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Rényi entropy of a free compact boson on a torus
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In this paper, we reconsider the single-interval Rényi entropy of a free compact scalar on a torus. In this
case, the contribution to the entropy could be decomposed into a classical part and a quantum part.
The classical part includes the contribution from all the saddle points, while the quantum part is universal.
After considering a different monodromy condition from the one in the literature, we reevaluate the
classical part of the Rényi entropy. Moreover, we expand the entropy in the low-temperature limit and find
the leading thermal correction term, which is consistent with the universal behavior suggested in [J. Cardy
and C.P. Herzog, Phys. Rev. Lett. 112, 171603 (2014)]. Furthermore, we investigate the large-interval
behavior of the entanglement entropy and show that the universal relation between the entanglement

entropy and thermal entropy holds in this case.
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I. INTRODUCTION

Entanglement entropy is an important notion in many-
body quantum systems [1,2]. For a bipartite system, the
entanglement entropy of the subsystem A is defined to be
the von Neumann entropy of the reduced density matrix

(1.1)

where the reduced density matrix p, = Trpp is obtained by
tracing out the degrees of freedom in B complementary to
A. When the total system is in the vacuum p = |0)(0], the
entanglement entropy of A equals that of its complement:

SEE(A) = SEE(B)- (1-2)

At a finite temperature, however, such equality does not
hold anymore. The entanglement entropy has been studied
in various condensed matter systems [see for example
Ref. [3] (also the nice reviews [4-0])], and also in the
context of AdS/CFT correspondence [7,8] (see Refs. [9,10]
for nice reviews).

The computation of the entanglement entropy from its
definition becomes a formidable task when the number of
degrees of freedom in the system is huge. Especially in
quantum field theory with infinite degrees of freedom, it is
more convenient to compute the Rényi entropy via the
replica trick [11]. The Rényi entropy is defined to be

Sep = —Tipslogpy,

S, =- log Trp’;. (1.3)
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It is related to the entanglement entropy by the relation

if the analytic continuation of the limit is available. In field
theory, the entropy is defined with respect to a spatial
submanifold at a fixed time. In two-dimensional spacetime,
the submanifold could be interval(s). However, after Wick
rotation, the Euclideanized field theory is defined in a
complex plane, and the Rényi entropy becomes

1 7
S =— 1 i
"o 0g<Z’f)

in which Z, is the partition function on an n-sheeted
Riemann surface resulting from the pasting of n complex
planes along the branch cuts (intervals).

There has been a long history to study the entanglement
entropy in quantum field theory. In dimensions higher than
2, the entanglement entropy has been found to obey the
area law (for a nice review, see Ref. [12]). But we are only
allowed to compute the entanglement entropy analytically
in very restricted situations—for example, the one for a
sphere in free field theory [13]. In (1 + 1) dimensions, we
can do better, especially for the field theory with conformal
symmetry. For a 2D CFT on the complex plane, the Rényi
entropy for one interval of length # is universal and only
depends on the central charge [14]

(1.5)

n+1_ I
log—,
€

(1.6)

S,=c¢
n
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where c¢ is the central charge and € is the UV cutoff.
For more complicated cases—for example, the multi-
interval at zero temperature or single interval on a circle
at finite temperature—the entanglement entropy and Rényi
entropy depend on the details of the CFT. In Refs. [15,16],
the double-interval Rényi entropies for free bosons and
the Ising model have been computed. In Refs. [17,18], the
finite-temperature Rényi entropy for free fermions has been
discussed. In Ref. [19], the finite-temperature Rényi entropy
for free bosons has been studied. Moreover, the treatment on
the W functions in the partition functions of free bosons has
been improved in Ref. [20].

In this paper, we reconsider the Rényi entropy of a free
compact scalar on a torus. Our motivation is twofold. First
of all, in our study on the free noncompact scalar case [20],
we noticed at least two novel features, originating from the
continuous spectrum of the theory. One is that the leading
thermal correction at low temperature in this case takes a
form different from the one suggested in Ref. [21]. This is
because the noncompact scalar has a degenerate vacuum,
while the universal thermal correction found in Ref. [21]
was based on the assumption that the CFT has a mass gap.
The other one is that the universal relation between the
large-interval entanglement entropy and thermal entropy
does not hold anymore [20,22]. Since the noncompact
free scalar could be taken as the large-radius limit of the
compact free scalar, it would be interesting to study the
Rényi entropy of a free compact scalar, which has a discrete
spectrum. On the other hand, even though the Rényi
entropy of a free compact scalar has been computed in
Ref. [19], the detailed discussion on the low-temperature
or large-interval expansion has not been worked out.
Moreover, we find that the classical part of the partition
function actually depends on a different monodromy con-
dition from the one in Ref. [19]. With the corrected classical
partition function, we compute the Rényi entropy and do
expansion in several limits, and rediscover the expected
universal behaviors.

In the next section, we revaluate the Rényi entropy for
free compact bosons. We consider a slightly different
monodromy condition to read the classical part of the
partition function. Then, in Sec. III, we discuss a low-
temperature limit, and expand the Rényi entropy with
respect to e~>"#. We find that the leading order is now
consistent with the universal thermal correction suggested
in Ref. [21]. In Sec. IV, we investigate the small-interval
and large-interval limits of the Rényi entropy, and prove the
universal relation between entanglement and thermal
entropies. We collect some technical details on the W
functions and the theta functions in the Appendix.

II. COMPACT BOSON RENYI ENTROPY

For a free boson, the partition function on a Riemann
surface can be decomposed into classical and quantum
parts,
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Z=7 Z (2.1)

quantum4~classical *

The classical part gets contributions from all the saddle
points carrying different monodromy conditions:

_ —Sg(M
chassical - Ze ( )
M

For the quantum correction, we need to consider the
perturbations around the classical saddle point and evaluate
their contribution to the partition function. In general, for
different classical solutions their quantum corrections are
different, but in the case of free bosons the quantum
correction is universal, so the partition function can be
decomposed into the classical and quantum parts as in (2.1).

In this section, we compute the compact scalar partition
functions on an n-sheeted torus connected by a branch cut.
The free complex scalar is compactified on a square torus
of radius R. It obeys the boundary condition

(2.2)

X(e*iz,e7%7) = X(z,Z) + 2zR(m| + im,),

mp,myp eZ. (23)

The quantum part of the partition function is equal to
[19,20]

1 = 1 9(0]z) &=
Zn.quantum = an H 16) ;20\ 9 —
(@) 5 1w PO w3 O\ (21 = 22l

(R Y
91(z1 - 22[7)

where we have already used the modular symmetry to
simplify the expression. The definitions of the W functions
and the theta function can be found in the Appendix.
This result could be derived by using the Ward identity on
the correlation functions involving the twist operators [23].

For the classical part, we need to find all of the classical
solutions and calculate their action. For convenience, we
redefine the fields as

(2.4)

—_

n—

X0 (7,7) =Y HkxU)(z,7), (2.5)

T
(=)

where 0 < k < n. For each redefined field X("¥)(z, 7), when

the argument goes around the branch point z; or z,, it gets
an extra phase e or =27, respectively. Moreover, the

boundary condition (2.3) changes to
X(”k)(ez”iz, e_z”iZ) _ e2ni§x(t,k)<z’ Z) + v(k)’ (2.6)
where v(%) is a vector in the lattice Ax defined by
Aé = { 27R Z;’;(l) e%'k(mjyl + l'mjyz), m;y,m;, € Z }
(2.7)
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These boundary conditions induce the following mono-
dromy conditions:

7{ dzoXh(z) + j'{ dz X0 = 0,

Ya Ya

fdﬁWWo+fw®ww=ﬁ%

Ya Ya

(2.8)

where the y,’s are the two cycles of worldsheet torus.
In terms of cut differentials

k _(1-k _k
o (2) = 91(z = 210) D8, (2 = 2]7) 8,
k k
X(z=1=-=)z; ——20]7 ),
n n
k _k —(1=k
0y (2) = 81(z = 21[7) 9, (z = 22|7) 1D 9,
k k
X <Z—_Z1 - <1——>22|T), (29)
n n
the classical solutions can be written as
8X(t’k) a(k)a)(lk) (2)7
axh) = p0apP (z),
aX0 = a0 (2),
axtH = pM el (7). (2.10)

Solving the monodromy conditions, we get

Wg(k)’lil - W?U() Uy —Wé(k)’Ul + Wi(k) Uy

® — bk —
“ det W) ' det W)
Ak — w5, - wyMa, B0 _ ws, - Wi,
det W det W) '
(2.11)

where the W functions are defined to be the integral of the
cut differentials along different cycles. The definition and
properties of the W functions can be found in the Appendix.
With these results, the classical action for X% is just

G 1

(k) j21ya/2(k) |2
_ 1%
47ma’|W}(k> Wl

2(k)| (|vl

+ o3 Pwy PP, (2.12)

The above discussion is the same as the one in
Ref. [19]. However, in Ref. [19], the classical action is
further simplified using the relation between the W func-
tions. Actually, it was suggested that the W functions are
related by

W3 = W] = ipWi.
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This relation turns out to be incorrect, as shown by the
direct expansions in the short-interval and large-interval
limits in Ref. [20]. Furthermore, the lattice translations v
and v, were determined in Ref. [19] along the way in
Ref. [15]. But notice that we are considering an n-sheeted
torus, which is very different from the n-sheeted Riemann
surface gotten from a two-interval complex plane. Actually,
the translation vectors are much simpler in the n-sheeted
torus case. On this Riemann surface, the spatial cycles
and time cycles on 7 replicas build the canonical cycles,
and all of the cycles on the Riemann surface can be
generated by these cycles. Once we fix the monodromy
around the canonical cycles, we can get all of the mono-
dromy on the Riemann surface.

For the n-sheeted torus, the monodromy condition can be
fixed as

AIX = 271'ij, AQX = 271'an, (213)
where
my=ml" +im? o =alV e in® (214
are complex integers. If we transform into X(*¥) bases,
then
n—1 )
U(lk) = 27R Z eZﬂij%mj’
=0
n—1
o9 = 27R Z > ilin,. (2.15)

=0

Taking these relations into (2.12) and summing over all the
saddle points, we get

Sa = ZSW

n—1 n—1

k
ZcosZn j=J) m( )m(,>
n

5 (Sl

Jj=0j'=0
W R E ok
+z\+<k> zzcoszm—w—-n; )
Wy TS0 =0 n
(2.16)
For convenience, let us define
—1 k)
k
Z cosZn] ])
k) k
z cosZn] ]) (2.17)
k=0
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We can diagnose the two matrices with the same matrix

Ujk — eZﬂijf—;
and find their different eigenvalues
2(0) 2(1) 2(n—1)
W w
U A U= diag(n ?(0) N ?(1) ,..n in_l) ),
W, W, W,
1(0) 1(1) 1(n-1)
w w
U—l.B.U—diag(n 5(0),;1 é(l)’ 1n 1))
2 W3 Wz
SO
a1

7nR? =
chassical = Z €xXp |:_ an Z T

R2 n—1 Wl(k) n—1 n—
—”, ;() Z cos2z(j—j)—-n )n,)}
an =0l Wl 550 7o
ﬂR2 n—1 WZ(k) n—1 n—1
= <Z exp[— - Z ?(k) ZZCOSZH(]—J’)— m;m;
m; a k=0 W1 Jj=0 j'=0

ZR2 n—1 Wl(k) n—1 n—1 2
- —é(k) CcoS 271'(] - ]/) —- I’lj}’lj/:|>
an I W =0 7o
om = 1 2(k) 2 n—1 n—1 n-1
W2 < { R W2 N
exp Z 22008271] J)—-mimy
p2n 1(k J0
R n W ( ) 50 (l n =0 W1 =0 720 n
_i n—1 W2< )| n—1 n—1 Cosz k 2
Rn z(j=J) ‘Pjpj’ .
k=0 W1 J=0 j’=0

(2.18)

(2.19)

(2.20)

(2.21)

For the last equation, we have used higher-dimensional Poisson resummation. It is remarkable that the classical partition
function depends explicitly on the W functions and then on the interval. This is very different from the result in Ref. [19].

Combined with the quantum part, the full partition function reads

Zn = chassicaIunantum

! 'ﬁ1 1 ( 9,(0f) )éﬂ“-,%z)( 5 (0/7) )éﬂ(l—ﬁ)
o " 3 = = -
|77(T)|4 |W}(k)|2 9 (Zl _Z2|T) 9,(z, — 2.]%)

k=0

-1

(mtmg

mj,pj

Z

n—1 n—1

nm .

k
cos2x(j — j')—-m;m;
n

J

=0 =0

-1 n—1 k 2
>_ PPy ’
Jj=0 j
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where other coefficients have been absorbed into ¢,, and
the function 7 is defined as

_ ezlrr/lZ H 27nm

(2.23)

This is the main result of this paper.

III. LOW-TEMPERATURE LIMIT

For the single-interval Rényi entropy at finite temper-
ature, there is a universal thermal correction coming from
the lowest excitation [21]

58, =

al \ 24
gn < sin %’ > e 2B 4L (3.1)

_ zl
1—-n nsan

where A is the scaling dimension of the excitations and g is
their degeneracy. This relation has been checked to be true
for the vacuum module in the context of AdS;/CFT,
correspondence [24]. However, it has been shown to break
down for the noncompact free scalar, which has a con-
tinuous spectrum. In this section, we study the low-
temperature limit of the partition function and Rényi
entropy of the compact free scalar, and we check this
relation.

For simplicity, we assume g—; < 1, which means that the
momentum mode has lower dimension than the descend-
ants of the vacuum module. We expand the results with
respect to g = e~ >":

n(z) = g5(1 + 0(q)). (32)
91(0) = 27g8(1 + O(q)) (3.3)
91(z1 — 22l7) = 2g8sinz(z; — ) (1 + O(q)).  (3.4)

2(k)

_ip +/Zz dt2i(smﬂ7k(t —zy))(sinz(1 = 5)(r = zy))

sinz(t—z;)

+0(q). (3.5)

For the summation in (2.22), the leading and next-leading
contributions come from m;=p; =0 and m; =0,
pi = %1, pj =0 for j#i. When all of m; and p; are
zero, then the exponential is 1. Only when p; = +£1, the
terms on the exponential contribute

PHYSICAL REVIEW D 91, 105013 (2015)

n—1
an’

D2
Rnk

adr
R*n

W2( ) —
Wi

S

+ O(q)

o nsinZ(z—2zp)

arn
=2y & 0(q).
p R> ° sinz(z, — z;) 0@

= (3.6)

Thus, the leading and subleading contributions in the
summation give

_=p (" sin o 20dp
| 4 2ne (M) Lo,

3.7
nsm%(zz—zl) (3.7)

and the partition function is approximately

1 ( 7 ) 1(1—%)
Zn:cn_ﬂ .
go \sinxl

7 1 A nd
( +dne R”(SIT"TZ)R%O(JRZ”)) (3.8)

nsinZ]
n

and

1 1
Sn:——logc,ﬁ—ilog _ﬂ
n—1 3n sin zl

_ 4nKSiI.1”l>[ —1]e”15ﬂ+0(e )

n—1 nsm%l

(3.9)

This result is in consistent with the universal behavior
suggested in Ref. [21]. For the complex scalar, the central
charge is 2. There are fourfold degeneracies for the lowest

excitation states, with the conformal dimension (;%; el 4%2)

IV. RELATION BETWEEN THERMAL ENTROPY
AND ENTANGLEMENT ENTROPY

In Ref. [17], it was suggested that when the interval
becomes very large, the entanglement entropy and thermal
entropy could be related by1

S = %EI(}(SEE(I = 1) = Sge(1)). (4.1)
In Refs. [20,22], this relation has been proved for a general
CFT with a discrete spectrum. For the free compact scalar
case at hand, it has a discrete spectrum, so it should satisfy
the relation. We can prove this directly by expanding the W
functions.

'"We have set the spatial length of the worldsheet to be unit.
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Since it is not obvious how to take the n — 1 limit on the Rényi entropy, we do not have an explicit form of the
entanglement entropy. Instead, we first try to study the / — O limit and then take the n — 1 limit. We assume that taking the

limits of » — 1 and [ — 0 is commutable.
For a small interval, we have

Wi =140z - 2),

and thus
(11— !
7= cl ()M@W”<%; '
S [( 7)|? 4 Z [
_ cnl_gn( - (Z} + O(1)].

For a large interval, we first analyze the summation terms
in the exponential. We only extract the leading terms with
respect to Z1 — 2,. Since the eigenvalues for the matrix A

lk=o0,..

terms are suppressed but the terms with m; = m, =
...m, =m,p; = p, =...p, = p. This fact is consistent
with the observation in Refs. [20,22] that the excitations on
different replicas should be the same in order to give
nonvanishing contributions in the large-interval limit.
Therefore, the summation yields

mR?nf , dnp ,
Zexp— g T P

m,p

are n| .n—1, in the limit z; — z,, all the

(4.4)

In this case, when z; — z,, the prefactor before the
exponential goes to

-ty 1
cnl ’ ? n
In(z)* H

k=0

2sin%p(7)3 2
8(= ',i 7)

(4.5)

This factor could be simplified more:

1
In(iﬂ)l“” Py

r| 2sinZn(ip)? |2
(—; |ip)

w3 = ip+ 0z - 22), (4.2)
7R? ar 2
; ,2-—FP§} +0(z —Zz)>
an n
w-Sr]) " o)
(4.3)
|
As
1 n—1
FH<2 sm—> =1, (4.7)
k=1
we find that for the large interval
Z, = c,""(Z,[np) + O(1), (4.8)

where 4 < 1 and O(*) terms come from the contributions
of the primary fields in the operator product expansion of
two twist operators. Now it is easy and straightforward to
prove the relation (4.1) between the thermal entropy and the
entanglement entropy [20,22]. Actually,

%i_IB(SEE(l —1) = Sge(1))

— _;lzl—r»l}n — (log Z;[np] — nlog Z,[])
17
e 2 =57
— S,

This relation should still hold in the large-volume limit
R — oo, under which the theory becomes a noncompact
free scalar. In Ref. [20], we showed that the left-hand side
of the relation (4.1) for a noncompact free scalar involves a
log-logarithmic term by expanding the partition function
directly. Such divergence comes from the continuous
spectrum of the theory. The discrepancy between the
two different methods is due to a subtle order-of-limits
issue. If we regularize the noncompact theory by taking it to
be the large-volume limit of the compact scalar, then the
relation (4.1) is recovered. On the contrary, if we take the
large-volume limit first and then discuss the large-interval
limit, we find the log-logarithmic divergence.
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APPENDIX: W FUNCTIONS

In this appendix, we list some useful results for the W functions and study their properties in various limits. The W
functions are defined as the line integral of the cut differentials:

1 k k
Wi(k)Z/ dz9,(z — 21|2)~ 0708, (z — z5|7) 9, <z—<1——>zl——zZIT>,

0 n n

1 _ o = k k

wit :/ dz, (2 = 21 [7) 79 (2 = 2]7) (09, <Z——21— (1——>Zzlf>’
0 n "
e k k
Wi = / dz91(z = 21le) 179, (z = 2) 9 <z - <1 —n> nZZ'T)’
K
n

- (1) )

As we have chosen the modular parameter to be purely imaginary = = if5, the W functions are related by

wak = A dz9,(z — 712) 79, (z — Zp2)" (-0 9, (z -

W= Wl= W2, Wi = —wl =Wl (A2)
The theta function is defined by
9, (ult) = 2¢¥ sin zu ﬁ(l —q"™)(1 = e*itgm)(1 — e~2miugm), (A3)
m=1
where
q = e¥ i, (A4)

1. Low-temperature expansion

The low-temperature expansion for W}(k) is

z z 1 k k
W}(k> = (/0 1 +/ ’ +/ )du&l(z - zllr)‘(":‘kr)é)l(z - zz|1)‘7kn91 <z - <l —;)zl —;z2|1>
21 22

z . k k
= [ - alo B0 = - Dm0y (2= (1-5)a - Eale)
Zz—l n n

zik
T . . . k k
= —eimj{ dz(sinm(z — z;))" =D (sinz(z — (z, — 1)) s1n7r<z - (1 - —>zl - —Zz) + 0(q)
l—e"n Ja n n
e du (1% &
! ki —(1-% _k =)
Tt (jéo 2riu (= u) ™07 (= ) o e =y )
du : k k k) &
- f o = ) - - ) )+ 0lg)
—aiy . o .
= o <% ei(1 - (e’”ez’”z')‘“‘ﬁ)(e”’ez"’“z‘”)_ﬁ)) +0(g)
—1 4 e ™ oo
=1+ 0(q). (A5)

In the third equation, the contour integral is along the A cycle in Fig. 1(a). In the fourth equation, we have used a conformal
transformation

U= iz, (A6)
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i' 1 'i :f' """""""""" B e S S —_——— i -
s E L B! |
Sl s S S 0 o, SO - Sl S S RS SRS s rasa s s Lo
H N3/ H H -5 1 & 1-¢
=g, < 1-¢,
2 1
(@ (®)

FIG. 1 (color online). There are two contour integral paths. (a) A cycle. (b) B cycle.

(k)

i

and in the fifth equation we have changed the integral contour to the one surrounding the infinity and the origin. For Wi
we have the expansion

_ it k k
Wi® = [ 7 dz8(z— 2 10) 9z — 2olr) D8z Sz + (1-= )z ) I
0 n n

= [ de((1 = )1 = e (1 = (1 = gentetene) 0o
0

x ((1 = 2riE=Gat(1=D2)) (] — ge=2riG=Gart(1-D2)))) 4+ 0(q), (A7)

where the integral should be along the B cycle in Fig. 1(b).

ip . 1 -
We can analytically expand the equations with respect to / g"e i = 5 _q’”e‘z”"“ﬂ(’)ﬁ
™2, and the summations in the expansions still converge. 0 et
There appear several kinds of terms in the expansion: = ! -q"(g7" = 1), (A10)
—27xmi
1 p2mmiz qme—aniz qmeZm‘(—m+n)z‘ (Ag)
ip .
. . . 2ri(=m+n)z —
After being integrated, the first term gives 8. The second A g" e = 0(q). (A11)

and third terms give

' If we are interested in the leading contribution with respect
/ # p2mmiz _ 1 e2mmiz | ip _ 1 (g"=1) (A9) tog,we only need to consider the first three kinds of terms.
. 0 . q ’
0 2xmi 2xmi In the end, we have
|

Wﬁ(“ —ip+ /iﬁ dz[(l _ ezm(z—zl))—g(l _ ezni(z—z2)>—(1—§)<1 _ e2m’(z—§zl—(1—f)zz)) _ 1]
0
N /iﬂ dz[(l _ qe—zni(z—zl))—f(l _ qe—2ni(z—zz))—(l—§)(l _ e—Zﬂi(Z—%Z]—(]—f)Zz)) — 1] + 0(4)
0

=if+ /_ioo dz [(sin m(z —z1)) " (sinz(z — )~ (=0 (sinn(z = SZI — (1 — S) z2)) - 1} +0(q). (A12)

i

|
To deal with the integral in the last relation, we define 0., F(z1.22) _k / ico

k_
—£-1

sl _5)&1 —) " (sinz(z —z;))

ico x (sinz(z — -(1-3)
F(Z],Zz):/ dz{(sinﬂ(z_Zl))—%(sinﬂ(z_Zz))—u—%) (sinz(z — z5)) : (A14)

i

x [ sin ko 1_5 1 P 0., F(z1,22)
simrz| z nZ] n 22 ’ ZZSin”(l—s)(Zl—Zz)

(A13) _ 2k (1 —k> /_im(sinﬂ(z—zl))_%_l

n n ico

. —(2-k
which only depends on z; — z,. Considering x (sinz(z = z5))"%7 cos m(z — z,), (A15)
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we find

1-% 7k 0, F

0. F = ——"sin—(z, — 7;) cos - =
2 % n (ZZ Zl) ”(ZZ Zl) Sinﬂ'(l _ %)(Zl _ Z2)
1 wk 0, F
——sin— (z, — z7)sinz(z, — z1)0 2 . Al6
Frsin T o=z sine(er = 200, (G S (A16)
[

Defining Therefore,

T= 612F(Z17Z2)’ (A17)

we have the equation

0., T _ ﬂkcosn%(zz -71)
T n k

Sinﬂ';
n—keosa(l —=%)(z, —zy)

n sinz(l—=%)(zp - z)

_”c9szr(zz—z1)’ (A18)
sinzr(zy — z1)

which has the solution

sinZ (z, — z;) sinz(1 —£)(z, — zy)

T=C :
sinz(zy - 21)

(A19)

Comparing with the direct evaluation of 0, F(z;,z,) for

El

o 2isin® (1 —z)sina(l %) (1 - z)
F(Z1,22> = / dt sin —
2] ﬂ-(t Zl)
(A21)
and

- o 2isinZE (t—zy) sinz(1 — %) (¢t -
W2 :iﬂ+/szt isind (1= 21) _ﬂ( D(=21)
N sinz(t—z;)

+0(q). (A22)

2. Small- and large-interval limits

To study the relation between thermal entropy and
entanglement entropy, we need to study the small-interval
and large-interval limits of the W functions. For small
intervals, it is simple to calculate. When z; = z,, the
integrand is 1, so

2 = 71, we have wih =1, W =g (A23)
C=2i (A20) For large intervals, we set z; — 0, z, — 1:
|
ik
e k k
W}(k) — - ﬁf\ dZ&l(Z —_ ZI|T)_(1_%)19](Z —_ (ZZ —_ 1)|T)_§191 (Z —_ (1 —_ —)Zl —_ _Z2|T>
l—en Ja n n
_zik
e n . k
:_ﬁfédzgl(z) 191<Z——|T> +0(z1 — (22— 1))
Il—e™n Ja n
1 k
=54 ()79 (—Ir) +0(z1 = (22— 1)). (A24)
sinz:; n

(k)

Let us evaluate the most singular term in W; when

z1—>0and z, — 1:
W2 = =1
iB v |
- / dz81(z = 21[7) 491 (2 = (22 = D7) 17D,
k k
X\Z2—=21— 1—-— Z2|T .
n n

Thereisa (z — z;) termin &,(z — z;|7),and a (z — (zo, — 1))
term in 9(z — (z — 1)|r). The most singular terms in the

integral come from the integral range near the origin.
In this limit,

91(z = z1]7) ~ 27(z — z21)n(7) (A25)
9(z= (2o = D) ~27(z = (2o — 1))n(7) (A26)

9, (z _SZI - (1 —S)zzh’) ~ 9, <—(1 —S) |T>,
(A27)

and then
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W%(k) ~ o—(1-H)mi

iM 1 k
x/ 2—(1—11) (Z—(Zz—l)) (=Dn(r)=39,

<(-(-2)r) =
where (z, — z;) < M < f. Since
|7 dete =zt = (@ - )0
l —(1 =) log(z = (- 1)), (A29)

the leading singular term in W,

PHYSICAL REVIEW D 91, 105013 (2015)
200 4

. sin Z k
Wg(k)N ! ﬂ" n(z)79, (‘(1 - ;) |T> log(z; — (22— 1)),
(A30)
and
2(k) sk
1% 2sin %
W%(k) - (=log(z; = (z2 = 1)))- (A31)
1
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