r¼1

�ðAzÞr
r

þ Ar

zrr

�

¼ − log ð1 − A=zÞ − log ð1 − AzÞ:
ð2:10Þ

This can be easily extended to more spurions and repre-
sentations of different groups—all we need is a list of the
characters for different representations of Lie groups. For a

brief review of characters and further discussion of the PE,
see the Appendix.
Next, the invariants from the PE are picked out by the

fact that the characters of compact Lie groups form an
orthonormal set of basis functions on the Cartan subalgebra
variables [25]. As such, any function f of the subalgebra
variables can be expanded in terms of them,

fðzjÞ ¼
X
i

ciχiðzjÞ;
Z

dμχiðzÞχ�jðzÞ ¼ δij; ð2:11Þ

where the ci are coefficients. The integration dμ in
Eq. (2.11) is over the Haar measure—the volume of the
group in question projected onto the Cartan subalgebra
variables (maximal torus). These volume elements can be
found, for example, in Ref. [10] and are included in
Appendix A3 for convenience. While the PE contains all
possible tensor products of spurions, the group integration
projects out only the invariant combinations, resulting in
the Hilbert series H.
Looking back at our Uð1Þ example, we can rephrase the

results in this more general language. The character for a
Uð1Þ representation with charge Q is zQ, so the PE in
Eq. (2.6) is the sum of a representation with charge
Q ¼ þ1 and representation Q ¼ −1. The Haar measure
for Uð1Þ is dz=z, and the character orthogonality relation is
the usual Fourier series orthogonality, as is best seen by
setting z ¼ eiθ:

Z
2π

θ¼0

dθ
2π

eiθðQ−Q0Þ ¼ δðQ −Q0Þ: ð2:12Þ

Continuing, Eq. (2.5) can be understood as performing a
Fourier expansion of the PE [Eq. (2.6)], multiplying by the
trivial representation (i.e. 1) and integrating over the group.
Since the characters are orthonormal, only the part of the
PE expansion that lies in the trivial representation—the
Uð1Þ invariants—is projected out. Had we wanted to
project out a different part of the PE, all we have to do
is multiply by the conjugate character before doing the
group integration. For example, to project out the charge
þ1 combinations, we need to multiply by 1=z ¼ e−iθ

before integrating.
Having shown how the PE and group integration can

generate the Hilbert series of invariants for this simpleUð1Þ
example, we now want to apply this method to the Standard
Model (and its extensions). Specifically, we will take some
subset of the fields Q; uc; dc; L; ec; H, etc., of the SM (plus
any extensions) as the spurions, dress them with the
characters appropriate to their groups and representations,
then form the PE and do the contour integrations. The
different SM spurions can transform differently, and some
may transform under multiple groups. A separate group
integration is carried out for each group under which the
fields transform. If the contour integrals can be directly
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calculated, the resulting Hilbert series will be a rational
function of the input spurions, HðQ; uc; dc; L; ec; H; � � �Þ.
This functionHðQ; uc; dc; L; ec; H; � � �Þ can then be Taylor
expanded as a multivariate power series in the spurions.
The coefficient of any particular combination of spurions
gives the number of independent group-singlet operators
that can be formed from the fields represented by those
spurions. For example, a term 2Q†QL†L in the Hilbert
series indicates there are two independent singlets that can
be formed from one Q field, one L field, and their
Hermitian conjugates. We emphasize that, while the
Hilbert series gives the number of invariants, it does not
give the particular index structure, so that must be worked
out separately. Before we dive in, a few comments are
in order:

(i) Several of the spurions we want to use are fermionic,
meaning they represent fermion fields. To properly
count invariants including fermions, we need to
extend the PE to handle antisymmetric spurions.
This can be done by using the fermionic plethystic
exponential (PEF) [21]. For a fermionic spurion A in
representation R,

PEF½A;R� ¼ exp

�X∞
r¼1

ð−1Þrþ1ArχRðzrjÞ
r

�
; ð2:13Þ

where, as before, χRðzjÞ is the character for
representation R as a function of the Cartan
subalgebra variables.

(ii) As we are working with fermions (and, eventually,
field-strength tensors) we must include the Lorentz
group representations for these spurions. At first
sight, this seems problematic since the orthonormal-
ity of the group characters (the Peter–Weyl theorem)
only holds for compact Lie groups. However, since
our purpose is solely to count invariants and does not
involve any dynamics, we can work in Euclidean
space, where the Lorentz group is compact:
SOð4Þ ≅ SUð2ÞR × SUð2ÞL. For simplicity we will
take all fermions to be left-handed objects, trans-
forming as ð0; 1

2
Þ under SUð2ÞL × SUð2ÞR; Hermitian

conjugate fermions therefore transform in the
right-handed ð1

2
; 0Þ representation. When considering

field strength tensors, we will work with the objects
X�
μν ¼ Xμν � i ~Xμν, which transform in the (1,0) and

(0,1) representations.
(iii) While the PE or PEF generate all possible combi-

nations of spurions, these constructs contain no
information regarding the equations of motion—
operator relations that go beyond symmetries. How
to include the equations of motion, and derivatives in
general, lies beyond the scope of this paper but will
appear in a companion paper [26]. A few comments
will be sketched out in the discussion in Sec. VI.

III. USING THE HILBERT SERIES:
A TOY EXAMPLE

It is instructive to work through a full example of the
Hilbert series technique in order to demonstrate the general
procedure. For this purpose, consider the Standard Model
left-handed fermion doublet L, which is a weak isodoublet
and a color singlet. In this example, we will ignore
hypercharge, and we denote the number of generations
asNf . Since L transforms in the fundamental representation
of both SUð2ÞL and SUð2ÞW , the argument of the plethystic
exponential is

NfL

�
xþ 1

x

��
yþ 1

y

�
; ð3:1Þ

where x is the complex variable for SUð2ÞL and y is the
variable for SUð2ÞW. Recall that, when carrying out the
sum for the PE, we need to include the factor ð−1Þrþ1 since
L is fermionic. Explicitly, using the Haar measure for the
SUð2Þ groups as given in Eq. (A7), the Hilbert series for the
spurion L is

HðLÞ ¼ 1

ð2πiÞ2
I
jxj¼1

dx
x
ð1 − x2Þ

×
I
jyj¼1

dy
y
ð1 − y2Þ

× exp

�
Nf

X∞
r¼1

ð−1Þrþ1

r
Lr

�
xr þ 1

xr

��
yr þ 1

yr

��
:

ð3:2Þ

Note that Nf is not a variable in the PE but is rather a free
parameter. Expanding the PE gives

exp

�
Nf

X∞
r¼1

ð−1Þrþ1

r
Lr

�
xr þ 1

xr

��
yr þ 1

yr

��

¼
�
1þ L

xy

�
Nf
�
1þ Lx

y

�
Nf
�
1þ Ly

x

�
Nf ð1þ LxyÞNf :

ð3:3Þ

In general, it can be computationally challenging to do
the contour integrals for the Haar integration directly,
especially if a large number of fields is under consideration.
In this situation, it is better to first expand the integrand in a
Taylor series in the spurion L and then integrate term by
term up to the desired power [6]. The poles of the integrand
will now all be at x ¼ 0 and y ¼ 0, so the residue
calculation is much easier. This method will not give the
complete generating function H, but rather the first few
terms in its series expansion. This is sufficient for most
purposes. However, if some all-order information about the
series is needed or the asymptotic form of the coefficients
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as the expansion variables go to infinity is desired,2 it will
be necessary to directly do the integrals and obtain the full
functional form of H.
For the specific example of Eq. (3.2), we can illustrate

this expansion method by leaving Nf unspecified
and calculating the first few terms of the Hilbert series
for L:

HðLÞ ¼ 1

2
ðN2

f − NfÞL2 þ 1

6
ðN4

f þ 5N2
f ÞL4

þ 1

144
ð5N6

f − 3N5
f þ 17N4

f − 69N3
f þ 50N2

f ÞL6

þ � � � ð3:4Þ

If Nf is specified, the Hilbert series can easily be calculated
exactly, since the only poles in the integrand of Eq. (3.2) are
at x ¼ 0 and y ¼ 0. Carrying out the contour integrations
for the first few values of Nf gives the results displayed in
Table I.
The entries in Table I can be understood using standard

group theory. In this discussion, SUð2ÞW indices will be
explicitly displayed, and SUð2ÞL (Lorentz group) indices
will not be displayed but will be contracted within
parentheses. For Nf ¼ 1, there is no possible L2 operator,
since ϵαβðLαLβÞ ¼ 0. At the L4 level, the indices can be
contracted in a single nonzero manner: ϵαβϵδγðLαLδÞ
ðLβLγÞ. All other methods of index contraction for L4

are either automatically zero or can be written as this one by
using the Schouten identities from the two SUð2Þ groups.
At higher orders, for example L8, it is always possible to
use the freedom given by the two sets of Schouten identities
to rewrite the contractions in a form that is manifestly
identically zero, which is why the Hilbert series terminates
at order L4.
ForNf ¼ 2, there is a single operator of order L2, namely

ϵαβðLα
1L

β
2Þ. The fact that there are two distinct fields keeps

this from being identically zero. Similarly, at order L4, the
six possible operators are

ϵαγϵβδðLα
1L

β
1ÞðLγ

1L
δ
1Þ;

ϵαγϵβδðLα
2L

β
2ÞðLγ

2L
δ
2Þ;

ϵαγϵβδðLα
1L

β
2ÞðLγ

2L
δ
2Þ;

ϵαγϵβδðLα
1L

β
1ÞðLγ

1L
δ
2Þ;

ϵαβϵγδðLα
1L

β
2ÞðLγ

1L
δ
2Þ;

ϵαγϵβδðLα
1L

β
2ÞðLγ

1L
δ
2Þ: ð3:5Þ

As a final illustration, for Nf ¼ 3, the three operators of
order L2 are ϵαβðLα

1L
β
2Þ, ϵαβðLα

1L
β
3Þ, and ϵαβðLα

2L
β
3Þ.

The Hilbert series method can actually go further and
give us the exact flavor content of the operators as in
Eq. (3.5) directly, by doing something called “refining” the
series. To do this, instead of putting a generic spurion L into
the PE and multiplying by Nf as in Eq. (3.2), we put in Nf
distinct spurions with different labels. For example, if
Nf ¼ 3, use spurions L1, L2, and L3 in the PE. This is
also referred to as a “multigraded” Hilbert series. Doing
this will in general increase the complexity of the residues
that must be computed, so in some cases it may make the
problem intractable. However, for the series of Eq. (3.2), it
is feasible, at least for low values of Nf . Calculating the
multigraded series for Nf ¼ 2 and picking out the L4 terms
replicates the results of Eq. (3.5). Of course, refining the
series does not give the exact index contraction structure
(since there are multiple equivalent ways to contract the
indices), but it does tell us that, for example, there are two
independent operators with the flavor content L2

1L
2
2.

Because of the increase in computational power required
by refining the Hilbert series, it may sometimes be advanta-
geous to go in the other direction and “unrefine” the series.
For example, if the Hilbert series involves both the lepton
doublet L and the quark doublet Q, it can be useful to not
only lump all of the flavors together but also to lump together
L and Q by setting both spurions to a common label t in the
PE. This can significantly decrease the computational time
required by a progam likeMATHEMATICA andmay give all of
the information that is necessary for a specific application of
the Hilbert series method.
The example worked out in this section shows that, while

the results obtained from the Hilbert series can indeed be
replicated using other techniques, the calculations are often
tedious, and it is easy to make mistakes and miscount the
operators. For example, showing that there are 126 inde-
pendent operators of order L10 for Nf ¼ 4 would be a
formidable task by standard methods. By refining the
series, the Hilbert series method provides an easy automatic
way of obtaining the desired operators.

IV. USING HILBERT SERIES FOR STANDARD
MODEL EFFECTIVE FIELD THEORY

The Standard Model effective field theory (SMEFT)
consists of the Standard Model Lagrangian LSM plus

TABLE I. The Hilbert series for the first few values of Nf ,
calculated from Eq. (3.2). Note that the resulting polynomials are
palindromic, as noted in Ref. [22]. Also, for a given Nf , there is a
maximum dimension an operator can have.

Nf Hilbert series HðLÞ
1 1þ L4

2 1þ L2 þ 6L4 þ L6 þ L8

3 1þ 3L2 þ 21L4 þ 20L6 þ 21L8 þ 3L10 þ L12

4 1þ 6L2 þ 56L4 þ 126L6 þ 210L8 þ 126L10

þ56L12 þ 6L14 þ L16

2To obtain asymptotic information about generating functions,
see, for example, the methods described in Ref. [27].
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operators with (mass) dimension greater than 4 that are
invariant under the Standard Model gauge group SUð3ÞC ⊗
SUð2ÞW ⊗ Uð1ÞY and contain only StandardModel degrees
of freedom. At dimension 5, there is only one possible
operator, the Weinberg neutrino-mass operator [28].
Continuing on to dimension 6, a classification of the
available operators was done in Ref. [29], and the reduction
to a minimal set of dimension-6 operators was carried out in
Ref. [30], resulting in a set of 63operators.More recently, the
construction of the minimal set of dimension-7 operators
was also completed, giving 20 independent operators [31].
Any BSM physics can be matched onto this effective field
theory by integrating out the postulated new heavy particles.
In the past few years, much work has been done toward
understanding the structure and use of the SMEFT [32–42].
Calculating the full set of operators for a given dimen-

sion with the Hilbert series requires including covariant
derivatives, field strengths, and the equations of motion.
Some thoughts on these ingredients are included in Sec. VI,
and we leave an in-depth discussion to future work [26].
For simplicity, in this section we focus on operators without
these complicating factors. This still provides a good
example of the practical applications of the technique.

A. Dimension-6 baryon-number violating operators

The Hilbert series technique proves to be useful for
finding independent SMEFT operators, even when
restricted to a subset of the field content. For example,
consider the set of dimension-6 baryon-number-violating
operators. Reference [30] presented five such operators.
However, it has been noted that only four of these five
operators are independent if the flavor structure is taken
into account [38,43]. It would be nice to see such operator
relations without doing a detailed calculation, and indeed
using the Hilbert series can bring the dependence between
different operator structures to light.
Consider the class of baryon-number violating dimen-

sion-6 operators with field content QQQL, where Q is the
left-handed quark doublet and L is the lepton doublet.
Taking Nf ¼ 3, the argument of the PE for these fields is

3Q

�
xþ 1

x

��
yþ 1

y

��
z1 þ

z2
z1

þ 1

z2

�
u1=6

þ 3L

�
xþ 1

x

��
yþ 1

y

�
u−1=2; ð4:1Þ

where x is the variable for SUð2ÞW, y is the variable for
SUð2ÞL, u is the variable for Uð1ÞY, and fz1; z2g are the
variables for SUð3ÞC. Calculating the multigraded Hilbert
series so that we can see the form of the operators gives

HðL;QÞ ¼ 1þ 57LQ3 þ 4818L2Q6 þ 162774L3Q9

þ � � � ; ð4:2Þ

so we expect 57 independent operators of the form QQQL
when flavor structure is included.
Now consider the specific operator structure

ϵαβγϵijϵklðQiα
p Q

jβ
r ÞðQkγ

s Ll
tÞ: ð4:3Þ

This is symmetric in the flavor indices fp; rg, so without
even considering additional symmetries implied by SUð2ÞL
Fierz identities, the maximum number of independent flavor
permutations is 3 × 3 × 6 ¼ 54 < 57 (since a 3 × 3 sym-
metric matrix has only six independent entries). Therefore,
the operator structure in Eq. (4.3) does not capture all of
the 57 independent operators that we know exist at this order.
Perhaps changing the SUð2ÞW index contraction structure
will enable us to capture all of the operators in a single
expression. To this end, consider the following structure
with the SUð2ÞW contractions “offset” from the SUð2ÞL
contractions:

ϵαβγϵikϵjlðQiα
p Q

jβ
r ÞðQkγ

s Ll
tÞ: ð4:4Þ

None of the symmetries are immediately apparent in this
form, so naively one might think that we can now just
multiply out the flavor possibilities and get 34 ¼ 81 oper-
ators with different flavor structures. But this neglects
SUð2ÞL Fierz identities (see, for example, Ref. [44]), the
relevant one of which gives

ϵαβγϵikϵjlðQiα
p Q

jβ
r ÞðQkγ

s Ll
tÞ

¼ −ϵαβγϵikϵjl½ðQiα
p Q

kγ
s ÞðQjβ

r Ll
tÞ

þ ðQiα
p Ll

tÞðQjβ
r Q

kγ
s Þ�: ð4:5Þ

Rearranging the first term on the right-hand side using the
SUð2ÞW Schouten identity ϵijϵmn ¼ ϵimϵjn − ϵinϵjm and
relabelling the second term on the right at the cost of a
sign gives

ϵαβγϵikϵjlðQiα
p Q

jβ
r ÞðQkγ

s Ll
tÞ

¼ ϵαβγϵikϵjl½2ðQiα
p Q

jβ
s ÞðQkγ

r Ll
tÞ

− ðQiα
s Q

jβ
r ÞðQkγ

p Ll
tÞ�: ð4:6Þ

This identity tells us that, among the 81 different flavor
permutations of the structure in Eq. (4.4), there are 33 ¼ 27
relations among operators differing only in Q flavor per-
mutations. When all of the quark flavors are identical
ðp ¼ s ¼ rÞ, the relation is trivial. Since ðp ¼ s ¼ rÞ
occurs three times for Nf ¼ 3 as in the Standard Model,
there are 27 − 3 ¼ 24 linear relations among the 81 flavor
permutations, leaving 81 − 24 ¼ 57 independent permuta-
tions. Since the Hilbert series in Eq. (4.2) revealed that there
are only 57 independent operators, we are done; the structure
in Eq. (4.4) contains all of the possibilities, and we do not
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need to write down a different fermion current structure or
different SUð2ÞW index contractions.
The Hilbert series technique is by no means restricted to

invariants of gauge symmetries; it can deal just as easily
with global symmetries. As one example, we could have
included the baryon number for all fields, adding a
character and group integration for that global Uð1Þ.
Had we included the baryon number in the above example,
we would find no invariants—by construction, since our
example concerned baryon-number violation. However,
had we considered a wider set of spurions, both baryon-
number violating and respecting terms in the Hilbert series
would be generated. In this case, integration over baryon
number could be used to project out different subsets, e.g.
only baryon-number respecting operators, operators violat-
ing baryon number by one unit, by two units, etc. Of
course, the same technique could be used for finding
operators violating lepton number or B − L.

B. Dimension-7 operator LLLēH

As another example of applying the Hilbert series to the
SMEFT, consider the class of dimension-7 operators with
field content LLLēH [31]. Here ē is a left-handed field
which can also be written as ec, andH is the Higgs doublet.
In the argument of the plethystic exponential, we then have
(again with Nf ¼ 3):

3L

�
xþ 1

x

��
yþ 1

y

�
u−1=2 þH

�
xþ 1

x

�
u1=2

þ 3ē

�
yþ 1

y

�
u; ð4:7Þ

where x is the variable for SUð2ÞW, y is the variable for
SUð2ÞL, and u is the variable for Uð1ÞY. Calculating the
unrefined Hilbert series gives

HðtÞ ¼ 1þ 3t4 þ 57t5 þ 171t6 þ 6t8 þ 144t9 þ 1053t10

þ � � � ð4:8Þ
Order t5 contains the dimension-7 operators, and calculat-
ing the multigraded Hilbert series shows that this order
contains only the dimension-7 operators of the form L3ēH,
so we know that there are 57 operators with various flavor
structures.
One such possible structure is

ϵijϵmnðēpLi
qÞðLj

rLm
s ÞHn: ð4:9Þ

As in the previous section, the symmetries are not manifest,
so we need to use a Fierz identity:

ϵijϵmnðēpLi
qÞðLj

rLm
s ÞHn

¼ −ϵijϵmnðēpLj
qÞðLm

s Li
rÞHn

− ϵijϵmnðēpLm
s ÞðLi

rL
j
qÞHn: ð4:10Þ

In the first term on the right-hand side of Eq. (4.10), we can
switch the fi; jg labels at the cost of a sign [and use the fact
that ðz1z2Þ ¼ ðz2z1Þ for anticommuting 2-component
spinors]. The second term on the right-hand side can be
rewritten in a similar way after applying the SUð2ÞW
Schouten identity. The final result is

ϵijϵmnðēpLi
qÞðLj

rLm
s ÞHn

¼ ϵijϵmnHn½ðēpLi
qÞðLj

rLm
s Þ

þ ðēpLi
sÞðLj

rLm
q Þ − ðēpLi

sÞðLj
qLm

r Þ�: ð4:11Þ

In a similar way as in the previous section, this gives 27
relations among the 81 flavor permutations, this time
among operators differing in L flavor permutations.
Again only 24 relations are nontrivial, leaving 57 inde-
pendent operators. So the structure in Eq. (4.9) encapsu-
lates all of the independent operators of the form LLLēH.
Now suppose that, instead of starting with the structure

in Eq. (4.9), the first guess had been instead

ϵijϵmnðēpLm
q ÞðLi

rL
j
sÞHn: ð4:12Þ

Without even considering Fierz identities, we can see that
this structure is antisymmetric in fr; sg, so it contains a
maximum of 3 × 3 × 3 ¼ 27 independent flavor permuta-
tions, since a 3 × 3 antisymmetric matrix has only three
independent entries. Thus, we know that another structure
is needed in order to get the full 57 independent flavor
permutations. In this way the Hilbert series allows a check
on the generality of a specific SUð2ÞL and SUð2ÞW index
contraction structure.

V. HILBERT SERIES FOR BSM

In the phenomenological study of extensions to the
Higgs sector, it is often necessary to write down the most
general form of the Higgs potential including various
multiplets of SUð2ÞW with potentially different hyper-
charges. Usually only renormalizable terms are included
in the potential, but in some cases higher-dimensional terms
are also necessary. In either case, this exercise is a perfect
candidate for using the Hilbert series to check that the
Lagrangian includes a complete set of operators up to a
given dimension.
As an explicit example, consider extending the SM

Higgs sector by adding a scalar multiplet χ which is a
quadruplet under SUð2ÞW and has hypercharge −1=2, as
was done in Ref. [1]. The dimension-2 terms for the Higgs
sector potential are then trivial to construct, and there are no
possible dimension-3 terms, but the task becomes more
complicated at dimension 4. Using the character function
for the SUð2Þ quadruplet as given in Appendix (Table II),
the argument of the PE for the SM Higgs Φ and the new
field χ is
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χ

�
z3 þ zþ 1

z
þ 1

z3

�
u−1=2 þ χ̄

�
z3 þ zþ 1

z
þ 1

z3

�
u1=2

þ Φ

�
zþ 1

z

�
u1=2 þ Φ̄

�
zþ 1

z

�
u−1=2: ð5:1Þ

Generating the first few terms of the unrefined Hilbert
series gives

HðtÞ ¼ 1þ 2t2 þ 11t4 þ 31t6 þ 94t8 þ 222t10 þ � � � ;
ð5:2Þ

so we see that there are 11 independent operators at the
dimension-4 level.3

As a side note, the field and group representation content
for this example is simple enough that the closed form for
the unrefined Hilbert series can be calculated. The result is

HðtÞ

¼ 1þ 4t4þ 9t6þ 17t8þ 13t10þ 17t12þ 9t14þ 4t16þ t20

ðt4þ t2þ 1Þ2ðt2þ 1Þ4ðt2− 1Þ8 :

ð5:3Þ

Since the complete Hilbert series can be calculated, and
since the result is a rational function of t, it is always
possible to calculate a closed form for the coefficients of
the series (see for example Chapter 7 of Ref. [45]). Oneway
to do this is to use the MATHEMATICA function
SeriesCoefficient, putting in a general integer n
as the argument for the coefficient order. The resulting
expression for the coefficients of Eq. (5.3) is complicated
and not that useful, since calculating the Taylor series to
the necessary order is simple in this case. However, there
might be situations where calculating a closed form for
the coefficients could be useful for figuring out general

information about the form of the series such as the
asymptotic form of the coefficients.
Returning to the calculation of the (renormalizable)

Higgs potential, by using MATHEMATICA or a similar
program, we can generate the multigraded Hilbert series
and extract the relevant terms, which gives operators with
the following field content:

2χχ†χχ†; Φ†χχ†χ†; Φ†Φ†χ†χ†; Φχχχ†;

2ΦΦ†χχ†; ΦΦ†Φ†χ†; ΦΦχχ; ΦΦΦ†χ;

ΦΦΦ†Φ†: ð5:4Þ
Counting up the terms, we do indeed get 11. Note that for
the field content χχ†χχ† the Hilbert series tells us that there
are two independent terms, which is indeed the conclusion
reached in the paragraph following Eq. (13) of Ref. [1].
The same conclusion holds for the field content Φ†Φχ†χ.
The Hilbert series provides these results without the need
for any detailed calculations involving group invariants.
These calculations can of course be done without much
trouble for these dimension-4 operators, but it is nice to
have this check. Also note that the Hilbert series result (5.4)
gives an operator and its Hermitian conjugate that are not
included in the result for the most general renormalizable
Higgs potential given in Eq. (12) of Ref. [1], namely the
operator with field content χχχ†Φ. Working out the correct
SUð2ÞW index contractions necessary (using the same
index notation as Ref. [1]) gives the operator structure

χijkχk0mnχ
†
ijmΦn0ϵkk0ϵnn0 þ H:c: ð5:5Þ

Using the Hilbert series has allowed the quick identification
of an operator that was missed in the original potential; a
clear demonstration of the practical efficacy of this
technique.
The 31 independent dimension-6 operators for this

example can also be easily generated. The resulting oper-
ators are

3ðχ†χÞ3; 2Φ†ðχ†Þ3χ2; 2ðΦ†Þ2χðχ†Þ3;
ðΦ†Þ3ðχ†Þ3; 2Φχ3ðχ†Þ2; 4ΦΦ†χ2ðχ†Þ2;
3ΦðΦ†Þ2χðχ†Þ2; ΦðΦ†Þ3ðχ†Þ2; 2Φ2χ3χ†;

3Φ2Φ†χ2χ†; 3Φ2ðΦ†Þ2χχ†; Φ2ðΦ†Þ3χ†;
Φ3χ3; Φ3Φ†χ2; Φ3ðΦ†Þ2χ; ðΦ†ΦÞ3: ð5:6Þ

VI. THOUGHTS ON DERIVATIVES

The examples we have worked through so far have been
limited to collections of spurions without derivatives.
Derivatives are necessary if we wish to apply the Hilbert
series to a wider set of problems, such as the full set of
SMEFT operators of a given dimension. An immediate
complication when including derivatives are the equations

TABLE II. Character functions for several common group
representations. Note that setting all of the variables to 1 gives
the dimension of the representation.

Representation Character function

SUð2Þ fundamental zþ 1
z

SUð2Þ quadruplet z3 þ zþ 1
z þ 1

z3

SUð3Þ fundamental z1 þ z2
z1
þ 1

z2
SUð3Þ antifundamental 1

z1
þ z1

z2
þ z2

SUð3Þ adjoint z1z2 þ z2
2

z1
þ z2

1

z2
þ 2þ z2

z2
1

þ z1
z2
2

þ 1
z1z2

SUð2Þ adjoint z2 þ 1þ 1
z2

Uð1Þ with charge Q zQ

3As all operators are scalars, counting dimensions is the same
as counting the number of spurions. This can be generalized
by weighting each spurion by its mass dimension, i.e., H →
ϵH;Q → ϵ3=2Q, then collecting like terms.
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of motion (EOM)—relations among operators that are not
governed by symmetries or invariances.
At first glance, it seems like the Hilbert series is ill

equipped to handle EOM. However, the Hilbert series is not
a Lagrangian and is merely a tool to count invariants
formed from whatever spurions are put into the PE/PEF.
For the purposes of counting invariants, the role of
the EOM is to remove spurions—namely derivatives on
fields—by swapping them for different combinations of
spurions with no derivatives, which is something that can
be handled by the Hilbert series methodology. Consider the
EOM for the left-handed Standard Model quark doublet Q,

iDQ ¼ y†uuc†ϵH� þ y†dd
c†H; ð6:1Þ

which allows one to remove DQ from the set of spurions.
Derivatives of fermions can still appear in invariants, first
showing up at dimension 7 [31]. For example, consider the
operator

OLLud ¼ ϵijðdcσμuc†ÞðLiDμLjÞ: ð6:2Þ

The difference between the derivatives in the two equations
above lies in the Lorentz group representation. Acting on a
left-handed fermion with a derivative, we get

�
1

2
;
1

2

�
⊗

�
0;
1

2

�
¼

�
1

2
; 0

�
⊕

�
1

2
; 1

�
: ð6:3Þ

The EOM in Eq. (6.1) involves the ð1
2
; 0Þ representation

only. Therefore, we can incorporate the EOM for a fermion
field ψ by including an additional spurion for the ð1

2
; 1Þ part

of Dμψ , but omitting the ð1
2
; 0Þ spurion.

If we follow this logic, as we add further derivatives
DμDνψ , etc., we should add a new spurion to the PE/PEF
for every new representation of the Lorentz group that is
formed. For derivatives of scalars such as the Higgs fieldH,
DμH is new and should be added to the PE. Further
derivatives, such as DμDνH, will contain a piece with (0,0)
Lorentz structure; this piece should not be included as a
separate spurion as it is eliminated by the Higgs EOM,
□H ¼ m2H þ � � �. Similarly, for derivatives of the field
strength tensors DλX�

μν, the ð12 ; 12Þ representation should be
omitted.
Even after removing the derivative spurions, the Hilbert

series still lacks information about integration by parts, so
invariants involving derivatives need to be checked man-
ually for redundancy. This check will get tedious if we
Taylor expand the Hilbert series to arbitrarily high mass
dimension operators, but it should be reasonably manage-
able for the dimension-8 operators. Further investigation
along these lines will appear in Ref. [26].

VII. CONCLUSION

The Hilbert series is a mathematical method providing a
generating function for group invariants. Since this method
is not well known in the phenomenological community, we
have introduced the Hilbert series through simple examples
and provided several practical illustrations of its use.
Through the presented cases, we see that the Hilbert series
technique proves very useful for common applications.
Any calculation where a BSM or effective field theory
Lagrangian contains fields transforming under uncommon
group representations or where operators of higher order in
mass dimension are needed, the Hilbert series is an easy
way to get the right number of invariants. This is important
in particular when looking for small deviations from known
physics by comparing to precision measurements as redun-
dant or missing terms in Lagrangians could invalidate
analyses.
With the inclusion of derivatives and the equations of

motion, and applying sufficient skill toward reducing the
computational load of calculating the necessary residues, it
should be possible to compute a complete Hilbert series for
the Standard Model effective field theory. This generating
function would contain at each dimension a coefficient
specifying the total number of independent operators of
that dimension. If the task were extended to calculate the
multigraded Hilbert series, one would then be able to
directly see the different forms of operators at each order
simply by expanding out the Hilbert series. We intend to
work towards this goal in an upcoming study [26].
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APPENDIX: MATHEMATICAL
BACKGROUND

1. Characters

The character of an irreducible group representation is
the trace of the matrix giving the representation. Any matrix
representing a group element in a given representation will
have the same character.
In general, the characters of irreducible Lie group

representations are obtained from the Cartan matrices,
using the Freudenthal recursion formula to find the correct
multiplicities of weights (see Ref. [21] and references
therein). In practice, this calculation can be trivially done
using the MATHEMATICA package LieART by utilizing
the WeightSystem command [46]. The results for
some common representations are shown in Table II.

HILBERT SERIES FOR CONSTRUCTING LAGRANGIANS: … PHYSICAL REVIEW D 91, 105014 (2015)

105014-9



The characters can also be found using the character
generating functions outlined in Ref. [21].
Many common group calculations can be done using

characters. For example, consider taking the tensor product
of two SUð2Þ fundamentals. Using the characters from
Table II, this looks like

�
zþ 1

z

��
zþ 1

z

�
¼ z2 þ 2þ 1

z2
¼ 1þ

�
z2 þ 1þ 1

z2

�
;

ðA1Þ
which is just the familiar triplet-singlet spin decomposi-
tion 1

2
⊗ 1

2
¼ 0⊕ 1.

2. Plethystic exponential

For a multivariable function fðt1;…; tnÞ satisfying the
property of going to zero at the origin, the plethystic
exponential [7,9,10,13,21] is

PE½fðt1;…; tnÞ�≡ exp

�X∞
r¼1

1

r
fðtr1;…; trnÞ

�
: ðA2Þ

The plethystic exponential generates all symmetric combi-
nations of the variables of the function fðt1;…; tnÞ. For
example, the plethystic exponential of fðA;BÞ ¼ Aþ B is

PE½Aþ B� ¼ 1

ð1 − AÞð1 − BÞ
¼ 1þ Aþ Bþ A2 þ ABþ B2 þ � � � ðA3Þ

For fermionic variables we are interested in antisym-
metric combinations instead of symmetric combinations,
since fermions obey Fermi–Dirac statistics. The fermionic
plethystic exponential is defined as [21]

PEF½fðt1;…; tnÞ�≡ exp

�X∞
r¼1

ð−1Þrþ1

r
fðtr1;…; trnÞ

�
:

ðA4Þ

For example,

PEF½Aþ B� ¼ 1þ Aþ Bþ AB; ðA5Þ

where the first three terms are trivial and the last term is
indeed antisymmetric under A↔B, since fermions anti-
commute. In the body of this paper, the fermionic plethystic
exponential is not always explicitly differentiated from the
ordinary plethystic exponential, but the factor of ð−1Þrþ1 is
always included with fermionic variables (spurions).

3. Group integration with the Haar measure

It is possible to integrate over the manifold of a Lie group
by using an invariant measure known as the Haar measure.
This group integration projects out invariant quantities from
the combinatorial expansion of characters provided by the
plethystic exponential. The Haar measures that are used in
this paper are as follows (taken from Ref. [10]):

Z
Uð1Þ

dμUð1Þ ¼
1

2πi

I
jzj¼1j

dz
z
; ðA6Þ

Z
SUð2Þ

dμSUð2Þ ¼
1

2πi

I
jzj¼1

dz
z
ð1 − z2Þ; ðA7Þ

Z
SUð3Þ

dμSUð3Þ ¼
1

ð2πiÞ2
I
jz1j¼1

dz1
z1

I
jz2j¼1

dz2
z2

ð1 − z1z2Þ

×

�
1 −

z21
z2

��
1 −

z22
z1

�
: ðA8Þ

Further examples of Haar measures for various Lie groups
can be found in Ref. [10], where a general formula is also
presented.
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