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A model is discussed where all operators are constructed from a quantum scalar field whose energy
spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time
coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a
foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in
the interaction picture. Free particle states and interactions are discussed in this framework. Then, the
formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied.
The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous
relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two
parameters, a parameter Λ which represents the collapse rate/volume and a scale factor l. A common
example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed.
The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of
l ¼ a ¼ 10−5 cm, is made, along with Λ ¼ λ=a3 (GRW-CSL choice λ ¼ 10−16s−1). The collapse rate is
also satisfactory with the choice l as the size of the Universe, with Λ ¼ λ=la2. Because the collapse
narrows wave functions in space and time, it increases a particle’s momentum and energy, altering its mass.
It is shown that, with l ¼ a, the change of mass of a nucleon is unacceptably large but, when l is the size of
the Universe, the change of mass over the age of the Universe is acceptably small.
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I. INTRODUCTION

In the Continuous Spontaneous Localization (CSL)
theory of dynamical collapse [1–3], an extra, anti-
Hermitian Hamiltonian is added to the usual Schrödinger
equation. This extra term depends upon a classical random
field and upon a set of completely commuting “collapse-
generating” operators. If the usual Hamiltonian H is set
equal to 0 so that state vector dynamics is solely due to the
extra term then, evolving under one or another random
field, state vectors asymptotically approach one or another
joint eigenstate of the collapse-generating operators.
The random fields which accomplish this are high

probability fields, where their probability is determined
by the second equation of the theory, the Probability Rule.
It states that, at time t, the probability of a particular random
field is ∼hψ ; tjψ ; ti, where jψ ; ti is the state vector which
evolved under that particular random field.
The CSL theoretical structure described above can be

applied to various problems. For example, it has recently
been applied to inflaton field fluctuation operators in the
early universe [4] so that a particular universe (presumably
ours) is chosen by collapse dynamics, instead of the
superposition of universes given by the standard theory.
But, its best known application is the nonrelativistic CSL

model, in which the collapse-generating operators are mass
density operators averaged over a mesoscopic distance a.
This model also possesses a second parameter, the collapse

rate λ. These parameters were first introduced by Ghirardi,
Rimini and Weber in the context of their SL (Spontaneous
Localization) theory [5].
The dynamics gives the Born Rule probabilities for the

outcomes of a large class of experiments. Even when
agreeing with the predictions of standard quantum theory in
these cases, the theory nonetheless does something new: its
state vector describes the individual outcome of an experi-
ment (not the standard theory’s superposition of such
outcomes), allowing a correspondence between the state
vector and a state of reality in nature. However, there are
experiments for which the theory makes different predic-
tions than standard quantum theory. So far, experiments
along this line have not found a deviation from the
predictions of standard quantum theory but neither have
they found a deviation from the CSL theory. They have put
experimental limits on the two parameters of the theory [6].
There is a long history of attempts to make a Lorentz

invariant version of CSL [7] using standard quantum field
theory operators. The problem has not been writing down
such a model. The problem has been that the extra term
gives rise to particle production from the vacuum,

d
dt

TrHρðtÞ ∼
Z

dxδ3ðx ¼ 0Þ ¼ V
Z

dkeik·0 ¼ V
Z

dk;

(Tr is the trace operation, H is the Hamiltonian, ρðtÞ is the
density matrix at time t, ρð0Þ ¼ j0ih0j is the density matrix
at time 0, V is the volume of space) because it excites each*ppearle@hamilton.edu
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mode (corresponding to particles of momentum k) in the
vacuum equally.
This amounts to infinite energy/sec-vol which, of course,

is unacceptable. One can see that a model must produce
such an infinity if there are any particles at all produced out
of the vacuum. For, if a particle of momentum k is
produced in one reference frame, Lorentz invariance
demands that another frame see the Lorentz transformed
momentum k0, but the equivalence of frames requires
that momentum k0 also appear in the first frame, ergo, all
momenta are produced in any frame. Thus, a viable theory
must have strictly 0 energy production from the vacuum.
Recently, Bedingham [8] has shown how to construct a

relativistic collapse model, where the energy production
from the vacuum is zero. (See also the recent paper
[9], where a relativistically invariant mass density col-
lapse-generating operator is proposed, suitable for use in
this model.) This model utilizes a nonstandard quantum
field ϕðxÞ ¼ ϕðx; tÞ. I first introduced this field [10] to
provide a quantum version of the CSL c-number random
field responsible for collapse. The commutator between the
field and its conjugate momentum is iδ4ðx − x0Þ, instead of
the usual equal-time commutator iδ3ðx − x0Þ. Bedingham’s
model utilizes this field as the collapse-generating operator,
and also utilizes the usual CSL c-number random field.
This work is ingenious and valuable. It not only provides a
proof of concept, that a relativistic collapse model is not
impossible, but it suggests that this field can be exploited to
produce other relativistic models.
In this paper, another relativistic model based upon ϕðxÞ

is presented. Section II discusses the properties of the field.
Section III explores some aspects of a relativistically
invariant quantum theory based upon it. Section IV adds
a collapse evolution of the state vector, presents the
resulting density matrix evolution equation, and shows
that the vacuum state is unchanged by the evolution.
Section V treats a collapse example. Section VI treats a
nucleon’s mass change.

II. QUANTUM FIELD

The field ϕðxÞ is constructed from annihilation
and creation operators aðkÞ; a†ðkÞ which correspond to
particles of all possible real four-momenta:

½aðkÞ; a†ðk0Þ� ¼ δ4ðk − k0Þ: ð1Þ
The one-particle state jki≡ a†ðkÞj0i has arbitrary four-
momentum ðk; k0Þ but, if one wishes, one can superpose
such states to create a normalized state whose four-
momentum is narrowly spread around ðk;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ.

From these operators, one can construct three fields of
interest:

ϕðxÞ ¼ 1ffiffiffi
2

p ð2πÞ2
Z

dk½eik·xaðkÞ þ e−ik·xa†ðkÞ� ð2aÞ

_ϕðxÞ ¼ i
1ffiffiffi

2
p ð2πÞ2

Z
dk½−k0eik·xaðkÞ þ k0e−ik·xa†ðkÞ�

ð2bÞ

πðxÞ ¼ i
1ffiffiffi

2
p ð2πÞ2

Z
dk½−eik·xaðkÞ þ e−ik·xa†ðkÞ� ð2cÞ

where dk ¼ dkdk0 (the unspecified integration range is
−∞ ≤ kμ ≤ ∞), k · x ¼ k·x − k0t and ϕðxÞ≡ ϕðxμÞ≡
ϕðx; tÞ. Note that πðxÞ ≠ _ϕðxÞ as is the case in standard
field theories.
The commutation relations are also rather unusual:

½ϕðxÞ;ϕðx0Þ� ¼
Z

dk½eik·ðx−x0Þ − e−ik·ðx−x0Þ�

¼ 0 so ½ϕðxÞ; _ϕðx0Þ� ¼ ½ _ϕðxÞ; _ϕðx0Þ� ¼ 0

½ϕðxÞ; πðx0Þ� ¼ iδ4ðx − x0Þ: ð3Þ

The associated energy operator is

H ¼
Z

dkk0a†ðkÞaðkÞ ¼ 1

2

Z
dx½ _ϕðxÞπðxÞ þ πðxÞ _ϕðxÞ�

ð4Þ

and one may readily verify that ½ϕðxÞ; H� ¼ i _ϕðxÞ and
similarly for the other fields. Likewise the total momentum
operator is

P ¼
Z

dkka†ðkÞaðkÞ

¼ −
1

2

Z
dx½∇ϕðxÞπðxÞ þ πðxÞ∇ϕðxÞ�:

The other generators of Lorentz transformations are Jr ≡
iϵrst

R
dka†ðkÞks ∂

∂kt aðkÞ and Kr ≡ i
R
dka†ðkÞ½k0 ∂

∂kþ
kr ∂

∂k0�aðkÞ. One may then show that ϕðxÞ and its positive
and negative frequency parts transform like Lorentz scalars,
and aðkÞ; a†ðkÞ transform like the Fourier transforms of a
positive or negative frequency scalar field. It should be
emphasized that, since all dynamical quantities shall be
constructed from these field operators, the above generators
are all that one needs to make Lorentz transformations,
regardless of any interactions that might be introduced.
We define

ffiffiffi
2

p
× the positive frequency part of ϕðxÞ:

φðxÞ≡ 1

ð2πÞ2
Z

dkeik·xaðkÞwhich satisfies ½φðxÞ;φ†ðx0Þ�

¼ δ4ðx − x0Þ; φðxÞj0i ¼ 0: ð5Þ

φ†ðxμÞ, acting on the vacuum state, creates a particle at the
event xμ ¼ ðx; tÞ.
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It should be emphasized that this is not a particle in the
sense of possessing a definite numerical value for its
mass. Rather, it is a particle in the sense of being an
eigenstate of the particle space-time number density operator
NðxÞ≡ φ†ðxÞφðxÞ, with eigenvalue a delta-function density.
Remarkably, the self-commutator of this operator vanishes
everywhere:

½NðxÞ; Nðx0Þ� ¼ φ†ðxÞ½φðxÞ;φ†ðx0Þ�φðx0Þ
þ φ†ðx0Þ½φ†ðxÞ;φðx0�ÞφðxÞ

¼ δ4ðx − x0Þ½φ†ðxÞφðx0Þ − φ†ðx0ÞφðxÞ� ¼ 0:

ð6Þ
NðxÞ is a rather singular function, so it is useful to construct
the less singular

~NðxÞ≡
Z

dx0f½ðx − x0Þ2�Nðx0Þ: ð7Þ

where f is some useful function, with properties to be
specified later: it is chosen to be dimensionless, so ~NðxÞ is
dimensionless sinceN has dimension length−4. We note that,
in addition to ϕ, and π, also φ, N and ~N all transform
as Lorentz scalars. The state of n events is an eigenstate
of ~NðxÞ:
~NðxÞjx1; x2…xni≡ ~NðxÞφ†ðx1; t1Þ…φ†ðxn; tnÞj0i

¼
Xn
s¼1

f½ðx− xsÞ2 −ðt− tsÞ2�jx1; x2…xni:

ð8Þ

The quantum theory which naturally follows from the use
of the operators defined above is different from the usual
quantum theory. Here, time is on an equal footingwith space:
wave functions are functions over all space-time. BecauseH
has an infinite spectrum, one can define amean time operator
as the 0th component of a contravariant 4-vector:

X̂μ ≡
R
dxxμφ†ðxÞφðxÞR
dxφ†ðxÞφðxÞ ; where ½X̂μ; Pν� ¼ iδμν : ð9Þ

A state consisting of n events is readily seen to be an
eigenstate of the mean time operator:

T̂jx1; t1; ::;xn; tni

¼ 1

n

Z
dxtφ†ðx; tÞφðx; tÞφ†ðx1; t1Þ…φ†ðxn; tnÞj0i

¼ t1 þ � � � þ tn
n

jx1; t1; ::;xn; tni: ð10Þ

Just as exp−iP · a provides a forward-in-space trans-
lation, so does exp iHs provide a forward-in-time trans-
lation. That is, since

eiHsφ†ðx; tÞe−iHs ¼ φ†ðx; tþ sÞ; ð11Þ
it follows that

eiHsjx1; t1; ::;xn; tni ¼ eiHsφ†ðx1; t1Þ…φ†ðxn; tnÞj0i
¼ φ†ðx1; t1 þ sÞ…φ†ðxn; tn þ sÞj0i
¼ jx1; t1 þ s; ::;xn; tn þ si ð12Þ

It is worth emphasizing that, usually, the energy operator
generates forward-in-time-translations in the Schrödinger
Picture, but here it is the negative of the energy operator.

III. A QUANTUM THEORY BASED UPON
THIS FIELD

It is useful to first discuss a classical mechanics analog.
It is possible to construct a classical relativistically invariant
theory of interacting particles where, in addition to position
and momentum of each particle, time and energy of each
particle are also (conjugate) dynamical variables [11].
These variables are functions of a ‘universal evolution
parameter’ s. The equations of motion are relativistically
invariant Newton’s Law-like equations, but the derivatives
of the variables are with respect to s.
We would like to regard the present model similarly. We

consider a given foliation of spacelike hypersurfaces σðsÞ
labeled by an inexorably increasing evolution parameter s.
Just as the usual wave function has position coordinates for
each particle, here the wave function has event coordinates
for each particle:

jψ ; si ¼
Z

dx1…dxnχðs; x1…xnÞ
1ffiffiffiffiffi
n!

p φ†ðx1Þ…φ†ðxnÞj0i

ð13Þ
where dxi ≡ dxidti, χ is a symmetric function of its
arguments, and

R
dx1…dxnjχj2 ¼ 1 so hψ ; sjψ ; si ¼ 1.

Under a Poincaré transformation, the wave function
transforms like a scalar, i.e.,

jψ ; si0 ≡Ujψ ; si

¼
Z Yn

i¼1

dxiχðs; ::xi::Þ
1ffiffiffiffiffi
n!

p
Yn
i¼1

φ†ðΛ−1ðxi þ aÞÞj0i

¼
Z Yn

i¼1

dx0iχðs; ::Λx0i − a::Þ 1ffiffiffiffiffi
n!

p
Yn
i¼1

φ†ðx0Þj0i

≡
Z Yn

i¼1

dx0iχ
0ðs; ::x0i::Þ

1ffiffiffiffiffi
n!

p
Yn
i¼1

φ†ðx0Þj0i;

where χ0ðs; ::x0i::Þ ¼ χðs; ::xi::Þ. The theory is relativisti-
cally invariant because, as shall be seen, the dynamical
equations (in the interaction picture) are relativistically
invariant (i.e., have the same form in all Lorentz frames)
and, although there is a ‘special’ hypersurface foliation
governing the evolution, that foliation may be chosen
arbitrarily. In what follows, we shall not need general
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arbitrariness, so we shall suppose that the hypersurfaces are
Lorentz hyperplanes in one “special” reference frame, and
that the variable s labeling the hyperplanes coincides with
the coordinate t in that frame. The time variables of all
particles in the initial state vector’s wave function are to
be localized in the neighborhood of σðs0Þ, in this case t0.
We cannot know the value of s but, if we did, if there was a
clock which registered s, the squared magnitude of the
wave function at s gives the probability density of the
distribution of events of all particles.
The un-normalized event state φ†ðx; tÞj0i ¼ ð2πÞ−2R
dke−ik·xa†ðkÞj0i contains all four-momenta. Since k02 −

k2 can take on any real value, the event state may be
considered as describing a superposition of particles of all
masses, including imaginary masses, i.e. tachyons. Negative
k0 may be considered as corresponding to an antiparticle.
A normalized state of a single particle, localized near an

event ðx; tÞ in this ‘special’ frame (where expressions are
simpler, but fromwhich one may transform to other frames),

jψi ¼
Z

dx0dt0
1

ð2πσ2Þ3=4 e
−ðx0−xÞ2

4σ2
1

ð2πσ02Þ1=4 e
−ðt0−tÞ2

4σ02 jx0; t0i

¼
Z

dkdk0e−ik·x
1

ðπ=2σ2Þ3=4 e
−k2σ2

×
1

ðπ=2σ02Þ1=4 e
−k02σ02a†ðk; k0Þj0i; ð14Þ

is also a multimass state.
However, one can construct a state vector which is as

close to an eigenstate of mass m as desired, for example,

jψi ¼
Z

dkdk0e−ik·x
1

ðπ=2σ2Þ3=4 e
−½k−p�2σ2

×
1

ðπ=2σ02Þ1=4 e
−½k0−ωðkÞ�2σ02a†ðk; k0Þj0i

¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − tÞ

×
1

ð2πσ02Þ1=4 e
−ðt0−tÞ2

4σ02 jx0; t0i; ð15Þ

where ωðkÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and

Kðx0 − x; t0 − tÞ

≡
Z

dk
1

ðπ=2σ2Þ3=4 e
−½k−p�2σ2eik·ðx0−xÞ−iωðkÞðt0−tÞ ð16Þ

is a positive energy solution of the Klein-Gordon equation,
with mean momentum p. Although Eq. (16) has in it the
full time evolution of the wave packet, translating and
spreading, the time-dependent gaussian in the full wave
function (15) keeps it in the neighborhood of t0 ¼ t, not
translating or spreading.
There is a tradeoff here: increasing the mass accuracy

means increasing σ0, which in turn means that the wave
function is more spread out in time. How much spread out

in time? The natural unit of time here is the time it takes light
to cross the reduced Compton length, ƛ=c ¼ ℏ=mc2: for a
nucleon, where ƛ ≈ 2 × 10−14 cm, this is ≈7 × 10−25 s.
Masses of nucleons are known to about 7 decimal places
[12]. Therefore, if σ0 ≳ 107ℏ=mc2 ≈ 7 × 10−18 s, any mass
spread would go unnoticed. Thus, an appropriately chosen
initial state can have its particles quite narrowly spread in
time about the initial hyper-surface and still have very well
defined masses.
This state, as do all states, time-translates but does not

evolve under the evolution operator −H: in the ‘special’
frame this is

eiHsjψi ¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − tÞ

×
1

ð2πσ02Þ1=4 e
−ðt0−tÞ2

4σ02 jx0; t0 þ si

¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − t − sÞ

×
1

ð2πσ02Þ1=4 e
−ðt0−t−sÞ2

4σ02 jx0; t0i: ð17Þ

That is, although the event coordinate’s time is now
centered on t0 ¼ tþ s instead of t, K’s time argument is
still centered about 0.
H contains no information about a particle’s

mass. To obtain free particle dynamics, one must add an
evolution Hamiltonian which contains the necessary mass-
information. Defining

Hm ≡
Z

dkωðkÞa†ðkÞaðkÞ

¼
Z

dxφ†ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2 þm2

p
φðxÞ

¼
Z

dx½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2 þm2

p
φ†ðxÞ�φðxÞ

and the evolution operator Ĥ ≡Hm −H (note:
½Hm;H� ¼ 0), the evolution is

jψ ; si ¼ e−iĤsjψi ¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − tÞ

×
1

ð2πσ02Þ1=4 e
− t02
4σ02e−is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇02þm2

p
jx0; t0 þ si

¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − tþ sÞ

×
1

ð2πσ02Þ1=4 e
− t02
4σ02 jx0; t0 þ si

¼ 1

ð2πÞ3=4
Z

dx0dt0Kðx0 − x; t0 − tÞ

×
1

ð2πσ02Þ1=4 e
−ðt0−sÞ2

4σ02 jx0; t0i: ð18Þ
Here, the wave packet translates and spreads as s increases.
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To introduce interactions between particles, one may first define a scalar field whose mass is close to m, written
variously as

ΦmðxÞ≡
Z

∞

0

dμ2bνðμ2 −m2Þ
Z

dkδðk2 þ μ2ÞΘðk0Þ½aðkÞeik·x þ a†ðkÞe−ik·x�

¼
Z

∞

0

dμ2bνðμ2 −m2Þ
Z

dk
ωμ

½aðk;ωμÞeik·x−iωμt þ a†ðk;ωμÞe−ik·xþiωμt�

¼
Z

dk
Z

∞

jkj
dk0bνðk02 − ω2

mÞ½aðkÞeik·x þ a†ðkÞe−ik·x� ð19Þ

where ωμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and bνðaÞ is a function concen-

trated about a ¼ 0, such that limν→0b2νðaÞ → δðaÞ (bν is an
approximation to a ‘square root of a delta function’, for
example, ð2πν2Þ−1=4e−a2=4ν2).
The first line of (19) shows that ΦmðxÞ is a Lorentz

scalar. The second line shows three ways it differs from the
usual three-field expression, i.e., it is mass-smeared, it uses

aðk;ωμÞ rather than the usual aðkÞ and the integrand has

the scalar dk=ωμ in it rather than the usual dk=
ffiffiffiffiffiffiffiffi
2ωμ

p
. The

third line shows that
R∞
jkj dk

0bνðk02 − ω2
mÞaðkÞ is a kind of

projection operator acting on aðkÞ. In the limit ν → 0, this
becomes the usual aðkÞ= ffiffiffiffiffiffiffiffiffi

2ωm
p

since it yields the usual
commutation relations:

�Z
∞

jkj
dk0bνðk02 − ω2

mÞaðkÞfðkÞ;
Z

∞

jk0j
dk00bνðk002 − ω02

mÞa†ðk0Þf0ðk0Þ
�

¼ δðk − k0Þ
Z

∞

jkj
dk0b2νðk02 − ω2

mÞfðk; k0Þf0ðk; k0Þ→
ν→0

δðk − k0Þ 1

2ωm
fðk;ωmÞf0ðk;ωmÞ; ð20Þ

where f; f0 are arbitrary functions. Thus, it appears that an
interaction such as gΦn

mðxÞ, i.e., an interaction picture
evolution

jψ ; siI ¼ T e
−i
R

s

s0
dxg∶Φn

mðxÞ∶jψ ; s0i;
(T is the time-ordering operator) will yield Feynman
diagrams whose associated expressions will be close in
value to those of the usual gΦnðxÞ theory, for small ν, since
the diagram expressions are determined by these commu-
tation relations. We shall not pursue that any further here,
since the aim of this paper is to explore collapse dynamics.
Before doing so however, one may mention another

possibility for introducing interactions. It is not readily
possible, using standard creation and annihilation opera-
tors, to construct a Lorentz invariant interacting particle
theory, in analogy to the nonrelativistic interacting particle
theory, by adding a potential to the Klein-Gordon or Dirac
equation Hamiltonians (which is one reason for introducing
quantum fields). However, it is possible within the peculiar
framework we have discussed. One may introduce a
Lorentz invariant two-particle interaction potential as
follows. If the Schrödinger picture state vector is related
to the interaction picture state vector by jψ ; siI ¼
eiĤsjψ ; siS, let the evolution of the interaction picture state
vector be

jψ ; siI ¼ e
−i
2

R
σðsÞ
σðs0Þ

dz
R

dxdx0φ†ðxÞφðxÞV½z−x;z−x0�φ†ðx0Þφðx0Þjψ ; s0i:
ð21Þ

V is a c-number potential which is a function of the three
scalar products formed from the two four-vectors zμ − xμ

zμ − x0μ. x; x0 are integrated over all space-time, while z is
integrated between the two hypersurfaces. It follows from
Eq. (6) that there is no need for time-ordering. We take
Vðz − x; z − xÞ ¼ 0 so that the exponent is equal to its
normal ordered form.
The consequences of this possibility are peculiar. The

generic behavior is that particles of given approximate mass
scatter into particles of a continuous distribution of mass, so
this does not correspond to our world. At best, with a
suitably constrained V and initial particle energies, one may
arrange it so the outgoing particle masses are of the same
approximate mass spread as the incoming particle masses.
An example illustrating this behavior is discussed in
Appendix A.

IV. COLLAPSE EVOLUTION

We now turn to consider a model of collapse dynamics in
the framework of such a quantum theory. The usual CSL
collapse theory allows a realist interpretation (correspon-
dence of the state vector to the real physical world we see
around us) because the altered Schrödinger dynamics
causes a ‘large’ object in a superposition of places to
become rapidly localized to one place. By ‘localized’ is
meant that the center of mass part of the wave function is
highly peaked at just one location (although, like all wave
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functions, it does extend over all space), thereafter evolving
forward in time.
Analogously, here, a realist interpretation is allowed

because the altered Schrödinger dynamics causes a large
object in a space-time superposition to become rapidly
localized in space-time. By “localized" is meant that the
center of mass wave function is highly peaked at one event
(although it does extend over all space-time), thereafter
evolving forward in s.
As is customary, we wish to demonstrate collapse

behavior without the interference of additional dynamics.
This is achieved by neglecting Hm and any interaction.
Thus, we set Ĥ ¼ −H. Then, without collapse, the particle
states only translate in s in the Schrödinger picture. We
propose the following evolution equation in the interaction
picture,

jψ ; σðsÞi ¼ e
− 1
4Λ

R
σðsÞ
σðs0Þ

dx½wðxÞ−2Λ ~NðxÞ�2 jψ ; σðs0Þi; ð22Þ

(hereafter dropping the subscript I from the interaction
picture state vector). In this equation, Λ is a collapse
rate parameter with dimension L−4, wðxÞ≡ wðx; tÞ is a
c-number field of white noise structure (i.e., it can take
any value at any event x) with the same dimension as Λ.
That models of the form (22) are Lorentz invariant was

explained in Ref. [7], but will be summarized here. Under a
Lorentz transformation, generated by applying a unitary
transformation constructed from the ten Poincaré trans-
formation generators given earlier, the effect on the
exponential is to replace ~NðxÞ by ~N0ðxÞ, where the prime
denotes the quantity in the new reference frame. Relabeling
the x coordinates as x0 to obtain ~N0ðx0Þ (¼ ~NðxÞ) changes
wðxÞ to wðx0Þ. If this was instead w0ðx0Þ it would be
manifestly Lorentz invariant, but it is not. However, the
model considers the evolution of the set of state vectors
under all possible w’s, and it is the set of all possible state
vector evolutions which is Lorentz invariant.
The dynamical equation (22) has the well-known CSL

form. It is supplemented by the Probability Rule which is
that the probability a particular random field lies in the
range ðwðx; tÞ; wðx; tÞ þ dwðx; tÞÞ,

PðwÞDw ¼ Dwhψ ; σðsÞjψ ; σðsÞi; ð23Þ

where jψ ; σðsÞi has evolved from jψ ; σ0ðsÞi under that
particular wðx; tÞ.
Some well known consequences of Eqs. (22) and (23)

follow [13]. Each individual state vector evolves toward
one or another joint eigenstate of the completely commut-
ing “collapse generating operators.” Here, these operators
are ~NðxÞ for all x, and so the end product of collapse is a
state of events jx1; x2…xni. Moreover, the probability
distribution of the initial space-time density of events is
preserved by the ensemble of evolutions.

It is immediately obvious that the vacuum state is
unaffected by the evolution. Set jψ ; σðs0Þi ¼ j0i in (22).
Then, for each state vector,

jψ ; σðsÞi ¼ e
− 1
4Λ

R
σðsÞ
σðs0Þ

dxw2ðxÞj0i≡ CðsÞj0i;

since ~NðxÞj0i ¼ 0. Thus, the problem of creation of
particles out of the vacuum which afflicted previous
attempts at achieving a relativistic collapse theory is,
trivially, not a problem here.
We shall hereafter work in the ‘special’ reference frame

where σðsÞ ¼ s ¼ t.
Using Eqs. (22) and (23), one derives the density matrix

evolution,

ρðtÞ ¼ e
−Λ

2

R
t

t0
dx½ ~NLðxÞ− ~NRðxÞ�2ρðt0Þ; ð24Þ

(the subscripts L and R mean that the operators are to be
placed to the left or right of ρðt0Þ, and we shall hereafter
take t0 ¼ 0) which satisfies the Lindblad equation

d
dt

ρðtÞ ¼ −
Λ
2

Z
dx½ ~Nðx; tÞ; ½ ~Nðx; tÞ; ρðtÞ��: ð25Þ

These last two equations, which describe the behavior of
the ensemble of state vectors, are all that shall be used
hereafter. We note that, since the particle number space-
time density operatorNðxÞ commutes with ~Nðx0Þ, it follows
from (25) that dTr½ρðtÞF ðNÞ�=dt ¼ 0, where F is an
arbitrary functional of N. Thus, the constancy of the
probability distribution of the space-time density of events
is verified.

V. COLLAPSE

A basic test for a collapse model is to apply it to an initial
state jψ ; 0i ¼ 1ffiffi

2
p ½jLi þ jRi� (initial density matrix ρð0Þ ¼

1
2
½jLihLj þ jLihRj þ jRihLj þ jRihRj�), where jLi, jRi

describe an n particle “clump” of matter of volume V
whose centers are separated by a spacelike interval d2≡
jdL − dRj2 − ðtL − tRÞ2 > 0.
To be concrete, we shall choose an expression for the

function f which was introduced in Eq. (7)’s definition of
~Nðx; tÞ. It is to have only spacelike support,

fðx2Þ ¼ x2

l2
e−

x2

l2Θðx2Þ; ð26Þ

where Θ is the step function. The reason we choose f ∼ x2

is to have it vanish smoothly on the light cone and thus be
differentiable there. Possible choices for the scale l shall be
proposed shortly.
Suppose such a superposition exists initially (s ¼ t ¼ 0)

in the ‘special” reference frame with tL ¼ tR ¼ 0. We shall
consider that jLi consists of n nucleons, with
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jLi ¼
Yn
j¼1

Z
dxjχjðxj − dL; tjÞφ†ðxj; tjÞj0i: ð27Þ

(For jRi, replace dL by dR.) For simplicity, we shall take the wave functions to have identical form, and be well localized
with their “centers” located at ðxj ¼ zj þ dL; tj ¼ 0Þ. The zj are sufficiently displaced from each other so that the wave
functions for the different nucleons,

χjðxj − dL;R; tjÞ≡ χ0ðxj − dL;R − zjÞ
1

ð2πσ02Þ1=4 e
−

t2
j

4σ02;

are essentially nonoverlapping. The wave functions in the left or right clump are to occupy a volume V with uniform density
D. Thus, each clump consists of a uniformly distributed nucleii with, however, for simplicity, only one nucleon per nucleus.
We now note

~NðxÞjLi ¼
Z

dx1f½ðx − x1Þ2�φ†ðx1Þφðx1ÞjLi

¼
Z

dx1f½ðx − x1Þ2 − ðt − t1Þ2�
Xn
k¼1

χkðx1 − dL; t1Þφ†ðx1ÞjLik

≈
Xn
k¼1

f½ðx − dL − zkÞ2 − t2�
Z

dx1χkðx1 − dL; t1Þφ†ðx1ÞjLik

≈ D
Z
V
dzf½ðx − dL − zÞ2 − t2�jLi: ð28Þ

where jLik is defined as the product (27) without the kth term. The approximation in the third line considers that each
nucleon’s wave function’s support is very small in extent compared to l, so the argument x1 in f has been replaced by the
“center” of the wave function, ðdL þ zk; 0Þ. In the last line, the sum over particles has been replaced by an integral over the
particle number density.
Equation (28) says that jLi; jRi are (approximate) eigenstates of ~NðxÞ. Therefore, we may write Eq. (24) in terms of a

function IðtÞ whose growth with time characterizes the collapse,

ρðTÞ ¼ 1ffiffiffi
2

p ½jLihLj þ jRihRj� þ 1ffiffiffi
2

p ½jLihRj þ jRihLj�e−IðTÞ where

IðTÞ≡ Λ
2
D2

Z
T

0

dx

�Z
V
dzf½ðx − dL − zÞ2 − t2� −

Z
V
dzf½ðx − dR − zÞ2 − t2�

�
2

¼ ΛD2

Z
T

0

dx
Z
V
dz1

Z
V
dz2f½ðx − z1Þ2 − t2�½f½ðx − z2Þ2 − t2� − f½ðx − z2 − dÞ2 − t2��

¼ ΛD2

Z
T

0

dx
Z
V
dz1

Z
V
dz2f½ðx − zÞ2 − t2�½f½x2 − t2� − f½ðx − dÞ2 − t2��; ð29Þ

where translation invariance of x has permitted writing the
result in terms of d≡ dL − dR and z≡ z1 − z2.
We shall proceed to calculate (29) for two cases; when

l ¼ a ≈ 10−5 cm (the GRW-CSL scale parameter choice)
and l≈ “size” of the Universe cT (T is the “age” of the
Universe), for the following reasons.
A new feature compared to nonrelativistic CSL is that a

choice of distance scale ineluctably brings with it a natural
time l=c which has dynamical consequences. In the first
case, l=c is quite small, a=c ≈ 3 × 10−16 s. in the second

case, l=c is quite large, T ≈ 40 × 1016 s. A laboratory
collapse time T one regards as satisfactorily small is
still huge on the first scale, but is minuscule on the
second scale. This requires two different estimates
of (29).
Moreover, we have not yet discussed the increase of

energy and momentum of a particle due to the narrowing of
the wave function by the dynamics. The mean value of the
energy of any state does not change since, regarding
HðtÞ≡ TrHρðtÞ, it is easy to see from Eq. (25) that
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d
dt

HðtÞ ¼ −
Λ
2

Z
dxTrρðtÞ½ ~Nðx; tÞ; ½ ~Nðx; tÞ; H��

¼ −
Λ
2

Z
dxTrρðtÞ½ ~Nðx; tÞ; i _~Nðx; tÞ� ¼ 0: ð30Þ

In the first step, the trace operation allows the double
commutator on ρðtÞ to be changed to a double commutator
on H. In the second step, we have used ½ ~Nðx; tÞ; H� ¼
i _~Nðx; tÞ. The last step has used the vanishing commutator
(6). Similarly, the mean value of momentum, PðtÞ≡
TrPρðtÞ does not change, since ½ ~Nðx; tÞ;∇ ~Nðx; tÞ� ¼ 0.
Although the mean momentum of a particle does not

change, the spatial narrowing of the wave function leads to
an increase in the momentum spread: this also occurs in
nonrelativistic CSL. There, the momentum spread induces
an energy spread since the energy operator is the square
of the momentum operator. However, there, the mass is a
constant and so it is not affected by the dynamics. Here,
there is not the relation between energy and momentum
operators but the energy spread increases also because there
is a concomitant narrowing in the time spread of the wave
function.
Thus, a nucleon whose wave function is initially close to

an eigenstate of mass m gets smeared out in mass by the
collapse evolution. The smaller is l, the more rapidly do
the energy spread and momentum spreads increase and
the more rapidly does the mass change. To agree with
experiment, one would wish to have the mass m of a
nucleon change by no more than ≈10−7m over the age of
the Universe. As we shall see, this additional constraint
beyond the requirement of a satisfactory collapse behavior
of I makes the first choice, l ≈ a, untenable, but permits
the second choice.

A. Collapse when l ¼ a

For this case, l ¼ a, we shall additionally assume
that a ≪ V1=3 ≪ d.
In this case we can argue that f½ðx − dÞ2 − t2� in Eq. (29)

may be dropped, as the expression involving it makes a
constant contribution for large T, while the expression
involving the first term in the bracket gives a contribution
∼T. This is most easily visualized in one spatial dimension,
but holds in higher dimensions.
Imagine the three forward light cones corresponding to

the three arguments of f in (29), where the tips of cones 1, 2
and 3 are, respectively, at t ¼ 0 and x ¼ z; x ¼ 0; x ¼ d.
Imagine that the outside surface of each light cone has a
coating of thickness ≈a: this is roughly the support of f for
each term in (29).
For large enough T, one can see that cones 1 and 3

intersect, so the product of the corresponding terms make a
contribution to the integral, but that overlap does not
change as T increases, so neither does the contribution
change.

On the other hand, when z ¼ 0, cones 1 and 2 com-
pletely overlap and if −a≲ z≲ a then they partially
overlap. Therefore, for z in this range, there is an increase
in the overlap integral ∼T as T increases.
Thus, (29) becomes

IðTÞ ≈ ΛD2

Z
T

0

dx
Z
V
dz1

×
Z
V
dz2f½x2 − t2�f½ðxþ zÞ2 − t2�: ð31Þ

Evaluation of (31) is done in Appendix B, with the result

IðTÞ ≈ 3π2

2
ΛTa3½DV�½Da3�: ð32Þ

Suppose we set

Λ ¼ λ

a3
; ð33Þ

where λ is the GRW-CSL collapse rate parameter. Since the
number of particles is n ¼ DV and, denoting the number of
particles in a “cell” of volume a3 by ncell, we obtain the
result

IðTÞ ∼ nncellλT; ð34Þ

which is identical to the collapse rate for the same situation
in nonrelativistic CSL.

B. Collapse when l ¼ cT

Here we make no constraint on the relative sizes of the
clump and the clump separation d, but both are very small
compared to l, and T ≪ l=c.
We calculate (29) in Appendix B, Eq. (B6):

IðTÞ ∼ n2ΛlTd2: ð35Þ

If we choose

Λ ≈
λ

la2
; ð36Þ

then the collapse rate (35) becomes

IðTÞ ∼ n2λT

�
d
a

�
2

: ð37Þ

The nonrelativistic CSL collapse rate for n particles in a
volume ≲a3, separated by distance d≳ a, is n2λT. The
result obtained here is comparable at d ≈ a, but is faster as
d increases. It appears that the rate obtained here is as fast
or faster than the nonrelativistic rate for most situations of
interest.
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VI. CHANGE OF MASS OF A NUCLEON

To characterize the mass spread of a nucleon, one might
proceed in the following way. First, define a hermitian mass
operator M≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jH2 − P2j
p

. Already there is a complica-
tion: since nothing forbids tachyonic four-momenta, there
are negative eigenvalues ofH2 − P2, which necessitates the
absolute magnitude sign in the definition of M: otherwise,
it would not be a Hermitian operator. The mass standard
deviation Δ is given by :

Δ2 ≡ hψ jðM − hMiÞ2jψi ¼ hψ jjH2 − P2jjψi − hψ jMjψi2;
ð38Þ

where the overline refers to the ensemble average over all
state vectors, each state vector jψiw characterized by its
evolution under a specific classical field wðxÞ.
A second complication is that the second term on the

right-hand side of (38), hMihMi is not readily calculable
because it is quartic in the state vector. Thus, we consider
the first term on the right-hand side of (38), which can be
calculated using the density matrix, as an upper limit onΔ2.
However, the absolute magnitude complicates that calcu-
lation. But, if the mass starts out narrowly spread and
positive and does not change much over the time interval
of interest (a condition we shall impose), it is reasonable
to suppose that, for the majority of state vectors of
large measure, that whψ jðH2 − P2Þjψiw > 0 and so

hψ‖H2 − P2‖ψi ≈ jhψ jH2 − P2jψij. Thus, we suppose

Δ2ðTÞ≲ jH2ðTÞ − P2ðTÞj: ð39Þ

To calculate d
dt H

2 we utilize (25):

d
dt

H2 ¼ −
Λ
2
TrρðtÞ

Z
dx½ ~Nðx; tÞ; ½ ~Nðx; tÞ; H2��

¼ ΛTrρðtÞ
Z

dx _~Nðx; tÞ _~Nðx; tÞ: ð40Þ

The right-hand side of this equation is readily evaluated.
Put (24)’s expansion for ρðtÞ into (40). Because of the trace,
the operators ð1=4ΛÞ R t

0 dx
0½ ~Nðx0Þ½ ~Nðx0Þ; �� in the exponent

may be turned from operating on ρð0Þ ¼ jψ ; 0ihψ ; 0j to
operating on _~Nðx; tÞ _~Nðx; tÞ. These commutators all vanish,
so we are left with

d
dt

H2 ¼ Λhψ ; 0j
Z

dx _~Nðx; tÞ _~Nðx; tÞjψ ; 0i: ð41Þ

We wish to consider the initial wave function of just one
nucleon (if we consider n nucleons with nonoverlapping
wave functions, the result is just n times larger), jψ ; 0i ¼R
dxχðxÞφ†ðxÞj0i. Putting this into (41), and evaluating the

matrix element gives

d
dt

H2 ¼ Λ
Z

dx
Z

dx1jχðx1Þj2 _f2½ðx − x1Þ2�

¼ Λ
Z

dx
Z

dx1jχðx1Þj2 _f2½x2 − ðt − t1Þ2�

≈ Λ
Z

dx _f2½x2 − t2�: ð42Þ

Here we have first used translation invariance in x to
remove x1 from the argument of f. Then, as previously, we
have assumed that the wave function’s center of time
coordinate is x01 ≡ t1 ¼ 0 and that the wave function is
well localized in time on the scale of l so that f scarcely
changes over the time spread of jχðx1Þj2. Finally, we have
utilized

R
dx1jχðx1Þj2 ¼ 1.

A similar calculation, for P2 gives

d
dt

P2 ¼ Λ
Z

dxð∇fÞ2½x2 − t2�: ð43Þ

Define f0ðs2Þ≡ d=ds2fðs2Þ ¼ l−4ðl2 − s2Þ exp−l−2s2,
and then it follows from (39), (42) and (43) that

Δ2ðTÞ≲ 4Λμ4
Z

T

0

dt
Z

dxf02½x2 − t2�jt2 − x2j þ Δ2ð0Þ

≲ 16πΛ
l8

Z
T

0

dt
Z

∞

t
r2dr½l2 − ðr2 − t2Þ�2

× ðr2 − t2Þe−2l2ðr2−t2Þ þ Δ2ð0Þ: ð44Þ

Now, change to hyperbolic variables r ¼ s cosh β,
t ¼ s sinh β, and dtdr ¼ sdsdβ:

Δ2ðTÞ − Δ2ð0Þ ≲ 16πΛ
l8

Z
∞

0

s5ds½l2 − s2�2e−2l−2s2

×
Z

sinh−1T=s

0

dβcosh2β: ð45Þ

A. l ¼ a

Since T=s≃ T=a ≫ 1, the upper limit on the β integral
is ≈ ln 2T=s. The resulting integrals are then elementary
(or, one obtains the same result by making the approxi-
mation cosh β ≈ 2−1eβ) with the result:

Δ2ðTÞ − Δ2ð0Þ≲ 2πΛT2: ð46Þ

Let the initial spread of mass be Δð0Þ ≈ 10−7m, so the
nucleon mass is known to present-day accuracy. We ask
how large T is for the change ofΔ to be of similar accuracy,
ΔðTÞ − Δð0Þ ≈ 10−7m. With Λ ≈ λ=a3 (the choice that
made the collapse rate essentially the same as for non-
relativistic CSL), we have, from (46), using a−1≡
μ ≈ 2 eV:
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ΔðTÞ − Δð0Þ
m

≲ πΛT2

Δð0Þ m ¼ πðλTÞT
a

μ2

Δð0Þm

≈ πð10−16TÞ 3 × 1010T
10−5

1

10−7

×

�
2

940 × 106

�
2

≈ 10−7
�
T
50

�
2

; ð47Þ

where T is in seconds. Thus, in about a minute the limit is
reached whereas, to agree with experiment, the limit should
at best be reached only over the age of the Universe.
As might be expected, the energy production rate is

unacceptably large as well.

B. l ¼ cT

Returning to Eq. (45), set l ¼ T , the age of the
Universe, and ask for the nuclear mass spread when
s ¼ T . Since T=s≃ T=T ≲ 1, the upper limit on the β
integral may be approximated as sinh−1ðT=sÞ ≈ T=s. With
cosh β ≈ 1, after performing the integral over s, the
result is:

Δ2ðTÞ − Δ2ð0Þ≲ :2ΛlT: ð48Þ

With the choice (36), Λl ≈ λ=a2 (curiously, in both the
calculation of collapse rate and of mass spread increase it is
a single parameter, Λl, which determines the results) we
have for T ¼ T :

ΔðTÞ − Δð0Þ
m

≲ :1ðλT Þ μ2

Δð0Þm ≈ 2 × 10−12: ð49Þ

We conclude that this case gives satisfactory results for
the mass-spread increase.
The energy production rate is likewise satisfactory. From

Eq. (42) it follows that

H2ðTÞ −H2ð0Þ ¼ Λ
Z

T

0

dx _f2½x2 − t2�

¼ 16πΛ
l8

Z
T

0

dtt2
Z

∞

t
r2dr½l2 − ðr2 − t2Þ�2

× e−2l
−2ðr2−t2Þ ≈ 6Λl−1T3: ð50Þ

Taking H2ð0Þ ≈m2, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðTÞ −m2

q
≈ 3μλT

�
T
T

�
2 μ

m
≈ 10−6 eV ð51Þ

for T ¼ T .
To conclude, the model presented here appears to

provide a satisfactory relativistic generalization of the
nonrelativistic CSL collapse model, although there remains
much to be explored.
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APPENDIX A: TWO-PARTICLE
SCATTERING EXAMPLE

We consider here the evolution, given in Eq. (21).
We specialize the scalar potential to be

V½z − x; z − x0� ¼ W½ðx − x0Þ2�Θ½ðz − xÞ2�
× Θ½ðz − x0Þ2�Θ½−ð2z − x − x0Þ2�

≡W½ðx − x0Þ2�Iðz; x; x0Þ; ðA1Þ

where W has finite range; i.e., it vanishes beyond a
specified value of its argument. . The reason for the step
functions limiting z − x; z − x0 to spacelike values and
z − ðxþ x0Þ=2 to timelike values, shall appear presently.
Applied to a two-particle state vector (the results are

easily generalized to n particles) in the ‘special’ frame, with
s0 ¼ 0 for simplicity, we have

jψ ; siI ¼ e−
i
2

R
s

0
dz
R

dxdx0φ†ðxÞφðxÞV½z−x;z−x0�φ†ðx0Þφðx0Þ
Z

dx1dx2χ0ðx1; x2Þ
1ffiffiffi
2

p φ†ðx1Þφ†ðx2Þj0i

¼
Z

dx1dx2e
−iW½ðx1−x2Þ2�

R
s

0
dt
R

dzIðz;x1;x2Þχ0ðx1; x2Þ
1ffiffiffi
2

p φ†ðx1Þφ†ðx2Þj0i

≈
Z

dx1dx2e
−iW½ðx1−x2Þ2�

R
s

0
dt
R

dzIðz;t;x1;0;x2;0Þχ0ðx1; x2Þ
1ffiffiffi
2

p φ†ðx1Þφ†ðx2Þj0i ðA2Þ

where, in the approximation, we are assuming χ0ðx1; x2Þ ∼ e−½t21þt2
2
�=σ02 , with σ0 small enough that we may set t1 ≈ 0;

t2 ≈ 0.
We see that the result of the interaction is that the wave function is just multiplied by a phase factor, so the spatial

distribution of events jχ0ðx1; x2Þj2 is unaffected by the interaction. However, the four-momentum distribution is affected,
provided the initial wave packets described by χ0 are not so far apart that W½ðx1 − x2Þ2� vanishes on their support.
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Because of the step functions, the interaction has a finite
range in time as well. In one space dimension, the region of
intersection of the three step functions is shown in Fig. 1.
Thus, s increases to a value beyond which the interaction is
“turned off.” That is, the phase factor no longer changes
(the potential vanishes) when s exceeds a certain value.
This value is the maximum value of t at the top of the
diamond-shaped region when jx1 − x2j equals the range of
W. If the potential was not turned off, e.g., if the exponent

was instead ∼sW, this would effectively be a potential
whose coupling constant grows without bound, which in
turn would give rise to energy-momentum changes without
bound in the wave-function.
Such a turning off of potential is a property of non-

relativistic (Galilean invariant) quantum theory. There, in
the Schrödinger picture, a potential operator W½ðX1 −
X2Þ2� doesn’t explicitly change with time, but its effect
is eventually turned off because the wave packets, which
initially move freely, eventually pass through the inter-
action region, and end up moving freely beyond the range
of the potential. The same behavior of course must be
seen in the interaction picture. There, while the packets do
not move freely, the potential W½ðX1 þ P1t=m −X2 −
P2t=mÞ2� now has dynamical dependence. The argument
of the potential effectively eventually grows larger than the
potential range, which turns off the potential.
In the model discussed here, there is a reversal of

what happens in these pictures: non-dynamical behavior
of the potential belongs to the interaction picture
potential (the form exhibited in (20), necessitated by
the constraint of relativistic invariance), while it is in
the Schrödinger picture that the potential has dynamical
dependence:

jψ ; siS ¼ e−iĤsjψ ; siI
¼

Z
dx1dx2e

−iW½ðx1−x2Þ2�
R

s

0
dt
R

dzIðz;t;x1;0;x2;0Þχðx1; x2Þ

·
1ffiffiffi
2

p e−is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2

1
þm2

p
φ†ðx1; t1 þ sÞe−is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2

2
þm2

p
φ†ðx2; t2 þ sÞj0i

¼
Z

dx1dx2e
−is

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2

1
þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇2

2
þm2

p �h
e−iW½ðx1−x2Þ2�

R
s

0
dt
R

dzIðz;t;x1;0;x2;0Þχðx1; t1 − s;x2; t2 − sÞ
i

·
1ffiffiffi
2

p φ†ðx1Þφ†ðx2Þj0i: ðA3Þ

To illustrate, as we have mentioned is evident in the
interaction picture, this model has the peculiar property
that, if the initial particle wave packets do not overlap over
a region within the range of the potential W, there is no
interaction. How is this evidenced in the Schrödinger
picture?
One sees in (A3) behavior similar to that associated

with the non-relativistic operator W½ðX1 − P1s=m −X2 þ
P2s=mÞ2�.Xi − Pis=m is essentially just the initial position
of a packet. Therefore, in the Schrödinger picture, the
argument of the potential remains roughly constant, larger
than the potential’s range, even though the packets move
toward each other, overlap and recede.
Now we turn to consider how the energy-momentum of

the particles is altered by the evolution (A2). In the limit
s → ∞, utilizing

R
s
0 dt

R
dzIðz;t;x1;0;x2;0ÞÞ¼C½x1−x2�4

(C is a dimensionless constant whose value is unimportant
for our discussion),

hq1; q2jψ ;∞iI
∼
Z

dx1dx2e−iCðx1−x2Þ
4W½ðx1−x2Þ2�χ0ðx1; x2Þ

e−iq1·x1e−iq2·x2 ; ðA4Þ

plus a term with q1↔q2, which we shall hereafter omit
writing. Let the two particles have completely overlapping
initial wave functions, χ0ðx1; x2Þ ¼ χ0ðx1Þχ0ðx2Þ, where
χ0ðxjÞ is given by (15)

χ0ðxjÞ ∼ e
−

t2
j

4σ0ð2Þ

Z
dkje−½kj−pj�2σ2eikj·xj−iωðkjÞtj : ðA5Þ

t

x1 x2            z

FIG. 1. The region where Iðz; t;x1;0;x2;0Þ¼ 1 is the
diamond shaped region, with vertices ðz; tÞ ¼ ðx1þx2
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Upon writing the potential term in (A4) as a Fourier
transform,

e−iCðx1−x2Þ4W½ðx1−x2Þ2� ≡
Z

dkeik·ðx1−x2Þgðk2Þ; ðA6Þ

and inserting this and (A5) into (A4), we obtain

hq1; q2jψ ;∞iI ∼
Z

dkdk1dk2δðkþ k1 − q1Þ

× δð−kþ k2 − q2Þgðk2Þ
× e−½k1−p1�2σ2e−½k2−p2�2σ2

× e−ðq01−ωðk1ÞÞ2σ02e−ðq02−ωðk2ÞÞ2σ02 : ðA7Þ

We see from the delta functions that momentum is
conserved: for large enough σ, q1 þ q2 ≈ p1 þ p2, and k
is the transferred momentum. Also, for large enough σ0, the
particle energies are unchanged, q0j ≈ ωðkjÞ ≈ ωðpjÞ. (Our
requirements that σ0 and σ0−1 both be small do not conflict,
since the former is a time, e.g., σ0 ≈ 7 × 10−18 sec, while
the latter is an energy, e.g., ℏ=σ0 ≈ 100 eV ≈ 10−7m.)
However, the usual mass-shell relationships, which

constrain the momentum transfer k, do not exist here.
The outgoing masses of the particles depends upon the
dynamics,

m2
j ≡ q02j − q2

j ≈ ω2ðpjÞ − ðpj � kÞ2 ¼ m2∓2pj · k − k2;

ðA8Þ
k can take on any value so, generally, there is a scattering to
particles with a continuum distribution of masses.
Still, one can arrange for the final mass spread to be of

the order of accuracy to which the initial masses are known.
We note that if the only dimensional parameter character-
izing the potential W is its range b, then the Fourier
transform gðk2Þ will have the range jkj ≈ 1=b. So, for
example, if we adopt the stringent constraint that the initial
masses are known to 10−7m ≈ 100 eV, this will be approx-
imately true also for the final masses if the initial momenta
pj are such that the initial kinetic energy is ≲100 eV and
also ℏ2=2mb2 ≲ 100 eV, i.e., 5 × 10−11 cm≲ b.

APPENDIX B: EVALUATION OF INTEGRALS
RELEVANT TO COLLAPSE CALCULATION

1. l ¼ a

Here we evaluate the integral (31):

IðTÞ ≈ ΛD2

Z
T

0

dx
Z
V
dz1

×
Z
V
dz2f½x2 − t2�f½ðx − zÞ2 − t2�; ðB1Þ

where fðx2Þ ¼ a−2x2 exp−ða−2x2ÞΘðx2Þ ¼ −α ∂
∂α exp−ðαx2Þjα¼a−2Θðx2Þ. Because the integral is unchanged by replace-

ment z → −z, it is symmetric in x · z ¼ rz cos θ, so its value is 2× the integral over half the range of cos θ:

IðTÞ ≈ ΛD22π

Z
V
dz1

Z
V
dz2α

∂
∂α β

∂
∂β

Z
T

0

dt
Z

∞

t
r2dre−αðr2−t2Þe−βðr2þz2−t2Þ2

Z
1

0

d cos θe−β2rz cos θ

¼ ΛD22π

Z
V
dz1

Z
V
dz2

1

z
α
∂
∂α β

∂
∂β e

−βz2
Z

T

0

dt
Z

∞

t
rdre−ðαþβÞðr2−t2Þ 1

β
½1 − e−βrz�: ðB2Þ

We note that the constraint r ≥ t ensured that both exponents are positive over the positive range of integration
of cos θ.

We may drop exp−βrz compared to 1. The exponent
βrz ≈ ðz=aÞðr=aÞ. The first factor z=a ≈ 1 for most of the
range of integration over z on account of the factor
exp−βz2. However, since a ≈ 3 × 10−16 s, then t=a ≫ 1
for most of the range of t, so r=a > t=a ≫ 1.
The integrals over r and t are then readily performed,

followed by the derivatives with respect to α; β, and then
replacement of these variables by a−2:

I ≈ πTΛD2

Z
V
dz1

Z
V
dz2

1

z
α
∂
∂α β

∂
∂β

1

ðαþ βÞβ e
−βz2

¼ ΛT
πa2

4
D2

Z
V
dz1

Z
V
dz2

1

z
½z2 þ 2a2�e−a−2z2 : ðB3Þ

The remaining integrals can be performed by replacing
the integration variable z2 by z ¼ z2 − z1: one can
extend the integration range of z to infinity because the
exponent effectively limits the range to a small volume of
scale a and we have assumed that V ≫ a3:

IðTÞ ≈ ΛT
πa2

4
D2

Z
V
dz14π

Z
∞

0

z2dz
1

z
½z2 þ 2a2�e−a−2z2

¼ ΛT
πa2

4
D2

Z
V
dz16πa4

¼ 3π2

2
ΛTa3½DV�½Da3�: ðB4Þ
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2. l ¼ size of Universe

In Eq. (29), we may set f½ðx − zÞ2 − t2� ≈ f½x2 − t2�
since z ≪ jxj≃ l:

IðTÞ ≈ ΛD2

Z
T

0

dx
Z
V
dz1

Z
V
dz2f½x2 − t2�½f½x2 − t2�

− f½ðx − dÞ2 − t2��:

¼ ΛD2V2

Z
T

0

dt
Z

dx
x2

l4
e−

2x2

l2

×
h
x2 − ðx2 − 2x · dþ d2Þe−−2x·dþd2

l2

i
: ðB5Þ

Since T ≪ l=c, then x2 ≈ x2 ≡ r2 and the time integral
gives T. The exponent in the second term in the square
bracket ≪ 1 can be expanded, and the integral over x · d
vanishes. The resulting expression, neglecting d2=l2

compared to 1 is

IðTÞ ≈ Λn2T2π
Z

dx
r2

l4
e−2

r2

l2

�
4
ðx · dÞ2

l2
− d2

�

≈ Λn2Td22π
Z

∞

0

dr
r4

l4
e−2

r2

l2

�
8r2

3l2
− 1

�

¼ π

2
Λn2Td2l: ðB6Þ
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