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Modern on-shell S-matrix methods may dramatically improve our understanding of perturbative
quantum gravity, but current foundations of on-shell techniques for general relativity still rely on off-shell
Feynman diagram analysis. Here, we complete the fully on-shell proof of Schuster and Toro J. High Energy
Phys. 06 (2009) 079] that the recursion relations of Britto, Cachazo, Feng, and Witten (BCFW) apply to
relativity tree amplitudes. We do so by showing that the surprising requirement of “bonus” z−2 scaling
under a BCFW shift directly follows from Bose symmetry. Moreover, we show that amplitudes in generic
theories subjected to BCFW deformations of identical particles necessarily scale as zeven. When applied to
the color ordered expansions of Yang-Mills, this directly implies the improved behavior under nonadjacent
gluon shifts. Using the same analysis, three-dimensional gravity amplitudes scale as z−4, compared to the
z−1 behavior for conformal Chern-Simons matter theory.
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Mysteries abound at the interface between general
relativity and quantum field theory. Particularly, graviton
scattering amplitudes in maximally supersymmetricN ¼ 8
supergravity have surprisingly soft behavior in the deep
ultraviolet (UV). To four loops, it has been shown that the
critical dimension of supergravity is the same as N ¼ 4
super Yang-Mills, a conformally invariant theory free of
UV divergences [2]. This result was obtained through the
peculiar BCJ duality between color and kinematics, which
relates graviton amplitudes to the squares of gluon ampli-
tudes [3,4]. Other arguments, based the nonlinearly realized
E7ð7Þ symmetry of N ¼ 8 supergravity, predict UV finite-
ness to six loops [5]. Yet others hint at a full finiteness (see
e.g. [6]).
Standard perturbative techniques, i.e. Feynman dia-

grams, lead to incredibly complicated expressions, and
obfuscate general features of the theory. Reframing the
discussion in terms of the modern analytic S-matrix has
so far proven incredibly useful for discussing Yang-Mills
theory (for example, in Ref. [7]), and may provide crucial
insights into quantum gravity as well. The on-shell
program offers a different perspective on the principles
of locality and unitarity, and their powerful consequences
[1,8]. It also provides a computational powerhouse, the
Britto, Cachazo, Feng, and Witten (BCFW) on-shell
recursion relation [9].
Briefly, if two external momenta in the amplitude An are

subjected to the on-shell BCFW shift,

pμ
1 → pμ

1 þ zqμ pμ
2 → pμ

2 − zqμ; ð1Þ

and AnðzÞ → 0 for large z, then Anðz ¼ 0Þ can be recur-
sively constructed from lower-point on-shell amplitudes:

An ¼
I

dz
z
AnðzÞ ¼

X
fLg

ALð1̂; fLg; P̂ÞARðP̂; fRg; n̂Þ
P2

:

ð2Þ

Initial proofs required sophisticated Feynman diagram
analyses, and found that gluon amplitudes have the mini-
mum scaling of z−1, but that graviton amplitudes have a
“bonus,” seemingly unnecessary, scaling of z−2 [9–15].
Surprisingly, Ref. [1] found that a fully on-shell proof of
BCFW constructability actually requires this improved
scaling for gravitons, in order for Eq. (2) to satisfy unitarity.
The bonus scaling is not just a “bonus,” but a critical
property of general relativity. This z−2 scaling, also present
in the case of nonadjacent gluon shifts [16], implies new
residue theorems,

0 ¼
I

AnðzÞdz ¼
X
fLg

zP
ALð1̂; fLg; P̂ÞARðP̂; fRg; n̂Þ

P2
;

ð3Þ

i.e., new relations between terms in Eq. (2)—the bonus
relations. The bonus scaling and the bonus relations have a
number of important implications. In [17], it was shown
that BCJ relations can be extracted from bonus relations.
In the case of gravity, bonus relations have been used to
simplify tree level calculations [18]. At loop level, the
large-z scaling of the BCFW shift corresponds to the high-
loop momenta limit; not surprisingly, improved scaling
implies improved UV behavior [15,19,20].
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In this paper, we prove that the inherent Bose symmetry
between gravitons directly implies this improved bonus
scaling, completing the arguments of Ref. [1]. Bose
symmetry in general relativity endows it with a purely
on-shell description and constrains its UV divergences.1 We
further apply the same argument to gauge theories and
gravity in various dimensions.

I. COMPLETING ON-SHELL
CONSTRUCTABILITY

Reference [1] first assumes n-point and lower amplitudes
scale as z−1—thereby ensuring Eq. (2) holds—and
then checks if the BCFW expansion of the ðnþ 1Þ-point
amplitude factorizes correctly on all channels. Factorization
on all channels is taken to define the amplitude. Correct
factorization in most channels requires z−1 scaling of lower
point amplitudes. However, some channels do not factor
correctly without improved z−2 scaling, as well as a z6

scaling on the “bad” shifts. In the following, we present a
proof for both of these scalings.
Essentially, the argument rests on a very simple obser-

vation: any symmetric function fði; jÞ, under deformations
i → iþ zk, j → j − zk, must scale as an even power of z.
In particular, any function with a strictly better than Oð1Þ
large-z behavior (no poles at infinity), is automatically
guaranteed to decay at least as z−2.
Although straightforward, this is not manifest when

constructing the amplitude. BCFW terms typically scale
as z−1, but only specific pairs have canceling leading z−1

pieces. Similarly, the bad BCFW shift behavior of z6 is only
obtained when the leading z7 pieces cancel in pairs.
Consider the five point amplitude in N ¼ 8 SUGRA,

exposed by the ½1; 5i BCFW shift, where j1� → j1� − zj5�
and jni → jni þ zj1i,

M5 ¼ Mð123PÞ ×MðP45Þ=P2
123 þ ð4 ↔ 3Þ þ ð4 ↔ 2Þ

¼ ½23�½45�
h12ih13ih23ih24ih34ih45ih15i2

þ ½24�½35�
h12ih14ih24ih23ih43ih35ih15i2

þ ½43�½25�
h14ih13ih43ih42ih32ih25ih15i2 ; ð4Þ

with the SUSY-conserving delta-function stripped out.
Under a ½2; 3i shift, the first term scales as z−2, while

the other two scale as z−1. However, their sum
(now symmetric in 2 and 3) scales as z−2: the whole
amplitude has the correct scaling. This pattern holds true in

general. Where present, z−1’s cancel between pairs
of BCFW terms, MLðKL; i; PÞ ×MRð−P; j; KRÞ and
MLðKL; j; PÞ ×MRð−P; i; KRÞ. Further, terms without
pairs over saturate the bonus scaling.
One such example is Mð1−2−3þPþÞMðP−4−5þ6þÞ,

appearing in MNMHV
6 . Under a ½4; 3i shift, it has no

corresponding pair: Mð1−2−4−PÞMðP3þ5þ6þÞ vanishes
for all helicities hP. Luckily, it turns out these types of terms
have a surprisingly improved scaling of z−9. Hence, they
never spoil the scaling of the full amplitude.
In the next section we classify and prove the scalings of

all possible BCFW terms. Following this, we demonstrate
how leading z pieces cancel between BCFW terms.

II. BCFW TERMS UNDER SECONDARY z SHIFTS

Consider the ½1; ni BCFW expansion of an n-point GR
tree amplitude Mn (where ~λ1 → ~λ1 − w~λn, λn → λn þ wλ1):

Mn ¼
X
L;R

MLð1̂; fLg; P̂ÞMRð−P̂; fRg; n̂Þ
P2

: ð5Þ

We would like to understand how BCFW terms in Mn
scale under secondary ½i; ji z shifts,

~λi → ~λi − z~λj λj → λj þ zλi: ð6Þ

We recall two features of these terms as they appear in
Eq. (5). First, the value of the primary deformation
parameter w ¼ wP, which accesses a given term, is

wP ¼ P2

h1jPjn� ; ð7Þ

and, on this pole, the intermediate propagator factorizes as

P̂α _α ¼ f½~λnjPgαfhλ1jPg _α

hλ1jPj~λn�
¼ jλPi½~λPj

h1jPjn� ≡ jP̂i½P̂j: ð8Þ

The little-group ambiguity amounts to associating the
denominator with either λP, ~λP, or some combination
of them. In what follows, we find it easiest to associate
it entirely with the antiholomorphic spinor, jP̂� ¼
j~λP�=h1jPjn�—see Eq. (9), below.
With this in hand, we now turn to the large-z scalings of

the various BCFW terms, subjected to the secondary z
shifts in Eq. (6). There will be two different types of BCFW
terms: those with both i and j within the same subampli-
tude, and those with i and j separated by the propagator.
The former inherit all z dependence from the lower point
amplitudes in the theory, since the secondary shift acts like
a usual BCFW shift on the subamplitude. The latter are
more complicated, since the z shift affects the subampli-
tudes in several ways besides the simple shifts on i and j.

1The better than expected UV behavior was also at least
partially understood from the “no-triangle” hypothesis of N ¼ 8
supergravity as a consequence of crossing symmetry and the
colorless nature of gravitons in Ref. [21].
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Specifically, both wP and the factorized form of the
internal propagator acquire z dependence:

wP ¼ P2

h1jPjn� ⟶
P2 þ zhijPjj�

h1jPjn� þ zh1ii½jn� ;

jP̂iα ≡ jð½njPÞiα
½jn� ⟶ jP̂iα þ zjiiα;

jP̂� _α ≡ jðh1jPÞ� _α
h1jPjn�=½jn� ⟶

j~λP� _α − zh1iijj� _α
h1jPjn�=½jn� − zh1ii : ð9Þ

With this factorized form of the propagator, it turns out that
the left- and right-hand subamplitudes have well-defined
individual z scalings, which depend only on the helicity
choices for ihi, jhj and Ph:

MLði−P−Þ ∼ z−2 MRðj−P−Þ ∼ zþ2

MLði−PþÞ ∼ z−2 MRðj−PþÞ ∼ zþ2

MLðiþP−Þ ∼ zþ6 MRðjþP−Þ ∼ zþ2

MLðiþPþÞ ∼ z−2 MRðjþPþÞ ∼ z−6: ð10Þ

The scaling of a full BCFW term MLMR=P2 can then be
easily determined from these values, which we prove in
two steps.
First, note that the large-z scalings on the left of Eq. (10)

match the familiar BCFW scalings of full amplitudes. We
prove this by showing that the large-z behavior of the left-
hand subamplitude maps isomorphically onto a BCFW
shift of ML. Looking at Eq. (9), we see that, in the large-z
limit, the spinors of i and P become

λi ⟶ λi λP ⟶ zλi
~λi ⟶ −z~λj ~λP ⟶ ~λj; ð11Þ

which is just a regular BCFW ½i; Pi shift within the left-
hand subamplitude.
Now we turn to the slightly unusual scalings on the right-

hand side of Eq. (10). With the little-group choice in
Eq. (9), the left-hand subamplitude has exactly the correct
spinor variables to map onto the usual BCFW shift. Now
observe that, starting with the other little-group choice for
the spinors on the z-shifted internal propagator, we obtain
the usual BCFW scalings on this side:

MRðj−P−Þ ∼ z−2

MRðj−PþÞ ∼ zþ6

MRðjþP−Þ ∼ z−2

MRðjþPþÞ ∼ z−2: ð12Þ

Proving these results is identical to the previous reasoning
for the left-hand subamplitude.

It becomes clear now that to get the other half of the
scalings, we need only account for the change in z scaling
when switching the 1=h1jPðzÞjn� factor between λP and ~λP.
Assume that the spinors of the propagator appear with
weights,2

MR ∝ ðjPiÞaðjP�Þb; ð13Þ
where −aþ b ¼ 2hP, and hP is the helicity of the internal
propagator as it enters the right-hand subamplitude. Now,
in the limiting cases where 1=h1jPðzÞjn� is entirely asso-
ciated with jλPi or j~λP� the amplitude scales as:

MR ∝
� jλPi
h1jPjn�

�
a
ðj~λP�Þb → zs; or ð14Þ

MR ∝ ðjλPiÞa
� j~λP�
h1jPjn�

�
b
→ zt; ð15Þ

where s is the BCFW large-z scaling exponent, obtained in
Eq. (12), and t is the related scaling, for the other internal
little-group choice. It follows that s − t ¼ b − a ¼ 2hP,
and so the t scalings can be easily derived as t ¼ s� 4,
depending on the helicity of the propagator.
Having proven all eight scaling relations in Eq. (10), we

can classify the scaling behavior of all possible types of
BCF terms with i and j in different subamplitudes. For
these terms the propagator contributes a z−1 to each term,
and so from Eq. (10) we obtain the following eight possible
types of terms:

ðiÞ MLðiþP−ÞMRðj−PþÞ=P2 scales as zþ7; ð16Þ

ðiiÞ MLði−P−ÞMRðjþPþÞ=P2 scales as z−9; ð17Þ

ðiiiÞ The other six BCFW terms scale as z−1: ð18Þ

In the next section we will see how pairing terms improves
these scalings by one power of z, such that we recover the
required z−2 and z6 scalings.
Finally, while the individual scalings in Eq. (10) are not

invariant under z dependent little-group rescalings on the
internal line P̂ðzÞ, the above results for full BCFW terms
are invariant under these rescalings.

III. IMPROVED BEHAVIOR FROM
SYMMETRIC SUMS

We first study ½þ;þi and ½−;−i shifts, with scalings in
Eq. (18). Define MLðKL; i; PÞ ×MRð−P; j; KRÞ=P2≡
MðijjÞ, where KL is the momenta from the other external

2In general, the spinors need not appear with uniform
homogeneity. The analysis below still holds, but must be applied
term by term. The same caveat applies to Eqs. (24) and (26).
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states on the left-hand subamplitude. We wish to show that
in the large-z limit,

MðijjÞ ¼ −MðjjiÞ: ð19Þ

so the leading z−1 pieces cancel in the symmetric sum of
BCFW terms, MðijjÞ þMðjjiÞ.
Because i and j have the same helicity, MðjjiÞ is

obtained directly from MðijjÞ by simply swapping labels:

MðijjÞ ¼ Mðλi; ~λi; λj; ~λjÞ ð20Þ

MðjjiÞ ¼ Mðλj; ~λj; λi; ~λiÞ ð21Þ

In the large-z limit, these become

MðijjÞ ¼ Mðλi;−z~λj; zλi; ~λjÞ ð22Þ

MðijjÞ ¼ Mðzλi; ~λj; λi;−z~λjÞ: ð23Þ

The two have equal z scaling, and so can only differ by a
relative sign. The spinors appear with weights,

MðijjÞ ∝ hijiF½ij�GðλiÞað~λiÞbðλjÞcð~λjÞd
MðjjiÞ ∝ hjiiF½ji�GðλjÞað~λjÞbðλiÞcð~λiÞd; ð24Þ

while in the large-z limit, the leading terms are

MðijjÞ ∝ zbþcðhijiF½ij�GðλiÞað−~λjÞbðλiÞcð~λjÞdÞ
MðjjiÞ ∝ zaþdðhjiiF½ji�GðλiÞað~λjÞbðλiÞcð−~λjÞdÞ: ð25Þ

These cancel if and only if F þ Gþ bþ d ¼ odd.
First, from Eq. (18), MðajbÞ’s scale as zodd. So
bþ c ¼ aþ d ¼ odd. Second, by helicity counting in
Eq. (24), we know −F þ G − cþ d ¼ 2hj ¼ even.
Therefore, we obtain the required result, and the leading
z−1 pieces cancel.
For the ½−;þi and ½þ;−i shifts a simple modification

of the above argument is required. This is because
we now expect the cancellation to occur between the
pair terms MLðKL;i−;PþÞ×MRð−P−;jþ;KRÞ=P2 and
MLðKL; jþ; P−Þ ×MRð−Pþ; i−; KRÞ=P2. Switching dif-
ferent helicity particles requires us to flip the propagator’s
helicity as well. It can be shown that, in the large-z limit,
MLðKL; i−; PþÞ ¼ MLðKL; jþ; P−Þ; likewise for the right-
hand subamplitude. Note that switching i− and jþ requires
more care now: functionally, the correct label swaps forML
are i → P, P → j while for MR j → P and P → i.
Therefore, we can write, as above,

MLði−; PþÞ ∝ hiPiF½iP�GðλiÞað~λiÞbðλPÞkð~λPÞl
MLðjþ; P−Þ ∝ hPjiF½Pj�GðλPÞað~λPÞbðλjÞkð~λjÞl: ð26Þ

Crucially, the large-z limit is also different for the two
subamplitudes, since the limits (11) were obtained with
i ∈ P. The second subamplitude instead has j ∈ P, and in
this case the limits are λP → −zλi and ~λP → ~λj. In the large-
z limit then identical counting as above shows that
aþ b ¼ even, and the same will hold for MR. The
propagator is antisymmetric in the large-z limit under
swapping i and j, and therefore the leading z pieces cancel
as expected. This cancellation reduces the leading z−1 and
zþ7 scalings for the opposite helicity-shifted BCF terms in
the previous section, down to the well-known z−2 and zþ6

BCFW scalings for GR. This completes the proof of the
bonus scaling for GR and closes the final gap in the on-shell
proof of BCFW in GR Ref. [1].

IV. ANALYSIS OF THE FULL AMPLITUDE

The simple argument we used above can be applied
directly to the whole amplitude, if we restrict to like-
helicity shifts. Consider

Anði; jÞ ∝ hijiF½ij�GðλiÞað~λiÞbðλjÞcð~λjÞd: ð27Þ

If this amplitude is manifestly symmetric under exchange
of two (bosonic) particle labels, then Anði; jÞ ¼ Anðj; iÞ,
which fixes a ¼ c, b ¼ d, and F þ G ¼ even. By helicity
counting, −F þG − aþ b ¼ 2hi ¼ even, and then
aþ b ¼ even. So, under a ½i; ji shift,

AnðiðzÞ; jðzÞÞ ∼ zbþc ¼ zaþb ¼ zeven: ð28Þ

This same logic holds in Eq. (27), even if the shifted
lines are identical fermions. Permuting labels i and j again
forces a ¼ c, and b ¼ d, and F þG ¼ odd. But so must
2hi ¼ −F þG − aþ b. Hence aþ b remains even.
BCFW shifts of identical particles, bosons or fermions,
fix zeven scaling at large z.
To understand the opposite-helicity shifts, we are led to

consider pure GR as embedded within maximal N ¼ 8
SUGRA. Amplitudes in maximal supergravity do not
distinguish between positive and negative helicity graviton
states. Using the methods of [22] to truncate to pure GR, we
recover the usual BCFW scalings.
As an interesting corollary of our four-dimensional

analysis, the large-z scaling of gravity amplitudes in three
dimensions is drastically improved to z−4. Due to the
fact that the little group in three dimensions is a discrete
group, the BCFW deformation is nonlinear. In particular
the three-dimensional spinors shift as [23]

λiðzÞ ¼ chðzÞλi þ shðzÞλj; λjðzÞ ¼ shðzÞλi þ chðzÞλj;
ð29Þ
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where chðzÞ ¼ ðzþ z−1Þ=2 and shðzÞ ¼ ðz − z−1Þ=2i.
Thus, momenta shift as

piðzÞ ¼ Pij þ yqþ 1

y
~q; pjðzÞ ¼ Pij − yq −

1

y
~q

ð30Þ

where Pij ¼ piþpj

2
, y ¼ z2, and q; ~q can be read off from

Eq. (29). Now let us consider three-dimensional gravity
amplitudes that arise from the dimension reduction of four-
dimensional gravity theory. The degrees of freedom are
given by a dilaton and a scalar. Since both are bosons, little
group dictates that one must have even power of λi. Thus
the large-z behavior of gravity amplitudes is completely
dictated by Eq. (30). Permutation invariance then requires
the function to be symmetric under y ↔ −y, and so must
be an even power of y. Thus if gravity amplitudes can be
constructed via BCFW shift, the large-z asymptotic behav-
ior must be at most y−2 ¼ z−4. Indeed it is straightforward
to check that the four-pointN ¼ 16 supergravity amplitude
behaves as z−4 under a super-BCFW shift. This is to be
compared with the z−1 scaling of superconformal Chern-
Simons theory [23].
More generally, BCFW shifts in d ≥ 4 take the form

pμ
i ðzÞ ¼ pμ

i þ zqμ pμ
j ðzÞ ¼ pμ

j − zqμ; ð31Þ

where q is null and orthogonal to pi and to pj. External
wave-functions of shifted boson lines also shift [13].
For identical bosons, Bose symmetry disallows zodd

scaling, as it would introduce a sign change under label
swaps. Identical fermions shift similarly; here the
antisymmetric contraction of the identical spinor wave
functions absorbs their exchange-sign. BCFW shifts of
identical particles must scale as zeven for large z in
dimensions d ≥ 4.
Symmetry between identical particles is crucial for

these cancellations to occur. Gluon partial amplitudes are
not permutation invariant: distinct gluons generally have
different colors. This spoils the permutation invariance—as
is clear from z−1 dropoff of adjacent shifts of a color-
ordered tree amplitude in Yang-Mills. Gravitons, however,
are unique: they cannot have different “colors” [24]. Thus
graviton amplitudes are invariant under permutations
from the outset: the discrete symmetry group of graviton
amplitudes is larger than for gluon amplitudes.
Consequently, gravity amplitudes are softer in the deep-
UV than Yang-Mills amplitudes.

V. BOSE SYMMETRY AND COLOR
IN YANG-MILLS

Finally, we explore the interplay between color and the
large-z structure of Yang-Mills amplitudes. For ease, we

focus on Atree
4 ð1−; 2−; 3þ; 4þÞ. It can be written in terms of

color-ordered partial amplitudes as

A4ð1−2−3þ4þÞ
h12i2½34�2 ¼ Trð1234Þ

st
þ Trð1243Þ

su
þ Trð1324Þ

tu
:

ð32Þ

Under a ½1; 2i shift, only t and u shift, and in opposite
directions: t̂ðzÞ ¼ tþ zh1j4j2�, and ûðzÞ ¼ u − zh1j4j2�.
The term proportional to Tr(1324) scales as z−2, while
the other two scale as z−1. The leading z terms,

A4ð1̂−; 2̂−; 3þ; 4þÞ
h12i2½34�2 ∼

Trð1234Þ − Trð1243Þ
zh1j4j2�s þ � � � ; ð33Þ

cancel when gluons 1 and 2 are identical, and T1 ¼ T2.
Cancellation of z−1 terms must hold for general tree

amplitudes when the gluons have the same color labels.
However, only BCFW shifts of lines that are adjacent in
color-ordering cancel pairwise as in Eq. (33). For color-
orderings where this shift is nonadjacent, there are no pairs
of BCF terms with canceling z−1-terms. This implies that
good non-adjacent BCFW shifts in gluon partial amplitudes
must scale as z−2.

VI. FUTURE DIRECTIONS AND
CONCLUDING REMARKS

We have shown that the z−2 bonus scalings and relations,
crucial for consistent on-shell contraction of gravitational S
matrices, follow from Bose symmetry. Similar z−1 can-
cellations occur in QED and GR [25]. Further, Bose
symmetry alone implies z−2 dropoff of nonadjacent
BCFW shifts in Yang-Mills. More broadly, BCFW shifts
of identical particles—bosons and fermions—must scale as
zeven in general settings, beyond d ¼ 4.
Graviton amplitudes in Refs. [26–28], which manifest

permutation symmetry, also manifest z−2 dropoff. This is
not a coincidence: permutation symmetry automatically
implies bonus behavior. A better understanding of gravity
should be tied to more natural manifestations of permuta-
tion invariance. However, not all improved scalings obvi-
ously come from permutation invariance. Notably,
Hodges’s observation that BCFW-terms, built from
“bad” “opposite helicity” z−1 N ¼ 7 SUGRA shifts,
term-by-term scale as z−2 [29]. As the legs are not identical,
permutation invariance is not prominent in the proof [30].
Permutation invariance has unrecognized and powerful

consequences even at tree level. Do new constraints appear
when accounting for it in other shifts? Does it have
nontrivial consequences at high-loop orders in N ¼ 8

SUGRA or N ¼ 4 SYM? Would mandating it expose
new facets of the “Amplituhedron” of Ref. [7]?
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