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We apply pseudospectral methods to construct global solutions of functional renormalization group
equations in field space to high accuracy. For this, we introduce a basis to resolve both finite as well as
asymptotic regions of effective potentials. Our approach is benchmarked using the critical behavior of the
scalarOð1Þmodel, providing results for the global fixed point potential as well as leading critical exponents
and their respective global eigenfunctions. We provide new results for (1) multicritical Oð1Þ models in
fractional dimensions, (2) the three-dimensional Gross-Neveu model at both small and large N, and (3) the
scalar-tensor model, also in three dimensions.
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I. INTRODUCTION

Many interesting physical phenomena are characterized
by strong coupling. Among them, there are very funda-
mental problems as for example confinement in QCD or
potentially the quantization of gravity. Conventional meth-
ods from quantum field theory, such as perturbation theory,
are not applicable in such cases. In recent years, an
increasingly successful method has been the functional
renormalization group (FRG). It is based on the Wilsonian
idea of integrating out modes momentum shell by momen-
tum shell. In the last two decades, the FRG, based on the
formulation by Wetterich [1], was successfully applied to a
range of topics, including scalar field theories [2–11],
fermionic systems [12–18], critical phenomena [19–25],
gauge theories [26–33] and quantum gravity [34–48]. From
a technical perspective, the generic outcome of applying the
FRG to a given model is a coupled system of nonlinear
(integro-)differential equations of complex structure. This
is due to the full field- and momentum-dependent propa-
gator entering theWetterich equation. There exist only a few
cases where the full equations can be solved analytically. In
all other cases one has to consider the system within some
truncation, retaining only a manageable number of oper-
ators. Even then, the equations are rarely analytically
solvable, e.g. in a large-N or mean-field approximation.
However, if one seeks a solution without such approxima-
tions, numerical methods appear indispensable. Various
methods are used depending on the special structure of
the system of equations. All these methods aim at a
numerically accurate solution that fulfils the equations to
high precision.
In this work, we advocate the use of pseudospectral

methods, especially referring to Chebyshev polynomials as
basis functions as a versatile tool for FRG equations. The
falloff of the corresponding expansion coefficients provides
a measure for the accuracy of the approximate solution.
Pseudospectral methods are a well-suited, fast means to

treat a wide range of different problems: ordinary and
partial differential equations as well as eigenvalue problems
[49]. These are all problems relevant both in the FRG
formalism and physics in general.
Here, we focus on calculating global solutions of

physical systems, especially referring to ordinary differ-
ential equations (ODEs). In particular, we cover the basics
of the pseudospectral concepts, and ultimately apply them
to several interesting problems arising from FRG applica-
tions. Some of them, as the Ising model in three dimen-
sions, have already been the focus of many detailed studies
in the past, making them a perfect testing ground for the
methods presented here. It is convenient to start with these
models to discuss some mathematical and technical details
of the equations and their implementation. In this way,
one can also easily compare to known results. In order to
emphasize that the range of applications of the methods
presented here is very large, we present a variety of
applications and extract several new results. This includes
multicritical phenomena in noninteger dimensions, and the
three-dimensional Gross-Neveu model. For the scalar-
tensor model proposed recently in [50], we gain new
insights which cannot be obtained within local expansions.
Let us also point out that the methods presented here are
heavily used in other contexts [49,51], as e.g. finding
solutions to Einsteins equation [52,53]. First applications to
FRG problems have been given in [54–56]. Our approach is
particularly suited for global aspects and also resolves
asymptotic behavior in a controlled way. Recently, it has
been used to globally resolve the supersymmetric analogue
of the Wilson-Fisher fixed point [57].
This work is organized as follows: in Sec. II, we present

the basic ideas of pseudospectral methods, focusing on
the properties essential for the subsequent discussion.
Afterwards, Sec. III sheds light on the specific application
of the methods to a given problem, while Sec. IV is a short
overview on the FRG. We then turn our attention to the
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Oð1Þ model in Sec. V, first studying the Wilson-Fisher
fixed point in three dimensions. Furthermore, we extend
known results on multicritical fixed points in noninteger
dimensions. Consequently, Sec. VI treats the Gross-Neveu
model, first in the large flavor number limit, then consid-
ering finite flavor numbers. Finally, Sec. VII discusses a
scalar-tensor model which couples a scalar field non-
minimally to gravity.
The numerical results were obtained with code written in

Cþþ, including the libraries BOOST [58] for handling
arbitrary precision and Eigen [59] for dealing with linear
algebra. To analyze and present the data, Mathematica 10
[60] was employed.

II. PSEUDOSPECTRAL METHODS

Pseudospectral methods aim to represent a function via a
suitable expansion. Suitable means that the expansion shall
be accurate and easily treatable. In the present context, all
derivatives needed should be easily computable to high
accuracy and they and the function itself should be
evaluable at arbitrary points. Natural candidates for such
an expansion are the classical orthogonal polynomials,
which have some convenient properties regarding conver-
gence, evaluation and taking derivatives. In this paper, we
will focus on the Chebyshev polynomials of the first kind,
which are defined by

TnðcosðxÞÞ ¼ cosðnxÞ; n ∈ N0; ð1Þ
and their cousins, the rational Chebyshev polynomials [61],

RnðxÞ ¼ Tn

�
x − L
xþ L

�
: ð2Þ

Here, L > 0 is an arbitrary parameter, encoding the
precise compactification in x. The reason for this choice is
that they have superior convergence properties as compared
to Legendre polynomials or Chebyshev polynomials of the
second kind. Both Hermite and Laguerre polynomials are
ill suited for our problems for the following reason: they are
defined on unbounded intervals, and increasing the inter-
polation order changes the asymptotic behavior. For the
problems usually encountered, the asymptotic behavior is
fixed and thus the convergence properties of Hermite and
Laguerre polynomials is difficult to control. One possibility
is to use the Hermite or Laguerre functions, which decay
exponentially, but again, the convergence properties are
often worse compared to those of rational Chebyshev
polynomials.
In the following, we will collect some important proper-

ties of Chebyshev polynomials. Similar relations hold
for their rational counterparts. We will only state results,
for deeper information and proofs, consider e.g. [49]. First,
a fast way of evaluating an expansion in Chebyshev
polynomials,

fðxÞ ¼
XN
i¼0

aiTiðxÞ; ð3Þ

at an arbitrary point x is given by the Clenshaw algorithm,
which is based on the 3-term recurrence relation

Tnþ1ðxÞ ¼ 2xTnðxÞ − Tn−1ðxÞ: ð4Þ

With this, the function fðxÞ is readily evaluated via the
recursive algorithm

bNþ2 ¼ bNþ1 ¼ 0;

bi ¼ ai þ 2xbiþ1 − biþ2;

fðxÞ ¼ a0 þ xb1 − b2: ð5Þ

Second, the derivative of fðxÞ can again be expanded
in a sum of Chebyshev polynomials of degree N − 1.
The expansion coefficients, call them ai0, are given recur-
sively by

a0N−1 ¼ 2NaN;

a0N−2 ¼ 2ðN − 1ÞaN−1;
a0i ¼ 2ðiþ 1Þaiþ1 þ a0N−2: ð6Þ

Both the Clenshaw and the derivative algorithm are high-
performance algorithms and numerically stable due to their
recursive nature.
The third, but most important property of the Chebyshev

polynomials is the exceptional convergence of the expan-
sion coefficients, which is based to their relation to Fourier
series as indicated by (1). To be more precise, let us first
define the algebraic index of convergence as the largest
number k for which

lim
n→∞

janjnk < ∞: ð7Þ

So-called exponential convergence is achieved if the
coefficients an decrease faster than 1=nk for any k. For
example, the Chebyshev expansion of a Lipschitz continu-
ous function is always converging exponentially. One can
further differentiate exponential convergence into super-
geometric, geometric and subgeometric convergence, but
these details shall not matter here. On a log-log plot,
algebraic convergence manifests itself in a straight line,
whereas exponential convergence is indicated by a bending
downwards. Note that the definition of convergence is an
asymptotic one, and might set in only when including a
large number of coefficients.
By Darboux’s principle, convergence properties of a

series is related to the singularity structure of the function to
be interpolated. This includes poles, branch cuts, fractional
powers, discontinuities in the function or in any of its
derivatives etc. in the complex plane. Important in this
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context is the convergence domain of a Chebyshev series.
It is given by the interior of an ellipse whose foci lie at
x ¼ �1. This is in contrast to a Taylor series (or more
generally a Laurent series), whose domain of convergence
is a disc around the expansion point.
We shall close this mini-review by recalling the

Chebyshev truncation theorem, which gives an upper
bound for the error made in truncating a Chebyshev series.
The error is given by the sum of the absolute value of the
neglected coefficients. A useful rule of thumb is that this
error is of the order of the last retained coefficient for
exponential convergence, and of the order of the number of
coefficients retained times the last coefficient for algebraic
convergence.

III. IMPLEMENTATION

In this section, we want to give more details on how to
apply pseudospectral methods by considering a generic
ODE of one function in one variable. Without loss of
generality we restrict to the domain x ∈ Rþ. If the domain
is R, then we apply the subsequent ideas to both Rþ
and R−.
Let L be a (not necessarily linear) integro-differential

operator and consider the problem

L½fðxÞ� ¼ 0: ð8Þ

We want to decompose the function fðxÞ into a series of
Chebyshev polynomials. To gain maximum efficiency, first
the domain of fðxÞ is decomposed into M parts. We will
restrict the discussion here toM ¼ 2, that is we decompose
the domain into ½0; x0� and ½x0;∞�. In the first domain, the
function is interpolated via a standard Chebyshev series,
whereas in the second part, a rational Chebyshev series is
used. Thus

fðxÞ ¼
8<
:

PNc
i¼0 ciTi

�
2x
x0
− 1

�
; x ≤ x0;

f∞ðxÞ
PNr

i¼0 riRiðx − x0Þ; x ≥ x0;
ð9Þ

where f∞ðxÞ is the leading term of the asymptotic behavior
of fðxÞ for x → ∞, which can be easily determined
analytically in many cases. For FRG equations, the
asymptotics is typically determined by dimensional scaling
properties. This ansatz can be inserted into (8). To solve for
the coefficients, it is useful to apply the collocation method.
It consists of evaluating the equation on a certain set of
collocation points and solving the resulting algebraic set of
equations, e.g. by a Newton-Raphson method. The key to
high accuracy is the choice of these collocation points. It
turns out that the best choice is to employ either the
nodes or the extrema of Chebyshev polynomials [62].
Additionally, one must match the function value as well as
derivatives of both expansions at the intermediate point x0

to achieve smoothness. If the differential equation is of
order p, then p − 1 derivatives have to be matched.
It should be noted that in the above decomposition, one

has two free parameters: the matching point x0 as well as L,
which encodes the compactification of the semi-infinite
domain. There is no intrinsic rule how to choose them. We
found it reasonable to choose x0 large enough to include the
essential physics, e.g. the vacuum expectation value in a
scalar field theory. The influence of L is usually small
in this case, as then the rational Chebyshev expansion
essentially only interpolates the asymptotic behavior. Either
way, if the expansion converges, it will converge for any
choice of the parameters.
The above ideas can be generalized in two ways. Firstly,

one can trivially apply these methods to a system of
functions, i.e. a coupled system of ODEs. An example
of this will be given later, and can also be found in [57].
Secondly, via a tensor product, the generalization to PDEs
is possible. This will be addressed in future work.

IV. THE FUNCTIONAL RENORMALIZATION
GROUP

A very efficient means to store the full quantum
information of a quantum field theory is the so-called
effective action Γ, which is defined as the Legendre
transform of the Schwinger functional. There are numerous
possibilities to compute Γ, one is given by the FRG. Instead
of Γ, the effective average action Γk is considered,
which smoothly interpolates between a microscopic theory
Γk¼Λ ¼ Scl, where Λ is an ultraviolet cut-off, and the full
quantum theory Γk¼0 ¼ Γ. Following Wilson’s idea, quan-
tum fluctuations at momentum scale p2 ≃ k2 are succes-
sively integrated out during this evolution. This process
is described by an exact FRG equation, the Wetterich
equation [1],

k∂kΓk ¼
1

2
STr½ðΓð2Þ

k þ RkÞ−1ðk∂kRkÞ�; ð10Þ

where Γð2Þ
k denotes the second functional derivative of Γk

with respect to the fields and the super-trace STr stands for
a summation over discrete indices, integration over con-
tinuous indices and an additionalminus sign forGrassmann-
valued fields, i.e. fermions. The functional Rk is a regulator,
which ensures both infrared as well as ultraviolet finiteness.
Detailed information on the FRG can be found in e.g.
[3,27,28,63].
In most cases, the exact functional integro-differential

equation (10) can only be solved by choosing a certain
truncation for the effective average action. A class of
common truncations is the derivative expansion, which
takes derivative interactions up to a given order into
account. For many cases, such a systematic expansion
yields results comparable to those obtained by other
methods, e.g. lattice studies.
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V. Oð1Þ MODEL NEAR CRITICALITY

This section is devoted to a detailed study of various
properties of the Oð1Þ model. Our ansatz for the effective
average action reads

Γk½σ� ¼
Z

ddx

�
1

2
Zkðσ2Þð∂μσÞ2 þ Ukðσ2Þ

�
; ð11Þ

which contains the effective potential Ukðσ2Þ and a wave
function renormalization Zkðσ2Þ. The operators are chosen
such that the Z2 symmetry of the scalar field σ is preserved.
In first order derivative expansion, also called local
potential approximation (LPA), one neglects the running
and the field dependence of the wave function renormal-
ization, Zkðσ2Þ≡ 1. By contrast, within next-to-leading
order in the derivative expansion (NLO), the full flow of the
wave function renormalization is taken into account. As a
compromise between LPA and NLO, one often considers
a field-independent but scale-dependent wave function
renormalization Zk ≡ Zkðσ20Þ, usually called LPA’. Here,
σ0 is typically chosen to be the vacuum expectation value of
the scalar field.
Here, we first study the Wilson-Fisher fixed point in

three dimensions in LPA and LPA’. Although there exists a
full analytic solution for the large-N case, we will confine
ourselves to the case of N ¼ 1. A large-N study is given
below for the Gross-Neveu model in Sec. VI. Subsequently,
we look for multicritical fixed points in dimensions
2 < d < 3 [11].

A. Wilson-Fisher fixed point in LPA and LPA’

First, let us study the well-known Wilson-Fisher fixed
point of the Oð1Þ model in three dimensions. In arbitrary
dimension d, the fixed point equation is given by [2]

ð−2þ ηÞu0ðρÞ þ ðd − 2þ ηÞρu00ðρÞ

−
4vd
d

�
1 − η

dþ 2

�
3u00ðρÞ þ 2ρu000ðρÞ

ð1þ u0ðρÞ þ 2ρu00ðρÞÞ2 ¼ 0; ð12Þ

where uðρÞ ¼ k−dUðσ2Þ is the dimensionless effective
potential as a function of the dimensionless invariant ρ ¼
Zkk2−dσ2=2, v−1d ¼ 2dþ1πd=2Γðd=2Þ and η ¼ −k∂k lnZk is
the anomalous dimension. The latter is given by [64]

η ¼ 16vd
d

ρ0u00ðρ0Þ2
ð1þ 2ρ0u00ðρ0ÞÞ2

; ð13Þ

ρ0 being the vacuum expectation value (VEV). In these
equations the optimized regulator is employed [65]. For
aspects of optimization, see also [66]. As (12) does not
depend on the potential itself, all our calculations will
involve its derivative instead, i.e. fðxÞ → u0ðρÞ.

In the following, we will compare the solution to (12)
in LPA, i.e. with η ¼ 0, and in LPA’, where we include
the anomalous dimension, but no field-dependent wave-
function renormalization. As numerical parameters, x0 ¼
3=10 and L ¼ 1 were chosen, and we used FLOAT128
which gives twice as many figures as the conventional
double data type. From (12), one infers the asymptotic
behavior u0∞ðρÞ ¼ ρð2−ηÞ=ðd−2þηÞ.
Figure 1 displays the derivative of the effective potential.

One can see that the inclusion of the anomalous dimension
has a quantitative influence for intermediate values of ρ. For
the VEV, we get

ρLPA0 ¼ 0.030647942408697774953;

ρLPA’0 ¼ 0.030592776234779436405: ð14Þ

In LPA’, we found the anomalous dimension to be

η ¼ 0.044272337370315035214: ð15Þ
It may seem ridiculous to present that many figures, but

they illustrate the power of pseudospectral methods. Our
viewpoint here is to solve a truncated problem (numeri-
cally) exactly, and any numbers given here are to be
understood as the solution to the truncated problem.
We find that our values match very well with earlier

results, e.g. given in [3,5,9,67] where fixed point quantities
were calculated via full potential flows. In particular, we
can reproduce all digits of the high precision results given
in [6], where an LPA truncation was used (notice the
rescaling of ρ by 8π2 compared to our conventions).
In comparison to results obtained from High-

Temperature expansions and Monte Carlo simulations
(η ¼ 0.036) [68], our value has a systematic error which
is to be expected in the LPA’ truncation. Within the FRG, an
accuracy competitive with other methods has been reached
using the BMW approximation technique [8,24].

FIG. 1 (color online). Derivative of the effective potential of the
Wilson-Fisher fixed point in LPA and LPA’.
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Figure 2 shows the coefficients of the expansion of u0ðρÞ
in a Chebyshev series and of u0ðρÞ=ρ2−η

1þη in a rational
Chebyshev series. In LPA, one perfectly sees exponential
convergence in both the Chebyshev as well as the rational
Chebyshev series. On the other hand, as soon as we include
the anomalous dimension, we find asymptotically only
algebraic convergence in the rational Chebyshev case. This
behavior is indeed expected by the asymptotic behavior
of the potential, as it rises with a fractional power.
Furthermore, one can also see that this problem is irrelevant
for all practical purposes, as the algebraic convergence only
sets in at about 10−18, up to that point one still observes
exponential convergence. This emphasizes the fact that any
statement about convergence is really an asymptotic one,
and one cannot predict where this behavior sets in. As a
final comment on this, note also the number of coefficients
needed to gain a certain accuracy: in case of exponential
convergence, one needs very few coefficients to get an
adequate result, but as soon as there are singularities of any
kind, one needs a large number of coefficients to further
increase the accuracy.
Another point of interest is that no additional condition

has to be imposed in solving (12), in particular no boundary
condition or the like. Only the asymptotic behavior u0ðρÞ ∝
ρ

2−η
1þη and a sufficiently good initial guess is needed. This
may seem unexpected for a differential equation of second
order, but can be understood along the lines of [69]. Indeed,
analyzing the situation, one can see that at ρ ¼ 0, the order
of the differential equation decreases by one, which fixes
one condition, and the same is true at ρ ¼ ∞.
As a further case for the method, let us expand the

solution in LPA into a Taylor series around vanishing field
as well as a Laurent series around ρ ¼ ∞ and compare
whether the relations between coefficients obtained by
plugging in such an ansatz into the fixed point equation

are satisfied. Around vanishing field, with u0�ðρÞ ¼
P

aiρi,
one obtains the well-known relations (see e.g. [23])

a1 ¼ −4π2a0ð1þ a0Þ2;

a2 ¼
12

5
π4a0ð1þ a0Þ3ð1þ 13a0Þ;

a3 ¼ − 288

7
π6a20ð1þ a0Þ4ð1þ 7a0Þ;

a4 ¼
32

7
π8a20ð1þ a0Þ5ð2þ a0ð121þ 623a0ÞÞ; ð16Þ

etc. Inserting our solution, one finds that the absolute error
in these coefficients are ð< 10−30; 2 × 10−23; 2 × 10−19;
7 × 10−16Þ. For the expansion around infinity, one finds that

u0�ðρÞ ¼ Aρ2 − 1

75Aπ2ρ3
þOðρ−5Þ: ð17Þ

Expanding our solution, the coefficients of ρ1; ρ0;
ρ−1; ρ−2 (which should vanish in the exact solution) are
ð−4 × 10−27; 3 × 10−24;−8 × 10−22; 10−19Þ, and the rela-
tion between the leading and the first sub-leading coef-
ficient is fulfilled to an absolute accuracy of 10−17. For
completeness, let us give the values of a0 and A both in
LPA and LPA’:

aLPA0 ¼ −0.18606424947031443565;
aLPA’0 ¼ −0.16574071049155738982;
ALPA ¼ 84.182303273336100651;

ALPA’ ¼ 50.323366981670544177: ð18Þ

These results match with [23,70] where local expansions
and the shooting method were employed. This underlines
that we can trust the global solution and that we can relate
to earlier results.

FIG. 2 (color online). Decay of coefficients of Chebyshev and rational Chebyshev expansion of the derivative of the Wilson-Fisher
fixed point potential, LPA on the left and LPA’ on the right. Notice the algebraic decay in the latter case in the rational Chebyshev region,
which needs a factor of 10 as many coefficients as in the case of exponential convergence in LPA to achieve the same order of accuracy.

GLOBAL SOLUTIONS OF FUNCTIONAL FIXED POINT … PHYSICAL REVIEW D 91, 105011 (2015)

105011-5



Let us now turn our attention to the critical exponents of
the Wilson-Fisher fixed point. They are defined as minus
the eigenvalues of the linearization of the perturbed fixed
point equation. Again, a global approach to the solution
of the perturbed equation is used. Figure 3 shows the
eigenfunctions corresponding to the five highest eigenval-
ues, where the anomalous dimension has been taken into
account. As for the potential itself, any precision can be
achieved in the eigenfunctions and critical exponents. The

critical exponents match with earlier results, e.g. given in
[3]. Having said that, let us emphasize again that the largest
error arises from the systematic errors of the derivative
expansion to order LPA/LPA’. If we compare with
Monte Carlo results [68], we find a deviation of about
2.5% for the first and 27% for the second critical exponent.
The error of the second critical exponents especially is to be
expected from the low order of the derivative expansion
used; see [5].
As shown in this example, the error is dominated by

truncating the effective average action and not by numerical
errors. For this reason, from now on we will only give a few
relevant digits, bearing in mind that in principle we could
calculate as many digits as needed.

B. Multicritical fixed points for 2 < d < 3

It is worthwhile to have a closer look at fractional
dimensions 2 < d < 3. The fixed point structure is getting
richer for decreasing dimension and, therefore, it is
interesting to investigate the interpolation between the
two fixed points in d ¼ 3, the Gaussian and the Wilson-
Fisher fixed point, and the infinite number of fixed points
in d ¼ 2. In [11,71] the existence and properties of
multicritical fixed points in dependence on d and N are
investigated. These results are used to give a

FIG. 3 (color online). Eigenperturbations of the Wilson-Fisher
fixed point, normalized to one at ρ ¼ 0.

FIG. 4 (color online). First derivative of multicritical fixed point potentials exhibiting two minima regarded as function of the
dimensionless scalar field (blue, Wilson-Fisher potential), three minima (yellow), four minima (red), five minima (green). The small
insets depict the global behavior of the solutions.
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renormalization group proof of the Mermin-Wagner-
Hohenberg theorem [72–75].
As a test case and as has been done in [9] we restrict

ourselves to the Ising universality class N ¼ 1 here. We
emphasize that the following investigations can straight-
forwardly be applied to arbitrary flavor numbersN if the set
of fixed point solutions is still discrete. In [9], a sequence of
critical dimensions dc;i where the next multicritical fixed
point potential uiðρÞ emerges was suggested. These are
those dimensions where new operators ρi become relevant
for d < dc;i. Concentrating in the following on d ¼ 2.4 as
an example, we find three more multicritical fixed points
FPi∈f3;4;5g besides the Wilson-Fisher (FP2) and the
Gaussian (FP1) fixed point. The index i ≥ 2 counts the
minima of the corresponding fixed point potential counted
in the dimensionless scalar field. Our results around d ¼
2.4 confirm the predicted value dc;6 ¼ 12

5
.

For our calculations we have employed (12) and (13)
within the LPA’ truncation. The anomalous dimension is
again evaluated at the global minimum of the potential
which is in the following cases the outermost minimum. In
Figure 4 the first derivative of the multicritical fixed point
potentials are shown. As the values of the anomalous
dimension of the multicritical fixed points FPi≥3 are small
compared to the one of the Wilson-Fisher fixed point, the
convergence of their coefficients is exponential within the

used precision of FLOAT128. Therefore, the deviation from
the exact solution can be estimated to be below 10−30.
In Table I the anomalous dimensions and the largest

critical exponents calculated by pseudospectral methods
are given. Our results are in good agreement with [9,11,71].
Additionally, the results for the Wilson-Fisher fixed point
in d ¼ 2.4 can be related to earlier works [76–78], where
the ε expansion and lattice simulations were applied. As
already noted in [11], the highest relevant critical exponent
for the fixed points i ≥ 3 is close to the mean field value 2
at the corresponding critical dimension. The other relevant
exponents are smaller.
The sequence of critical dimensions predicts that a new

fixed point potential with six minima (regarded as function
of the dimensionless scalar field) emerges exactly at
d ¼ 2.4. As the Wilson-Fisher fixed point probably does
not exist in d ¼ 4 but exists in all dimensions 2 < d < 4we
find this fixed point for all dimensions d < 2.4. In fact, we
are able to determine a global solution for d ¼ 2.399 where
the nonasymptotic behavior is realized on very small scales
ju0ðρ ≤ ρ0Þj ∼ 10−6 and η ¼ 2.3446 × 10−10.

VI. GROSS-NEVEU MODEL IN d ¼ 3

In this section we extend our studies to the partially
bosonized Gross-Neveu model in d ¼ 3 dimensions.
Loosely speaking, this is a generalization of the Oð1Þ
model including N fermionic degrees of freedom. It has
applications in condensed matter physics and serves as a
toy model for asymptotic safety scenarios. A detailed
analysis can be found in [15].
The ansatz for the effective action in an LPA’-type

truncation reads

Γk½ψ̄ ;ψ ; σ� ¼
Z

ddx

�
ψ̄ðZψ ;ki∂ þ ih̄kσÞψ

þ 1

2
Zσ;kð∂μσÞ2 þ Uðσ2Þ

�
: ð19Þ

The bosonic (Zσ;k) and fermionic (Zψ ;k) wave function
renormalizations, and the Yukawa coupling h̄k, which
transfers the interaction between bosons and fermions,
are assumed to be scale dependent but field independent.
In the following studies, we again employ a Litim-type
cutoff [65].

A. Large-N analysis

The large-N approximation is a good test case because
the fixed point equations can be solved analytically.
Interestingly the scalar anomalous dimension does not
vanish in contrast to the one of the Wilson-Fisher fixed
point. Even the fixed point potential looks very different.
The fixed point equations in the large-N limit are given
by [15]

TABLE I. Anomalous dimensions and highest critical expo-
nents of all scaling solutions in d ¼ 2.4.

WF-FP

η relev. exp. irrelev. exp.

0.1390 1.1441 −0.7919
−3.1129
−5.6370

multicritical FPi¼3

η relev. exp. irrelev. exp.

0.01598 1.9629 −0.5108
0.8416 −2.0698

−3.8140
multicritical FPi¼4

η relev. exp. irrelev. exp.

0.001753 1.9969 −0.3138
1.4615 −1.3968
0.6726

multicritical FPi¼5

η relev. exp. irrelev. exp.

8.2715 × 10−5 1.9999 −0.1655
1.5973 −0.9297
1.1243
0.5414

GLOBAL SOLUTIONS OF FUNCTIONAL FIXED POINT … PHYSICAL REVIEW D 91, 105011 (2015)

105011-7



0 ¼ ð−2þ ησÞu0ðρÞ þ ðd − 2þ ησÞu00ðρÞρ

þ 8dγvd
d

�
1 − ηψ

dþ 1

�
h2

ð1þ 2h2ρÞ2 ; ð20Þ

0 ¼ ðd − 4þ 2ηψ þ ησÞh2; ð21Þ

ησ ¼ 8
dγvd
d

h2
�
3

4
þ 1 − ηψ
2d − 4

�
; ð22Þ

ηψ ¼ 0; ð23Þ

again denoted in dimensionless quantities uðρÞ ¼
k−dUðσ2Þ=N, ρ ¼ Zσ;kk2−dσ2=2 and h2 ¼ Z−1

σ;kZ
−2
ψ ;kk

d−4h̄2
N, and where dγ stands for the dimension of the Dirac
algebra. Note that for the large-N limit, an appropriate
rescaling has been taken into account.
In this approximation, we encounter a first order system.

The bosonic anomalous dimension can be read off from
(21) to be ησ ¼ 1 exactly (as long as h ≠ 0). We can
reproduce this result to all digits of FLOAT128 which gives
an accuracy of about 10−32. The exact fixed point value of
the Yukawa coupling reads

h2� ¼
�

d
dγvd

� ðd − 4Þðd − 2Þ
ð8 − 6dÞ ; ð24Þ

and can be confirmed up to 10−32 as well. The fixed
point potential is given by the Gaussian hypergeometric
function [15],

u�ðρÞ ¼ −
4ð8 − 6dþ d2Þ

3d − 4
ρ

× 2F1

�
1

1 − d
; 1;

2 − d
1 − d

;
d

dγvd

8 − 6dþ d2

3d − 4
ρ

�
:

ð25Þ

The absolute difference between the analytic solution
and our numerical one can be estimated to be smaller than
3 × 10−17 for large ρ. For finite ρ it is even smaller. This is
due to the Gaussian grid which only has points at finite ρ.
Thus the asymptotic prefactor is only tuned regarding finite
field values and, therefore, has a larger error of about
3 × 10−17. For this calculation we have used x0 ¼ 3=10 and
L ¼ 2. The decay of the coefficients can be seen in Fig. 5.
The Chebyshev expansion shows exponential convergence.
By contrast, the rational Chebyshev coefficients decrease
exponentially at first, but only up to a certain number of
coefficients, the actual convergence rate is algebraic. This is
to be expected due to the asymptotic behavior ∝

ffiffiffi
x

p
. The

behavior of the last coefficients shows a truncation effect
which is not a numerical effect. If we calculate the spectral
coefficients from the analytic solution, we actually obtain a
good agreement with the numerically calculated ones.

Ignoring the last coefficients affected by the truncation
we read off ∼10−19 for the lowest coefficient. The rule of
thumb that the error can be estimated by N · cN is in very
good agreement with the maximal deviation of about
3 × 10−17 from the exact solution.
Let ushave a closer lookat the choice of the twoparameters

x0 andL. They have quite some influence on the convergence
behavior of our coefficients. We observe that if the matching
point x0 is chosen to be smaller, then the decrease of the
Chebyshev coefficients is exponential aswell, but faster. This
also holds for the rational coefficients if the matching point is
increased. However, lowering x0 the algebraic convergence
sets in earlier, enlarging x0 the algebraic convergence sets in
later. It is remarkable that thegain of accuracy is inappreciable
when taking enough coefficients into account because if
algebraic convergence has set in, the coefficients do not
change significantly. This is different for the parameter L.
Figure 6 shows that one can gain orders of magnitudes of
accuracy if L is increased. The decrease of the first coef-
ficients is more slowly, but the algebraic convergence sets in
later. This short analysis alreadymakes clear that the choice of
optimized parameters can strongly depend on the maximal

FIG. 5 (color online). Decay of coefficients of Chebyshev and
rational Chebyshev expansion in the large-N limit of the Gross-
Neveu model.

FIG. 6 (color online). Decay of rational Chebyshev coeffi-
cients in dependence on L in the large-N limit of the Gross-
Neveu model.
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number of coefficients that one takes into account. These
observations from one specific example may give an indi-
cation for other calculations as well.

B. Finite N analysis

For finite N, the fixed point potential shows some
interesting behavior. In [15] it is shown that the fixed
point potential lies in the symmetric regime for all N ≥ 2.
For that reason, the potential was expanded polynomially.
A study of the convergence radius indicates the reliability
of these results. Unfortunately, the convergence is less clear
for smaller N such that a global solution is required. For
smallN the fixed point potential moves from the symmetric
regime to the spontaneously symmetry-broken regime. In
[79] a fixed point potential for N ¼ 1

2
(corresponding to one

Dirac fermion in the irreducible representation) was found
in the symmetry-broken regime. In [15] it was assumed that
the non-Gaussian Gross-Neveu fixed point interpolates
between the large-N fixed point and the Wilson-Fisher
fixed point in the N → 0 limit.
The fixed point equations for the Gross-Neveu model

read, for general values of N [80],

0 ¼ ð−2þ ησÞu0ðρÞ þ ðd − 2þ ησÞu00ðρÞρ

−
4vd
d

�
1 − ησ

dþ 2

�
3u00ðρÞ þ 2ρu000ðρÞ

ð1þ u0ðρÞ þ 2ρu00ðρÞÞ2

þ 8dγvd
d

N

�
1 − ηψ

dþ 1

�
h2

ð1þ 2h2ρÞ2 ; ð26Þ

0¼ ðd− 4þ 2ηψ þ ησÞh2 þ
16vd
d

h4
�

1− ηψ
dþ1

1þ 2ρ0h2
þ 1− ησ

dþ2

1þ u0ðρ0Þþ 2ρ0u00ðρ0Þ
�
ð1þ 2ρ0h2Þ−1ð1þ u0ðρ0Þþ 2ρu00ðρ0ÞÞ−1

− 2vd
d

h4ð48ρ0u00ðρ0Þþ 32ρ20u
000ðρ0ÞÞ

�
1− ηψ

dþ1

1þ 2ρ0h2
þ 2

1− ησ
dþ2

1þ u0ðρ0Þþ 2ρ0u00ðρ0Þ
�
ð1þ 2ρ0h2Þ−1ð1þ u0ðρ0Þþ 2ρu00ðρ0ÞÞ−2

− 64vd
d

h6ρ0

�
2

1− ηψ
dþ1

1þ 2ρ0h2
þ 1− ησ

dþ2

1þ u0ðρ0Þþ 2ρ0u00ðρ0Þ
�
ð1þ 2ρ0h2Þ−2ð1þ u0ðρ0Þþ 2ρu00ðρ0ÞÞ−1; ð27Þ

ησ ¼ 8
dγvd
d

h2N

×

�
1 − 2ρ0h2

ð1þ 2ρ0h2Þ4
þ

1
4
þ 1−ηψ

2d−4
ð1þ 2ρ0h2Þ2

þ
1−ηψ
d−2

ð1þ 2ρ0h2Þ3
�

þ 8vd
d

ρ0
ð3u00ðρ0Þ þ 2ρ0u000ðρ0ÞÞ2
ð1þ u0ðρ0Þ þ 2ρ0u00ðρ0ÞÞ4

; ð28Þ

ηψ ¼ 8vdh2

d

1 − ησ
dþ1

ð1þ 2ρ0h2Þð1þ u0ðρ0Þ þ 2ρ0u00ðρ0ÞÞ2
; ð29Þ

with uðρÞ ¼ k−dUðσ2Þ, ρ ¼ Zσ;kk2−dσ2=2 and h2 ¼
Z−1
σ;kZ

−2
ψ ;kk

d−4h̄2. The asymptotic behavior of the potential

is given by u0ðρÞ ∝ ρ
2−ησ

d−2þησ.
We have calculated the global solution to these fixed

point equations and the relevant critical exponent in three
dimensions for N lying between 0.3 and 12; see Fig. 7. We
obtain a very good agreement with [15] for N ≥ 2 where a
polynomial approximation is employed. Even the relevant
exponent matches in the first four relevant digits. It is worth
mentioning that this good agreement is only obtained by
taking high orders in the polynomial truncation into
account [15], especially for small N. Our results for
N ≥ 2 are also compatible with other methods such as
1=N-expansions [81,82], and Monte Carlo simulations

[83,84]. In fact, systematic truncation errors appear to be
smaller for the Gross-Neveu model in comparison with the
Oð1Þ model. The overall consensus among the nonpertur-
bative methods is very satisfactory.
Let us now concentrate on the small-N regime. The

transition from the symmetric to the symmetry-broken
regime can be determined to be at Nt ≈ 0.5766. As a
new result, we observe that the Gross-Neveu fixed point
does not approach the Wilson-Fisher fixed point for small
N. This can be seen from the behavior of the Yukawa
coupling and the anomalous dimensions on the one hand
and the relevant exponent on the other hand. In particular,
the behavior of h� suggests that the Gross-Neveu fixed
point moves to infinity in theory space for N → 0.
It is instructive to compare our results for N ¼ 1=2 with

those of [79] where also a full potential flow has been studied
(note that our convention of N ¼ 1=2 corresponds to N ¼ 1
in [79]; for aspects of criticality, see [20]). In [79] the
fluctuation terms ∝ ρ0u00ðρ0Þh4, ∝ ρ20u

000ðρ0Þh4 and ∝ ρ0h6

have been missed in the derivation of the flow equation; see
the discussion in [56]. If we artificially switch off these terms,
the vacuum expectation value and the critical exponent of
our calculation are in good agreement with those of [79]. On
the contrary, including these terms, even the first relevant
digit changes. For N ¼ 1=2, we obtain ν ¼ 1=θ1 ¼ 0.4836,
ησ ¼ 0.3227, ηψ ¼ 0.1204. In conclusion it is remarkable
that our approach is able to find a global solution in a regime
where a polynomial truncation is not reliable.
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VII. SCALAR-TENSOR GRAVITY

As a final example, let us consider a model which
couples a scalar field nonminimally to gravity [50,85,86].
The ansatz for the effective average action is given by

Γk½σ; g� ¼
Z

ddx
ffiffiffi
g

p �
VkðσÞ − FkðσÞRþ 1

2
gμν∂μσ∂νσ

�
;

ð30Þ
where g denotes the determinant of the metric gμν and R is
the Ricci scalar. It serves as an effective model for the
cosmological evolution of the Universe. Here, we want to
use the flow equations of [50], in which an exponential split
was used to quantize the gravitational fluctuations. The
explicit flows of the dimensionless variants vðρÞ and fðρÞ
of the functions VðσÞ and FðσÞ can be looked up in [50].
We have found a nontrivial solution to the fixed point

equations, which is shown in Fig. 8. Some remarks are in
order. First, the effective potential of the scalar field closely
resembles the Wilson-Fisher fixed point potential on flat
background. Second, note that f�ðρÞ > 0 for all ρ ≥ 0,
which implies that the (analogue of the) Newton constant is
positive, and we are indeed in the physical regime. Third,
the minimum of the potential vðρÞ lies at ρ ¼ 0.05004.
Lastly, we observe exponential convergence of the

expansion. Thus, the solution can in principle be computed
to arbitrary precision.
Let us now turn our attention to the critical exponents of

the fixed point. The six leading critical exponents are

θ1 ¼ 3; θ2 ¼ 1.9134;

θ3 ¼ 1.1798; θ4 ¼ 0.6679;

θ5 ¼ −0.2812; θ6 ¼ −1.217: ð31Þ

Notice that the first exponent is present in any fixed point
solution. It is related to what one would call cosmological
constant, being the most relevant perturbation. The eigen-
functions for all of them, except for the first one, are given
in Fig. 9. For the first critical exponent θ1, the eigenfunc-
tion is ðδv ¼ 1; δf ¼ 0Þ.
Let us compare these findings with those of [50]. There,

the fixed point equations were first analyzed in a one-loop
approximation. Using a local field expansion, two non-
trivial solutions have been identified: the conformal sol-
ution v ¼ 1=ð18π2Þ; f ¼ 37=ð72π2Þ þ σ2=4, possessing
four relevant directions, and a Wilson-Fisher-like solution
with three relevant directions. There are indications that the
latter fixed point runs into a singularity due to f having
a zero. On the basis of the full equations, no conformal

FIG. 7 (color online). Fixed point potential (upper left panel), relevant exponent (upper right panel), Yukawa-coupling (lower left
panel) and anomalous dimensions (lower right panel) for the Gross-Neveu model with 0.3 ≤ N ≤ 12. For increasing flavor number
u0�ð0Þ increases as well. The dashed line depicts the flavor number Nt of the transition.
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solution with the same simple structure as in one-loop
approximation was found. No statement was given on the
fate of the Wilson-Fisher-like solution.
Our results are the following: the critical exponents of

our global solution are very close to the ones of the
conformal solution in the one-loop approximation. Also,
the general form of the nonminimal coupling fðρÞ is
qualitatively the same. On the other hand, the form of
the scalar potential vðρÞ is Wilson-Fisher-like.
We further checked deviations from three dimensions.

For any dimension between three and four, we find a
similar fixed point solution. Though, at d ¼ 4 exactly, this
solution seems not to be present anymore, reminiscent of
the situation in a purely scalar theory. We take this as an
indication that the solution found here might be the
generalization of the Wilson-Fisher fixed point.
Finally, let us comment on why solutions, where the

nonminimal coupling becomes negative, fðρÞ < 0, should
be taken with care. In the derivation of the flow equation,
the regulator was spectrally adjusted. In particular, for the

tensor fluctuations, the regulator was chosen to be propor-
tional to fðρÞ. As soon as this function crosses zero, the
tensor modes are not properly regularized anymore. In the
flow equations, this is reflected by terms proportional to
1=fðρÞ, which can only be compensated by divergences in
derivatives of the potential. This might explain why we
could not find further global solutions.
Summarizing, we find a globally well-defined solution in

scalar-tensor gravity. However, the inclusion of matter, in
particular scalar fields, induces higher order curvature
terms. Thus, one should check that the global solution
survives. On the other hand, for cosmological applications,
an Einstein-Hilbert type of truncation as discussed here is
expected to be well suited as an effective model.

VIII. CONCLUSIONS

In this work, we presented a method to solve ODEs
globally. Pseudospectral techniques are not new and
already have been applied to various problems in physics.

FIG. 9 (color online). Eigenfunctions of the fixed point solution to the three-dimensional scalar-tensor model. They are normalized
such that δvð0Þ ¼ 1. From relevant to irrelevant critical exponents: thin blue, thick orange, dotted green, dashed red, dot-dashed violet.

FIG. 8 (color online). Global fixed point solution for the scalar-tensor model in three dimensions. The scalar potential closely
resembles the Wilson-Fisher fixed point potential on flat background. The nonminimal coupling is strictly positive, admitting a positive
Newton constant.
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A lot of rigorous results on spectral or pseudospectral
methods are available [49]. However, to our knowledge the
expansion in rational Chebyshev polynomials is not very
well established in quantum field theory calculations,
although it allows to investigate the question of global
existence of solutions. This is a very important question
since the nonlinear ODEs encountered in FRG studies can
have many more or less stable local solutions which are not
easy to distinguish from global ones if only local informa-
tion is accessible. For instance, the physical criteria of
polynomial boundedness and self-similarity are difficult to
impose locally [87]. The method presented in this paper
offers a comparatively easy way to find global solutions of
ODEs that circumvents such pitfalls.
We applied this method to various models. The first

test case was the very well-known Oð1Þ model in three
dimensions which we considered in both the LPA and LPA’
truncation. There are numerous works on expansions for
small and large fields and results gained via the shooting
method which give a good impression of the global
behavior of the Wilson-Fisher fixed point. We reported
on the difference between LPA and LPA’ truncations taking
the global behavior of the potential into account. Although
the anomalous dimension is very small, the asymptotic
behavior, especially with regard to the prefactor, changes
significantly. Besides the fixed point potential itself, we
calculated the eigenfunctions globally and determined the
critical exponents. For all quantities we obtained good
agreement with already known results calculated with other
methods. As far as numerical accuracy is concerned, our
method outperforms previous results by many orders of
magnitude, while being very stable, fast and lightweight.
Subsequently, we extended our study to fractional

dimensions, taking d ¼ 2.4 as a representative. We found
all multicritical fixed point potentials predicted in [9] and
could, moreover, determine their global behavior. We were
able to see the next higher critical fixed point emerging at
d < 2.4 which demonstrates that our numerical method is
highly accurate and stable. All physical quantities, the
anomalous dimension and critical exponents, again match
with earlier results.
As a next system we considered the Gross-Neveu model.

On the one hand, the large-N limit provides an easily
accessible analytic solution. On the other hand, the small-N
limit is not easily accessible by use of common local
expansions and offers, therefore, the possibility to demon-
strate the advantages of our global method. In the large-N
case we obtained a conclusive agreement with analytic

results. For finite N, our results agree very well with other
data, including 1=N-expansions and lattice methods. We
were able to fix the transition flavor number to be Nt ≈
0.5766 and observe how the fixed point potential goes over
from the symmetric to the symmetry-broken regime. We
found that the fixed point Yukawa coupling grows large for
N → 0. The anomalous dimensions, in particular the fer-
mionic one, take on finite values. This suggests that the
Gross-Neveu fixed point does not merge with the Wilson-
Fisher fixed point in the limit N → 0 contrary to what
has been anticipated in [15]. Additionally, we saw that all
fluctuation terms in the Yukawa fixed point equation which
occur in the symmetry-broken regime have a significant
influence on physical quantities, such as critical exponents.
Comparing to [79] where some fluctuation terms were
missed we determine the deviation to be up to 30%.
We finally discussed a scalar-tensor gravity model in

d ¼ 3. This model is supposed to have a gravitationally
dressed Wilson-Fisher fixed point. We found a global
solution implying a positive Newton constant with four
relevant critical exponents. No other nontrivial global
solution was found, though it may be difficult to prove
that our solution is unique. We could recover the solution in
all dimensions smaller than four, but not in d ¼ 4. This is
taken as an indication that the solution found might be
the generalization of the Wilson-Fisher fixed point to
curved space.
We emphasize that the models treated in this paper only

represent a small set of examples for a large amount of
possible applications of pseudospectral methods. These
methods are straightforwardly extendable to include more
than one variable which is needed if additional invariants
are taken into account. Full potential flows requiring the
technique to be extended to PDEs are underway.
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